
A Declarative Framework for Intrusion Analysis

Matt Fredrikson

Computer Sciences Department
University of Wisconsin – Madison

Abstract

In this paper we consider the problems of computer intru-
sion analysis, understanding, and recovery. More specif-
ically, we identify the various difficulties associated with
these problems, and propose a solution based on system
events and the dependencies between them for simplifying
our motivating problems. We then present a tool we have
designed called SLog that presents a system administrator
with all of the facilities required to analyze the event infor-
mation present in system logs, and present only the event
information pertinent to an intrusion in a vastly simplified
manner. We discuss the ways in which the major design
goals of SLog – simplicity, extensibility, and scalability
– are important when dealing with intrusions in realistic
scenarios. Finally, we demonstrate the ability of SLog to
accurately return a simplified view of the relevant events
in a realistic intrusion case study.

1 Introduction

Intrusions on computer systems remain a formidable men-
ace to the substantial infrastructure present in today’s pub-
lic and private networks. The CERT coordination center
has remained active in the task of following events re-
lated to computer intrusions for the past several decades,
and has compiled a list of observed trends in this domain.
Among the more alarming trends are an increase in au-
tomated attacks, increasing sophistication in attack tools,
faster discovery of important system vulnerabilities, and
an increasing focus on infrastructure attacks [5]. These
findings indicate that we can expect intrusions to become
more frequent and more sophisticated.

This poses several challenges for network administra-
tors charged with the task of preventing attacks from oc-
curing in the first place, as well as detecting and recov-
ering from the attacks that will inevitably occur. There
is a sizeable body of literature, as well as an active re-
search community, that focuses on the first two problems
of prevention and detection. Prevention measures include
timely patch updates to vulnerable software, security-
conscious operating system design [1, 6, 10], and network

perimiter security devices such as firewalls. Detectoin
measures are diverse and numerous, ranging from manual
analysis [4] to fully automatic intrusion detectors [13, 7].

The problem of intrusion recovery, on the other hand,
has not been studied as extensively by the academic com-
munity. This is certainly not for lack of interesting or sub-
stantive problems in the area. An administrator is faced
with two important problems after an intrusion. First, he
must determine the cause of the intrusion, which in most
cases means discovering which process on the system al-
lowed the intruder an undesired level of access. This step
of the recovery is essential, as without it, the administrator
must expect a similar intrusion at some point in the future.
Next, a prudent administrator must discover all entities on
the system that may have been compromised or affected
in some way by the intrusion. Without this step, no guar-
antees can be made regarding the integrity of the system’s
contents.

Having underscored the importance of proper intrusion
recovery, we now focus our attention on some of the dif-
ficulties involved with recovery on a real system. We ob-
serve that in a typical network setting, an administrator
may have numerous sources of relevant information avail-
able, including application logs, intrusion detector logsat
both the host and network level, as well as the entire state
of the persistent store. Furthermore, each of these sources
can potentially contain an overwhelming amount of infor-
mation. In an enterprise setting, it is not unreasonable to
expect log files with gigabytes of data. Clearly, culling the
relevant information from these sources is a difficult, time
consuming, and error-prone process.

The fundamental problem here is that while these
sources may contain all of the information that is required
to successfully recover from an intrusion, this information
is effectively drowned out by the high degree of opera-
tional noise generated by everyday, legitimate use of the
system. The task assigned to our hypothetical system ad-
ministrator would be made much simpler if there were a
way for him to automatically filter the irrelevant informa-
tion that corresponds to legitimate activity, and focus only
on those details that pertain to the intrusion at hand. This
is the problem that we will address in this work.

1



This paper describes a tool called SLog that attempts to
filter out the irrelevant portions of an event history, leaving
only those portions that provide information that may be
valuable when attempting to understand and recover from
a specific intrusion. SLog does this by reasoning about
the system in terms of the events that are reported to have
occurred on it, as well as the dependencies between these
events. The primary goal of SLog is to provide a simpli-
fied view of the objects and events that have been affected
in some way by the intrusion. However, it is crucial that
this task is performed without over-simplifying the analy-
sis in such a way that relevant events are discarded from
the final report, leaving the administrator without a full
picture of the effects of the intrusion. In an attempt to re-
alize these conflicting goals, SLog provides facilities for
viewing and reasoning about events at different concep-
tual granularities.

The rest of the paper will proceed as follows. Section
2 gives an overview of the foundational principles, goals,
and design decisions that were made while constructing
SLog. Section 3 describes in some detail the various lan-
guage constructs used in SLog to implement our design
decisions, as well as their syntax and semantics. Section
4 presents a case study involving a realistic intrusion sce-
nario to which we applied SLog, as well as a discussion
of the results we collected from this case study. Section
5 discusses some important related work, and Section 6
concludes the paper and hints at some directions for fu-
ture work.

2 Design

Having motivated the need for a system such as SLog,
we describe the overall design of our tool in this section.
We begin by giving a more thorough description of the
goals we hope to achieve with such a system, continue
by describing the high-level operational workflow of the
system, and conclude by enumerating the specific compo-
nents that we implemented to realize this workflow.

2.1 Design Goals

The basic functional goal of SLog is to provide a user who
is faced with the difficult task of understanding a system
intrusion with a simplified view of the events and objects
on a system and the ways in which they may be related to
the intrusion. To construct such a tool, we rely on several
key observations and principles.

Our first observation is that understanding, and in turn
recovery, will come about much more quickly if the user
is able to easily distinguish the events and objects that are
related to an intrusion from those that are not. As such,
we would like our tool to allow the user to create a com-

pact summary of all the intrusion-relevant events that have
occurred, while excluding all events corresponding to ev-
eryday legitimate behavior.

The second such observation is that the system that has
been intruded upon may contain several different sources
of information, each relevant to the events that transpired
in some way. Furthermore, we do not wish to assume that
the user was aware of our tool before the intrusion oc-
curred. This anti-assumption rules out the possibility of
reliance on event information provided by a system mon-
itoring facility of our own construction. Therefore, we
would like our tool to be able to use any and all event in-
formation that the user may be able to provide. Finally, we
would like our system to incorporate these disparate infor-
mation sources with very little effort to the user – without
recompilation or significant format transformation cost.

The third observation that guided our efforts when de-
signing SLog is that events from system and application
logs are oftentimes complex and numerous. For exam-
ple, logging system call invocations made by Firefox over
a one-minute time period resulted in over 340,000 events.
To make matters worse, each such event is associated with
a fair amount of data in the form of argument informa-
tion that requires a non-trivial amount of knowledge about
the workings of the operating system. Even if our tool is
capable reducing the logs to only those events related to
the intrusion, the user is left with a great deal of analy-
sis work if he is forced to think in terms of these events.
We would like our system to offer facilities for further re-
ducing the amount of information about intrusion-relevant
events that is ultimately presented to the user.

Our fourth guiding principle is rooted in the adversarial
nature of the analysis we wish to perform. As we design
the facilities which allow the user to selectively control the
information that is presented, we must proceed with cau-
tion, as poor choices in this area could create opportunities
for an attacker. Specifically, we observe that certain sim-
plifications, or reductions in the amount of presented in-
formation, could remove from the user’s view a sequence
of events that are necessary for an adequate understanding
of the intrusion at hand. Assuming the attacker is aware
of our analysis, this gives him a specific portion of the
system to focus on as a vector for his intrusion, as he is
congnizant of the fact that we will simply ignore it. With
this in mind, we seek simplifications that summarize the
given events, rather than those that purposefully ignore
certain events.

2.2 Simplification Workflow

To imagine how we might go about fulfilling our desired
goals as stated in Section 2.1, we begin by laying out
a general workflow for the simplification process. We
present our workflow in Figure 1. The first step corre-



sponds to the collection and subsequent selection of sys-
tem event information from a number of sources. This
step must be executed with care, as we would like to have
available all of the possibly relevant event information,
but if too much is available, it may bog the analysis down.
We envision this step as being performed by the user.

The second step in the workflow is the normalization
of the information sources. This is necessary, as we do
not want to limit our tool to any fixed set of information
sources and formats for compatability and extensibility
reasons. Therefore, it is necessary for our tool to extract
the necessary information from the sources, and store it in
memory in an easily accessible format that is conducive
to our further analysis. We envision this step as a joint
effort between our tool and the user; the user specifies
information about the format of the information sources,
and our tool parses these specifications and performs the
extraction.

The third step in our workflow is perhaps the most cru-
cial. After the information sources have been parsed and
loaded, we perform the task of analyzing the structure and
semantics of the events. Once this analysis is complete,
we use it to partition the events and objects on the sys-
tem into those that are necessary to gain an understanding
of the intrusion, and those that are not. This step is per-
formed largely by our tool, although it will likely require
some basic information from the user.

The final step in our workflow corresponds to the fi-
nal simplification on the event data that our tool performs.
Namely, once the relevant events have been extracted
from the information sources, the user may require that
the events be presented in a summarized or further sim-
plified form than they appear in the logs. As in the first
analysis step, this task is performed by our tool for the
most part, according to a user-defined specification.

2.3 System Components

Having stated our design goals and laid out a general plan
of attack for performing our desired analysis, we now give
a brief overview of each operational component of SLog.

General Overview Observing the workflow presented
in Section 2.2, we see that one factor is present in every
step – input from the user. This is necessary to achieve the
degree of flexibility mandated by our design goals. How-
ever, its presence in every step of our analysis suggests
that our tool must be designed around it. This leaves us
two options. We can design a tool that is highly interac-
tive, and prompts the user for information as the analysis
is underway. Alternatively, we can design a tool that is
based on a lightweight programming language. We opted
for the second alternative, as we envision the use of our
tool in batch environments, where unnecessary interaction

that is required of the user is nothing more than an annoy-
ance. As SLog is essentially a lightweight programming
language, each of the components we describe will corre-
spond to a construct in the programming language. This
fact will be made more explicit in later sections.

Information Extraction Essential to fulfilling our goal
of independence from any particular data source is the
ability to extract meaningful information from disparate
sources of varied formats. We begin our discussion of this
problem by stating a few of our requirements for an infor-
mation extraction solution.

Most importanly, the extraction technique must scale
well to very large data sources. As we would like to allow
the user to reason about arbitrary events, it may often be
the case that the events of interest occur frequently and
are information-rich. Our second requirement is for the
extraction technique to be relatively straightforward for
the user to work with, even intuitive if at all possible. Our
third requirement may seem obvious, but we would also
like the extraction to return perfect information as speci-
fied by the user. We explicitly state this requirement due
to the recent use of machine learning for the task of infor-
mation extraction [15].

We selected the declarative information extraction tech-
niques developed by Shenet al. [14]. Our reasons for se-
lecting this technique fall in one-to-one correspondence
with our stated requirements of an extraction technique.
First, in their exposition of the technique, the authors
demonstrate the ability of this technique to scale to size-
able datasets. This is accomplished through aggressive
workflow optimizations of an extraction program based
on the underlying statistics of the dataset. Beyond the op-
timizations presented by Shenet al., the ability to opti-
mize declarative programs in data intensive settings is a
commonly scited reason for their use [3]. Second, the
declarative extraction specifications are simple to con-
struct and understand. Although this claim is based on
subjective opinion, in our personal experience it is a fre-
quently held sentiment. Finally, the ability of this tech-
nique to return precise, complete results follows from the
well-defined semantics of the Datalog language, as we
will see.

Event Analysis and Extraction As stated in our goals,
we would like to present the user with only those events
and objects that are relevent to the intrusion at hand. Do-
ing so requires some notion of the relationships between
various events. In other words, we can reduce this prob-
lem to the task of inferring which events are related to
certain events that areobviouslyandundeniablypart of
an intrusion.

This leads us to the most important design decision of
SLog, namely the selection of a particular relation be-



Information Sources

Event SimplificationEvent Analysis /
Selection

strace

snort

syslogd

Data Extraction /
Log 

Normalization

Figure 1: Workflow diagram for the simplification process.

tween events to use in our analysis. We use the notion of
data dependencebetween events for two reasons. First, a
data dependence of eventA on eventB implies the abil-
ity of B to exert some kind of control onA. This is an
important notion when reasoning about intrusions, as an
attacker must be able to leverage vulnerabilities in appli-
cations to exert control over sensitive portions of the sys-
tem if he is to execute any sort of intrusion that concerns
us. Our second reason for using data dependencies is the
fact that we expect our information sources to provide us
with plenty of eventdata, if nothing else! There is always
virtue in using that which is already available.

To reliably and accurately compute dependencies be-
tween the events we are given, we require some additional
semantic information from the user. Rather than relying
entirely on value equivalence when inferring dependen-
cies, we require three additional pieces of information:

1. Type Information: We only reason about the equality
between two pieces of data if those data are of the
same type. On a typical system, a type may corre-
spond to file descriptors, file names, or process iden-
tifiers, among others.

2. Kill Events: We say that certain events kill certain
pieces of data when they reference them. This cor-
responds to the notion of invalidating the future use
of a particular data value. For example, theclose
system call kills the file descriptor that is passed to
it, so events that use that file descriptor at a later time
are not performing valid actions.

3. Definition and Use Information: We further refine
our notion of dependence by incorporating definition
and use information into the calculations. In order
for A to be dependent onB, A mustusea piece of
data thatB defines.

The use of this additional information greatly increases
the precision of our dependence calculations, as well as
the user’s control over which data elements are used in
the dependence calculations. The type and kill informa-
tion reduce the number of spurious dependencies calcu-
lated by SLog, while the definition and use information

allow the user to precisely specify that only a subset of
the available event data is actually relevant in the depen-
dence calculations.

We now state the rules for dependence calculation. Let
Data(A) be the set of all data elements attached to event
A, use(A) correspond to the set of all data elements used
by A, de f(A) correspond to the set of all data elements
defined byA, andkill (A) correspond to the set of all data
elements killed byA. Furthermore, as we are reason-
ing about events that presumably occur on a continuous
timeline, we attach a time value to each event,Time(A).
Then we say that eventA is data-dependent on eventB
(depends(A,B) = True) if

• ∃ dA ∈ Data(A), dB ∈ Data(B) such thatdA ≡ dB

• type(dA) = type(dB)

• dA ∈ use(A) anddB ∈ de f(B)

• Time(A) > Time(B)

• ∄ eventC such thatdC ∈ Data(C), dC ≡ dA, dC ∈

kill (C), andTime(B) < Time(C) < Time(A)

Intuitively, these rules require that for one event to be de-
pendent on another, the two events must contain a piece of
data of the same type and value, and that the dependence-
inducing piece of data isn’t killed between the occurence
of the two events.

After inferring dependencies between the events avail-
able to our analysis, the task of selecting only the events
that are relevant to the intrusion at hand is a fairly straight-
forward task. We borrow the concept of abackwards slice
from the program analysis literature to do so. For our pur-
poses, a backwards slice simply corresponds to the transi-
tive closure of thedependsrelation specified above, start-
ing at a specified event. More precisely, we say that event
S is in the backwards slice of eventA if

• depends(A,S) is true,or

• ∃ S1, . . . ,Sn such that depends(A,S1) = True∧
depends(S1,S2) = True∧ . . . ∧ depends(Sn,S) =
True



Given some eventE that is clearly and unquestionably a
symptom of an intrusion, we can constrict our view of
the events to only those events that may have caused this
suspicious event by doing a backwards slice onE.

2.4 Event Simplification

As stated in our design goals, we would like to provide
the user with facilities that allow him to simplify his view
of the relevant events that occured due to the intrusion.
Furthermore, we require that these facilities do not cor-
respond tolossy simplifications, or simplifications that
might result in the loss of pertinent event information.
These requirements significantly narrowed our range of
choices, primarily to the set ofsummary filters. In other
words, rather than pruning certain events from our view,
we opted to summarize sequences of events that are avail-
able to us.

We refer to this simplification technique as “seman-
tic abstraction”, as our goal is to summarize related se-
quences of events in such a way as to create an abstracted
view of the events that preserves the semantics of the un-
derlying events. The most useful abstractions for the pur-
pose of simplification are those that correspond to every-
day system entities that people are familiar with. For in-
stance, we might consider abstracting sequences of file-
related system call events into file objects and dependen-
cies between the processes that invoke the system calls.

We give the user the ability to define event abstrac-
tions by allowing them simple syntactical constructs in
the SLog scripting language for specifying new events and
objects in terms of those that have already been inferred.
Furthermore, to ensure that dependence information is not
lost through this abstraction, we provide them with a sim-
ilar construct for specifying customized dependence re-
lationships between abstracted events, beyond the default
data dependence relations discussed in the previous sub-
section.

3 The SLog Language

We now describe how each of the components de-
scribed in Section 2.3 is represented in the SLog language,
as well as the manner in which each of these constructs is
interpreted and used in the analysis performed by SLog.

3.1 Language Constructs and Syntax

SLog is a declarative language in the spirit of other popu-
lar declarative languages such as Prolog and Datalog. The
syntax of SLog is derived from that of Datalog. It is useful
to think of there being three first-class entities in an SLog
program.

• Events/ObjectsEvents can correspond either to con-
crete event instances extracted from the data sources,
or to abstracted events defined in terms of previously
inferred events and objects.

• Data All events are attached to a finite amount of
data. In SLog, data instances are instantiated with
event and type specifications.

• Dependence RelationsBesides the default depen-
dence relation induced by data instances, custion de-
pendence relations may be instantiated at runtime in
terms of previously inferred events, data, or depen-
dence relations.

There are seven distinct types of statements recognized by
SLog.

• Event Abstraction SpecifiersThese statements are
used to specify the fact thateventbelongs to a set of
events corresponding to a particularlevelof abstrac-
tion. By convention, concrete log entries correspond
to level= 1.
level(event, level).

• Type SpecifiersGiven an event namedevent, we
specify the type information of its associated data
with a type specifier statement in the following man-
ner:
eventT(type1,type2, . . . ,typen).

• Kill StatementsWe specify thateventkills it’s nth
parameter, which is of typetype, in the following
way:
kill (event,type,n).

• Def and Use StatementsWe specify thateventuses
its nth argument, which is of typetype, in the follow-
ing way:
use(event,type,n).
And similarly, for data defined byevent:
de f(event,type,n).

• Custom Dependence RelationsCustom dependence
relations can be specified with a fair amount of
freedom. Basically, they correspond to a typical
Datalog rule statement, where the head must be
of the formdepends(event1, id1,event2, id2). Here,
event1, event2 correspond to valid event instances as
specified by an event specification statement.id1, id2

correspond to unique identifiers for the events. In the
case of concrete log events, this identifier is usually
a time.

• Event DescriptorsEvent descriptors are the core of
SLog. They are used to extract event information,
including associated data, from logs, as well as to de-
fine abstracted events in terms of previously inferred



open(time_t, file_t, string_t, handle_t).
read(time_t, handle_t, string_t, int_t, int_t).
close(time_t, handle_t, int_t).

def(open,’handleType’,’4’).
use(read,’handleType’,’2’).
kill(close, handle_t).
level(open,’1’).

open(?time,?file,?perms,?ret) :- docs(?d), lines(?d, ?line), time(?line, ?time),syscall(?line, ’open’),
arg(?line, ’1’, ?file),arg(?line, ’2’, ?perms), retval(?line, ?ret).

read(?time,?file,?data,?len,?ret) :- docs(?d), lines(?d, ?line), time(?line, ?time),syscall(?line, ’read’),
arg(?line, ’1’, ?file), arg(?line, ’2’, ?data), arg(?line, ’3’, ?len), retval(?line, ?ret).

close(?time,?file,?ret) :- docs(?d), lines(?d, ?line), time(?line, ?time), syscall(?line, ’close’),
arg(?line, ’1’, ?file), retval(?line, ?ret).

?-slice(’close,’11:05:35.466110’).

Figure 2: Example SLog program for file-related activities.

events and data. They are of the form:
event(data1, . . . ,datan) :-
ext1(data1), . . . ,extm(datan−1,datan).
Here,ext1, . . . ,extm correspond to external procedu-
ral predicates that are invoked by SLog as the state-
ment is evaluated. These procedural predicates ex-
tract a portion of data from the information sources,
and are the primary innovation presented in the work
of Shenet al. [14]. It should be noted that the body
of event descriptors is not restricted to any particular
form, as long as extraction predicates are used.

• Query StatementsCurrently, we only allow query
statements corresponding to backwards slices from
a particular event. We will add more in the future. A
query statement is of the form:
?-slice(event, id,?eventN,?idN).

We present an example SLog program in Figure 2. This
program extracts strace log events corresponding to com-
mon file-related activities, and queries SLog for a back-
wards slice on a specific instance of theclose system
call.

3.2 Semantics

The semantics of an SLog program can be understood in
terms of transformations that are performed on each of
the inferred events, and applications of the dependence
relations to these transformed event instances. Evaluation
proceeds as follows:

1. Event instances are instantiated by executing all of
the event description statements. This is done using
standard Datalog program evaluation algorithms [2],
except external programs must be invoked for each
extractor used in an event description statement.

2. Event instance tuples are transformed into vertical
tuples, one for each event instance and associated
data instance.

3. Query statements are executed over the transformed
vertical tuples. The results of the query are output in
a graph description language such as Graphviz DOT.

Event Instance Transformation The transformations
applied to inferred event instance tuples essentially cor-
respond to a vertical partitioning of the tuples. Specifi-
cally, a new set of tuples is created, with attributes cor-
responding only to events and event identifiers (as previ-
ously mentioned, event identifiers typically correspond to
the time at which an event occurs). Furthermore, a new set
of tuples is created for each data instance attached to an in-
ferred event. A template for the transformation semantics
is presented in Figure 3. Structuring the data in this way
allows dependencies between events to be inferred using
a small number of very general rules (inference rules are
specified in the Appendix).

Event Inference Semantics It is reasonable to question
the validity of applying Datalog evaluation rules to a pro-
gram that can invoke an external, Turing-complete proce-
dure as though it were nothing more than a ground clause.
Shenet al. show that the semantics of such an evalua-
tion can be understood in terms of typical least-model se-
mantics as long as each procedural predicate behaves as
though it represents a finite, deterministic relation [14].

Query Semantics Executing a query implies inferring
all of the relevant event dependencies to compute the re-
quested backward slice. This is performed using Datalog
fact inference over the transformed, vertically-partitioned
tuples computed in Step 2. The rules used in this inference
are presented in the Appendix.

Example We present a short example of how the first
two evaluation steps would operate over the following line
from anstrace log when given the program from Figure
2:



11:05:36.464761 open("/etc/ld.so.cache", O_RDONLY) = 3

First, the extraction statement on line 10 would produce
the following tuple:

open(’11:05:36’, ’/etc/ld.so’, ’O_RDONLY’, ’3’).

Next, the transformation step would produce the follow-
ing tuples:

eventinstance(’open’, ’11:05:36’)
data(’open’, ’11:05:36’, ’1’, ’timeType’, ’11:05:36’)
data(’open’, ’11:05:36’, ’2’, ’fileType’, ’"/etc/ld.so"’)
data(’open’, ’11:05:36’, ’3’, ’stringType’, ’O_RDONLY’)
data(’open’, ’11:05:36’, ’4’, ’handleType’, ’3’)

4 Case Study and Results

In this section, we briefly present a case study correspond-
ing to an application of SLog to a realistic intrusion sce-
nario, and discuss the performance of SLog in this case
study.

4.1 Intrusion Scenario

To evaluate the performance of SLog in a realistic setting,
we performed an intrusion on a Linux system and col-
lected event information corresponding to the intrusion.
The intrusion we performed is based on that used for the
Honeynet Project Forensic Challenge [12]. Namely, a sys-
tem running RedHat 6.2 configured as a typical internet
server is running a vulnerable version of therpc.statd
service. We send an exploit string containing shellcode to
launch a remote shell that waits on a predetermined TCP
port to this process, connect to the remote shell, and place
a “rootkit” in the file /hacked. At this point, we kill the
remote shell, and restart the system.

4.2 SLog Case Study

The event log sources that we use in our case study
were collected using thestrace utility for Linux systems.
strace records each instance of a specified set of system
calls, as well as their corresponding argument informa-
tion. We wrote SLog extraction specifications for a num-
ber of important system call events, as well as a semantic
abstraction that allows us to view these events in terms
of files and processes. The semantic abstraction that we
selected corresponds to the desired output of the Back-
tracker tool designed by Kinget al. [8]. Dependencies
are calculated between file and process events in an intu-
itive manner using observed system call invocations. For
instance, we say that a process is dependent on another
process if one forks the other,

depends(’process’,?pid1,’process’,?pid2) :-
fork(?time3,?pid2,?pid1).

Collected Data The data collected bystrace for this
case study corresponds to the operation of our victim ma-
chine from the moment the first user logs in, until the sys-
tem is shut down. As we are only concerned with a sub-
set of the system calls executed in this time period, this
corresponds to 2885 system call events executed by 50
processes that may be relevant, as well as their associated
argument information. As our goal with this case study is
to demonstrate the utility of SLog in a realistic scenario,
rather than to demonstrate the full range of its function-
ality, we wish only to use SLog to replicate the output
of a tool of well knownutility, such as Backtracker. For
this reason, we only used information fromstrace logs,
rather than from multiple sources, as has been discussed
throughout the paper.

Results The final output of SLog as applied to this case
study is presented in Figure 4. Five nodes correspond-
ing to configuration files have been removed to allow the
image to fit on the page. This analysis was produced
by telling SLog to perform a backwards slice on the file
named/hacked. This is realistic given the scenario, as
this file is an object on the system that is clearly and in-
disputably a symptom of the intrusion, and a likely point
of discovery by a system administrator. The graph in Fig-
ure 4 shows us that SLog is capable of returning a small
subset of the events and objects relevant to an intrusion;
the node representing the vulnerable process that allowed
the intrusion,rpc.statd, is only three hops away from
the node representing/hacked. Furthermore, we see that
the output does not contain a large number of irrelevant
information that the user must sort through to obtain an
understanding of the intrusion.

Performance The one drawback to the current incarna-
tion of SLog is its performance. Subjectively, we observe
that SLog takes far too long to analyze a relatively small
amount of data. In this case study, on the 2885 events an-
alyzed by SLog, the extraction and normalization phase
of the workflow took 46 minutes running on a standard
workstation with an Intel Core 2 Duo running at 1.86 GHz
and three gigabytes of memory. Furthermore, construct-
ing the slice presented in Figure 4 took approximately
two minutes, and constructing a dependence graph for all
of the events in the logs took a surprising 61 minutes.
These results represent a failure to meet one of our stated
goals, namely to scale to logs in the gigabyte range, and
is of primary concern for our future work.

5 Related Work

We begin our discussion of related work with the obser-
vation that the dependence tracking facilities presented in



eventT(τ1,τ2, . . . ,τn),event(α1,α2, . . . ,αn) → eventinstance(event,α1),
data(event,α1,τ1,α1),
data(event,α1,τ2,α2),
. . . ,

data(event,α1,τn,αn)

Figure 3: SLog transformation semantics.

this paper are nothing more than an instance of the more
general problem of information flow tracking. Informa-
tion flows have been used extensively to reason about var-
ious system security related topics. Recently, there have
been a number of systems that utilize taint tracking to rea-
son about information flows dynamically for the purpose
of exploit detection and repair [11]. These tools use in-
formation flows proactively in real-time online analyses
of specific problems, whereas we are concerned primarily
with their utility in comprehensive analysis and overall
understanding of events after they occur.

Closer to the type of information flows considered in
our work are those used by Krugeret al. for the purpose
of detecting privacy violations in application-level soft-
ware [9]. In this work, the authors used dynamic data
equivalence with type information to infer dependencies
between events, but did not usedef anduseinformation
explicitly as in our work to allow fine-grained control over
the inference process. They do not consider the problem
of integrating multiple sources of event information ex-
plicitly as we do. Finally, Krugeret al. used dependence
information as much for real-time policy enforcement as
for post-mortem analysis, which we do not consider in our
work.

Perhaps the most relevant previous work to the prob-
lem and solution we consider is the work of Kinget al
with Backtracker [8]. Here the authors introduce the idea
of using dependencies between events for the problem of
intrusion analysis, and present a tool for collecting the rel-
evant information off of one type of system, as well as
a tool for analyzing the information and producing slice
graphs as in our work. However, our work diverges from
theirs on several important ways. First, the dependence
analysis performed by Backtracker was designed entirely
in terms of the event information provided by the authors’
custom event logging utility. The tool is not capable of
reasoning about dependencies in general, and there is no
way for a user to specify additional notions of dependence
as in our work. We see this as a major design limitation
of Backtracker, and a major part of the inspiration for this
work. Additionally, the facilities used by backtracker for
event simplification involve lossy filters, as discussed in
Section 2.4. We see this not only as a serious flaw from
a security perspective, but also as a factor that limits the
extensibility and scalability of Backtracker. To summa-

rize, while Kinget al. introduced some of the fundamen-
tal concepts used in our own work, we see the work pre-
sented in this paper as a more principled approach to a
similar problem, built with the issues of extensibility and
scalability in mind from the beginning.

6 Conclusions

In this paper, we attempted to address some of the prob-
lems related to the process of analyzing, understanding,
and recovering from computer system intrusions. We took
anevent-orientedapproach, where the system and infor-
mation relevant to the intrusion are thought of in terms
of events on and between objects on the system that are
recorded on one or more log files. Furthermore, we de-
fined a notion ofdependencebetween events and objects
on the system as a way to refine our view of the events and
focus on only the information that is explicitly relevant to
an intrusion.

As the major contribution of our work, we designed and
implemented SLog, a tool based on these principles and
observations that allows a user to specify syntactic and
semantic information about the events found in an arbi-
trary set of log sources, and performdetailedandprecise
analysis of the events. Furthermore, SLog provides facil-
ities for performingsemantic abstractionover sequences
of events inferred from log sources, allowing the user to
simplify his view of the events.

As our evaluation of SLog demonstrates, we were able
to fulfill our initial goals of simplicity and extensibility,
but not that ofscalability. In our experience, the current
incarnation of SLog exhibits unacceptable performance
costs when run on moderate data sets. Therefore, the main
thrust of our future work on SLog will relate to the issue of
scalability. When complete, it is our hope that SLog will
be able to perform the analysis demonstrated in this paper
over log sources that are tens or hundreds of gigabytes in
size.

References

[1] National Security Agency. Security-enhanced linux.
www.nsa.gov/selinux.



Figure 4: Final output of SLog



[2] Francois Bancilhon and Raghu Ramakrishnan. An
amateur’s introduction to recursive query processing
strategies. InSIGMOD ’86: Proceedings of the 1986
ACM SIGMOD international conference on Man-
agement of data, pages 16–52, New York, NY, USA,
1986. ACM.

[3] Eric A. Brewer.Combining Systems and Databases:
A Search Engine Retrospective, pages 711–724.
MIT Press, 2005.

[4] CERT Coordination Center. In-
truder detection checklist.
www.cert.org/techtips/intruderdetectionchecklist.html.

[5] CERT Coordination Center. Overview of attack
trends. www.cert.org/archive/pdf/attacktrends.pdf.

[6] Petros Efstathopoulos, Maxwell Krohn, Steve Van-
DeBogart, Cliff Frey, David Ziegler, Eddie Kohler,
David Mazières, Frans Kaashoek, and Robert Mor-
ris. Labels and event processes in the asbestos oper-
ating system. InSOSP ’05: Proceedings of the twen-
tieth ACM symposium on Operating systems prin-
ciples, pages 17–30, New York, NY, USA, 2005.
ACM.

[7] Gene H. Kim and Eugene H. Spafford. The design
and implementation of tripwire: a file system in-
tegrity checker. InCCS ’94: Proceedings of the 2nd
ACM Conference on Computer and communications
security, pages 18–29, New York, NY, USA, 1994.
ACM.

[8] Samuel T. King and Peter M. Chen. Backtracking
intrusions. InSOSP ’03: Proceedings of the nine-
teenth ACM symposium on Operating systems prin-
ciples.

[9] Louis Kruger, Hao Wang, Somesh Jha, Patrick Mc-
Daniel, and Wenke Lee. Towards discovering and
containing privacy violations in software. Technical
report, University of Wisconsin – Madison, 2005.

[10] Andrew C. Myers. Jflow: practical mostly-static in-
formation flow control. InPOPL ’99: Proceedings
of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 228–
241, New York, NY, USA, 1999. ACM.

[11] James Newsome and Dawn Song. Dynamic taint
analysis for automatic detection, analysis, and signa-
ture generation of exploits on commodity software.
In Proceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS 2005), 2005.

[12] The Honeynet Project. Forensic challenge.
www.honeynet.org/challenge/index.html.

[13] The Sourcefire Project. The snort lightweight net-
work intrusion detection system. www.snort.org.

[14] Warren Shen, AnHai Doan, Jeffrey F. Naughton,
and Raghu Ramakrishnan. Declarative information
extraction using datalog with embedded extraction
predicates. InVLDB ’07: Proceedings of the 33rd
international conference on Very large data bases,
pages 1033–1044. VLDB Endowment, 2007.

[15] Eduardo F. A. Silva, Flavia A. Barros, and Ricardo
B. C. Prudencio. A hybrid machine learning ap-
proach for information extraction. InHIS ’06: Pro-
ceedings of the Sixth International Conference on
Hybrid Intelligent Systems, page 44, Washington,
DC, USA, 2006. IEEE Computer Society.

Appendix

SLog Dependence Inference Rules

depends(?event1,?time1,?event2,?time2) :-
data(?event1,?time1,?a1,?type,?d),
data(?event2,?time2,?a2,?type,?d),
def(?event2,?type,?a2),
use(?event1,?type,?a1),?time1>?time2.

killed(?event1,?time1,?event2,?time2) :-
data(?event1,?time1,?a1,?type,?d),
data(?event2,?time2,?a2,?type,?d),
?time1>?time,?time>=?time2,
eventInstance(?event,?time),
data(?event,?time,?argno,?type,?d),
kill(?event,?type,?argno).

clear(?event1,?time1,?event2,?time2) :-
depends(?event1,?time1,?event2,?time2),
not killed(?event1,?time1,?event2,?time2).

clear(?event1,?time1,?event2,?time2) :-
clear(?event1,?time1,?event3,?time3),
clear(?event3,?time3,?event2,?time2).


