
ARC: An Approach to Flexible and Robust RAID Systems

Ba-Quy Vuong and Yiying Zhang
Computer Sciences Department, University of Wisconsin-Madison

Abstract
RAID systems increase data storage reliability by employ-
ing one or more data integrity techniques such as parity
or checksum. However, the current implementations of
software RAID systems suffer both inflexibility and unro-
bustness. First, different software RAID levels require dif-
ferent RAID systems and the system written for one level
cannot be reused for others. In addition, writing a new
RAID system is known to be difficult and it requires a lot
of debugging effort. In this paper, we propose Automatic
RAID Construction (ARC), an approach to automatically
construct RAID systems with different parity and check-
sum schemes. In this approach, we first provide various
data structures and parameters for specifying parity and
checksum schemes. We then automatically translate each
scheme into a RAID system with the desired features. With
ARC, only one system is required to handle many differ-
ent RAID levels. Thus, the effort of writing new RAID
systems is eliminated and both flexibility and robustness
are achieved. We also implemented the ARC system on
Linux with simulated virtual disks. The system consists of
slightly more than one thousand lines of code which is not
much different from current RAID systems such as RAID
1 and RAID 5. The performance evaluation shows that
ARC can be configured to act as different RAID systems
with reasonably good performance.

1 Introduction

1.1 Motivation
Many applications today such as databases and Web
servers are requiring more reliable storage since media
or disk failures may cause unmanageable cost. Until re-
cently, one of the most common ways to improve stor-

age reliability is to store data in one of the RAID sys-
tems. RAID systems usually use an array of disks together
with one or more data integrity techniques such as par-
ity or checksum to detect and recover from disk failures.
RAID systems are currently built either at the hardware
level (hardware RAID) or at the software level (software
RAID).

In hardware RAID, the RAID controller is built as
a dedicated hardware to control the disk array. The
hardware RAID has the advantage of good performance.
However, is it not flexible as the RAID level is fixed in the
hardware. In addition, hardware RAID is expensive and
difficult to maintain as the firmware is often very complex
and changing firmware code is known to be painful.

Software RAID is another alternative to build RAID
systems. In this approach, a software layer (RAID driver)
is developed to sit above the disk drivers to control the
disk array. The RAID driver is responsible for distributing
requests and controlling the disk array. Software RAID
has several advantages over hardware RAID. First, it is
more flexible. A new RAID level on the same disk ar-
ray can be constructed by just replacing the RAID driver
with a new one. Maintaining software RAID is also more
straightforward. One just needs to change the code of
the RAID driver at the software level. Finally, software
RAID is cheap and it is distributed with most versions of
Linux. In the scope of this paper, we only focus on soft-
ware RAID.

Although software RAID has lots of advantages over
hardware RAID, it is still considered as not flexible and
robust enough for many applications’ needs. First, each
level of RAID needs a RAID driver that is specifically
designed for it. The driver developed for one level can-
not be reused for other levels. If one application requires
a new RAID level then a new RAID driver needs to be
built from scratch. Thus, the current software RAID is not

1



flexible. Second, although developing a software RAID
driver is easier than writing a hardware firmware, it is still
a challenging task, especially for inexperienced program-
mers. Every newly written RAID driver requires numer-
ous amount of time, effort and experience for testing to
make sure that it is bug free. Because of this factor, many
new RAID drivers are not robust and may contain a lot of
bugs.

1.2 Objectives and Contributions
In this work, we aim to automate the process of con-
structing RAID systems and thus improve both flexibility
and robustness. We do not focus on building a specific
RAID level system. Instead, we propose a generic sys-
tem that can be configured to become any RAID system
by setting appropriate data structures and parameters. In
particular, we design two matrices for configuring parity
schemes and a list of parameters for configuring check-
sum schemes. The two matrices for parity include:

• A layout matrix for setting the roles of different
blocks on a RAID stripe.

• A parity matrix for indicating which data blocks in
one stripe contribute to a particular parity block.

The parameters for checksum include:

• The checksum function.

• The location of each checksum.

• The size of each checksum.

• Additional information for each checksum such as
the block physical location.

We also implemented the proposed design as an ac-
tual RAID driver in Linux with simulated virtual disks.
The code for this driver consists of slightly more than one
thousand lines, which is not much different from the cur-
rent implementations of RAID 1 and RAID 5. The perfor-
mance evaluation shows that our driver can be configured
as drivers for different RAID levels with all the basic fea-
tures. Although we do not focus on performance in this
design, our driver is shown to result in reasonably good
performance for both read and write operations.

1.3 Paper Outline

This paper is organized as follows. We investigate and
summarize some related work in Section 2. In Section
3, we describe the architecture of ARC in detail. We
then discuss the designs of automatic parity and automatic
checksum in Section 5 and Section 4 respectively. Section
6 discusses some implementation issues of ARC in Linux.
We present and analyze some performance results in Sec-
tion 7. Finally, Section 8 concludes the paper.

2 Related Work

RAID has been an active research direction for years since
the five basic RAID levels were introduced in [10]. How-
ever, most of the work focus on proposing new RAID lev-
els [3, 4], estimating RAID reliability [5] or modeling disk
failures [9].

In [8], Krioukov discussed a formal approach for an-
alyzing the design of different data protection strategies.
This paper mentions a list of strategies such as different
checksum schemes and version mirroring. However, it
provide a way of building an automatic system that ex-
ploit these strategies.

RAIDframe [6] is one of the efforts to provide a
firmware environment for prototyping and evaluating dif-
ferent RAID architectures. It localizes modification and
provides libraries of existing architecture to extend. The
disk array operations are modeled as directed acyclic
graphs (DAGs) and a simple state machine. Although
this approach can prototype different RAID codes, it is
not clear how an automatic RAID construction system is
built.

Until recently, there have been several system-on-chip
(SOC) products [2, 1]. Typically, these systems con-
tain an embedded processor, DMA/XOR engines and host
and disk interface logic. While these system are consid-
ered to support variety of RAID codes by using the pro-
grammable capability of processors, they are built at the
hardware level which has no relation with software RAID.

One of the work that is closest to the problem we are at-
tacking is REO [7]. This paper proposes a generic RAID
engine and optimizer that is able to optimize I/O opera-
tions of different RAID codes. The RAID code input to
REO is in the form of a generator matrix, which speci-

2



fies how parity blocks are laid out and calculated. How-
ever, this work focuses on using the generator matrix to
optimize the RAID operations instead of building an au-
tomatic RAID construction system.

3 Architecture

Figure 1: ARC architecture.

Like other software RAID systems, ARC is designed as
a software layer sitting between the disk drivers and the
file system. Figure 1 shows the overall design of ARC.
The system consists of three main components. The roles
of these components are as follows.

• The Translator: This module allows users to spec-
ify different schemes of parity and checksum. It then
converts these schemes into appropriate data struc-
tures and parameters that are ready to be used by
the Automatic Parity and the Automatic Checksum
modules.

• The Automatic Checksum: This module takes in
a list of parameters from the Translator and uses it
to control the operation of checksums. This module
works on an array of disks. For each disk, it builds
appropriate checksum blocks for a set of data blocks
using the parameters provided. It then hides the
checksum blocks and only exports the data blocks
to the Automatic Parity module. Thus, the checksum
blocks are transparent to the Automatic Parity mod-
ule. What this module sees is an array of disks, each
disk consists of consecutive data blocks.

• The Automatic Parity: This module takes in a lay-
out matrix and a parity matrix from the Translator.

These two matrices are used to control the operation
of the parity. For each read or write operation from
the file system, one or more read and write opera-
tions will be issued from this module to the underly-
ing disk array exported by the Automatic Checksum
module. The Automatic Parity module also hides the
parity blocks and only exports the data blocks from
the disk array as consecutive blocks of a single disk.
The detailed design and operation of this module are
discussed in Section 5.

To better understand the operation of ARC, let us con-
sider the following example:

Figure 2: An example of disk block layout at different modules.

Example 1: Assume that one user specifies RAID 5
configuration with three disks. He also wants to have a
MD5 checksum for each data block. The reserved size
for each checksum is one third of a block and the check-
sum region is placed after every three data blocks. First,
the Translator translates the requirements from the user
into two matrices for parity and a list of configuration pa-
rameters from checksum. These matrices and parameters
are then fed into the Automatic Parity and the Automatic
Checksum modules respectively. Figure 2 shows the over-
all process and shows how different blocks of data, parity,
checksum are placed by different modules. At the file sys-
tem level, the entire disk array is seen as a single disk
with six data blocks. At the Automatic Parity level, the six
data blocks are distributed over three disks. Three par-
ity blocks are also constructed and distributed according
to the values of the matrices. At the Automatic Check-
sum level, one checksum block are added for every two

3



data blocks and one parity block. As the size for each
checksum is one third of a block, each checksum region
occupies exactly one block. According to the Checksum
Location parameter, the checksum block is place after ev-
ery three blocks.

One may notice that the order of the Automatic Parity
and Automatic Checksum is important in our design as it
may change the locations of blocks on the physical disks.
For example, if the Automatic Checksum is built on top
of Automatic Parity instead of the reversed order as in the
current design, then the same configuration will result in
different locations of data, parity and checksum blocks.
We realize that either design can produce fairly good sys-
tem. However, we stick to the current design because we
implemented the Automatic Parity module first and it was
easier for us to implement the checksum module below
the parity module.

4 Automatic Checksum

Checksuming is a common technique to detect data cor-
ruption, which is often used in current RAID systems.
There are various ways of checksuming in terms of check-
sum functions, checksum unit, checksum size, checksum
location, and additional information stored with check-
sum. Common checksum functions include hash-based
functions such as SHA1 and MD5. Each checksum can
be provided for one or more data blocks. The size of the
checksum often depends on the checksum function. How-
ever, a reserved size can be set for storing each checksum.
In general, the checksum can be placed anywhere on the
disk as long as there exists a mechanism to determine the
checksum for a requested data block. Additional infor-
mation, such as the block physical location, can be also
added to the checksum.

All current RAID implementations have a fixed de-
sign of checksums (checksum functions, checksum posi-
tions, and so on). Once a RAID system is built, changing
the checksum scheme is often very hard. For software
RAID, this means rewriting the RAID driver. For hard-
ware RAID, it means changing the firmware code.

4.1 Design of Automatic Checksum
In ARC, we put the Automatic Checksum module below
the Automatic Parity module for the reason mention in
Section 3. With this design, we provide checksum for
both data and parity blocks. In fact, the checksum module
cannot distinguish between data blocks and parity blocks.
It performs checksuming regardless of the content of the
block. Thus, unless specifically noticed, in this subsection
we use the term “data block” for both data blocks and
parity blocks.

A major concern of our design is to provide flexibility
in defining checksum schemes while ensuring that the de-
fined scheme works properly. The degree of flexibility in-
cludes: (1) flexible checksum unit, (2) flexible checksum
location, (3) built-in and user-provided checksum func-
tions, and (4) time of verification. In our design, we sup-
port the first three flexibilities while leaving the last one
for future work. Specifically, we allow users to change
the following parameters:

• The checksum function.

• The size reserved for the checksum of one data
block. This size must be at least the actual size
needed to accommodate the checksum.

• The number of data blocks whose checksums are put
together in one checksum region. This parameter is
used to control the location of the checksum regions
on disk.

Checksum Mapping: In the current ARC design, a
checksum region is placed after every n consecutive data
blocks. This region contains a checksum for each of the
n data blocks. The n consecutive data blocks are called
a checksum unit. The size n of the checksum unit is ad-
justable. The smallest value is one and the largest value is
the number of blocks in the disk (except a few blocks are
reserved for the checksum region). One should note that
the checksum region may span more than one disk block.

In each checksum region, checksums for the n data
blocks are placed sequentially, in the order of data blocks
on disk. Each checksum occupies the size reserved for
it. Figure 3 shows an example of checksum scheme. In
this example, each checksum unit consists of three data
blocks (n = 3) and each checksum is reserved one third
of a block. Thus, each checksum region occupies exactly

4



one block. The first chunk in the first checksum region
stores the checksum for block 0, the second chunk stores
the checksum for block 1, and the third chunk stores the
checksum for block 2.

Figure 3: An example of checksum scheme.

In order to export only data blocks to the Automatic
Parity module while hiding the checksum blocks, data
blocks need to be re-mapped. For each request of the ith

block from the Automatic Parity module, Equation 1 is
used to calculate the actual data block to be accessed.

i′ = bi/nc ∗ (n + k) + i%n (1)

Where i is the requested block, i′ is the actual block
on disk, n is the number of data blocks in each checksum
unit, k is the number of blocks that a checksum region
occupies.

For each block read or block write request, the corre-
sponding checksum needs to be accessed for data integrity
verification or checksum update. The starting block of the
checksum region for the requested data block i is given in
Equation 2.

c = (bi/nc) ∗ (n + k) + n (2)

Where c is the starting block of the checksum region. i,
c and k are the same as in Equation 1.

For the example in Figure 3, we map the data block 4
into b4/3c ∗ 4 + 4%3 = 5. The checksum region starting
block is (b4/3c) ∗ 4 + 3 = 7.

5 Automatic Parity

In this section, we describe the design and data structures
of the Automatic Parity module in detail. Our parity mod-
ule uses the XOR-based code to calculate parities and to
reconstruct data blocks. To make the design simple, we
set the unit of parity as a disk block. Each parity block is
a XOR result of one or more data blocks. Although XOR

is binary operator, we make the convention that if it is ap-
plied to only one input then the result is the input itself
(i.e. XOR(A) = A). A stripe is a set of data blocks and
all related parity blocks. Within a stripe, a parity block is
a XOR of a subset of data blocks in that stripe. A strip
is a set of blocks that are arranged contiguously on one
disk. The number of disks is also the number of strips in
one stripe. For simplicity, we assume that the block size,
stripe size and strip size are uniform across all disks.

As noted earlier, there are two data structures used by
the Automatic Parity module: the Layout Matrix and the
Parity Matrix. In the following subsections, we discuss
the format of these two matrices and how they are used to
calculate parities and to reconstruct data blocks.

5.1 The Layout Matrix

The layout matrix has the size of n rows ×m columns
where m is the number of disks (number of strips per
stripe) and n is the number of blocks per strip. The size
of the layout matrix is also the number of blocks in one
stripe. The cell at row i, column j in the matrix corre-
sponds to the ith block on the jth strip of each stripe.
For each cell in the matrix, value Dx indicates the corre-
sponding block is a data block and it is the xth data block
within the stripe. Value Py indicates the corresponding
block is a parity block and it is the yth parity block in the
stripe. Both x and y are counted from the beginning of
the stripe, starting from zero. Figure 4 shows some exam-
ples of the the layout matrix for different RAID levels. In
Figure 4(a), the cell containing D4 indicates that the the
first block of the first strip is a data block, and that is the
fourth data block in the stripe 1.

Figure 4: Examples of the Layout Matrix.

1Note that all the indices start from zero.

5



Now let us discuss how read and write requests from
the file system are translated into appropriate read and
write requests on actual disks.

Read Operations: Since the whole disk array is seen
as a virtual single disk from the file system perspective,
a read request issued by the file system is in the form of
reading a particular block on the virtual disk. The Auto-
matic Parity module first identifies the actual disk and the
actual block for the request by applying Algorithm 1. This
algorithm works as follows. First, it determines the posi-
tion of the requested block in the stripe by taking the mod
of the requested block number with the number of data
blocks in each stripe. It then iterates through the Layout
Matrix to find the row and column of the cell that corre-
sponds to that block. The column number of that cell is
the actual disk number. The row number of that cell, is
then used to calculate the actual sector number. For ex-
ample, assume that there is a request at block number 15.
This corresponds to the cell D3. This means the actual
disk number is 0 and the actual sector number is 4.

Algorithm 1. Determine the Actual Disk and block
Input: I Block – The requested block

M – The Layout Matrix
Output: Disk – The actual disk

O Block – The actual block on Disk
Process:

1. offset← I Block mod (#data blocks per stripe)
2. cell← cell (0, 0) in M
3. while (offset>0)
4. cell ← the next data cell in M
5. offset←offset-1
6. end while
7. Disk ← the column of cell
8. s ← I Block div (#data blocks per stripe)
9. O Block ← s× strip size+ (the row of cell)

Figure 5: Algorithm to determine the actual disk and actual block of a request.

After the actual disk and block have been identified,
the request is redirected to the those disk and block. If
the read fails (e.g. an error code is returned from the disk
driver or the checksum inconsistent), the Parity Matrix is
used to determine a list of candidate parities for recon-
struction. The process of determining candidate parities
for reconstruction is discussed in Section 5.2. For each
candidate, multiple read requests may be issued by the
parity module to read blocks for reconstruction. Notice
that these reconstruction reads may also fail. If the mod-
ule finds at least one candidate that results in a success-

ful reconstruction, it stops and returns the reconstructed
block to the file system. Otherwise, an error code is re-
turned to indicated that the system is unable to read the
requested block.

Write Operations: To respond to a write request from
the file system, the Automatic Parity module executes in
two steps:

1. Writes the requested block to the actual disk.

2. Calculates the new parity values and updates all the
parity blocks that are affected by the new data block.

The first step is straightforward. Using Algorithm 1,
the Automatic Parity module can identify the actual disk
and the actual block to redirect the write request to. To
execute the second step, the module first uses the Parity
Matrix to determine a list of parity blocks to be updated. It
then calculates the new parity for each block. Notice that
in order to calculate a new parity value, some data blocks
and the old parity block may be read. If this process fails
due to failed reads, an appropriate error code is returned
to indicate the writing of the parity block(s) fails. In our
design, we use a simple approach to calculate the new
parity that requires only two reads: one read on the old
data block and one read on the old parity block. The new
parity is then calculated using Equation 3.

new parity=old parity XOR old data XOR new data (3)

5.2 The Parity Matrix
The Parity Matrix specifies what data blocks in one stripe
are XORed to make a certain parity block. This matrix
serves two purposes:

• Read Reconstruction: The matrix helps to deter-
mine which parity blocks can be used for recon-
structing a data block, and what are other data blocks
that need to be read for the reconstruction process.

• Writing Parity Blocks: The matrix helps to deter-
mine what are the parity blocks that need to be up-
dated in response to a write request.

We design the Parity Matrix as a matrix with p rows
and q columns. p is the number of parity blocks in one
stripe and q is the number of data blocks in one stripe.

6



Each row corresponds to a parity block and each column
corresponds to a data block. For each cell at row i and col-
umn j in the matrix, value 1 indicates the jth data block in
the stripe is used to calculate the ith parity block. Value 0
means the ith data block is not used. Figure 6 shows some
examples of the Parity Matrix for the two RAID levels
mentioned in Figure 4. In the following, we discuss how
this matrix is used to serve the two purposes mentioned
above.

Figure 6: Examples of the Parity Matrix.

Read Reconstruction: If a read on the jth data block
of a stripe fails, we first scan through the column j in the
Parity Matrix. If the cell at row i is one then the ith parity
block is a candidate for the reconstruction. For each parity
candidate at position i, we scan the row i in the Parity
Matrix. If the cell at column k (k 6= i) is one then the
kth data block in the stripe needs to be read to reconstruct
the ith data block. Note that all the indices start from
zero. For example, for the 4-disk RAID 5 in Figure 4 and
Figure 6, assume that a read on D5 fails. The column
D5 in the parity matrix indicates that there is only one
parity candidate which is P1. The row P1 in the same
matrix tells us that D3 and D4 need to be read for the
construction. The formal algorithm is given in Algorithm
2.

Writing Parity Blocks: The process of getting parity
blocks for update is simple. We just scan through the cor-
responding column of the newly written block. If a value
one is encountered then the parity block corresponds to
that row needs to be updated. For example, in 4-disk
RAID 5, if the written block is D9 then using the D9 col-
umn in the Parity Matrix, we see that the parity P3 needs
to be updated.

Algorithm 2. Determine candidates for reconstruction
Input: i – position of the failed block in the Layout Matrix

M – The Parity Matrix
Output: P = {k1, ..., ku} – positions of candidate parity blocks in

the Layout Matrix
Dk = {jk1, ..., jkv} – positions of data blocks for each
candidate parity block k in the Layout Matrix

Process:
1. P ← ∅
2. for each cell c1 in M at column i
3. if c1 contains 1
4. k ← the row number of c1
5. add k to P
6. Dk ← ∅
7. for each cell c2 in M at row k
8. j ← the column number of c2
9. if c2 contains 1 and j 6= i
10. add j to Dk

11. end if
12. end for
13. end if
14. end for

Figure 7: Algorithm to determine candidates for reconstruction.

6 Implementation
This section provides some discussions regarding the is-
sues of ARC implementation. We first describe the imple-
mentation of ARC in Linux. We then discuss and compare
the memory-based and disk-based versions.

6.1 Device Driver
The ARC system is implemented as a device driver in
Linux. This is the typical way of implementing RAID
systems which has been adopted by RAID 0, RAID 1,
RAID 5 and RAID 6. The benefit of this approach is ker-
nel independence, meaning that the kernel does not need
to be recompiled in order to accommodate ARC system.
In addition, ARC can be deployed at run-time. No restart
is required on the host machine. One should note that for
current RAID system, although they are kernel indepen-
dent, they still require some certain RAID support from
the kernel. These support are embedded into kernel at
compilation. Without these support, current RAID sys-
tems are unable to run. To avoid this problem, we built
ARC from scratch, without requiring any specific kernel
support. Thus, the ARC system can be deployed on any
Linux system, with or without RAID support.

For the current implementation of ARC, we ignore the
Translator module. Instead, we allow users to change the

7



code of ARC directly to specify data structures and pa-
rameters for the desired RAID system. This approach is
risky and inconvenient as users need to know which parts
of the code to change. Users may also modify incorrect
parts of the code and therefore cause the system to behave
unexpectedly. In the next version of ARC, we plan to
build the Translator module to separate users from modi-
fying the code directly. Thus, it helps reducing both risks
and inconveniences.

In the current ARC implementation, we provide two
built-in checksum functions: sum and hash-based. The
sum function just sums up all the bytes in one data block
to make the checksum. The hash-based function makes
use of function csum partial in checksum.h to calculate
the checksum. We also allow users to write their own
checksum functions.

6.2 Memory-based v.s. Disk-based
The current ARC implementation works on simulated vir-
tual disks. It means we split the memory into different
chunks with uniform sizes. We then use each memory
chunk as a virtual disk by implementing the read and write
operations on memory with appropriate delays. This ap-
proach has several advantages:

• Easy to build and debug as reading and writing from
and to memory is quite straightforward. This is es-
sentially useful in the first stage of building the ARC
system.

• There are no synchronization issues as memory is
always synchronous.

• The code used for memory-based version can be
used for disk-based version without significant
changes.

However, the memory-based version does not work on
real disks which is our ultimate goal. To solve this prob-
lem, we are currently working on a disk-based version
that uses real disks instead of memory. This turns out to
be hard due to the following reasons:

• In kernel programming, reading and writing to disks
require communication with disk drivers through the
bio structure. This structure is somewhat complex

and making everything work smoothly is a challeng-
ing task.

• Most operations on disks are asynchronous. This is
particularly difficult for our system as we need some
specific order among read and write operations. For
example, when updating a new parity block we have
to make sure that the old data block for parity calcu-
lation has been read successfully before writing the
new data block. Otherwise, the old data value will
be lost.

Towards a disk-based version, we have designed an
approach to work with the bio structure and to handle
asynchronous operations. Specifically, we split the re-
quest function in the ARC system into smaller functions.
Each small function is guaranteed to be executed com-
pletely (i.e. execute a complete read or write) before the
next small function is called. By doing this, the execu-
tion order is guaranteed. However, this approach requires
a precise split of the request function and that is time-
consuming. Due to lack of time, we do not implement
this approach in the current ARC system.

7 Performance Evaluation

7.1 Experiment Settings
To evaluate the performance of ARC, we performed sev-
eral experiments in the VMWare environment with the
Fedora 8 operating system. The machine configuration
was Intel Core 2 Duo 2.2GHz CPU and 1GB RAM. All
the experiments were performed using the memory-based
version of ARC. We simulated the disk delay by adding
a 15ms delay to each low-level disk read and a 17ms de-
lay to each low-level disk write. The workload comprised
reading, writing 30KB files and mkfs command. To com-
pare the performance of a normal ARC I/O operations and
the ones with reconstruction, we ran each workload twice.
One was without failure. One was with simulated failures.

To compare the effect of different RAID levels with dif-
ferent checksum scheme, we used the following four sys-
tems in the experiments.

• System 1: 4-disk Raid 0+1 (striping and mirroring)
with hash-based checksum.

8



• System 2: 4-disk Raid 0+1 (striping and mirroring)
with sum checksum.

• System 3: 4-disk Raid 5 (striping with distributed
parity) with hash-based checksum.

• System 4: 4-disk Raid 5 (striping with distributed
parity) with sum checksum.

7.2 Results

Figure 8 shows the performance of normal reads and reads
with reconstructions. For all the settings, normal reads
take similar amount of time. We can see that different
RAID levels or checksum schemes do not affect the per-
formance of normal reads much because without failures,
the system just needs two read twice: one for the data
block and one for the checksum block. Reads with recon-
structions usually take at least as twice as normal reads.
For mirroring RAID (system 1 and 2), reconstructional
reads take about twice the time of normal reads. This is
because in a reconstruction for read, the system needs to
read the mirrored block from the alternative disk, which
takes an extra unit of read time. For RAID 5 (system 3 and
4), reconstructional reads take about four times as long as
normal reads. This is because in a reconstruction in 4-disk
RAID 5, we need to read three blocks (two data blocks,
one parity block) on all the other three disks, which takes
three extra units of read time. Generally, for RAID 4 and
RAID 5, reconstructional read takes n times as long as
normal reads, where n is the number of disks in the sys-
tem. More generally, we can estimate the reconstructional
read time using the Parity Matrix. To reconstruct a block,
we need to read the parity block and all other data blocks
that contribute to the parity block.

Note that the effect of different checksum schemes is
not significant. This is because the CPU time needed
to calculate checksum is almost negligible in comparison
with the disk overhead (1 millisecond in our experiments).

Figure 9 shows the performance of normal writes and
writes with reconstructions.

Comparing figure 8 with figure 9, we can see that for
all the settings, normal writes takes a little bit longer than
four times of normal reads. This is because for each write,
we have five operations: reading the old data block, read-
ing the parity block, writing the new data block, writing

Figure 8: Performance of normal reads and reads with reconstructions.

the checksum block, and writing the parity block. Since
each write is slightly longer than read (2 milliseconds in
our setting), the total time of a normal write is a little bit
longer than four times of a normal read.

There are two read operations in a write, either one or
both of these reads can fail. When one read fails and needs
reconstruction, the extra cost is the same as the extra cost
of a reconstructional read (it is four times longer than a
normal read). When both reads fail and need to be recon-
structed, the extra cost is as twice as the extra cost of one
reconstructional read.

Figure 9: Performance of normal writes and writes with reconstructions.

Figure 10 shows the time line of the mkfs command on
the 4-disk RAID 5. In this experiment, we injected ran-
dom read failures. The probability of read failure is 20%
and the probability of checksum inconsistency is 20%.

9



Thus, the probability that a read requires reconstruction
is 40%. The lower points of the first part of the graph
represent normal reads. The higher points of the first part
represents reads with reconstructions. Comparing these
two sets of points, we can see that on average, reconstruc-
tional reads takes four times longer than normal reads,
which follows the argument we gave earlier. The low-
est points of the second part of the graph represents nor-
mal writes. We can see that normal writes take a little bit
more than four times more than normal reads. The middle
points of the second part represents writes with one read
failure and thus one reconstruction is needed. This failure
can happen when either reading the old data block fails
or when reading the parity block fails. The extra cost for
one reconstruction is the same as the extra cost of a recon-
structional read. The highest points of the second part in
the graph represent writes with two failures and thus two
reconstructions. This happens when both readings of the
old data block and the parity block fail. The extra cost is
as twice as the cost of a reconstructional read.

Figure 10: Time line of the mkfs command on 4-disk RAID 5. The x-axis is
the actual time and the y-axis is the time per I/O operation. The first part (on the
left) consists only of reads operations. The second part (on the right) consists only
of write operations.

8 Conclusions and Future Work
ARC provides a way to specify various RAID settings,
which gives much more flexibility and robustness than tra-
ditional software RAID systems. Using two matrices for

parity parity parameters for checksum, ARC can be con-
figured to act as any RAID system. Experimentally, ARC
is shown to have reasonably good performance with ex-
pected behaviors. We see that reconstructions are costly
and writes have much higher cost than reads. While the
memory-based version of ARC works well, a lot of efforts
need to be spent to make a working disk-based version.
This suggests that kernel programming is much harder
than user-level programming, especially when working
with asynchronous systems such as disk drivers.

Arc is just the first step to approach the problem of au-
tomatic RAID construction. There are many issues that
need to be solved. Among them, the more important ones
are: (1) finishing the disk-based version of our automatic
RAID system, (2) improving the current ARC system:
adding more features, handling more error situations and
adding user input correctness checking, (3) improving the
performance, especially for writes, (4) designing a better
language to describe the parity and checksum schemes.

References
[1] Aristos logic. http://www.aristoslogic.com.
[2] ivivity. http://www.ivivity.com.
[3] M. Blaum, J. Brady, J. Bruck, and J. Menon. Evenodd: An ef-

ficient scheme for tolerating double disk failures in raid architec-
tures. IEEE Trans. Computers, 44(2):192–202, 1995.

[4] M. Blaum and J. Bruck. Mds array codes for correcting a sin-
gle criss-cross error. IEEE Transactions on Information Theory,
46(3):1068–1077, 2000.

[5] W. A. Burkhard and J. Menon. Disk array storage system reliabil-
ity. In Symposium on Fault-Tolerant Computing, pages 432–441,
1993.

[6] G. A. Gibson, W. V. Courtright II, M. Holland, and J. Zelenka.
RAIDframe: Rapid prototyping for disk arrays. Technical Report
CMU-CS-95-200, 1995.

[7] D. Kenchammana-Hosekote, D. He, and J. L. Hafner. Reo: a
generic raid engine and optimizer. In FAST ’07: Proceedings of the
5th USENIX conference on File and Storage Technologies, pages
31–31, Berkeley, CA, USA, 2007. USENIX Association.

[8] A. Krioukov, L. N. Bairavasundaram, G. R. Goodson, K. Srini-
vasan, R. Thelen, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Parity Lost and Parity Regained. In Proceedings of the
6th USENIX Conference on File and Storage Technologies (FAST
’08), San Jose, CA, February 2008.

[9] J. Menon and D. Mattson. Comparison of sparing alternatives for
disk arrays. In ISCA ’92: Proceedings of the 19th annual interna-
tional symposium on Computer architecture, pages 318–329, New
York, NY, USA, 1992. ACM.

[10] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks. In ACM SIGMOD Conference on the
Management of Data (SIGMOD ’88), pages 109–116, Berkeley,
CA, USA, 1988. USENIX Association.

10


