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Abstract 
Singularity is a new operating system produced by 

Microsoft Research. The design of Singularity is a 

marked departure from current commodity operating 

systems such as Windows or Linux. 

This paper presents and implementation of the Linux ext2 

file system for use on Singularity. This project allows the 

design of Singularity to be evaluated. 

The development and testing described in this paper show 

that the Singularity design goals of high dependability and 

“good enough” performance are largely met. The 

protection provided by the micro kernel design prevented 

the Singularity kernel from crashing in the face of errors 

in the ext2 code. Performance testing showed that while 

not as fast as ext2 on Linux performance is not 

prohibitively low and the overhead of garbage collection 

is minimal. 

1 Introduction 
Singularity is a new operating system released by 

Microsoft Research. It is intended as a platform to 

investigate new ideas in operating system structure. Many 

of the design decision in Singularity represent a dramatic 

departure from main stream operating systems such as 

Windows or Linux [1]. 

Evaluating Singularity’s design presents a challenge 

because existing applications and libraries must be re-

written to be ported. One result of this issue is that FAT32 

is the only file system that is supported. This leaves 

Singularity without a file system which can meet the IO 

demands of a benchmark such as SpecWeb99. Singularity 

provides better response time than Windows in this 

benchmark, but cannot match the total simultaneous users 

because of the bottleneck of the FAT file system[1]. 

This paper describes the implementation and testing of the 

ext2 file system for use on Singularity. The work so far 

has focused fully supporting reads from ext2. Caching of 

file system metadata and raw disk blocks makes reads 

speeds comparable to ext2 reads on Linux. Limited write 

support was completed, primarily to aid in testing. Write 

support has not progressed to a point that makes a 

performance analysis worthwhile. 

The goal of this work is to evaluate the design of 

Singularity. Integration of a well known file system 

provides the opportunity to gauge the development 

experience when doing system programming in 

Singularity. Because the result is a file system that is 

compatible with ext2 running on Linux, a direct 

performance comparison is meaningful. 

The development and testing described in this paper show 

that the Singularity design goals of high dependability and 

“good enough” performance are largely met. The 

protection provided by the micro kernel design prevented 

the Singularity kernel from crashing in the face of errors 

in the ext2 code. Performance testing showed that while 

not as fast as ext2 on Linux performance is not 

prohibitively low and the overhead of garbage collection 

is minimal. 

The remainder of this paper is organized as follows: 

Section two is an overview of the important points of the 

Singularity design. Section three covers the details of my 

ext2 implementation on Singularity. Section four 

evaluates ext2 on Singularity as well as Singularity as a 

whole. Section five concludes the paper. 

2 The Singularity Architecture 
The information in this section is a summary compiled 

from references [1] through [9]. 

Singularity is a new operating system design by 

Microsoft’s Research department. It is not intended for 

practical use, but rather as an environment in which to 

explore new ideas in operating system research. The 

design of Singularity explicitly targets dependability as 

the primary goal. Performance is a secondary goal only to 



 

 

the extent that it must be good enough to make the system 

practically usable. Despite the de-emphasis of 

performance, Microsoft has published micro-benchmarks 

showing that the Singularity design results in improved 

performance of many basic operating system operations 

such as a kernel API call, thread yield or starting a 

process. 

2.1 The programming Environment 

Programs for Singularity are written in Sing#, an 

extension of Spec#, which is itself an extension of C#. 

Almost all of the Singularity kernel is written in Sing#, 

with a small portion (around 5%) written in assembly and 

C++. 

Despite the basis in C#, programs in Singularity do not 

run on a virtual machine such as the Common Language 

Runtime in Windows. Instead the Microsoft Intermediate 

Language (MSIL) code generated by the Sing# compiler 

is compiled to native machine code by the Bartok 

compiler. This process includes aggressive optimizations 

to further improve performance. 

This optimization process is improved by taking 

advantage of the fact that processes in Singularity are 

sealed, meaning that code cannot be changed or linked in 

dynamically. Because the compiler can count on seeing 

all of a program’s code at compile time, many global 

optimization are possible which are not available in other 

systems. 

Finally, all Singularity processes, as well as the kernel, 

are garbage collected. Each garbage collector runs 

independently which allows them to be configured 

differently depending on the needs of the application.  

2.2 The Process Model 

Singularity uses a micro kernel architecture. Outside of 

this micro kernel Singularity uses a single process model 

called a Software Isolated Process (SIP). As the name 

implies, SIPs do not rely on memory management 

hardware for address space protection as is in most 

modern operating system. Instead each SIP has a software 

protected “object space”. Static analysis, type safety and 

other language features are used to guarantee at compile 

time that code within a SIP cannot access memory that 

does not belong to it. 

Software protection of processes removes much of the 

cost associated with context switches in a hardware based 

system. Historically, micro kernels have suffered from 

poor performance, due in large part to the overhead of 

doing many hardware based context switches. Software 

based protection makes Singularity feasible from a 

performance perspective. 

The use of static analysis to protect process memory 

implies that Singularity must not run code that is not 

known to be trusted. Binaries can be signed to show they 

come from a trusted source and a compliant compiler. It 

would also be possible to distribute programs as MSIL 

code and the local system could do the required analysis 

on that before compiling and installing it. As mentioned 

in section 2.1, processes are sealed which prevents 

incorrect code from being loaded or generated at run time. 

2.3 Communication Channels 

All inter-process communication in Singularity is done 

via communication channels. These channels are a first 

class abstraction which is managed by the kernel and 

supported explicitly by the Sing# language.  

Because dependability is the primary goal of Singularity, 

shared memory between processes is not supported. 

Shared memory is notorious for being difficult to program 

correctly. Even when done correctly, shared memory 

leads to decreased dependability when a process fails. In 

this case, any shared memory to which the process had 

access is left in an unknown state, essentially forcing the 

failure of all processes which also shared that memory. 

Communication channels allow (and require) that the 

interactions between processes follow an explicit contract 

that can be understood and verified by the compiler. 

Furthermore, when a process fails, all processes in 

communication with it can be notified and handle the 

situation gracefully. 

All channel messages and data are passed via a special 

kernel managed heap called the Exchange Heap. Objects 

in the exchange heap are explicitly allocated and deleted 

in a similar way to memory allocation in C++. Each 

object in the exchange heap may only be accessed by one 

process at a time, and that process may only hold a single 

pointer to it. These restrictions allow the compiler to 

statically determine that exchange heap memory is not 

leaked nor accessed when it is no longer owned. Pointers 

to exchange heap object may be passed between processes 

in a message, which also transfers ownership of the 



 

 

object. This allows for zero copy semantics when copying 

data buffers or other large objects in a message. 

3 Ext2 Implementation 
The focus of the ext2 implementation on Singularity was 

to fully support reads and to use caching to obtain good 

performance. The implementation consists of a command 

line control application, a system service, the core file 

system process and communication contracts. The details 

of these will be discussed in the remainder of this section. 

3.1 Ext2ClientManager 

The Ext2ClientManager is a system service which is 

launched during the system boot process. The purpose of 

this process is to handle requests for operations which are 

specific to ext2 volumes. The current version support the 

“mount” and “unmount” commands. A fully featured ext2 

implementation would also include at least an additional 

“format”. 

Ext2ClientManager is accessible at a known path in the 

“/dev” directory of the Singularity namespace. Clients 

wishing to perform ext2 volume operations send requests 

to the Ext2ClientManager at this location. The manager 

tracks volume and mount point status to prevent volumes 

being mounted more than once or a single mount point 

being used more than once. When a volume is mounted 

the Ext2ClientManager creates a new instance of an 

Ext2Fs process (described in section 3.3) to service 

requests for that mount point. 

The Ext2ClientManager consists of about 300 lines of 

code. 

3.2 Ext2Control 

Ext2Control provides a command line interface to the 

Ext2ClientManager. The only purpose is to make the ext2 

volume operations provided by the Ext2ClientManager 

accessible from the command line. 

Other applications are free to contact the 

Ext2ClientManager directly in the same way that 

Ext2Control does, so Ext2Control is only used by 

interactive users via the shell. 

The Ext2Control application consists of about 500 lines of 

code. 

3.3 Ext2Contracts 

The Ext2Contracts module is a project that defines the 

custom communications channel contracts used in ext2. 

These contracts are used by the Ext2ClientManager to 

communicate with an Ext2Fs instance, and by clients of 

the Ext2ClientManager to send mount and unmount 

commands. The contracts used by Ext2Fs to communicate 

with clients accessing files and directories within the file 

system are already defined by Singularity so that all file 

systems export the same interface. 

This module also defines the data object (a struct in the 

exchange heap) which holds the settings to be used when 

mounting an ext2 volume. This includes the volume and 

mount point paths and maximum cache sizes. 

The Ext2Contracts module consists of about 200 lines of 

code. 

3.4 Ext2Fs 

Ext2Fs is the module responsible for handling client 

accesses to the file system. An instance of the Ext2Fs 

process is started by Ext2ClientManager for each mount 

point. This Ext2Fs instance then handles all client 

requests to the file system at that mount point. 

3.4.1 Directory Interfaces 

As with all IO in Singularity, clients access files and 

directories through communication channels. Singularity 

provides a DirectoryServiceContract which defines the 

operations available for directories. These include 

creating and deleting entries, listing the entries and 

getting attributes. Similarly, there is a FileServiceContract 

governing the operations on files, such as reading and 

writing. 

Opening a file or directory in Singularity is equivalent to 

binding a channel at to the desired object. Objects are 

identified by use of a path name string relative to the 

directory channel through which the request comes. For 

example a client might issue a bind request for the 

directory “/a/b” through a channel connected to the file 

system root. Assuming this succeeds it might issue a bind 

request for “/c/d.txt” through the new channel. The result 

would be a file channel bound to “/a/b/c/d.txt” through 

which it could then read and write the file. 

The Singularity file system interface is designed to be 

idempotent. The only client state the file system must 

hold is which object (file or directory) a specific channel 



 

 

is accessing. In Ext2Fs the channel endpoints are held in a 

map structure which pairs them with an inode number. 

When a request is received over a channel it is satisfied 

by operating on that inode. 

Directories are not expected to have files named “.” and 

“..” to refer to themselves and their parent. The 

Singularity shell (nor any other application) has no notion 

of a “current directory” or changing directories. Ext2Fs 

complies with this design by suppresses the “.” and “..” 

files when responding to a directory list request. Although 

it is clearly possible to display these files and correctly 

parse paths containing them, doing so could cause 

problems for a Singularity application attempting to walk 

the file system and not expecting these files to exist. A 

depth first search could easily result in a path containing 

just “./” for example. It would be possible to make the 

suppression of these files a mount option so that if a shell 

were developed that could make use of them they would 

be accessible. 

3.4.2 File Interface 

File operations are similarly idempotent. Ext2Fs holds no 

client state such as a file pointer for an open file (other 

than the inode number as mentioned above). Instead, each 

read or write request must specify a file offset at which 

the operation is to take place. 

File reads and writes must supply Ext2Fs with a data 

buffer, buffer offset and maximum transaction size along 

with the file offset mentioned above. This interface 

implies that the buffer provided may be bigger than 

needed for any particular request. Because the client 

passes exclusive access to the data buffer to Ext2Fs in the 

read or write message, it is important that the buffer be 

returned to the client. In other systems a file write or error 

result might not return the original data because the caller 

could presumably keep a reference to it if needed. In 

Singularity the response to file operations always returns 

the buffer, whether or not it was successful. Clearly the 

buffer returned should be the same one that originally 

came from the client (or at least an exact copy) so that the 

client does not lose data. 

The passing of data buffer ownership also presents a 

unique possibility for data loss if Ext2Fs fails. If an 

application were to have a large data buffer, and wish to 

write only a small part of it to disk, it would be most 

efficient to pass the whole buffer and specify the portion 

to be written. If Ext2Fs where to fail during such an 

operation the application would be cleanly notified that 

the communication channel to Ext2Fs was closed. 

However the data buffer would be lost, potentially 

destroying irreplaceable data. Although Singularity allows 

for zero copy writes, applications dealing with critical 

data need to make a copy before writing if they wish to 

recover from as many faults as possible without data loss. 

3.4.3 Supported Operations 

Although reading of files and directories is fully 

supported by the current Ext2Fs implementation, writing 

has not been fully implemented. The current code is able 

to overwrite data in an existing file and add new data 

blocks to the file if needed to satisfy a write. The creation 

of new files and directories is not supported. When 

servicing a write the only metadata updated is the file size 

in the inode and the addition of new data blocks (which 

updates the inode data block number and the block 

bitmap) if needed. Other inode data such as file 

modification time is not updated, nor are the statistics in 

the super block and block descriptors. 

This limited write support allows data generated during 

performance testing to be easily transferred off the 

running Singularity system. This was done by writing the 

test results to a file and then rebooting into Linux where 

the volume could be mounted and the results file 

accessed. Prior to implementing writing the only way to 

gather test results was to print them to the screen and then 

type them into another computer by hand. 

Ext2Fs uses a simple single threaded design with no 

explicit disk scheduling. The Ext2Fs thread simply blocks 

waiting for a request to arrive on one of the open 

communication channels and services them in the order 

they are received. This approach was sufficient for 

running tests with only one client, but would clearly not 

provide optimal results with multiple clients. A better 

design would be to explicitly queue requests and then 

attempt to service them in an optimal order. Using a 

thread pool to service requests could also improve 

performance. 

Ext2Fs contains about 2400 lines of code. 

3.5 Caching 

Three caches are used in Ext2Fs: the inode cache, the 

block number cache, and the data block cache. 



 

 

The inode cache is an obvious and straight forward 

optimization. Any operation on a file or directory will 

need at least some of the data in the inode and reading the 

information off the disk is extremely costly in cases 

where the request would otherwise involve few (or no) 

disk accesses. 

The block number cache is actually an extension of the 

inode cache, in that it holds the list of data block numbers 

containing the data for the file. The first 12 entries of this 

list come directly from the inode and the rest (if any) are 

contained in the inode indirect blocks. This cache is 

implemented separately from the inode cache because the 

design was cleaner, and it also allows the cache to be 

configured separately from the inode cache. 

The block number cache was found to be most important 

when reading large files. Reading the block number 

entries for a large file with many indirect blocks involves 

tremendous overhead because each data block read might 

require several disk accesses to compute where the data is 

located. Caching the information between requests 

removes the overhead. 

The raw data block cache is perhaps the most obvious and 

straight forward cache. The data block cache makes the 

inode cache and block number cache redundant because 

inode or block number data will be in two caches when it 

is initially read. This situation is not too bad because once 

inode and block number data is cached, requests for them 

will never reach the data block cache and the blocks will 

eventually be. Despite this redundancy they still improve 

performance by removing the overhead of parsing the 

inode and block number data from raw disk blocks. 

All three caches are implemented identically and are 

instances of the same class. The data is stored in a hash 

table. The inode and block number caches used the inode 

number as the key. The data block cache uses the block 

number as the key. Cache replacement uses a least 

recently used policy. 

LRU replacement implemented with a linked list. Every 

time an item in the cache is accessed, the entry for it is 

moved to the end of the linked list. In this way the list is 

sorted in order of time of last access. When an entry needs 

to be removed from the cache the entry at the front of the 

list will be the least recently used. List entries can be 

removed from the list and placed at the end in constant 

time. A reference to the list entry is held along with the 

cache data in the hash table. Figure 1 illustrates the cache 

structure. 

4 Results 

4.1 Test configuration 

Testing was done on an AMD Athlon 64 3200+ machine 

with 1 GB of RAM. The hard disk used for testing was a 

Western Digital 120 GB disk with a 7200 RPM rotational 

speed and a 2 MB buffer. The disk was attached via a 

parallel ATA interface. 

Figure 1: Cache Structure. Hash table entries hold the cached data and a pointer to the corresponding entry in the linked list. 

When an entry is accessed the list node is moved to the back of the list. 
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Performance evaluation of ext2 on Singularity focused on 

sequential read speed. Sequential reads were performed 

using a variety of read buffer sizes ranging from 4 KB to 

96 MB. Figure 2 plots the read speed of reads using 350 

MB file. Each request was timed using the CPU cycle 

counter and the result plotted over the range of buffer 

sizes. Tests were run immediately after mounting the 

volume so that the caches would be cold. The volume was 

remounted between the runs for each buffer size to clear 

the caches. 

4.2 Test Results 

The baseline for comparison in this test was the read 

performance of the same 350 MB file in Linux. The top 

line in the graph shows this to be just over 34 MB/s. 

Charting the average read speed in Singularity shows that 

the maximum performance of about 28 MB/s is achieved 

by using 16 KB buffers. 

Testing file smaller than 350 MB showed very similar 

results. 

An interesting feature of this chart is the significant gap in 

between clusters of read results for the four smallest 

buffer sizes. One set of measurements cluster near the 

average and others are distributed more widely at slower 

read speeds. Figure 3 shows a time series of 200 

sequential reads from the 350 MB file using 16 KB 

buffers. In this graph the majority of the reads can be seen 

near 30 MB/s as expected from Figure 2. The slower 

reads are distributed in a periodic fashion. No direct 

evidence of the source of these periodic slower reads was 

collected, but it is consistent with what one would expect 

from a disk hardware effect such as the head seeking from 

one track to the next. The reads using buffers greater than 

256 KB don’t show this clear separation. As the buffer 

size rises, the individual read performance begins to 

converge to the average. 

The line labeled “cold” in figure 2 is a plot of the very 

first read request at each buffer size. Because this is the 

first request, the inode and block number caches are 

empty and all meta data must be read from the disk. The 

performance of this read is equivalent to what the overall 

performance would be with no caching at all. When using 

4 KB buffers the measured speed was 0.005 MB/s. This 

does not rise above 1 MB/s until 1 MB buffers are used.  

Figure 2: Sequential reading of a 350 MB file. 



 

 

Figure 3 shows large “double spike” performance 

reduction that does not appear to be caused by the same 

periodic source as the other spikes. This type of 

interruption is seen on a semi regular basis when viewing 

the data at a longer time scale and is likely the result of 

Ext2Fs being preempted by another processes. 

4.3 Garbage collection 

Garbage collection is often the source of controversy 

when discussing the merits programming languages and 

runtime systems. One goal of the ext2 performance 

evaluation was to quantify the effect of garbage collection 

on ext2 performance. Figure 4 plots the response times for 

each of 2000 read requests to the 350 MB file using 16 

KB buffers. The large spikes of around 30 ms are reads 

which have been interrupted by garbage collector runs. 

This can be verified by matching this data with the 

garbage collector information given by the Singularity 

debugger. Once the reads affected by the garbage 

collection were identified, an average read speed was 

computed without considering those requests. The 

difference between the average read speed with garbage 

collection and without was less that 0.1%. 

Although garbage collection has very little effect on 

average read speeds, it does introduce a large variance in 

the latency of read requests. This is a potential problem 

applications requiring real time performance, such as 

video playback or embedded control. One solution to this 

is to issue read requests using large buffers so that delay 

due to garbage collection is a small part of the total 

request time. 

Garbage collection run time is proportional to heap size, 

regardless of the amount of data actually collected. This is 

true because the heap must be scanned in order to 

determine if any collection is needed. As a result, 

applications such as Ext2Fs which potentially contain a 

large cache in the heap will have a larger garbage 

collection overhead. 

The exchange heap in Singularity provides an opportunity 

to minimize garbage collection activity. No garbage 

collection is run on the exchange heap because exchange 

heap objects are explicitly allocated and deleted by the 

owner. Ext2Fs could allocate its caches in the exchange 

heap, and thus minimize the size of the local garbage 

collected heap. 

Another advantage to holding the data block cache in the 

exchange heap would be that data blocks which were 

speculatively read from the disk (in anticipation of use 

due to a sequential file read for example) could be 

inserted directly into the cache without the overhead of 

copying from the exchange heap into the local process 

heap as is done in the current implementation. 

A best case read latency could be realized by immediately 

returning a data block held in an exchange heap cache in 

response to a client read request. This could be done by 

simply removing it from the cache and passing it back to 

the user with zero copying. This has the clear drawback of 

Figure 3: 16 KB sequential reads of the 350 MB file. 



 

 

being equivalent to a "most recently used" cache removal 

policy. Once data is passed to a client in this way, the 

only way to recover it is to read it from the disk. This 

strategy would also be possible only if the buffer passed 

by the client in the read request matches the size of the 

cached buffer exactly. 

A strategy of short term caching in the exchange heap 

should be very effective in the case where a client does a 

one-time sequential read of a file. If Ext2Fs were able to 

detect that such an access was beginning it could 

speculatively read ahead of the client stream request and 

hold the data blocks in the exchange heap. The data 

would then be returned very quickly to the client resulting 

in a very low latency on read requests from the client’s 

perspective. This strategy would only be effective if the 

time between client requests was great enough to allow 

Ext2Fs to fetch the next block from disk before it was 

requested. 

An extension of this scheme would improve latencies on 

warm cache reads. Data cached normally in the Ext2 heap 

could be copied to the exchange heap speculatively. As 

before this would be done when a streaming read was 

expected. 

4.4 Singularity design 

One of the goals of this project was to evaluate how the 

Singularity design effects the development of system 

software such as a file system. 

4.4.1 Language Features 

One clear advantage is the use of a modern, type safe, 

object oriented language. Kernel level development in 

current monolithic systems such as Linux or Windows is 

typically done in C, and can often impose a restricted 

execution environment, such as the lack of floating point 

support in the Linux kernel. Singularity’s micro kernel 

design means that file systems, drivers and other code that 

is traditionally a kernel extension is instead implemented 

a SIP, just like a user application. System programming 

benefits from the use of all the normal system libraries, 

IO for debugging and full support for the normal user 

level debugger. 

The system module designer is free to utilize software 

engineering techniques and practices such as abstraction, 

code hiding and code reuse through the use of classes. 

The systematic use of exceptions for error handling 

prevents the widespread suppression of errors due to C 

error code returns being ignored. This is known to be 

wide spread in file systems on Linux [10]. Furthermore, 

Spec# statically checks for the possible uses of null 

pointers. The programmer is forced to either declare 

objects using a non-nullable types or else insert run-time 

null pointer checks before pointers are used. This removes 

the possibility for a large class of bugs related to incorrect 

or inconsistent null-pointer checks. These bugs have also 

been shown to be widespread in the Linux and FreeBSD 

kernels [11]. 

4.4.2 Trusted Code 

The Singularity design appears to have effectively 

reduced the amount of "unsafe code” in the system to a 

manageable level. All the unsafe code dealing with raw 

pointers and memory is encapsulated in the Singularity 

micro kernel and associated trusted libraries. This small 

critical code base (less than 5% of kernel code) can then 

be extensively tested and carefully controlled by the small 

Singularity kernel development team [1,4]. 

The code running in SIPs is known to be "safe" because 

the Sing# language and compiler prevent the creation of 

code that accesses memory outside the local object space. 

Figure 4: Service latency of sequential reads to the 350 MB file. 



 

 

Type safety guarantees that object references and pointers 

cannot be assigned from arbitrary values such as integers. 

At worst a pointer may be null, and the compile time and 

run time check prevent null pointer use [1]. 

4.4.3 Dependability 

It is hard to formally measure the dependability of the 

Singularity design. As an anecdotal measure, it can be 

said that Sing# compiler checks prevented several errors 

during ext2 development that would have resulted in 

memory leaks in the exchange heap. Such leaks are 

particularly hard to detect and avoid in a traditional 

system using C or C++ because seeming minor code 

changes can easily change the logical flow of object or 

memory buffer ownership and result in the object not 

being deleted. Errors of this nature are particularly hard to 

detect because they often manifest only as slow memory 

leaks which do not affect system performance in the short 

term. 

Another advantage of the micro kernel design is that the 

Ext2Fs interface to the rest of the system is well defined 

and very simple. Implementation of Ext2Fs did not 

require the knowledge of or use of any extensive kernel 

APIs or kernel data structures. Instead Ext2Fs is required 

to interact with clients using the directory and file service 

contracts, and with the disk driver use the disk driver 

contract. Each of these contracts defines a small number 

of possible messages which can be generated and handled 

in a consistent and straight forward way. In contrast, a file 

system in a monolithic kernel such as Linux must use a 

very large API and must directly manipulate and interpret 

data structures shared with other parts of the kernel. 

Errors in such code can have catastrophic results. 

Perhaps the best testament to Singularity's dependability 

was the extremely good system stability during the 

development of ext2. In the author's experience, 

development of system level code in a monolithic kernel 

often results in system instability (note that this is highly 

dependent on programmer skill, so there is some hope that 

this experience was worse than is typical). Many errors 

related to shared data structures or incorrect use of 

memory and pointers can result in the failure of the 

kernel. The experience of developing ext2 on Singularity 

was much more like normal user level application 

development. There were many bugs and errors that 

needed to be corrected, but they only resulted in the 

failure of the SIP in which ext2 was running. If the ext2 

process terminated as the result of a failure, it only 

resulted in open channels closing. Other processes could 

(and did) recover gracefully. In the case of a shell-based 

application which was using the file system unexpected 

failures would typically result in an error message on the 

screen and the process terminating. Such a program 

generally cannot proceed without a file system. In the 

case of other system services such as the Singularity 

Name Service which maintains the Singularity name 

space, such a failure would result in the ext2 mount point 

disappearing from the visible name space. 

In the case of a failure in ext2 that did not result in the 

process terminating (such as a deadlock) it was possible 

to also deadlock client processes by forcing them to block 

forever waiting for a message reply. This could be 

prevented by client applications implementing a timeout 

mechanism. In no case did this cause problems for the 

system as a whole or to unrelated processes. 

During the whole development of ext2, the Singularity 

kernel or critical system services where never observed to 

crash or require a reset to recover from an error. The only 

exception to this is when the system runs out of physical 

memory. It appears to be possible to exhaust system 

memory by attempting to allocate more memory than is 

physically available. Singularity does not support paging 

of memory to disk, and apparently does not attempt to 

forcibly terminate a process or take some other action to 

recover memory. When physical memory was full, the 

kernel was unable to make progress because memory 

allocations kept being requested and failing. It is unclear 

if the offending allocation was in the kernel and the kernel 

itself was no longer able to operate, or if a SIP was 

continually retrying a memory allocation that was being 

denied. In any case this is not so much as issue of 

Singularity’s design as it is a question of policy when the 

system runs low on memory. 

5 Conclusion 
This paper describes the implementation of the Linux ext2 

file system on Singularity operating system. The purpose 

of this project was to investigate Singularity's design and 

performance. 

Quantitative performance measurements are one of the 

most straight forward ways to compare Singularity to 

other systems. Microsoft's Singularity team explicitly 

states that performance is a secondary goal to 



 

 

dependability in the Singularity design. Performance 

measurements of this initial implementation of ext2 are in 

line with this goal. Best case average read speeds lag 

behind those for Linux, but do not show that the 

Singularity design is fundamentally unable to produce 

usable performance. It is possible that further design work 

and optimizations would be able to produce performance 

that matches or exceeds the Linux implementation. 

The primary goal of dependability was not tested in a 

formal or quantitative way. The experience writing and 

testing ext2 on Singularity provides reasons for optimism 

about overall dependability. Singularity did not suffer any 

crashes during the development and testing process. The 

micro kernel architecture successfully isolates 

components such as a file system. In a monolithic system 

such a module would be run in kernel space and thus able 

to induce serious system wide errors. 

While the isolation of a micro kernel has clear benefits for 

dependability, it could prove to be a hindrance for the 

integration of system services, and therefore for 

performance. A monolithic kernel is able to easily share 

resources between components. Caches could be 

combined and shared between different sub-system such 

as a file system or virtual memory system. Singularity's 

process isolation model would prohibit such sharing, or 

would at least prevent concurrent access to a shared 

resource. It is not clear at this point if such restrictions 

will have a significant negative effect on performance. 

Finally, the use of a modern garbage collected 

programming language for system level code appears to 

be quite feasible. An aggressive, globally optimizing 

compiler which produces machine code from Microsoft 

Intermediate Language code removes the massive 

overhead that would normally make a language like C# 

completely unsuitable for system programming. Static 

analysis at compile time and advanced language features 

such as non-nullable types and tracking of object 

ownership prevent many of the most common errors that 

plague kernels written in C. 

6  References 
[1] An Overview of the Singularity Project, 

Galen C. Hunt, et al. Microsoft Research Technical 

Report MSR-TR-2005-135, Microsoft Corporation, 

Redmond, WA, October 2005. 

[2] Singularity: Rethinking the Software Stack, 

Galen Hunt and James Larus. Operating Systems Review, 

Vol. 41, Iss. 2, pp. 37-49, April 2007. ACM SIGOPS. 

[3] Sealing OS Processes to Improve Dependability 

and Safety, Galen Hunt, Mark Aiken, Fähndrich, Chris 

Hawblitzel, Orion Hodson, James Larus, Steven Levi, 

Bjarne Steensgaard, David Tarditi, and Ted Wobber. 

Proceedings of EuroSys2007, pp. 341-354, Lisbon, 

Portugal, March 2007. ACM SIGOPS. 

[4] Authorizing Applications in Singularity, 

Wobber, Ted, Aydan Yumerefendi. Martín Abadi, 

Andrew Birrell, and Dan Simon. Proceedings of 

EuroSys2007, pp. 355-368, Lisbon, Portugal, March 

2007. ACM SIGOPS. 

[5] Language Support for Fast and Reliable Message-

based Communication in Singularity OS, 

Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion 

Hodson, Galen C. Hunt, James R. Larus, and Steven Levi. 

Proceedings of EuroSys2006, pp. 177-190. Leuven, 

Belgium, April 2006. ACM SIGOPS. 

[6] Solving the Starting Problem: Device Drivers as 

Self-Describing Artifacts, Michael Spear, Tom Roeder, 

Orion Hodson, Galen Hunt, and Steven Levi. Proceedings 

of EuroSys2006, pp. 45-58. Leuven, Belgium, April 2006. 

ACM SIGOPS. 

[7] Access Control in a World of Software Diversity. 

Martín Abadi, Andrew Birrell, and Ted Wobber. 

Proceedings of the 10th Workshop on Hot Topics in 

Operating Systems, pp. 127-132. Santa Fe, NM, June 

2005. USENIX. 

[8] Broad New OS Research: Challenges and 

Opportunities. Galen Hunt, James Larus, David Tarditi, 

and Ted Wobber. Proceedings of the 10th Workshop on 

Hot Topics in Operating Systems, pp. 85-90. Santa Fe, 

NM, June 2005. USENIX. 

[9] Making system configuration more declarative. 

John DeTreville. Proceedings of the 10th Workshop on 

Hot Topics in Operating Systems, pp. 61-66. Santa Fe, 

NM, June 2005. USENIX. 

[10] PRABHAKARAN, V., BAIRAVASUNDARAM, L. 

N., AGRAWAL, N., GUNAWI, H. S., ARPACI-

DUSSEAU, A. C., AND ARPACIDUSSEAU, R. H. 

IRON file systems. In Proceedings of the 20
th

 ACM 

Symposium on Operating Systems Principles (Brighton, 

United Kingdom, October 2005), pp. 206.220 

[11] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as 

deviant behavior: A general approach to inferring errors 

in systems code. In Symposium on Operating Systems 

Principles, pages 57--72, 2001. 

ftp://ftp.research.microsoft.com/pub/tr/TR-2005-135.pdf
http://www.research.microsoft.com/os/singularity/publications/OSR2007_RethinkingSoftwareStack.pdf
http://portal.acm.org/toc.cfm?id=J597
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_SealedProcesses.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_SealedProcesses.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_SealedProcesses.pdf&pub=ACM
http://research.microsoft.com/os/Singularity/www.gsd.inesc-id.pt/conference/EuroSys2007
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2007_Security.pdf&pub=ACM
http://research.microsoft.com/os/Singularity/www.gsd.inesc-id.pt/conference/EuroSys2007
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_LanguageSupport.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_LanguageSupport.pdf&pub=ACM
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_SolvingTheStartingProblem.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_SolvingTheStartingProblem.pdf&pub=ACM
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/EuroSys2006_SolvingTheStartingProblem.pdf&pub=ACM
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_AccessControl.pdf&pub=USENIX
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_BroadNewResearch.pdf&pub=USENIX
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_BroadNewResearch.pdf&pub=USENIX
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_BroadNewResearch.pdf&pub=USENIX
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://research.microsoft.com/copyright/accept.asp?path=http://www.research.microsoft.com/os/singularity/publications/HotOS2005_SystemConfiguration.pdf&pub=USENIX
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/
http://www.usenix.org/events/hotos05/

	Abstract
	Introduction
	The Singularity Architecture
	The programming Environment
	The Process Model
	Communication Channels

	Ext2 Implementation
	Ext2ClientManager
	Ext2Control
	Ext2Contracts
	Ext2Fs
	Directory Interfaces
	File Interface
	Supported Operations

	Caching

	Results
	Test configuration
	Test Results
	Garbage collection
	Singularity design
	Language Features
	Trusted Code
	Dependability


	Conclusion
	References

