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Abstract 

 

File Systems are hard to develop. File-system 

development is a long process and involves writing 

huge amount of kernel code by experienced and 

expert programmers. However, these do not allow 

customization. Their implementation is not tunable as 

per application and hence lacks flexibility. Various 

ways of incremental development have been 

proposed but they do not rule out kernel 

consideration completely. In order to aid for 

flexibility, efficient automatic file system compilers 

can play the trick. The idea is to develop a 

mechanism that will generate a file system as per 

user specifications. This paper presents the concept 

of automatic file-systems compilers and, 

implementation details of an installable file system –a 

step towards automatic file systems. 

 

1 Introduction 

 

Writing file systems or any kernel code is hard, 

as they contain main lines of complex operating 

systems code. Table.1 lists the different types. The 

kernel is a complex environment to master and small 

mistakes can cause severe data corruption. [1] 

employs automatic detection and repair of errors in 

data structures enabling the program to continue and 

to execute productively even in face of otherwise 

crippling errors. Typically, data structure consistency 

is a big problem in complex kernel code. File systems, 

however, offer a clean data access mechanism that is 

transparent to the user applications, which is why 

developers always desire to add new features to the 

file systems.  

 
 

Table.1 Common �ative Unix File Systems and 

Code Sizes for Each Medium. 

 

 

 

 

 

Although Linux supports many file systems, they 

are pretty similar: disk-based file-systems, network-

based file-systems, etc. They do not provide for 

tunable features thus not allowing any flexibility. 

Efficient utilization of resources is also not 

guaranteed. Attempts have been made for 

incremental development. Making a file-system 

stable and efficient takes years of effort and once its 

stable and working, throwing more features at it 

might break it down or lead to data corruption.    

One of the efficient features of Linux is the 

division of file-system into a two layer stack. The 

lower layer is the actual file system implementation 

and the upper VFS. This two tier system allows 

having multiple file-systems with aid from VFS for 

system call redirection to the appropriate file-system. 

Stackable file systems add another layer of 

indirection; between VFS and the actual low level 

file system. Stackable file-systems promise to speed 

up the development by providing an extensible file 

system interface. This extensibility allows new 

features to be added incrementally. To improve 

performance, these stackable file-systems were 

designed to run in the kernel. Fig.1 illustrates the 

concept of stackable file systems. Unfortunately, 

using these stackable interfaces often requires writing 

lots of complex kernel code that is specific to a single 

operating system platform and also difficult to probe. 

To avoid complex kernel coding a language was 

developed for implementing such stackable file-

systems [2]. It employs a language code generator in 

FiST that allows the developer to describe the core 

functionality of their file system and then develops 

the kernel file systems for several platforms. They 

also created a minimal stackable file system template 

that allowed adding only the additional features and 

thus relieving the code generator from dealing with 

any operating specific aspects of the file-system.  

This will still restrict flexibility to enhancements 

in existing file systems. In order to allow the 

developer to give file system specifications in a more 

flexible manner, a wise way would be to have an 

automatic file system compiler that will generate file-
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systems as per his specifications. This paper moves 

“Towards Automatic File Systems”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       Fig.2 Stackable File Systems 
 

The paper is organized as follows: Section 2 

discusses -The ‘what’, ‘why’ and ‘how’ of automatic 

file systems. Section 3 describes a step towards 

automatic file systems – Installable file systems. 

Section 4 focuses on FUSE. Sections 5 and 6 are 

about implementation details and performance 

estimation respectively. Sections 7 and 8 discuss 

about future work  and software engineering aspects. 

Post section 8 paper is summarized and concluded.  

 

 

2 The ‘What’, ‘Why’ and ‘How’ of Automatic 

File Systems 

 

Automatic file systems aim to focus on the need 

of the user. File systems can be automatically 

constructed by means of a compiler that will allow 

the user to specify his/her requirements of a file 

system.  Traditional file systems (In this context the 

ones developed at kernel level) do not provide for 

flexibility and do not allow tuning of their features. 

For example the user may not want to have redundant 

copies of superblock like in FFS to save on disk 

space but does not want to go back to the old Linux 

file system to prevent problems on account of the 

small block size and the scattered free list. He may 

also accurately know his usage and may want to have 

lower maximum limits, as in the number of 

maximum files, size of files etc. Mixing and 

matching features from different file systems will 

give a tremendous amount of flexibility to the user. 

Automatic File System compiler will allow doing this. 

This is will also ensure efficient resource utilization 

from the systems perspective since it will allocate the 

resources, only as per need. This will also reduce 

overhead for maintaining huge file system metadata 

just for a few files in case of low utilization.  

To have such a compiler in kernel code will 

increase complexity and will introduce series of 

problems as discussed earlier. It would be 

advantageous to have it in user-space since it will be 

simpler to develop. There are two important aspects 

hence to be considered about such file system 

development. First, allowing the user to specify. The 

compiler generates the file system code and API for it. 

Secondly, mounting it and allowing the standard file 

system calls to be redirected to the new file system 

methods. As mentioned earlier, Linux has 

implemented file systems by a two tier approach in 

order to support and adapt to simultaneously 

coexisting file systems.   Refer Fig.2. The system 

level call like unlink() for example, gets translated to 

standard library calls like sys_unlink. The VFS layer 

then directs these calls to the appropriate registered 

file system method without actually knowing its 

internal operation. Hence, the file system calls for the 

generated file system should be directed via VFS for 

uniformity and ease of usage. The generated file 

system should have its methods registered with VFS 

hence.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig.2 Architecture view of Linux file system 

components. 

 

User needs to select from multiple options like, 

whether he will have a bitmap or a free list, or would 

have redundant data structures, if yes then how many 

copies, etc. He could also specify the maximum 

number of files he would use, their probable size etc. 

Such flexible file-systems can be then made over 

some predefined framework.  

The next few sections elaborate about a step 

towards automatic file system generation.  An 

installable file system is made, that would allow a file 
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system in user space without any kernel level 

privileges. The file system methods are registered 

with VFS via FUSE (File System in User Space) and 

hence standard library calls are supported. Accepting 

parameters dynamically and recompiling the code 

will make the file-system tunable and facilitate 

automatic file system generation. 

 

3 An Installable File System 

 

The file-system is developed along a simple 

framework. It has one superblock (without any 

redundant copies), inode and data block bitmaps, 

direct pointers (under the assumption that the file will 

be of moderate size) and provision to expand the file 

size by using the reserved blocks under special 

circumstances. Fig.3 shows the framework of the file 

system.   

 

 

 

 

 

 

 

 

 

 

 

 

         Fig.3 File System Framework 

 

 

3.1 Implementation Details 

 

3.1.1 On-Disk Structures 

 

Let us assume that the user wants to implement a 

SFS (Simple File System). The block size is 512 

bytes. There will be one super block, a maximum of 

hundred files and maximum file size to be 

moderately 15KB. The basic framework includes 

some reserved blocks by default so as to provide for 

file size expansion under special circumstances. The 

maximum number of files open at a time is limited to 

25. This file system is implemented and made 

installable 
±
. 

The superblock contains the file system’s 

administrative information like the number of free 

inodes, number of free data blocks, magic number 

that testifies the liveliness of the file system, and 

maintains information about the maximum limits, etc. 

Following the superblock is the inode bitmap that 

______________________________________ 
± 

This file system is described throughout the paper, as the 

implementation has been done with mentioned specifications. 

holds one sector as the maximum number of files is 

limited to 100. The data block bitmaps come after 

that and occupy three sectors as the disk structure is 

specified to have 10,000 sectors. The inode size is 

133 bytes and hence 3 inodes can fit in a sector. This 

will save the space wastage by allocating one sector 

per inode. Inodes occupy the disk space till sector 40 

after which lie the data blocks. Each inode structure 

holds the information about the file/directory. It hold 

the name of the file, its type, size in bytes if file or 

number of entries if it’s a directory, direct pointers to 

the data blocks where data is located and the 

permissions to the file/directory. Fig.4 shows the 

inode structure. Each directory entry is of size 20 

bytes and holds the child file/directory name and its 

corresponding inode number. Lastly, the filename 

size is restricted to 16 characters and the pathname to 

256. All pathnames to the file system API are 

absolute and not relative. All these specifications are 

hardcoded in a header file and can be re-generated 

after computation in case user specifications change. 

Persistent storage for metadata structures and data is 

on a block file on existing file system. It can also be 

implemented on a raw disk partition like any file 

system.   

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 Inode Structure 

 

3.1.2 File System API 

 

The file system data and metadata can be accessed by 

file system API. The file system API is primarily 

divided into File level calls and directory level calls. 

There are few administrative calls that manage the on 

disk structures. This subsection briefs about these 

administrative calls handled by the file system 

transparent to the user and file system calls that can 

be accessed via the standard library once they are 

registered with the virtual file system (VFS) module. 

FUSE (File System in User Space) aids in the 
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redirection of the standard library file system calls to 

the generated file system specific calls.  

 

Administrative Calls  

 

FS_Boot: This function initializes the data structures 

at install time and writes to persistent storage. It also 

loads the file system into memory during boot time. 

This enables caching hence reducing the number of 

writes to the file system. The file system data is 

flushed out to the persistent storage when any file is 

closed or on an explicit fsync() call. 

 

FS_Sync: This function flushes the buffer file system 

from memory to persistent storage. It can be invoked 

by calling the fsync() function. As mentioned above, 

this is done at close time of files in order to avoid 

loss of data due to power loss hence updating 

persistent storage frequently. 

 

Bitmap_Update: This updates the inode and data 

block bitmaps when they are allocated or released. 

The superblock is also updated, since the super block 

maintains the count of number of free inodes and data 

blocks. The same function is re-used for checking 

inode or data block allocation status by passing 

appropriate parameters to the function. 

 

Find_Free: This function finds lowest free inode and 

data blocks for allocation. Inodes are required when 

file or directory is created and data blocks are 

required when files are written to or directory entries 

increase. 

 

Traverse_Path: This function lookups in the file 

system tree and locates the file/directory pointed by 

path and returns its inodeno. It also keeps a check on 

the path length.  

 

Read_Inode: This function locates the sector number 

and the byte location from its inodeno and reads or 

updates the inode. This function becomes handy for 

the file system when new files/directories are created, 

files/directories are updated, file/directories are 

deleted etc. 

 

There are other administrative functions that the file 

system needs to perform. These involve reading or 

writing whole blocks to and from the disk. The file 

system calls as specified can be called by means of 

standard library calls. The file system specific API
β 

is 

as follows:  

 

______________________________________ 
β 

File system API calls are prefixed with sfs in order to 

segregate them as file system specific calls. 

sfs_getattr(char *path, struct inode): This function 

traverses the path and locates the inodeno of the 

file/directory. It then fills the inode structure. It is 

basically associated with fetching the file/directory 

attributes. 

 

sfs_filecreate(char *path): This function creates a 

file or directory depending on specific parameter 

passed. It fails if a file/directory with the same name 

already exists in the same directory. It updates the 

parent directory, the inode bitmaps and hence the 

superblock. Inodes are also written to. 

 

sfs_fileopen(char *path): This function traverses 

down the path specified and locates its inode. It 

checks the number of files open and opens the new 

one only if the number opened is below the limit for 

the file system. It makes the entry for the newly 

opened file in the open file table and returns a file 

descriptor to the calling process. This file descriptor 

is then used to reference the file for reading and 

writing.  

 

sfs_readfile(int fd, (void *) buf, int size): This 

function reads size number of bytes from current 

offset, from the opened file referenced by file 

descriptor fd. The read bytes are written to the buffer 

buf.  The offset is stored in the open file table once it 

is opened. The offset can be changed by the 

sfs_fileseek() function. If the size to be read is greater 

and the bytes available in the file (due to the end of 

file) the actual read bytes are less than the one 

specified. File offset is modified at the end of the 

read operation. 

 

sfs_writefile(int fd, (void *) buf, int size): This 

function writes size number of bytes from current 

offset, to the opened file referenced by file descriptor 

fd. The bytes are read from buffer buf.  The offset is 

stored in the open file table once it is opened. The 

offset can be changed by the sfs_fileseek() function. 

The file offset is updated at the end of the write. For 

modifying existing data offset has to be changed to 

the required position.   

 

sfs_fileseek(int fd, int offset): This function updates 

the file offset to specified offset. The offset is 

updated in the open file table. 

 

sfs_close(int fd): This function closes the opened file 

referenced by the file descriptor fd. It deletes the file 

entry from the open file table. It also invalidates the 

offset. Next time when the file is opened the file 

system offset is reset to 0. 
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sfs_fileunlink(char *path): This function unlinks 

the file specified by path by removing its entry in its 

parent directory, zeroing all the data blocks it is 

pointing to, de-allocating them, clearing the inode 

data , de-allocating the inode and updating the 

corresponding bitmaps and superblock. 

 

sfs_dirread(char *path, (void *) buf, int size): This 

function reads size number of entries from the 

directory referenced by path and copies them into the 

buffer. Each directory entry consists of the name and 

the inodeno for a particular file/directory. If the 

number of entries in the directory is more than the 

buffer size, then the function fails. 

 

sfs_dirunlink(char *path): This function unlinks the 

directory specified by path by removing its entry in 

its parent directory, clearing the inode data , de-

allocating the inode and updating the corresponding 

bitmaps and superblock. It however unlinks only 

empty directories. 

 

File System calls to the generated file system should 

however be directed via the standard system library. 

Thus these methods are required to be registered with 

the VFS. This user level file system however requires 

some kernel level medium to do so.  FUSE (File 

System in User Space) facilitates doing so. Next 

section briefs about basic concept of FUSE, its 

architecture, use and functioning. It also discusses the 

file-system and FUSE interface details. 

 

4 FUSE (File System in User Space) 

 

File System in User Space (FUSE) is a framework 

that aids development of file systems in user space. It 

registers the file system with VFS and redirects 

standard library file system calls to file system 

specific API. FUSE was developed for Linux, now 

has been extended for BSD and Mac OSX. It consists 

of two primary modules and one utility.  A kernel 

module binds to VFS and redirects calls to the user 

level fuse library. The fuse library has user space file 

system methods registered with it. The mount utility 

allows mounting of the file system at specified mount 

point. Since, the file system is in user space, a 

specifying mount point like in fstab without root 

privileges is not possible. The mount utility is 

installed with root uid at install time so as to allow 

mounting of user space file system with user 

privileges. Care is taken that user cannot access any 

other information with any super user privilege. 

Many file systems are built over fuse base. mcachefs, 

Logic File Systems, Afuse , MountIo etc are some 

examples of them.  The architectural features of 

FUSE are as in Fig.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5 FUSE Architecture Details 

 

 The user application invoked file system 

calls get mapped to standard library calls. They 

further get translated to VFS calls. VFS layer then 

invokes the registered method for the corresponding 

file system. In case of the fuse based implementation, 

the calls from the VFS get transferred to the fuse 

kernel module. The kernel module in turn unblocks 

the blocking read call from the fuse library. The fuse 

library invokes the appropriate file system specific 

the kernel module. Data and control flows from VFS 

to kernel and data moves from kernel to VFS. The 

interface details are seen in Fig.6. The figure 

illustrates the complete call flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig.6 Interface Details & Call Transfer 

 

 The FUSE library has a blocked read call on 

the kernel module (path [0]). Suppose, some user 

application invokes a file system call on the user 

implemented file system, the VFS sends a request to 

the fuse kernel module via path [1]. The request is 
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then kept on the waiting queue. When kernel is ready 

to take up that request it unblocks the path [0] and 

forwards the request via a fuse_read call to the library 

via path [2].  The FUSE library further forwards this 

request to the user level file system by invoking the 

appropriate registered method via path [3].  The file 

system method returns the requested data via path [4] 

to the FUSE library. FUSE library then passes data to 

the kernel module through fuse_write call through 

path [5]. The fuse kernel forwards the request reply 

to VFS via path [6]. All the calls are blocking calls 

hence queues like pending queues are required.  

 The kernel module is registered as a 

character device with VFS and the file system is of 

block access type. It is evident that handling calls is 

simple but there are multiple switches between user 

and kernel mode and hence the overload of switching. 

This however is true in any type of file system 

implemented at user level. It however gives 

flexibility by allowing the user to make file systems 

(or specify them in case of automatic file systems 

hence allowing generation). No kernel code re-

compilation is required. It is also simple since the 

coding is in user space which is easier than in kernel 

space. The cost is overhead as discussed earlier. 

 

 

5 Implementation Details 

 

The file system described in section 3 has been 

developed. Its methods are registered with FUSE 

library and thus can be invoked by standard library 

calls redirected via the fuse kernel module. In 

systems, the classical solution has been always 

“redirection”, here implemented via FUSE. The file 

system is compiled with dependent FUSE library and 

thus compacted as an installable package. Currently, 

the persistent storage is a file, which is created at 

install time in the installation directory on existing 

file system. The mount point can be specified at 

execution time. Raw device can also serve for 

persistent storage. The file system can be made 

tunable by accepting user specifications, computing 

the structure requirements and generating the limits 

header file dynamically. This would make the 

installable file system behave like a automatic file 

system compiler and give us flexibility benefit. This 

feature is not implemented so far. Future work will 

revolve around that area. The framework defined can 

also be changed for implementing other types of file 

systems. Performance of file systems would depend 

on their framework and their medium for persistent 

storage. 

 

 

 

6 Performance Estimation 

 

With the present implementation described 

above, the medium of persistent storage is a file. 

During file system initialization, the whole file will 

be read into memory and will be accessed from 

memory. Periodically the data is synced to the 

persistent storage file. This will ensure that data is 

not lost. Also, since the whole data is in memory, any 

block can be accessed with uniform access time 

(minute changes depending on the search time in 

cache etc) thus the performance will be good. Refer 

Fig 7 and 8 for the performance measured in terms of 

access time for different API calls. It can be seen  

that Disk_Init (FS_Boot) and Disk_Sync (FS_Sync) 

complete in the order of msecs where actual disk 

access takes place, whereas other file system calls 

complete in orders of microseconds as file system in 

memory is accessed.   

 However, when the persistent storage 

medium changes to raw disk device, the performance 

will be greatly affected. Also, the framework is pretty 

naïve (chosen for simplicity) and does not take into 

account any type of locality. It does not take 

positional delay of disk into account and no sort of 

grouping is done.  Neither spatial locality is exploited 

by keeping related files together like FFS [3] nor is 

temporal locality taken into consideration by 

buffering writes written around the same time and 

then writing them together on disk. If files are written 

completely then, better read and write performance 

can be achieved since adjacent disk blocks will be 

used. Further, it can be observed that the block size is 

only 512 bytes which is pretty unimpressive 

compared to current league of file systems. File 

system limits are also modest. Filename and 

pathname limits of 16 and 256 characters respectively 

seem too low. Maximum file limit of 100 plus their 

size limited to 15KB is certainly unusable with the 

amount of workload in current systems. Apart from 

that there are no checksums or redundancy 

implemented which may limit the file system 

reconstruction capability on a disk crash. Currently 

the file system is not suitable for sensitive data 

storage. 

 

7 Future Work 

 

Future work revolves around three aspects: changing 

the framework to a more robust and technology 

aware, implementing it on a raw device and 

generating the limits dynamically from user 

specifications. The new framework will revolve 

around exploiting the spatial locality or provide for 

shadowing and providing some kind of redundancy 

for security. Raw device implementation will give a 
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better estimate for performance and consideration of 

user specifications will make it change from a 

installable file system to a automatic file system 

compiler. This will not only give the user freedom to 

have the features of his choice and will still continue 

to give high performance combined with the factors 

mentioned above. 

 

 
 

 

Fig. 7 Disk Initialize and Disk Sync time varying 

across different runs. (Disk positioning time effect) 

 

 

 
 

Fig.8 Performance of simple file system estimated 

in terms of completion time for various file system 

calls. 

 

  

8 Software Engineering Aspects 

 

 The timeline of the project is shown in Fig.9. The 

initial phase of the project involved background 

reading. Later development process started. An 

estimate of available and required resources was 

made. Development environment was setup. This 

was however a recursive step till all requirements 

were satisfied. Primary environment was a Pentium 

IV machine with Centos 5.1 server. Due to software 

compatibility problems, later moved to a virtual 

machine with Fedora Code 8 Linux guest OS. It was 

followed by requirement analysis. Project 

development follows the waterfall model (Fig 10). 

The first phase involves requirement analysis 

followed by planning. Later phase is of designing 

followed by implementation. To ensure functionality 

later testing and debugging is done. The code has 

been commented and coding standards have been 

followed. Naming conventions have also been 

followed. 

 

 

 

 

 

 

 

 

 

 

 

Fig.9 Project Timeline 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10 Waterfall Model 
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Summary 

 

This project is a small step towards automating file 

systems that till date are very rigid, inflexible and 

complex. This implementation gives a glimpse of 

flexibility and customization that the users/experts 

can expect in the coming years from Systems domain.    

 

 

Conclusion  

 

Making file systems is a long, complex and tedious 

task. Stabilizing it is another challenge. Automating it 

further is altogether a new ballgame. This project 

gives a valuable insight into the complexities 

involved in file system design. Automatic file system 

compilers will give users and system administrators 

an efficient infrastructure for optimum resource 

utilization, flexibility, portability and performance. 
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