
Flash Drive Emulation

Eric Aderhold & Blayne Field
aderhold@cs.wisc.edu & bfield@cs.wisc.edu

Computer Sciences Department
University of Wisconsin, Madison

Abstract

Flash drives are becoming increasingly more com-
mon. In order to be able to effectively make use of
these devices, it is necessary to be able to design sys-
tems that are optimized for ideal flash drive perfor-
mance. To that end, we have developed a flash drive
emulator. This emulator can allow software (such as
file systems or any other system that would need to
interact directly with the disk) to be tested for flash
drive performance. The ability to use an emulator for
this purpose should be able to make this testing more
cost-effective, as there would no longer be as much
of a need to buy expensive hardware that is prone to
wearing out after a finite number of writes.

1 Introduction

Storage devices based on flash memory are becom-
ing more common. Their capacities have increased
dramatically in recent years, and their price has
fallen to the point where flash storage devices
have started to replace disks in a few applications,
particularly in notebook computers and other mobile
devices.

Since flash-based storage devices are a fundamen-
tally different technology than traditional rotating

disks, it makes sense to design file systems that are
optimized for flash memory’s different hardware
properties. Some research has already been done
in this area, [2, 3] but the field could benefit from
more work, especially as the underlying hardware
technology evolves over time.

Unfortunately, there can be significant costs to
this research. Flash devices, especially those with
capacities in the tens of gigabytes (or higher), can
be expensive. Furthermore, the tendency of flash
hardware to wear out after a few hundred thousand
writes to any block means that when such drives are
used intensively for research purposes, they may
wear out fairly quickly and need to be replaced.

Because of this problem, we decided to design
and implement a Flash drive emulator. Our emulator
is built on top of the Linux RAM disk driver, and
designed to closely approximate the read and write
performance of an existing and has been tested
to closely match the performance of an existing
flash drive for both read and write operations. A
related project has been undertaken for hard drives
in the past [1]. However, as flash hardware does not
have the complex rotational delays and seek delays
of a traditional hard drive, a flash drive emulator
is easier to get to run at speeds such that the
timing delays can be accurately calculated and mod-

1

eled faster than the emulated drive would return data.

2 Approach / Methods

2.1 Basic Approach

On a high level, there are four main layers to the
Linux storage system. On the top layer is the
system calls which call into the file system and the
applications that interact with it. The file system
in turn interacts with the device through the VFS
layer (which virtualizes the hardware to appear as an
abstract device). Depending on the type of device,
these calls are routed down to the appropriate device
driver. Underneath the device driver is the lowest
layer, the actual hardware device.

Since our goal is to be able to emulate system
performance on flash hardware, our basic approach
is to modify the lower layers of the storage system in
such a way that a file system or other program that
is accessing the device cannot notice any material
difference between the emulated device and actual
hardware. In order to do this, we are decided to
modify the VFS and driver levels of the system.

In particular, the device driver we decided to
modify is that of the RAM disk. A RAM disk is
essentially a portion of memory that is treated by
the system as a block storage device. This allows a
file system or anything else that would be stored on
a disk to be stored on a RAM disk volume instead.
RAM disks are commonly used within the Linux
kernel to assist with the boot process, though most
users make little use of them after the computer
has been started. By adding appropriate timing
delays to the RAM disk driver and the VFS layer
above it, we are able to closely emulate the read and
write performance of a flash drive, while preserving

the set of system calls and operations that would
normally be available with any device.

2.2 Emulating Writes

In our initial performance measurements, we real-
ized that an important factor in the emulation of flash
disk writes is the distinction between random writes
and sequential writes. These different workload
types perform significantly differently on flash
hardware, so it is necessary to be able to quickly and
correctly classify a write being done to our system
as either being a sequential write or a random write.

Our first step in classifying these writes was to
simply observe the patterns that were present in
sequential writes that were not present in random
writes. We ran some random write tests and se-
quential write tests (described in more detail in the
Results section), and noticed that the byte offset
being accessed in the sequential write calls would
increase in a constant amount before eventually
rolling back over to zero and starting again. Fur-
thermore, the starting offset for a sequential write
operation was identical to the ending offset for the
previous operation, for obvious reasons. Thus, in
order to detect sequential writes, we simply added
a variable to the RAM disk driver to keep track of
the previous ending offset, and compared it to the
current beginning offset.

An important point to note in this approach is that
in a sequence of sequential writes, the first of these
writes will necessarily be classified as a random
write and will incur the cost penalty associated
with random writes. Intuitively, this makes perfect
sense since the first of a series of sequential writes
will necessarily be reading from a different section
of the disk than the previous write. However, our

2

empirical data indicates that the full random write
delay is not typically present at the beginning of a
series of sequential writes, so we needed to be able
to compensate for this over-waiting. We did this by
storing an additional parameter that estimates how
much time we have waited more than the observed
initial sequential delay, and we reduce future se-
quential delays in subsequent writes to compensate
for this extra delay. We set this time whenever
we see a sequential write that was preceded by a
random write, since this means that we must have
mis-classified the random write.

Our approach was intentionally kept as simple
as possible. We only needed to add a couple of
variables to the driver to keep track of state. One
advantage to this approach is that since the amount
of information stored is kept to a minimum, any
necessary computations can be done very quickly.
This means that any computations have little danger
of taking longer than the corresponding action
on the actual flash drive. Furthermore, keeping
the calculations simple leaves more CPU time for
other tasks, and also having a small set of factors
makes the process of reconfiguring the emulator
for a different computer or different flash drive
much simpler. Finally, this design greatly simplifies
the future task of automatically determining these
parameters from a set of experimental data.

However, this is not to say that our system is
without flaws. Our experimental tests of the sequen-
tial write functionality resulted in a fairly complex
performance model, with some linear portions and
some discontinuities. As a result, our emulated
results (as shown in more detail in the Performance
Analysis section) were slightly faster or slower than
the flash hardware for most individual write sizes,
though the emulator matches the overall trend fairly
well. Even so, a slightly more complex emulator

model, involving an additional one or more state
variables, would likely improve results even more.

We store the following four pieces of information
within the modified RAM disk driver:

• intra-step delay

• inter-step delay

• step locations (writes between steps)

• excess delay to burn

The two delays can be easily modified through the
ioctl interface to the emulator device. The exact
ways in which these delays are used can be seen in
more detail in the code samples in Appendix A.

One issue we have with sequential writes is that
function of time taken appears like a step function
as the number of blocks we write. This delay
should correspond to moving to a new block on
the flash device. There is also an increase that
happens between the steps, the cause of which is not
as immediately clear (no such delay exists for reads).

Each time we do a write to a RAM disk,
the following three functions are called every
time, in order: ramdisk prepare write,
ramdisk commit write, and
ramdisk set page dirty. We do all of
our delays in the ramdisk prepare write
function, since this one is called first, and it also
has all of the information that we need in order to
calculate the delays passed in as parameters.

2.3 Emulating Reads

One important difference between emulating reads
and emulating writes with the RAM disk code is the
flow of control through the kernel. While in a write,

3

there are three functions in the RAM disk driver
(rd.c) that get called for every write operation,
the same is not true for reads. This perplexed us
for some time. It turns out that when a read occurs
from a RAM disk, the only code called in the
RAM disk driver is the function rd open, and
this only happens on the first read operation. This
function apparently initializes an inode to point to
the appropriate part of the memory page table for
the RAM disk, but the actual reading does not occur
in the device driver code.

Thus, we needed to move one level up in the
storage stack, to the VFS layer, in order to add
read delays. We needed to catch calls for reading
from the RAM disk in the vfs read function,
and do the appropriate timing delays in that function.

However, this added a new complication that
was not a factor when emulating writes. At the
vfs read level, we cannot just indiscriminately
apply delays to each call made, since this function
will be called for reads from many more devices
than just the flash disk emulator. Thus, we needed a
good way of detecting if the call is intended for the
emulator or for some other device. This fortunately
turns out to be a very simple test. By following the
function pointer to its inode, we can retrieve the id of
the device associated with that file. If that device id
matches that of the RAM disk we are using for our
emulator, we can then apply the appropriate delay.
This reliance on the device id can unfortunately be
somewhat system-dependent, though not any more
so than other portions of our emulator.

The delays in the read function turn out to be
a bit simpler than the delays needed to emulate
writes. Again, for random reads we get a very linear
performance pattern from the flash drive, whereas
for sequential reads, we once again get a stepwise

function. However, the slope within a single step
is nearly nonexistent in the sequential reads, which
means that it is not necessary to use the additional
linear slope parameter that is required for the write
emulation code.

The main difficulty for emulating reads, then,
lies in finding the correct size of the jumps, and
where they occur. For some reason, the size between
jumps isn’t constant; they rather seem to increase
for a while until reaching a fixed size. While we are
uncertain about the root cause of this behavior, we
were able to successfully emulate it by modeling the
width of these steps and updating the time until the
next jump based on the current step that we were on.

Similarly to in the emulation of writes, we once
again need to be able to distinguish between random
and sequential access. Our method for doing this
is essentially the same as in the write emulation
section.

One improvement that could be made for em-
ulating reads would be to store some additional
information for each file that is read (at least the
ones accessing the RAM disk). This is because it
may be possible for concurrent access to the RAM
disk to cause everything to be classified as random
(if two processes are alternating reads, for example).
However, in reality, caching may in fact be lessening
the performance hit of such behavior. We do not
know if this is an issue.

3 Flash Emulator Performance
Analysis

The flash emulator was tested for performance
against a 32MB generic-branded flash drive with a

4

USB interface. For major sets of tests were run:
sequential read tests, sequential write tests, random
read tests, and random write tests. All of these tests
were implemented using the Linux dd command,
which is able to read from and write to the disk
directly, without any higher-level file systems that
could potentially confound the results.

3.1 Sequential reads

For the sequential read test, we tested both drives
using various sizes of reads. All reads were done
with the Linux dd program. For each read amount,
the dd program was run with a parameter stating
how much data was to be read. In each case, the
read began from the beginning of the device and
continued until the requested amount of data had
been read. With both devices, the time required for
a given sized read scaled up in a fairly stepwise
fashion. Certain ranges of data amounts took
essentially the same amount of time to read, and the
time would jump sharply upward once that range
was surpassed. We attribute this behavior to the
architecture of the underlying hardware; we assume
that the flash drive is partitioned into a certain num-
ber of blocks, each of which must be read all at once.

The important bit of information for our purposes,
however, is not why the drive behaves as it does, but
is instead how closely our emulator is able to approx-
imate the drive’s behavior. On this measure, the emu-
lator did mostly quite well. The similarity in sequen-
tial read performance between the flash drive and the
emulator is shown in Figure 1. With the exception of
the first two very small tests, the performance of the
flash drive was always within 20 ms of the simulator.
The difference in the small-size write performance is
an area where our model could use some improve-
ment.

0

0.125

0.250

0.375

0.500

0.625

0.750

100 250 400 550 700

T
im

e
 (
in

 s
e
c
o

n
d

s
)

Sequential Blocks Read

Flash Drive Emulator

Figure 1: Sequential read performance

3.2 Random reads

For the random read test, we again tested both drives
using various sizes of reads. All reads were again
done with the Linux dd program. The main differ-
ence between the sequential read test and the random
read test is that the dd program was invoked multiple
times for each random test, reading only one block
per call to dd, up to the total number of blocks to
be read. The location of the block to be read was
computed randomly before invoking dd. The pat-
tern for these random read tests was very linear. The
graph in Figure 2 shows this pattern, with the flash
drive and emulator again having very similar perfor-
mance. This time, the similarity was even closer than
that for the sequential reads. This can be attributed to
the relative simplicity of the model used to emulate
random reads as compared to sequential reads.

3.3 Sequential writes

The sequential write performance of the flash drive
was a bit more challenging to model than either type
of read performance. Instead of being a purely lin-
ear graph (like the random reads) or a purely step-
wise graph (like the sequential reads), the sequential

5

0

1

2

3

4

5

6

7

8

9

10

100 250 400 550 700

T
im

e
 (
in

 s
e
c
o

n
d

s
)

Random Blocks Read

Flash Drive Emulator

Figure 2: Random read performance

writes seem to be a combination of both. Using a
very similar test to the sequential read test described
above, our emulator was able to approximate the per-
formance of the true flash drive fairly closely. The
exact difference is shown in Figure 3. Because this
combination linear/stepwise performance was a bit
more difficult to model, the two devices aren’t quite
as close together in performance as either of the read
performance graphs. Nevertheless, the average dis-
crepancy between the flash drive and the emulator
was a mere seven ms.

0

1

2

3

4

240 640 1040 1440 1840

T
im

e
 (
in

 s
e
c
o

n
d

s
)

Sequential Blocks Written

Flash Drive Emulator

Figure 3: Sequential write performance

3.4 Random writes

The random write performance was very similar to
the random reads. Both random reads and writes re-
sulted in a very linear distribution, and the emula-
tor was able to very closely approximate the perfor-
mance of the flash drive. The results from this set of
tests are shown in Figure 4.

0

15

30

45

60

75

90

105

120

0 50 100 150 200 250 300 350 400 450 500 550

T
im

e
 (
in

 s
e
c
o

n
d

s
)

Random Blocks Written

Flash Drive Emulator

Figure 4: Random write performance

4 Conclusions

In conclusion, our flash drive emulator is a good step
toward a tool that could be useful for researchers
studying file systems for flash drives or other appli-
cations that would need to optimize their workload
for a flash-based disk device. Our results show that
the basic performance of a flash drive can be emu-
lated fairly closely without the need for an overly
complex model. This can even be done to reasonable
accuracy without a detailed understanding of the
operational details of the underlying physical flash
hardware.

6

References
[1] J. Griffin, J. Schindler, S. Schlosser, J. Bucy, and G. Ganger.

Timing-accurate storage emulation. Proceedings of the
Conference on File and Storage Technologies (FAST), 2004.

[2] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-
memory based file system. Proceedings of the USENIX
1995 Technical Conference Proceedings on USENIX 1995
Technical Conference Proceedings table of contents, pages
13–13, 1995.

[3] D. Woodhouse. JFFS: The Journalling Flash File System.
Ottawa Linux Symposium, 2001, 2001.

A Write Delay Code

s t a t i c i n t r am d i s k p r e p a r e w r i t e (s t r u c t f i l e ∗ f i l e , s t r u c t page ∗page ,
unsigned o f f s e t , unsigned t o)

{
s t a t i c uns igned l a s t t o = 9999 ;
s t a t i c u i n t 6 4 t d e l a y = 0 ;
s t a t i c i n t l a s t s t a t e = RANDOM STATE;
s t a t i c u i n t 6 4 t e x t r a c y c l e s = 0 ;
s t a t i c i n t t h r e s h o l d = 195 ;
s t a t i c i n t s e q w r i t e s = 0 ;

/ / S e q u e n t i a l
i f (o f f s e t == l a s t t o % 4096) {

i f (l a s t s t a t e == RANDOM STATE && r a n d d e l a y > s e q d e l a y) {
e x t r a c y c l e s = (r a n d d e l a y − s e q d e l a y) ;

}

i f ((s e q w r i t e s = (s e q w r i t e s + 1) % t h r e s h o l d) == 0) {
t h r e s h o l d = 256 ;
w a i t t i c k s (s e q s p i k e) ;

}

d e l a y = (e x t r a c y c l e s > s e q d e l a y ? 0 : s e q d e l a y − e x t r a c y c l e s) ;
e x t r a c y c l e s −= (e x t r a c y c l e s > s e q d e l a y ? 0 : e x t r a c y c l e s) ;

i f (l a s t s t a t e == RANDOM STATE && r a n d d e l a y < s e q d e l a y) {
d e l a y += (s e q d e l a y − r a n d d e l a y) ;

7

}

l a s t s t a t e = SEQUENTIAL STATE;
}
e l s e {

d e l a y = r a n d d e l a y ;
l a s t s t a t e = RANDOM STATE;
e x t r a c y c l e s = 0 ;
s e q w r i t e s = 0 ;
t h r e s h o l d = 195 ;

}
/ / resume r amd i s k p r e p a r e w r i t e . . .

B Read Delay Code

s s i z e t v f s r e a d (s t r u c t f i l e ∗ f i l e , char u s e r ∗buf , s i z e t count , l o f f t ∗ pos)
{

s s i z e t r e t ;
s t a t i c u i n t 6 4 t l a s t p o s = 128647;
s t a t i c i n t s e q r e a d s = 0 ;
s t a t i c i n t my th r e s ho l d = 32 ;
s t a t i c i n t s t a t e = 0 ;

i f (f i l e −>f mapping−>hos t−>i r d e v == RAM DISK DEV ID) {
i f (∗ pos == l a s t p o s) {

s t a t e = 1 ;
i f (++ s e q r e a d s >= my t h r e s h o l d) {

w a i t t i c k s (r d s e q r e a d d e l a y) ;
i f (my t h r e s h o l d < 256) {my th r e s ho l d ∗= 2 ;}
s e q r e a d s = 0 ;

}
} e l s e {

w a i t t i c k s (r d r n d r e a d d e l a y) ;
s t a t e = 0 ;
s e q r e a d s = 0 ;
my t h r e s h o l d = 32 ;

}
l a s t p o s = ∗pos + coun t ;

}
/ / c o n t i n u e v f s r e a d f u n c t i o n . . .

8

