
 1

Towards Automatic File Systems

Kanchan Damle

Project Report

CS736 Advanced Operating Systems

The University of Wisconsin-Madison

damle@wisc.edu

Abstract

File Systems are hard to develop. File-system

development is a long process and involves writing

huge amount of kernel code by experienced and

expert programmers. However, these do not allow

customization. Their implementation is not tunable as

per application and hence lacks flexibility. Various

ways of incremental development have been

proposed but they do not rule out kernel

consideration completely. In order to aid for

flexibility, efficient automatic file system compilers

can play the trick. The idea is to develop a

mechanism that will generate a file system as per

user specifications. This paper presents the concept

of automatic file-systems compilers and,

implementation details of an installable file system –a

step towards automatic file systems.

1 Introduction

Writing file systems or any kernel code is hard,

as they contain main lines of complex operating

systems code. Table.1 lists the different types. The

kernel is a complex environment to master and small

mistakes can cause severe data corruption. [1]

employs automatic detection and repair of errors in

data structures enabling the program to continue and

to execute productively even in face of otherwise

crippling errors. Typically, data structure consistency

is a big problem in complex kernel code. File systems,

however, offer a clean data access mechanism that is

transparent to the user applications, which is why

developers always desire to add new features to the

file systems.

Table.1 Common �ative Unix File Systems and

Code Sizes for Each Medium.

Although Linux supports many file systems, they

are pretty similar: disk-based file-systems, network-

based file-systems, etc. They do not provide for

tunable features thus not allowing any flexibility.

Efficient utilization of resources is also not

guaranteed. Attempts have been made for

incremental development. Making a file-system

stable and efficient takes years of effort and once its

stable and working, throwing more features at it

might break it down or lead to data corruption.

One of the efficient features of Linux is the

division of file-system into a two layer stack. The

lower layer is the actual file system implementation

and the upper VFS. This two tier system allows

having multiple file-systems with aid from VFS for

system call redirection to the appropriate file-system.

Stackable file systems add another layer of

indirection; between VFS and the actual low level

file system. Stackable file-systems promise to speed

up the development by providing an extensible file

system interface. This extensibility allows new

features to be added incrementally. To improve

performance, these stackable file-systems were

designed to run in the kernel. Fig.1 illustrates the

concept of stackable file systems. Unfortunately,

using these stackable interfaces often requires writing

lots of complex kernel code that is specific to a single

operating system platform and also difficult to probe.

To avoid complex kernel coding a language was

developed for implementing such stackable file-

systems [2]. It employs a language code generator in

FiST that allows the developer to describe the core

functionality of their file system and then develops

the kernel file systems for several platforms. They

also created a minimal stackable file system template

that allowed adding only the additional features and

thus relieving the code generator from dealing with

any operating specific aspects of the file-system.

This will still restrict flexibility to enhancements

in existing file systems. In order to allow the

developer to give file system specifications in a more

flexible manner, a wise way would be to have an

automatic file system compiler that will generate file-

 2

systems as per his specifications. This paper moves

“Towards Automatic File Systems”.

 Fig.2 Stackable File Systems

The paper is organized as follows: Section 2

discusses -The ‘what’, ‘why’ and ‘how’ of automatic

file systems. Section 3 describes a step towards

automatic file systems – Installable file systems.

Section 4 focuses on FUSE. Sections 5 and 6 are

about implementation details and performance

estimation respectively. Sections 7 and 8 discuss

about future work and software engineering aspects.

Post section 8 paper is summarized and concluded.

2 The ‘What’, ‘Why’ and ‘How’ of Automatic

File Systems

Automatic file systems aim to focus on the need

of the user. File systems can be automatically

constructed by means of a compiler that will allow

the user to specify his/her requirements of a file

system. Traditional file systems (In this context the

ones developed at kernel level) do not provide for

flexibility and do not allow tuning of their features.

For example the user may not want to have redundant

copies of superblock like in FFS to save on disk

space but does not want to go back to the old Linux

file system to prevent problems on account of the

small block size and the scattered free list. He may

also accurately know his usage and may want to have

lower maximum limits, as in the number of

maximum files, size of files etc. Mixing and

matching features from different file systems will

give a tremendous amount of flexibility to the user.

Automatic File System compiler will allow doing this.

This is will also ensure efficient resource utilization

from the systems perspective since it will allocate the

resources, only as per need. This will also reduce

overhead for maintaining huge file system metadata

just for a few files in case of low utilization.

To have such a compiler in kernel code will

increase complexity and will introduce series of

problems as discussed earlier. It would be

advantageous to have it in user-space since it will be

simpler to develop. There are two important aspects

hence to be considered about such file system

development. First, allowing the user to specify. The

compiler generates the file system code and API for it.

Secondly, mounting it and allowing the standard file

system calls to be redirected to the new file system

methods. As mentioned earlier, Linux has

implemented file systems by a two tier approach in

order to support and adapt to simultaneously

coexisting file systems. Refer Fig.2. The system

level call like unlink() for example, gets translated to

standard library calls like sys_unlink. The VFS layer

then directs these calls to the appropriate registered

file system method without actually knowing its

internal operation. Hence, the file system calls for the

generated file system should be directed via VFS for

uniformity and ease of usage. The generated file

system should have its methods registered with VFS

hence.

 Fig.2 Architecture view of Linux file system

components.

User needs to select from multiple options like,

whether he will have a bitmap or a free list, or would

have redundant data structures, if yes then how many

copies, etc. He could also specify the maximum

number of files he would use, their probable size etc.

Such flexible file-systems can be then made over

some predefined framework.

The next few sections elaborate about a step

towards automatic file system generation. An

installable file system is made, that would allow a file

User Applications

GNU C Library

System Call Interface

VFS Inode Cache Dir Cache

Individual File Systems

Disk Drives

User Space

 Kernel Space

System Call Interface

VFS

Stackable File System

Local File System

 3

system in user space without any kernel level

privileges. The file system methods are registered

with VFS via FUSE (File System in User Space) and

hence standard library calls are supported. Accepting

parameters dynamically and recompiling the code

will make the file-system tunable and facilitate

automatic file system generation.

3 An Installable File System

The file-system is developed along a simple

framework. It has one superblock (without any

redundant copies), inode and data block bitmaps,

direct pointers (under the assumption that the file will

be of moderate size) and provision to expand the file

size by using the reserved blocks under special

circumstances. Fig.3 shows the framework of the file

system.

 Fig.3 File System Framework

3.1 Implementation Details

3.1.1 On-Disk Structures

Let us assume that the user wants to implement a

SFS (Simple File System). The block size is 512

bytes. There will be one super block, a maximum of

hundred files and maximum file size to be

moderately 15KB. The basic framework includes

some reserved blocks by default so as to provide for

file size expansion under special circumstances. The

maximum number of files open at a time is limited to

25. This file system is implemented and made

installable
±
.

The superblock contains the file system’s

administrative information like the number of free

inodes, number of free data blocks, magic number

that testifies the liveliness of the file system, and

maintains information about the maximum limits, etc.

Following the superblock is the inode bitmap that

±

This file system is described throughout the paper, as the

implementation has been done with mentioned specifications.

holds one sector as the maximum number of files is

limited to 100. The data block bitmaps come after

that and occupy three sectors as the disk structure is

specified to have 10,000 sectors. The inode size is

133 bytes and hence 3 inodes can fit in a sector. This

will save the space wastage by allocating one sector

per inode. Inodes occupy the disk space till sector 40

after which lie the data blocks. Each inode structure

holds the information about the file/directory. It hold

the name of the file, its type, size in bytes if file or

number of entries if it’s a directory, direct pointers to

the data blocks where data is located and the

permissions to the file/directory. Fig.4 shows the

inode structure. Each directory entry is of size 20

bytes and holds the child file/directory name and its

corresponding inode number. Lastly, the filename

size is restricted to 16 characters and the pathname to

256. All pathnames to the file system API are

absolute and not relative. All these specifications are

hardcoded in a header file and can be re-generated

after computation in case user specifications change.

Persistent storage for metadata structures and data is

on a block file on existing file system. It can also be

implemented on a raw disk partition like any file

system.

Fig.4 Inode Structure

3.1.2 File System API

The file system data and metadata can be accessed by

file system API. The file system API is primarily

divided into File level calls and directory level calls.

There are few administrative calls that manage the on

disk structures. This subsection briefs about these

administrative calls handled by the file system

transparent to the user and file system calls that can

be accessed via the standard library once they are

registered with the virtual file system (VFS) module.

FUSE (File System in User Space) aids in the

S

IB

BB

BB

I

D

 S: Super Block

 IB: Inode Bitmap

BB: Data Block Bitmap

 I: Inodes

 D: Data Block

File Name

Type

Size

Direct Pointer 1

Direct Pointer 30

Permissions

Block x

Block y

 4

redirection of the standard library file system calls to

the generated file system specific calls.

Administrative Calls

FS_Boot: This function initializes the data structures

at install time and writes to persistent storage. It also

loads the file system into memory during boot time.

This enables caching hence reducing the number of

writes to the file system. The file system data is

flushed out to the persistent storage when any file is

closed or on an explicit fsync() call.

FS_Sync: This function flushes the buffer file system

from memory to persistent storage. It can be invoked

by calling the fsync() function. As mentioned above,

this is done at close time of files in order to avoid

loss of data due to power loss hence updating

persistent storage frequently.

Bitmap_Update: This updates the inode and data

block bitmaps when they are allocated or released.

The superblock is also updated, since the super block

maintains the count of number of free inodes and data

blocks. The same function is re-used for checking

inode or data block allocation status by passing

appropriate parameters to the function.

Find_Free: This function finds lowest free inode and

data blocks for allocation. Inodes are required when

file or directory is created and data blocks are

required when files are written to or directory entries

increase.

Traverse_Path: This function lookups in the file

system tree and locates the file/directory pointed by

path and returns its inodeno. It also keeps a check on

the path length.

Read_Inode: This function locates the sector number

and the byte location from its inodeno and reads or

updates the inode. This function becomes handy for

the file system when new files/directories are created,

files/directories are updated, file/directories are

deleted etc.

There are other administrative functions that the file

system needs to perform. These involve reading or

writing whole blocks to and from the disk. The file

system calls as specified can be called by means of

standard library calls. The file system specific API
β

is

as follows:

β

File system API calls are prefixed with sfs in order to

segregate them as file system specific calls.

sfs_getattr(char *path, struct inode): This function

traverses the path and locates the inodeno of the

file/directory. It then fills the inode structure. It is

basically associated with fetching the file/directory

attributes.

sfs_filecreate(char *path): This function creates a

file or directory depending on specific parameter

passed. It fails if a file/directory with the same name

already exists in the same directory. It updates the

parent directory, the inode bitmaps and hence the

superblock. Inodes are also written to.

sfs_fileopen(char *path): This function traverses

down the path specified and locates its inode. It

checks the number of files open and opens the new

one only if the number opened is below the limit for

the file system. It makes the entry for the newly

opened file in the open file table and returns a file

descriptor to the calling process. This file descriptor

is then used to reference the file for reading and

writing.

sfs_readfile(int fd, (void *) buf, int size): This

function reads size number of bytes from current

offset, from the opened file referenced by file

descriptor fd. The read bytes are written to the buffer

buf. The offset is stored in the open file table once it

is opened. The offset can be changed by the

sfs_fileseek() function. If the size to be read is greater

and the bytes available in the file (due to the end of

file) the actual read bytes are less than the one

specified. File offset is modified at the end of the

read operation.

sfs_writefile(int fd, (void *) buf, int size): This

function writes size number of bytes from current

offset, to the opened file referenced by file descriptor

fd. The bytes are read from buffer buf. The offset is

stored in the open file table once it is opened. The

offset can be changed by the sfs_fileseek() function.

The file offset is updated at the end of the write. For

modifying existing data offset has to be changed to

the required position.

sfs_fileseek(int fd, int offset): This function updates

the file offset to specified offset. The offset is

updated in the open file table.

sfs_close(int fd): This function closes the opened file

referenced by the file descriptor fd. It deletes the file

entry from the open file table. It also invalidates the

offset. Next time when the file is opened the file

system offset is reset to 0.

 5

sfs_fileunlink(char *path): This function unlinks

the file specified by path by removing its entry in its

parent directory, zeroing all the data blocks it is

pointing to, de-allocating them, clearing the inode

data , de-allocating the inode and updating the

corresponding bitmaps and superblock.

sfs_dirread(char *path, (void *) buf, int size): This

function reads size number of entries from the

directory referenced by path and copies them into the

buffer. Each directory entry consists of the name and

the inodeno for a particular file/directory. If the

number of entries in the directory is more than the

buffer size, then the function fails.

sfs_dirunlink(char *path): This function unlinks the

directory specified by path by removing its entry in

its parent directory, clearing the inode data , de-

allocating the inode and updating the corresponding

bitmaps and superblock. It however unlinks only

empty directories.

File System calls to the generated file system should

however be directed via the standard system library.

Thus these methods are required to be registered with

the VFS. This user level file system however requires

some kernel level medium to do so. FUSE (File

System in User Space) facilitates doing so. Next

section briefs about basic concept of FUSE, its

architecture, use and functioning. It also discusses the

file-system and FUSE interface details.

4 FUSE (File System in User Space)

File System in User Space (FUSE) is a framework

that aids development of file systems in user space. It

registers the file system with VFS and redirects

standard library file system calls to file system

specific API. FUSE was developed for Linux, now

has been extended for BSD and Mac OSX. It consists

of two primary modules and one utility. A kernel

module binds to VFS and redirects calls to the user

level fuse library. The fuse library has user space file

system methods registered with it. The mount utility

allows mounting of the file system at specified mount

point. Since, the file system is in user space, a

specifying mount point like in fstab without root

privileges is not possible. The mount utility is

installed with root uid at install time so as to allow

mounting of user space file system with user

privileges. Care is taken that user cannot access any

other information with any super user privilege.

Many file systems are built over fuse base. mcachefs,

Logic File Systems, Afuse , MountIo etc are some

examples of them. The architectural features of

FUSE are as in Fig.5.

Fig.5 FUSE Architecture Details

 The user application invoked file system

calls get mapped to standard library calls. They

further get translated to VFS calls. VFS layer then

invokes the registered method for the corresponding

file system. In case of the fuse based implementation,

the calls from the VFS get transferred to the fuse

kernel module. The kernel module in turn unblocks

the blocking read call from the fuse library. The fuse

library invokes the appropriate file system specific

the kernel module. Data and control flows from VFS

to kernel and data moves from kernel to VFS. The

interface details are seen in Fig.6. The figure

illustrates the complete call flow.

Fig.6 Interface Details & Call Transfer

 The FUSE library has a blocked read call on

the kernel module (path [0]). Suppose, some user

application invokes a file system call on the user

implemented file system, the VFS sends a request to

the fuse kernel module via path [1]. The request is

User Applications

GNU C Library

System Call Interface

VFS

Individual File Systems

FUSE Kernel Module

User Space File System

GNU C Library

System Call Interface

FUSE Library

FUSE Kernel Module

User Level File System

FUSE Library

[0]

[1]

[6]

[2]

[3] [4]

[5]

From and to VFS

 6

then kept on the waiting queue. When kernel is ready

to take up that request it unblocks the path [0] and

forwards the request via a fuse_read call to the library

via path [2]. The FUSE library further forwards this

request to the user level file system by invoking the

appropriate registered method via path [3]. The file

system method returns the requested data via path [4]

to the FUSE library. FUSE library then passes data to

the kernel module through fuse_write call through

path [5]. The fuse kernel forwards the request reply

to VFS via path [6]. All the calls are blocking calls

hence queues like pending queues are required.

 The kernel module is registered as a

character device with VFS and the file system is of

block access type. It is evident that handling calls is

simple but there are multiple switches between user

and kernel mode and hence the overload of switching.

This however is true in any type of file system

implemented at user level. It however gives

flexibility by allowing the user to make file systems

(or specify them in case of automatic file systems

hence allowing generation). No kernel code re-

compilation is required. It is also simple since the

coding is in user space which is easier than in kernel

space. The cost is overhead as discussed earlier.

5 Implementation Details

The file system described in section 3 has been

developed. Its methods are registered with FUSE

library and thus can be invoked by standard library

calls redirected via the fuse kernel module. In

systems, the classical solution has been always

“redirection”, here implemented via FUSE. The file

system is compiled with dependent FUSE library and

thus compacted as an installable package. Currently,

the persistent storage is a file, which is created at

install time in the installation directory on existing

file system. The mount point can be specified at

execution time. Raw device can also serve for

persistent storage. The file system can be made

tunable by accepting user specifications, computing

the structure requirements and generating the limits

header file dynamically. This would make the

installable file system behave like a automatic file

system compiler and give us flexibility benefit. This

feature is not implemented so far. Future work will

revolve around that area. The framework defined can

also be changed for implementing other types of file

systems. Performance of file systems would depend

on their framework and their medium for persistent

storage.

6 Performance Estimation

With the present implementation described

above, the medium of persistent storage is a file.

During file system initialization, the whole file will

be read into memory and will be accessed from

memory. Periodically the data is synced to the

persistent storage file. This will ensure that data is

not lost. Also, since the whole data is in memory, any

block can be accessed with uniform access time

(minute changes depending on the search time in

cache etc) thus the performance will be good. Refer

Fig 7 and 8 for the performance measured in terms of

access time for different API calls. It can be seen

that Disk_Init (FS_Boot) and Disk_Sync (FS_Sync)

complete in the order of msecs where actual disk

access takes place, whereas other file system calls

complete in orders of microseconds as file system in

memory is accessed.

 However, when the persistent storage

medium changes to raw disk device, the performance

will be greatly affected. Also, the framework is pretty

naïve (chosen for simplicity) and does not take into

account any type of locality. It does not take

positional delay of disk into account and no sort of

grouping is done. Neither spatial locality is exploited

by keeping related files together like FFS [3] nor is

temporal locality taken into consideration by

buffering writes written around the same time and

then writing them together on disk. If files are written

completely then, better read and write performance

can be achieved since adjacent disk blocks will be

used. Further, it can be observed that the block size is

only 512 bytes which is pretty unimpressive

compared to current league of file systems. File

system limits are also modest. Filename and

pathname limits of 16 and 256 characters respectively

seem too low. Maximum file limit of 100 plus their

size limited to 15KB is certainly unusable with the

amount of workload in current systems. Apart from

that there are no checksums or redundancy

implemented which may limit the file system

reconstruction capability on a disk crash. Currently

the file system is not suitable for sensitive data

storage.

7 Future Work

Future work revolves around three aspects: changing

the framework to a more robust and technology

aware, implementing it on a raw device and

generating the limits dynamically from user

specifications. The new framework will revolve

around exploiting the spatial locality or provide for

shadowing and providing some kind of redundancy

for security. Raw device implementation will give a

 7

better estimate for performance and consideration of

user specifications will make it change from a

installable file system to a automatic file system

compiler. This will not only give the user freedom to

have the features of his choice and will still continue

to give high performance combined with the factors

mentioned above.

Fig. 7 Disk Initialize and Disk Sync time varying

across different runs. (Disk positioning time effect)

Fig.8 Performance of simple file system estimated

in terms of completion time for various file system

calls.

8 Software Engineering Aspects

 The timeline of the project is shown in Fig.9. The

initial phase of the project involved background

reading. Later development process started. An

estimate of available and required resources was

made. Development environment was setup. This

was however a recursive step till all requirements

were satisfied. Primary environment was a Pentium

IV machine with Centos 5.1 server. Due to software

compatibility problems, later moved to a virtual

machine with Fedora Code 8 Linux guest OS. It was

followed by requirement analysis. Project

development follows the waterfall model (Fig 10).

The first phase involves requirement analysis

followed by planning. Later phase is of designing

followed by implementation. To ensure functionality

later testing and debugging is done. The code has

been commented and coding standards have been

followed. Naming conventions have also been

followed.

Fig.9 Project Timeline

Fig.10 Waterfall Model

�umber of runs

T
im

e
 i

n
 m

se
c

Week 1 2 3 4 5 6 7

 B
ac

k
g

ro
u

n
d

R
ea

d
in

g

B
ac

k
g

ro
u

n
d

R
ea

d
in

g

 R
eq

u
ir

em
en

t

A
n

al
y

si
s

E
x
p

er
im

en
ta

l

S
et

u
p

 D
es

ig
n

 &

Im
p

le
m

en
ta

ti
o
n

 T
es

ti
n
g

 &

D
eb

u
g
g

in
g

T
al

k
 &

D
o

cu
m

en
ta

ti
o
n

Requirement

Analysis

Planning

Design

Implementation

Testing &

Debugging

 8

Summary

This project is a small step towards automating file

systems that till date are very rigid, inflexible and

complex. This implementation gives a glimpse of

flexibility and customization that the users/experts

can expect in the coming years from Systems domain.

Conclusion

Making file systems is a long, complex and tedious

task. Stabilizing it is another challenge. Automating it

further is altogether a new ballgame. This project

gives a valuable insight into the complexities

involved in file system design. Automatic file system

compilers will give users and system administrators

an efficient infrastructure for optimum resource

utilization, flexibility, portability and performance.

References

[1] Demsky,B.,et al, “Automatic Detection and

Repairs of Errors in Data Structures”, OOPSLA

2003 , pp. 87-95.

[2] Zadok,E., et al, “FiST: A Language for

Stackable File Systems”, ATEC 2000, pp.5-5

[3] Joy,W.�., et al, “ A Fast File System for

Linux”, TOCS 1984 , pp.181-197.

[4] Rosenblum, M., et al, “The design and

Implementation of Log-Structured File System”,

TOCS 1992, pp.26-52.

