

Ext2 on Singularity

Scott Finley
CS 736 Semester Project Report – Spring 2008

University of Wisconsin – Madison

Abstract
Singularity is a new operating system produced by

Microsoft Research. The design of Singularity is a

marked departure from current commodity operating

systems such as Windows or Linux.

This paper presents and implementation of the Linux ext2

file system for use on Singularity. This project allows the

design of Singularity to be evaluated.

The development and testing described in this paper show

that the Singularity design goals of high dependability and

“good enough” performance are largely met. The

protection provided by the micro kernel design prevented

the Singularity kernel from crashing in the face of errors

in the ext2 code. Performance testing showed that while

not as fast as ext2 on Linux performance is not

prohibitively low and the overhead of garbage collection

is minimal.

1 Introduction
Singularity is a new operating system released by

Microsoft Research. It is intended as a platform to

investigate new ideas in operating system structure. Many

of the design decision in Singularity represent a dramatic

departure from main stream operating systems such as

Windows or Linux [1].

Evaluating Singularity’s design presents a challenge

because existing applications and libraries must be re-

written to be ported. One result of this issue is that FAT32

is the only file system that is supported. This leaves

Singularity without a file system which can meet the IO

demands of a benchmark such as SpecWeb99. Singularity

provides better response time than Windows in this

benchmark, but cannot match the total simultaneous users

because of the bottleneck of the FAT file system[1].

This paper describes the implementation and testing of the

ext2 file system for use on Singularity. The work so far

has focused fully supporting reads from ext2. Caching of

file system metadata and raw disk blocks makes reads

speeds comparable to ext2 reads on Linux. Limited write

support was completed, primarily to aid in testing. Write

support has not progressed to a point that makes a

performance analysis worthwhile.

The goal of this work is to evaluate the design of

Singularity. Integration of a well known file system

provides the opportunity to gauge the development

experience when doing system programming in

Singularity. Because the result is a file system that is

compatible with ext2 running on Linux, a direct

performance comparison is meaningful.

The development and testing described in this paper show

that the Singularity design goals of high dependability and

“good enough” performance are largely met. The

protection provided by the micro kernel design prevented

the Singularity kernel from crashing in the face of errors

in the ext2 code. Performance testing showed that while

not as fast as ext2 on Linux performance is not

prohibitively low and the overhead of garbage collection

is minimal.

The remainder of this paper is organized as follows:

Section two is an overview of the important points of the

Singularity design. Section three covers the details of my

ext2 implementation on Singularity. Section four

evaluates ext2 on Singularity as well as Singularity as a

whole. Section five concludes the paper.

2 The Singularity Architecture
The information in this section is a summary compiled

from references [1] through [9].

Singularity is a new operating system design by

Microsoft’s Research department. It is not intended for

practical use, but rather as an environment in which to

explore new ideas in operating system research. The

design of Singularity explicitly targets dependability as

the primary goal. Performance is a secondary goal only to

the extent that it must be good enough to make the system

practically usable. Despite the de-emphasis of

performance, Microsoft has published micro-benchmarks

showing that the Singularity design results in improved

performance of many basic operating system operations

such as a kernel API call, thread yield or starting a

process.

2.1 The programming Environment

Programs for Singularity are written in Sing#, an

extension of Spec#, which is itself an extension of C#.

Almost all of the Singularity kernel is written in Sing#,

with a small portion (around 5%) written in assembly and

C++.

Despite the basis in C#, programs in Singularity do not

run on a virtual machine such as the Common Language

Runtime in Windows. Instead the Microsoft Intermediate

Language (MSIL) code generated by the Sing# compiler

is compiled to native machine code by the Bartok

compiler. This process includes aggressive optimizations

to further improve performance.

This optimization process is improved by taking

advantage of the fact that processes in Singularity are

sealed, meaning that code cannot be changed or linked in

dynamically. Because the compiler can count on seeing

all of a program’s code at compile time, many global

optimization are possible which are not available in other

systems.

Finally, all Singularity processes, as well as the kernel,

are garbage collected. Each garbage collector runs

independently which allows them to be configured

differently depending on the needs of the application.

2.2 The Process Model

Singularity uses a micro kernel architecture. Outside of

this micro kernel Singularity uses a single process model

called a Software Isolated Process (SIP). As the name

implies, SIPs do not rely on memory management

hardware for address space protection as is in most

modern operating system. Instead each SIP has a software

protected “object space”. Static analysis, type safety and

other language features are used to guarantee at compile

time that code within a SIP cannot access memory that

does not belong to it.

Software protection of processes removes much of the

cost associated with context switches in a hardware based

system. Historically, micro kernels have suffered from

poor performance, due in large part to the overhead of

doing many hardware based context switches. Software

based protection makes Singularity feasible from a

performance perspective.

The use of static analysis to protect process memory

implies that Singularity must not run code that is not

known to be trusted. Binaries can be signed to show they

come from a trusted source and a compliant compiler. It

would also be possible to distribute programs as MSIL

code and the local system could do the required analysis

on that before compiling and installing it. As mentioned

in section 2.1, processes are sealed which prevents

incorrect code from being loaded or generated at run time.

2.3 Communication Channels

All inter-process communication in Singularity is done

via communication channels. These channels are a first

class abstraction which is managed by the kernel and

supported explicitly by the Sing# language.

Because dependability is the primary goal of Singularity,

shared memory between processes is not supported.

Shared memory is notorious for being difficult to program

correctly. Even when done correctly, shared memory

leads to decreased dependability when a process fails. In

this case, any shared memory to which the process had

access is left in an unknown state, essentially forcing the

failure of all processes which also shared that memory.

Communication channels allow (and require) that the

interactions between processes follow an explicit contract

that can be understood and verified by the compiler.

Furthermore, when a process fails, all processes in

communication with it can be notified and handle the

situation gracefully.

All channel messages and data are passed via a special

kernel managed heap called the Exchange Heap. Objects

in the exchange heap are explicitly allocated and deleted

in a similar way to memory allocation in C++. Each

object in the exchange heap may only be accessed by one

process at a time, and that process may only hold a single

pointer to it. These restrictions allow the compiler to

statically determine that exchange heap memory is not

leaked nor accessed when it is no longer owned. Pointers

to exchange heap object may be passed between processes

in a message, which also transfers ownership of the

object. This allows for zero copy semantics when copying

data buffers or other large objects in a message.

3 Ext2 Implementation
The focus of the ext2 implementation on Singularity was

to fully support reads and to use caching to obtain good

performance. The implementation consists of a command

line control application, a system service, the core file

system process and communication contracts. The details

of these will be discussed in the remainder of this section.

3.1 Ext2ClientManager

The Ext2ClientManager is a system service which is

launched during the system boot process. The purpose of

this process is to handle requests for operations which are

specific to ext2 volumes. The current version support the

“mount” and “unmount” commands. A fully featured ext2

implementation would also include at least an additional

“format”.

Ext2ClientManager is accessible at a known path in the

“/dev” directory of the Singularity namespace. Clients

wishing to perform ext2 volume operations send requests

to the Ext2ClientManager at this location. The manager

tracks volume and mount point status to prevent volumes

being mounted more than once or a single mount point

being used more than once. When a volume is mounted

the Ext2ClientManager creates a new instance of an

Ext2Fs process (described in section 3.3) to service

requests for that mount point.

The Ext2ClientManager consists of about 300 lines of

code.

3.2 Ext2Control

Ext2Control provides a command line interface to the

Ext2ClientManager. The only purpose is to make the ext2

volume operations provided by the Ext2ClientManager

accessible from the command line.

Other applications are free to contact the

Ext2ClientManager directly in the same way that

Ext2Control does, so Ext2Control is only used by

interactive users via the shell.

The Ext2Control application consists of about 500 lines of

code.

3.3 Ext2Contracts

The Ext2Contracts module is a project that defines the

custom communications channel contracts used in ext2.

These contracts are used by the Ext2ClientManager to

communicate with an Ext2Fs instance, and by clients of

the Ext2ClientManager to send mount and unmount

commands. The contracts used by Ext2Fs to communicate

with clients accessing files and directories within the file

system are already defined by Singularity so that all file

systems export the same interface.

This module also defines the data object (a struct in the

exchange heap) which holds the settings to be used when

mounting an ext2 volume. This includes the volume and

mount point paths and maximum cache sizes.

The Ext2Contracts module consists of about 200 lines of

code.

3.4 Ext2Fs

Ext2Fs is the module responsible for handling client

accesses to the file system. An instance of the Ext2Fs

process is started by Ext2ClientManager for each mount

point. This Ext2Fs instance then handles all client

requests to the file system at that mount point.

3.4.1 Directory Interfaces

As with all IO in Singularity, clients access files and

directories through communication channels. Singularity

provides a DirectoryServiceContract which defines the

operations available for directories. These include

creating and deleting entries, listing the entries and

getting attributes. Similarly, there is a FileServiceContract

governing the operations on files, such as reading and

writing.

Opening a file or directory in Singularity is equivalent to

binding a channel at to the desired object. Objects are

identified by use of a path name string relative to the

directory channel through which the request comes. For

example a client might issue a bind request for the

directory “/a/b” through a channel connected to the file

system root. Assuming this succeeds it might issue a bind

request for “/c/d.txt” through the new channel. The result

would be a file channel bound to “/a/b/c/d.txt” through

which it could then read and write the file.

The Singularity file system interface is designed to be

idempotent. The only client state the file system must

hold is which object (file or directory) a specific channel

is accessing. In Ext2Fs the channel endpoints are held in a

map structure which pairs them with an inode number.

When a request is received over a channel it is satisfied

by operating on that inode.

Directories are not expected to have files named “.” and

“..” to refer to themselves and their parent. The

Singularity shell (nor any other application) has no notion

of a “current directory” or changing directories. Ext2Fs

complies with this design by suppresses the “.” and “..”

files when responding to a directory list request. Although

it is clearly possible to display these files and correctly

parse paths containing them, doing so could cause

problems for a Singularity application attempting to walk

the file system and not expecting these files to exist. A

depth first search could easily result in a path containing

just “./” for example. It would be possible to make the

suppression of these files a mount option so that if a shell

were developed that could make use of them they would

be accessible.

3.4.2 File Interface

File operations are similarly idempotent. Ext2Fs holds no

client state such as a file pointer for an open file (other

than the inode number as mentioned above). Instead, each

read or write request must specify a file offset at which

the operation is to take place.

File reads and writes must supply Ext2Fs with a data

buffer, buffer offset and maximum transaction size along

with the file offset mentioned above. This interface

implies that the buffer provided may be bigger than

needed for any particular request. Because the client

passes exclusive access to the data buffer to Ext2Fs in the

read or write message, it is important that the buffer be

returned to the client. In other systems a file write or error

result might not return the original data because the caller

could presumably keep a reference to it if needed. In

Singularity the response to file operations always returns

the buffer, whether or not it was successful. Clearly the

buffer returned should be the same one that originally

came from the client (or at least an exact copy) so that the

client does not lose data.

The passing of data buffer ownership also presents a

unique possibility for data loss if Ext2Fs fails. If an

application were to have a large data buffer, and wish to

write only a small part of it to disk, it would be most

efficient to pass the whole buffer and specify the portion

to be written. If Ext2Fs where to fail during such an

operation the application would be cleanly notified that

the communication channel to Ext2Fs was closed.

However the data buffer would be lost, potentially

destroying irreplaceable data. Although Singularity allows

for zero copy writes, applications dealing with critical

data need to make a copy before writing if they wish to

recover from as many faults as possible without data loss.

3.4.3 Supported Operations

Although reading of files and directories is fully

supported by the current Ext2Fs implementation, writing

has not been fully implemented. The current code is able

to overwrite data in an existing file and add new data

blocks to the file if needed to satisfy a write. The creation

of new files and directories is not supported. When

servicing a write the only metadata updated is the file size

in the inode and the addition of new data blocks (which

updates the inode data block number and the block

bitmap) if needed. Other inode data such as file

modification time is not updated, nor are the statistics in

the super block and block descriptors.

This limited write support allows data generated during

performance testing to be easily transferred off the

running Singularity system. This was done by writing the

test results to a file and then rebooting into Linux where

the volume could be mounted and the results file

accessed. Prior to implementing writing the only way to

gather test results was to print them to the screen and then

type them into another computer by hand.

Ext2Fs uses a simple single threaded design with no

explicit disk scheduling. The Ext2Fs thread simply blocks

waiting for a request to arrive on one of the open

communication channels and services them in the order

they are received. This approach was sufficient for

running tests with only one client, but would clearly not

provide optimal results with multiple clients. A better

design would be to explicitly queue requests and then

attempt to service them in an optimal order. Using a

thread pool to service requests could also improve

performance.

Ext2Fs contains about 2400 lines of code.

3.5 Caching

Three caches are used in Ext2Fs: the inode cache, the

block number cache, and the data block cache.

The inode cache is an obvious and straight forward

optimization. Any operation on a file or directory will

need at least some of the data in the inode and reading the

information off the disk is extremely costly in cases

where the request would otherwise involve few (or no)

disk accesses.

The block number cache is actually an extension of the

inode cache, in that it holds the list of data block numbers

containing the data for the file. The first 12 entries of this

list come directly from the inode and the rest (if any) are

contained in the inode indirect blocks. This cache is

implemented separately from the inode cache because the

design was cleaner, and it also allows the cache to be

configured separately from the inode cache.

The block number cache was found to be most important

when reading large files. Reading the block number

entries for a large file with many indirect blocks involves

tremendous overhead because each data block read might

require several disk accesses to compute where the data is

located. Caching the information between requests

removes the overhead.

The raw data block cache is perhaps the most obvious and

straight forward cache. The data block cache makes the

inode cache and block number cache redundant because

inode or block number data will be in two caches when it

is initially read. This situation is not too bad because once

inode and block number data is cached, requests for them

will never reach the data block cache and the blocks will

eventually be. Despite this redundancy they still improve

performance by removing the overhead of parsing the

inode and block number data from raw disk blocks.

All three caches are implemented identically and are

instances of the same class. The data is stored in a hash

table. The inode and block number caches used the inode

number as the key. The data block cache uses the block

number as the key. Cache replacement uses a least

recently used policy.

LRU replacement implemented with a linked list. Every

time an item in the cache is accessed, the entry for it is

moved to the end of the linked list. In this way the list is

sorted in order of time of last access. When an entry needs

to be removed from the cache the entry at the front of the

list will be the least recently used. List entries can be

removed from the list and placed at the end in constant

time. A reference to the list entry is held along with the

cache data in the hash table. Figure 1 illustrates the cache

structure.

4 Results

4.1 Test configuration

Testing was done on an AMD Athlon 64 3200+ machine

with 1 GB of RAM. The hard disk used for testing was a

Western Digital 120 GB disk with a 7200 RPM rotational

speed and a 2 MB buffer. The disk was attached via a

parallel ATA interface.

Figure 1: Cache Structure. Hash table entries hold the cached data and a pointer to the corresponding entry in the linked list.

When an entry is accessed the list node is moved to the back of the list.

Oldest Newest

Data Data Data Data Data

Linked List

Hash Table

Performance evaluation of ext2 on Singularity focused on

sequential read speed. Sequential reads were performed

using a variety of read buffer sizes ranging from 4 KB to

96 MB. Figure 2 plots the read speed of reads using 350

MB file. Each request was timed using the CPU cycle

counter and the result plotted over the range of buffer

sizes. Tests were run immediately after mounting the

volume so that the caches would be cold. The volume was

remounted between the runs for each buffer size to clear

the caches.

4.2 Test Results

The baseline for comparison in this test was the read

performance of the same 350 MB file in Linux. The top

line in the graph shows this to be just over 34 MB/s.

Charting the average read speed in Singularity shows that

the maximum performance of about 28 MB/s is achieved

by using 16 KB buffers.

Testing file smaller than 350 MB showed very similar

results.

An interesting feature of this chart is the significant gap in

between clusters of read results for the four smallest

buffer sizes. One set of measurements cluster near the

average and others are distributed more widely at slower

read speeds. Figure 3 shows a time series of 200

sequential reads from the 350 MB file using 16 KB

buffers. In this graph the majority of the reads can be seen

near 30 MB/s as expected from Figure 2. The slower

reads are distributed in a periodic fashion. No direct

evidence of the source of these periodic slower reads was

collected, but it is consistent with what one would expect

from a disk hardware effect such as the head seeking from

one track to the next. The reads using buffers greater than

256 KB don’t show this clear separation. As the buffer

size rises, the individual read performance begins to

converge to the average.

The line labeled “cold” in figure 2 is a plot of the very

first read request at each buffer size. Because this is the

first request, the inode and block number caches are

empty and all meta data must be read from the disk. The

performance of this read is equivalent to what the overall

performance would be with no caching at all. When using

4 KB buffers the measured speed was 0.005 MB/s. This

does not rise above 1 MB/s until 1 MB buffers are used.

Figure 2: Sequential reading of a 350 MB file.

Figure 3 shows large “double spike” performance

reduction that does not appear to be caused by the same

periodic source as the other spikes. This type of

interruption is seen on a semi regular basis when viewing

the data at a longer time scale and is likely the result of

Ext2Fs being preempted by another processes.

4.3 Garbage collection

Garbage collection is often the source of controversy

when discussing the merits programming languages and

runtime systems. One goal of the ext2 performance

evaluation was to quantify the effect of garbage collection

on ext2 performance. Figure 4 plots the response times for

each of 2000 read requests to the 350 MB file using 16

KB buffers. The large spikes of around 30 ms are reads

which have been interrupted by garbage collector runs.

This can be verified by matching this data with the

garbage collector information given by the Singularity

debugger. Once the reads affected by the garbage

collection were identified, an average read speed was

computed without considering those requests. The

difference between the average read speed with garbage

collection and without was less that 0.1%.

Although garbage collection has very little effect on

average read speeds, it does introduce a large variance in

the latency of read requests. This is a potential problem

applications requiring real time performance, such as

video playback or embedded control. One solution to this

is to issue read requests using large buffers so that delay

due to garbage collection is a small part of the total

request time.

Garbage collection run time is proportional to heap size,

regardless of the amount of data actually collected. This is

true because the heap must be scanned in order to

determine if any collection is needed. As a result,

applications such as Ext2Fs which potentially contain a

large cache in the heap will have a larger garbage

collection overhead.

The exchange heap in Singularity provides an opportunity

to minimize garbage collection activity. No garbage

collection is run on the exchange heap because exchange

heap objects are explicitly allocated and deleted by the

owner. Ext2Fs could allocate its caches in the exchange

heap, and thus minimize the size of the local garbage

collected heap.

Another advantage to holding the data block cache in the

exchange heap would be that data blocks which were

speculatively read from the disk (in anticipation of use

due to a sequential file read for example) could be

inserted directly into the cache without the overhead of

copying from the exchange heap into the local process

heap as is done in the current implementation.

A best case read latency could be realized by immediately

returning a data block held in an exchange heap cache in

response to a client read request. This could be done by

simply removing it from the cache and passing it back to

the user with zero copying. This has the clear drawback of

Figure 3: 16 KB sequential reads of the 350 MB file.

being equivalent to a "most recently used" cache removal

policy. Once data is passed to a client in this way, the

only way to recover it is to read it from the disk. This

strategy would also be possible only if the buffer passed

by the client in the read request matches the size of the

cached buffer exactly.

A strategy of short term caching in the exchange heap

should be very effective in the case where a client does a

one-time sequential read of a file. If Ext2Fs were able to

detect that such an access was beginning it could

speculatively read ahead of the client stream request and

hold the data blocks in the exchange heap. The data

would then be returned very quickly to the client resulting

in a very low latency on read requests from the client’s

perspective. This strategy would only be effective if the

time between client requests was great enough to allow

Ext2Fs to fetch the next block from disk before it was

requested.

An extension of this scheme would improve latencies on

warm cache reads. Data cached normally in the Ext2 heap

could be copied to the exchange heap speculatively. As

before this would be done when a streaming read was

expected.

4.4 Singularity design

One of the goals of this project was to evaluate how the

Singularity design effects the development of system

software such as a file system.

4.4.1 Language Features

One clear advantage is the use of a modern, type safe,

object oriented language. Kernel level development in

current monolithic systems such as Linux or Windows is

typically done in C, and can often impose a restricted

execution environment, such as the lack of floating point

support in the Linux kernel. Singularity’s micro kernel

design means that file systems, drivers and other code that

is traditionally a kernel extension is instead implemented

a SIP, just like a user application. System programming

benefits from the use of all the normal system libraries,

IO for debugging and full support for the normal user

level debugger.

The system module designer is free to utilize software

engineering techniques and practices such as abstraction,

code hiding and code reuse through the use of classes.

The systematic use of exceptions for error handling

prevents the widespread suppression of errors due to C

error code returns being ignored. This is known to be

wide spread in file systems on Linux [10]. Furthermore,

Spec# statically checks for the possible uses of null

pointers. The programmer is forced to either declare

objects using a non-nullable types or else insert run-time

null pointer checks before pointers are used. This removes

the possibility for a large class of bugs related to incorrect

or inconsistent null-pointer checks. These bugs have also

been shown to be widespread in the Linux and FreeBSD

kernels [11].

4.4.2 Trusted Code

The Singularity design appears to have effectively

reduced the amount of "unsafe code” in the system to a

manageable level. All the unsafe code dealing with raw

pointers and memory is encapsulated in the Singularity

micro kernel and associated trusted libraries. This small

critical code base (less than 5% of kernel code) can then

be extensively tested and carefully controlled by the small

Singularity kernel development team [1,4].

The code running in SIPs is known to be "safe" because

the Sing# language and compiler prevent the creation of

code that accesses memory outside the local object space.

Figure 4: Service latency of sequential reads to the 350 MB file.

Type safety guarantees that object references and pointers

cannot be assigned from arbitrary values such as integers.

At worst a pointer may be null, and the compile time and

run time check prevent null pointer use [1].

4.4.3 Dependability

It is hard to formally measure the dependability of the

Singularity design. As an anecdotal measure, it can be

said that Sing# compiler checks prevented several errors

during ext2 development that would have resulted in

memory leaks in the exchange heap. Such leaks are

particularly hard to detect and avoid in a traditional

system using C or C++ because seeming minor code

changes can easily change the logical flow of object or

memory buffer ownership and result in the object not

being deleted. Errors of this nature are particularly hard to

detect because they often manifest only as slow memory

leaks which do not affect system performance in the short

term.

Another advantage of the micro kernel design is that the

Ext2Fs interface to the rest of the system is well defined

and very simple. Implementation of Ext2Fs did not

require the knowledge of or use of any extensive kernel

APIs or kernel data structures. Instead Ext2Fs is required

to interact with clients using the directory and file service

contracts, and with the disk driver use the disk driver

contract. Each of these contracts defines a small number

of possible messages which can be generated and handled

in a consistent and straight forward way. In contrast, a file

system in a monolithic kernel such as Linux must use a

very large API and must directly manipulate and interpret

data structures shared with other parts of the kernel.

Errors in such code can have catastrophic results.

Perhaps the best testament to Singularity's dependability

was the extremely good system stability during the

development of ext2. In the author's experience,

development of system level code in a monolithic kernel

often results in system instability (note that this is highly

dependent on programmer skill, so there is some hope that

this experience was worse than is typical). Many errors

related to shared data structures or incorrect use of

memory and pointers can result in the failure of the

kernel. The experience of developing ext2 on Singularity

was much more like normal user level application

development. There were many bugs and errors that

needed to be corrected, but they only resulted in the

failure of the SIP in which ext2 was running. If the ext2

process terminated as the result of a failure, it only

resulted in open channels closing. Other processes could

(and did) recover gracefully. In the case of a shell-based

application which was using the file system unexpected

failures would typically result in an error message on the

screen and the process terminating. Such a program

generally cannot proceed without a file system. In the

case of other system services such as the Singularity

Name Service which maintains the Singularity name

space, such a failure would result in the ext2 mount point

disappearing from the visible name space.

In the case of a failure in ext2 that did not result in the

process terminating (such as a deadlock) it was possible

to also deadlock client processes by forcing them to block

forever waiting for a message reply. This could be

prevented by client applications implementing a timeout

mechanism. In no case did this cause problems for the

system as a whole or to unrelated processes.

During the whole development of ext2, the Singularity

kernel or critical system services where never observed to

crash or require a reset to recover from an error. The only

exception to this is when the system runs out of physical

memory. It appears to be possible to exhaust system

memory by attempting to allocate more memory than is

physically available. Singularity does not support paging

of memory to disk, and apparently does not attempt to

forcibly terminate a process or take some other action to

recover memory. When physical memory was full, the

kernel was unable to make progress because memory

allocations kept being requested and failing. It is unclear

if the offending allocation was in the kernel and the kernel

itself was no longer able to operate, or if a SIP was

continually retrying a memory allocation that was being

denied. In any case this is not so much as issue of

Singularity’s design as it is a question of policy when the

system runs low on memory.

5 Conclusion
This paper describes the implementation of the Linux ext2

file system on Singularity operating system. The purpose

of this project was to investigate Singularity's design and

performance.

Quantitative performance measurements are one of the

most straight forward ways to compare Singularity to

other systems. Microsoft's Singularity team explicitly

states that performance is a secondary goal to

dependability in the Singularity design. Performance

measurements of this initial implementation of ext2 are in

line with this goal. Best case average read speeds lag

behind those for Linux, but do not show that the

Singularity design is fundamentally unable to produce

usable performance. It is possible that further design work

and optimizations would be able to produce performance

that matches or exceeds the Linux implementation.

The primary goal of dependability was not tested in a

formal or quantitative way. The experience writing and

testing ext2 on Singularity provides reasons for optimism

about overall dependability. Singularity did not suffer any

crashes during the development and testing process. The

micro kernel architecture successfully isolates

components such as a file system. In a monolithic system

such a module would be run in kernel space and thus able

to induce serious system wide errors.

While the isolation of a micro kernel has clear benefits for

dependability, it could prove to be a hindrance for the

integration of system services, and therefore for

performance. A monolithic kernel is able to easily share

resources between components. Caches could be

combined and shared between different sub-system such

as a file system or virtual memory system. Singularity's

process isolation model would prohibit such sharing, or

would at least prevent concurrent access to a shared

resource. It is not clear at this point if such restrictions

will have a significant negative effect on performance.

Finally, the use of a modern garbage collected

programming language for system level code appears to

be quite feasible. An aggressive, globally optimizing

compiler which produces machine code from Microsoft

Intermediate Language code removes the massive

overhead that would normally make a language like C#

completely unsuitable for system programming. Static

analysis at compile time and advanced language features

such as non-nullable types and tracking of object

ownership prevent many of the most common errors that

plague kernels written in C.

6 References
[1] An Overview of the Singularity Project,

Galen C. Hunt, et al. Microsoft Research Technical

Report MSR-TR-2005-135, Microsoft Corporation,

Redmond, WA, October 2005.

[2] Singularity: Rethinking the Software Stack,

Galen Hunt and James Larus. Operating Systems Review,

Vol. 41, Iss. 2, pp. 37-49, April 2007. ACM SIGOPS.

[3] Sealing OS Processes to Improve Dependability

and Safety, Galen Hunt, Mark Aiken, Fähndrich, Chris

Hawblitzel, Orion Hodson, James Larus, Steven Levi,

Bjarne Steensgaard, David Tarditi, and Ted Wobber.

Proceedings of EuroSys2007, pp. 341-354, Lisbon,

Portugal, March 2007. ACM SIGOPS.

[4] Authorizing Applications in Singularity,

Wobber, Ted, Aydan Yumerefendi. Martín Abadi,

Andrew Birrell, and Dan Simon. Proceedings of

EuroSys2007, pp. 355-368, Lisbon, Portugal, March

2007. ACM SIGOPS.

[5] Language Support for Fast and Reliable Message-

based Communication in Singularity OS,

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion

Hodson, Galen C. Hunt, James R. Larus, and Steven Levi.

Proceedings of EuroSys2006, pp. 177-190. Leuven,

Belgium, April 2006. ACM SIGOPS.

[6] Solving the Starting Problem: Device Drivers as

Self-Describing Artifacts, Michael Spear, Tom Roeder,

Orion Hodson, Galen Hunt, and Steven Levi. Proceedings

of EuroSys2006, pp. 45-58. Leuven, Belgium, April 2006.

ACM SIGOPS.

[7] Access Control in a World of Software Diversity.

Martín Abadi, Andrew Birrell, and Ted Wobber.

Proceedings of the 10th Workshop on Hot Topics in

Operating Systems, pp. 127-132. Santa Fe, NM, June

2005. USENIX.

[8] Broad New OS Research: Challenges and

Opportunities. Galen Hunt, James Larus, David Tarditi,

and Ted Wobber. Proceedings of the 10th Workshop on

Hot Topics in Operating Systems, pp. 85-90. Santa Fe,

NM, June 2005. USENIX.

[9] Making system configuration more declarative.

John DeTreville. Proceedings of the 10th Workshop on

Hot Topics in Operating Systems, pp. 61-66. Santa Fe,

NM, June 2005. USENIX.

[10] PRABHAKARAN, V., BAIRAVASUNDARAM, L.

N., AGRAWAL, N., GUNAWI, H. S., ARPACI-

DUSSEAU, A. C., AND ARPACIDUSSEAU, R. H.

IRON file systems. In Proceedings of the 20
th

 ACM

Symposium on Operating Systems Principles (Brighton,

United Kingdom, October 2005), pp. 206.220

[11] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as

deviant behavior: A general approach to inferring errors

in systems code. In Symposium on Operating Systems

Principles, pages 57--72, 2001.

ftp://ftp.research.microsoft.com/pub/tr/TR-2005-135.pdf
http://www.research.microsoft.com/os/singularity/publications/OSR2007_RethinkingSoftwareStack.pdf
http://portal.acm.org/toc.cfm?id=J597
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_SealedProcesses.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_SealedProcesses.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_SealedProcesses.pdf&pub=ACM
http://research.microsoft.com/os/Singularity/www.gsd.inesc-id.pt/conference/EuroSys2007
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_Security.pdf&pub=ACM
http://research.microsoft.com/os/Singularity/www.gsd.inesc-id.pt/conference/EuroSys2007
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_LanguageSupport.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_LanguageSupport.pdf&pub=ACM
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_SolvingTheStartingProblem.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_SolvingTheStartingProblem.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_SolvingTheStartingProblem.pdf&pub=ACM
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_AccessControl.pdf&pub=USENIX
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_BroadNewResearch.pdf&pub=USENIX
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_BroadNewResearch.pdf&pub=USENIX
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_BroadNewResearch.pdf&pub=USENIX
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_SystemConfiguration.pdf&pub=USENIX
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/

	Abstract
	Introduction
	The Singularity Architecture
	The programming Environment
	The Process Model
	Communication Channels

	Ext2 Implementation
	Ext2ClientManager
	Ext2Control
	Ext2Contracts
	Ext2Fs
	Directory Interfaces
	File Interface
	Supported Operations

	Caching

	Results
	Test configuration
	Test Results
	Garbage collection
	Singularity design
	Language Features
	Trusted Code
	Dependability

	Conclusion
	References

