
Flash Drives: Performance Study Based On Benchmarks

Chong Sun and Yupu Zhang

Computer Sciences Department
University of Wisconsin, Madison

Abstract

Flash drives with nice properties, e.g. good random read
performance, has shown great potential to replace the
current dominant storage medium hard disks. However,
there are not many literatures that have conducted com-
prehensive study on the flash drive performance. In this
paper, we aim to design a systematic strategy to efficiently
measure the performance parameters of flash drives. We
propose several novel benchmarks to exploit the perfor-
mance for us to better understand some interesting and
erratic performance behaviors of flash drives.

1 Introduction

The largest obstacle that has been affecting I/O systems is
no longer the storage volume nor the throughput, but the
terrible random access performance of the hard disk drive.
Due to the limit of mechanical rotating speed, high cost on
position seeking seems to be unavoidable for random disk
access in the near future. The advent of flash memory
pushes things a great step forward for its nice property
of great random read performance. It is broadly recog-
nized that flash memory can conduct uniformly random
read without “seek” time as in hard disk drives. Besides,
flash memory generally has small size and less weights
compared with hard disks. Another attractive property is
that it is both shock resistant and immune to extreme tem-
peratures.

Though flash memory still has high cost/bit compared
with hard disk drives, the volume of flash drive has been
gradually increasing and corresponding the price has been
dramatically decreasing. Recently, common laptops has
begun to be configured with 32G or 64G flash based solid
state disks and we can even buy 2GB USB flash drives
with less than 20 dollars. More importantly, currently
many companies with large data centers, e.g. Google, are
spending a huge amount of money has on powering and
cooling their hard disk drives. Flash memory drives gen-
erally consume much less power and produce less heat
thus saving much money.

Flash drives bring us the promise of both good random
read and sequential access performance and has great po-
tential of replacing hard disk drives in many places. How-
ever, there are not many literatures on systematic study
of the real I/O performance on the flash drives. Even
though some performance study of flash drives may have
been conducted by the manufacturers, they are generally
confined within the companies. Many performance pa-
rameters on flash drives are not made public or hidden on
purpose by the manufacturers and it is difficult for us to
understand the performance characteristics.

In this paper, we aim to design a systematic strategy
or benchmark to efficiently measure the performance pa-
rameters of the flash drives. Initially, we conduct exper-
iments with our designed benchmarks based on the ba-
sic flash drives knowledge. Then we interpret the perfor-
mance results that match our knowledge and redesign the
benchmarks to exploit the erratic I/O performance. We re-
cursively refine our benchmarks until we collect enough
drive parameters to systematically understand the I/O per-
formance of the flash drives. Note that we generally need
to provide assumptions for some parameters first and then
design specific benchmarks to test according to our as-
sumptions.Therefore, we may not thoroughly test all the
useful parameters, but we do systematically get the pa-
rameters within our assumptions. We find some very in-
teresting I/O performance behaviors, which can be effec-
tively interpreted by the parameters we get with the de-
signed benchmarks.

We organize our paper as follows. First, we give some
background knowledge about flash drives in Section 2.
Then in Section 3, we design the prototype benchmarks
to conduct some basic experimental study on the read and
write performance. In Section 4, we propose several new
benchmarks to exploit performance and interpret some ir-
ratic results. Section 5 presents several related work. Fi-
nally, we give a conclusion and talk about the future work
in Section 6.

1

2 Background

A flash drive is usually composed of one or more flash
memory chips and a Flash Translation Layer (FTL),
whose organization is illustrated in Figure 1.

Figure 1:Flash Chip Organization

2.1 Characteristics of Flash Memory

Generally, there are two kinds of non-volatile flash memo-
ries: NOR and NAND [10]. NAND is designed to satisfy
the requirement of high capacity storage, while NOR is
used to store small data and codes. So currently, almost
all mass storage devices use NAND flash memory.

A NAND flash memory chip consists of a fixed number
of blocks and each block has a fixed number of pages. De-
pending on the manufacturer of the chip, each page could
be 1KB, 2KB or 4KB and each block could contain 64,
128 or 256 pages. Note that in the flash world, a page is
the unit of read and write, which is similar to a sector in
hard disk or block in the I/O system. But a block, which
is confusing, is a very large unit here.

A special property is that it cannot be overwritten di-
rectly. Instead, any page in the flash can be rewritten
only after the whole containing block is erased. Moreover,
erase is much more time-comsuming compared with read
and write operations (The time cost of each operation for
one example is listed in Table 1). Besides, each block can
only tolerate certain times of erase, which is from 10,000
to 100,000. All these limitations make the erase operation
the bottleneck of the whole flash memory.

2.2 Flash Translation Layer

Due to these limitations, a Flash Translation Layer is used
as a controller, emulating a hard disk, implementing the

Operation Unit Time
Read 4KB Page 25us
Write 4KB Page 200us - 700us
Erase 256KB Block 1.2ms-2ms

Table 1: NAND Flash Operation Parameters[14]

block functionality, and hiding the erase latency. There-
fore, flash memory can be used as a normal block stor-
age device in current operating systems without modifica-
tions.

FTL performs logic-to-physical address translation. In
order to hide the erase latency, FTL usually redirects write
requests to a free block which is erased in advance. Thus,
FTL must maintain internal logic-to-physical mapping in-
formation and always keep it updated. Generally, there
are three types of translation schemes: page-mapping
FTL [7], block-mapping FTL [5], log-block FTL [9],
which combines both block-level mapping and page-level
mapping. A page-mapping scheme requires that the FTL
maintains a large page table such that any logical page ad-
dress can be mapped to any physical address. This scheme
has best performance but it costs large space especially
when the capacity is large. So this scheme is not suitable
for mass storage device. In a block-mapping scheme, the
logical address is divided into two parts: a logical block
number and a physical page offset. So FTL only main-
tains the mapping from logical block number to physical
block number, but the physical page offset is invariant to
the remapping. This reduces the size of page table greatly,
but it’s so restrictive that any page can only be mapped
into a fixed offset in a block. Log-block FTL takes advan-
tage of both mapping scheme such that blocks and pages
can be both remapped to a type of block called log blocks
such that write performance is increased. Please refer to
[9] for details of this mapping scheme.

In log-block FTL, there are mainly four types of blocks:
data block, log block, free block, map block. Data block
is used to store data. Log block is always associated with
a data block, used to hold updates of pages in that data
block. All log blocks are stored in a list called log block
list. Free block is is allocated from a pool to be used as log
block or data block. Map block is used to maintain map-
ping information. Generally, assuming the target block is
full, FTL handles write requests like this: When a write
request arrives, it checks whether the target block has a
log block or not. If it has, then this request will be redi-
rected to the log block. If not, a log block will be allocated
to and associated with the data block and All subsequent
write requests to this block will be redirected to the log
block. When data is written into log block, the orginal
page is invalidated and remapped to the page in the log
block, so a certain map block is updated. Since log block

2

is only used to handle write data temperally, all updated
data will be reflected into the data block finally, thus a
new operation call merge is needed. This operation copies
out all valid data from the orginal data block and the log
block, combines them to a new block, writes it back into a
free block and erase the orginal data block and log block.
There are two situations when merge is triggered: one is
when log block is full, the other one is when all log blocks
are exausted. Since log block FTL is one of the most pop-
ular scheme today [8], we assume that the flash drives we
will test are based on similar FTLs.

In order to avoid confusing, we will use segment to rep-
resent block in flash in the following sections.

3 Basic Experiments

To effectively measure the read and write performance
of flash drives, we conduct our experiments basd on the
following strategies. Initially, we design a set of pro-
totype micro benchmarks based on our basic knowledge
and assumptions on flash drives performance. Through
the benchmarks, we expect to check whether the initial
assumptions hold with respect to our flash drives. Then
regards to the erect performance behaviors of the flash
drives we find in the experiments, we either refine or re-
design the micro benchmarks to conduct further perfor-
mance experiments. Note that we recursively conduct this
refinement or redesign of benchmark until we get better
understanding of both the write and read performance of
the flash drives.

3.1 Experiments Setup

We conduct our experiments on HP Pavilion dv2000 (due-
core of 1.83GHZ and 1GB memory) running Fedora Core
7.0. Note that, the parallel execution of the due-core pro-
cesses make it difficult to get the benchmark execution
time efficiently and accurately. Thus we disable one core
during our experiments.

In our experiments, we use three different types of flash
drives separately as follows.

• Unknown1 1G

• Kingston Data Traveler 1GB

• PNY attache 2GB

Due to space limit, we can only comprehensively
present the experimental results on the Unknown 1GB.
And, we think the Unknown 1GB is more interesting and
challenging as it is almost a black box to us before we do

1We get it free from the job fair. The only thing we know about itis
its capacity.

the experiments. We will provide a summary of the per-
formance parameters of all three flash drives in Section
4.5

To accurately test the flash drives’ performance, we
run the benchmark directly on the device files rather than
accessing files through the file system. As each I/O re-
quest via the file system will trigger several system calls
and pass through the generic block level, SCSI middle-
layer and flash drive drivers to reach the hardware. Extra
time cost will be spent on the system calls. More im-
portantly, we have no control of the logical block address
and the request size. Besides, we useopen()with the flag
O DIRECT [4] to open the device file. ViaO DIRECT,
we can read and write on the device file without page
cache and read ahead specified by the running files sys-
tems.

We usegettimeofday()to get the disk service time for
the micro benchmarks. Note that, though the time We get
throughgettimeofday()includes the cost of several system
calls besides the disk service time. It is very accurate with
around 5% overhead compared with the time cost we get
via blktrace[2] which is believed to be accurate in collec-
tion the disk service time for both read and write requests.

3.2 Experiment Design

In this section, we design our prototype micro benchmark
based on our basic assumptions on general flash drives be-
fore we conduct any performance experiment. Our basic
assumptions of the read and write performance on flash
drive are listed as follows.

• Random read performance is uniform and excellent
as there is no seek time on flash drive compared with
hard disk drives.

• Sequential read performance is good similar to that
of sequential read on the hard disk drives.

• Random write performance is terribly bad as each
write needs to erase a whole data segment and con-
duct the data merge into a free segment.

• Sequential write performance is good as a bunch of
write requests only need one data segment erase and
conduct the data merge into a free segment.

Based on the above assumptions, we design our proto-
type micro benchmarks separately for read, write as fol-
lows.

Random Read.We randomly read 4 KB data each time
for n times. Note that the starting address for each read is
randomly and uniformly distributed over the whole logi-
cal address space. The number of trialsn should be large
enough to make the experiments to be statistically mean-
ingful. We generally selectn to be 1000 or more in our
experiments.

3

Sequential Read.We sequentially read 4 KB data each
time for n times. Still we generally taken to be 1000 or
more. Therefore, we actually sequentially readn blocks
in the logical address space of the flash memory in the ex-
periments. Note that, with out affecting the generality, we
start the first read randomly in the logical address space
of the flash memory.

Random Write and Sequential Write We adopt the
same benchmark as that for random read except for
change read to be write.

3.3 Read

We execute our micro benchmark of read on the flash
drives and the performance results for random read and
sequential read are separately shown as follows.

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
(m

s)

Number of Trials

Figure 2:Random Read Full Range

In Figure 2, we present the time cost for each random
read of 1000 trials. We find that the most of the costs for
each read is less than 1ms. This performance is recog-
nized to be far better than that of random read on the hard
disk drives. And, this basically matches our assumption
on the random write performance.

However, we note that in Figure 2 reading data of the
same size but randomly distributed may result in differ-
ent costs, most of which are either around 1ms or around
0.75ms. This is contradict to our uniform read access cost
assumption that all the random reads should have nearly
the same time costs. We will interpret the extra overhead
of some random reads in our redesigned experiments.

We show the sequential read performance of the flash
drive in Figure 3. In this experiments, we sequentially
read 4kB data each time with 1000 times overall(4MB)
in the flash memory. We plot the total time costs against
the cumulative data size for the sequential reads in Fig-
ure 3. Clearly, we find that the total time cost increases

linearly along with the number of reads. Actually, there
is no much difference between the total costs of random
read and sequential read of 4KB data for 1000 times.

In conclusion, the read performance of our flash drive
basically matches our assumptions that both random read
and sequential read perform relatively well. We note that
random read or sequential read of small data has the sim-
ilar cost. We also note the erratice read performance be-
havior that random read costs could be categerize into two
kinds, either of 1ms or 0.75ms.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

100

200

300

400

500

600

700

800

T
im

e
(m

s)

Size of Data (MB)

Figure 3:Sequential Read (cumulative)

3.4 Write

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Number of Trials

Figure 4:Random Write Full Range

Similar to read, we conduct the random write and se-
quential write performance experiments with the bench-

4

mark designed previously. We show the experiments re-
sults separately as follows.

Random Write. We randomly write 4KB data for 1000
times uniformly distributed over the logical address apace
of flash drive according to the benchmark. In Figure 4,we
present the time cost for each random write against the
trial number. We find in this figure two different types
of write costs for most of the random writes. Much of
the random writes take around 120ms which is very large
compared with that only a few writes costing only 30ms.
There is even a few writes which only take around 2ms.
According to the our basic knowledge[9], disk service
time for only writing 4KB data should be around 2ms
and the substantial overhead for other writes taking about
120ms might be caused by data merging for writing as
introduced in Section 2. Each data merge needs a whole
segment of data read out, modified and then written back
into one free segment as well as reclaiming the segments
by erasing. The overall random write performance ba-
sically matches our assumption that random write is bad
and the especially high cost corresponds to our reasoning
that nearly every random write conducts the data merging.

However, we are still wondering the following general
questions to get better understanding of the flash drive
write performance.

• Why some random write costs around 30ms which is
in the middle of costs of direct writing data and data
merge? Is the time cost related to the data content?

• Why does every random write need data merging?

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Number of Trials

Figure 5:Sequential Write

Sequential Write. Similar as that for sequential read,
we execute the designed micro benchmark for sequential
write and show the results in Figure 5, 6. We note there

0 0.5 1 1.5 2 2.5 3 3.5 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

T
im

e
(m

s)

Size of Data (MB)

Figure 6:Sequential Write (cumulative)

is huge performance difference between the sequential
write and random write. Only a few sequential writes cost
120ms appearing at regular logical addresses with fix dis-
tances of 64*4KB and all other writes cost around 1.5ms
each. Then clearly, we can have 63 low sequential writes
following 1 high cost write.

Based on our basic knowledge on data merge, we be-
lieve that the sequential write triggers data merge at fixed
places. Whenever one log segment is allocated to the cur-
rent data segment, then the subsequent write into the cur-
rent data segment can be redirected into the log segment
directly without any extra data merge until the log seg-
ment is full. Based on the above reasoning, actually we
can determine the size of one log segment of the flash
drive is 64*4KB.

To clearly show the sequential write performance, we
plot the total time cost against the sequential write data
size in Figure 6. From this figure, we can see that the total
cost increases linearly and there are also intervals with
size of 64*4KB.

In conclusion, the basic write performance matches
well with our assumptions that random write is terribly
bad and sequential write is reasonably good. We know
that the data merge is triggered either when the log seg-
ment associated with current data segment is full or a re-
quest for new log segment can not be satisfied by the free
log segments list. The latter case happens a lot when
we conduct random writes. Beside, we are interested in
the following questions to get better understanding of the
write performance.

• How many log segments are in the flash drive? How
are they used?

• Can write large data improve write performance?

5

4 Redesign Experiments

With out initial design of benchmarks, we basically test
the read and write performance of our flash drive. How-
ever, we still have many questions on the way of well
understanding the flash drive I/O performance behaviors.
Therefore, we refine our benchmarks in the following ac-
cording to the specific problems we want to answer.

4.1 Read Revisited

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
(m

s)

Inter−Request Distance (MB)

Figure 7:Random Read (Inter-Request Distance)

In Section 3.3, our benchmarks show that many ran-
dom reads have an extra overhead of around 0.25ms. We
assume that the overhead may be related to the logic ad-
dress of last read request. Therefore, we design the fol-
lowing inter distance benchmark based on the idea from
Disk Mimic[11].

We randomly readd KB data each time forn times,
which is the same as that of benchmark for testing ran-
dom read, except that we use different strategy to inter-
pret the data. We plot each random read cost against the
its distance to last random read in logical address. We
randomly read 4KB data for 1000 times and plot the per-
formance result according to the benchmark in Figure 7.

From this figure, we can see that if the inter-request
distance is smaller than around 240MB, most of the reads
have the time cost of around 0.75ms. Otherwise, most of
reads cost around 1ms. Therefore, we guess that the flash
drive may be divided into four segment groups. If any
read needs to access a segment in a different group from
the current one, there is an extra switch time2.

2We refer to the overhead of crossing the boundary as swtich time

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
(m

s)

Number of Trials

Figure 8:Random Read (In Group)

To testify our assumption, we modify the benchmark
program to restrict each read fall in to our assumed seg-
ment group. The performance results are showed in Fig-
ure 8. Nearly all the random reads cost around 0.75ms or
less, which perfectly match our assumption that read in-
side one segment groups have no switch time, thus extra
overhead. Our assumption is confirmed.

4.2 “1”!=“0”

In executing the random read benchmark in Section 3.4,
we note several writes with strange time costs which are
between the cost for directly writing data and the costs we
assumed for data merging. Therefore, we are interest in
the question that whether the content of the data to write
will affect the writing performance. Then we design the
“0”-“1” benchmark to verify our assumptions as follows.

To test the effect of data content on the writing perfor-
mance, we separately overwrite bit “1” with “1” or “0”
and overwrite bit “0” with “1” or “0”. To isolate the many
performance factors in writing random data, we initially
flush the flesh drive to store all bit “1” or “0” and then
sequentially write 1000 blocks(4KB data) with either all
“1” or “0”. The experiment results are shown as follows.
From Figure 9 and 11, we see that when sequentially
writing blocks with all “0” onto the flash drive with either
all “0” or “1” get nearly the same data merge cost, which
is 25ms for each data merge. On the other hand, from Fig-
ure 10 and 12, we find sequentially writing blocks with all
“1” onto the flash drive with either all “1” or all “0” also
gets nearly the same time cost. However, the data merge
cost for writing “1” is much higher, compared with writ-
ing “0”, at around 120ms. Therefore, we claim that se-
quentially writing blocks with “1” pays much higher cost
than writing “0”.

6

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Starting Address (# of blocks)

Figure 9:Write “0” to “0”

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Starting Address (# of blocks)

Figure 10:Write “1” to “0”

In order to study whether the percentage of bits “1” in
the blocks we sequential write will affect the data merge
performance, we randomly fill the data block to be written
with bits containing half “1”s and half “0”s. From Fig-
ure 13, we see that the data merge cost for writing such
blocks is still around 120ms, which is nearly the same
as that for sequentially writing blocks full of “1”s. To
get better understanding of the performance, we cut each
block(4KB) into two parts and each has 2KB. Then we
randomly choose one part to be filled with some “1”s and
the other part is still filled all with “0”s. We get the perfor-
mance in Figure 14 and the data merge only costs around
60ms. If again, we fill both parts with some “1”s, then
data merge cost shown in Figure 15 is around 120ms.
Therefore, we can claim that each 4KB data block is con-
sidered as two parts in writing, based on which we think

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Starting Address (# of blocks)

Figure 11:Write “0” to “1”

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140
T

im
e

(m
s)

Starting Address (# of blocks)

Figure 12:Write “1” to “1”

that the page size of this flash drive is 2KB. If either part
contains some “1”, then the data merge cost will be high
and has the same effect as the whole part is filled “1”s.
This cost is nearly half of the that for writing blocks with
all “1”s. If both parts are filled with only “0”s, then the
data merge cost is rather low.

4.3 Log List

As we have shown in Section 3.4, the sequential write of
4KB data is generally more efficient than random write.
The major reason is that sequential write can fully ex-
ploit each allocated log segment. However, if there are
enough free log segments in the log list, random write
can also achieve much better performance similar as that
of sequential write. Therefore, the size of the log list is

7

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Starting Address (# of blocks)

Figure 13:Write Random“0.5” to “0”

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Starting Address (# of blocks)

Figure 14:Write half “1” to “0”

one important parameter that greatly affects the flash write
performance.

To test the size of the log list, we design the following
benchmark.

Assume the segment size is segsize, initially we con-
tinuously conductm(starts from 1) writes ofbKB. Among
the m writes, the first is on a random addresss and
then each subsequent write in on an logic address that is
segsize larger than the previous one. We refer suchm
write as one write round. After we are done with the first
write round, we repeat themwrites as another round. If
all the new writes do not trigger data merge, we can say
all the data segments which we try to write data into have
already got allocated log segments. Then we can increase
m by 1 and repeat the above experiments. If all the new
writes trigger data merge, we easily determine the log list

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

T
im

e
(m

s)

Starting Address (# of blocks)

Figure 15:Write both halves to “0”

size asn-1and stop. Note that, we can determine whether
a write triggers data merge or not easily by checking the
time costs.

We execute the benchmark on our flash drive and the
time cost in the unit of microseconds for each write is
shown in Table 2. The first row in Table 2 refers to the rel-
ative positions (in unit of segmentation) to the first write
in each write round Due to space limit, we only present
the time cost for each write whenm is 3 and 4. Still, we
can easily determine the log list size of our flash drive is
3 according to our benchmark design.

4.4 Large Read Or Write Requests

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

T
im

e
(m

s)

Size of Data (# of blocks)

One Block in a Request
Multiple Blocks in a Request

Figure 16:Large Read vs Small Read

In our initial benchmarks on either read or write, each

8

n 1 2 3 4 1 2 3 4
3 28994 28750 28657 2600 2722 2598
4 29296 28495 28723 28919 28594 28726 28719 28797

Table 2: Time cost(µ s)

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e/
B

lo
ck

 (
m

s)

Size of an Physical Request (# of blocks)

Figure 17:Large Read: Cost Per Block

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

T
im

e
(m

s)

Size of Data (# of blocks)

One Block in a Request
Multiple Blocks in a Request

Figure 18:Large Write vs Small Write

request only takes 4KB data. Actually, in real life work-
load, we need to read and write data of much larger size
in one request. However, there is a size limit of a physical
request for both the read and write, which is 30*4KB. No
matter how large the data is in the application requests, it
will be cut into small chunks of size less than 30*4KB.
Therefore in our benchmarks, we only measure the I/O
performance with data size of 30*4Kb and less. We sep-
arately design our benchmarks for large read and large

5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

T
im

e/
B

lo
ck

 (
m

s)

Size of an Physical Request (# of blocks)

Figure 19:Large Write: Cost Per Block

write as follows.
The benchmark for large read is similar to that for the

random read, except that for each time, we need read data
of larger size from 4KB up to 30*4KB. At the same time,
we conduct read for each data size several times to get the
average value.

We show the performance results of executing bench-
marks in Figure 16 and 17. Note that in Figure 16,
we study the performance of reading the same amount of
data in either one application request or several requests.
Clearly, we see that write large data in one request is much
more efficient and can cost only less than a quarter of the
time for reading data in multiple chunks of 4KB when the
total data size is 30*4KB.

In Figure 17, we plot the average time cost for each
4KB block by varying the physical request data size from
4KB to 30*4KB. We find that the average time cost
per block gradually become nearly constant and reaches
0.25ms. Therefore, we claim large read had very good
scalability.

To design the benchmark for large write, we have paid
careful attention to the data merge to isolate its affects.
Assume we want to measure the time cost for writedKB,
we issuen pairs of write request continuously. For each
pair of requests, the first writes at a random logical ad-
dresssand the other request writesdKB data from the
same addresss. Since the previous request has got a
log segment, the second request can be serviced without

9

Brand Capacity Price # of Groups log block size log list size 0==1?
Unknown 1GB FREE 4 64*4KB 3 No
Kingston 1GB $8 2 128*4KB 4 Yes
PNY 2GB $16 2 256*4KB 4 Yes

Table 3: Summary of Experimental Results

merge. The average of then trials is the average time cost
of dKB write request.

We execute the benchmark and get very similar perfor-
mance shown in Figure 18 and 19 to the performance of
large read.

4.5 Summary of Experimental Results

Despite our work in this paper is mainly based on the Un-
known 1GB, we also execute all the benchmarks on the
other two flash drives. The performance parameters are
summarized in Table 3.

5 Related Works

Flash Translation Layer (FTL) is an important layer in
a flash storage system. FTL and its specification is first
proposed by PCMCIA[1]. Kawaguchi et al. designed
a flash-memory based file system[7], which use similar
ideas from LFS[12] to implement FTL-like functions such
as address translation, log block, cleaning(merge). In [6],
it discussed the FTL specification in detail. Kim et al. de-
signed a novel log block based FTL[9] which combines
both block and page level granularities to achieve beter
performance with smaller space. More recently, Kim et al.
added RAM to flash and proposed a write buffer manege-
ment scheme to improve random writes performance[8].

Saavedra et al. developed a new approach, micro
benchmarks, to analyze the performance of KSR1 mem-
ory architecture and got insights about part of the design,
which is unpublished[13]. Disk Mimic[11] applied a set
of micro benchmarks to get hard disk latency and used the
data to predict the response time of hard disk. Birrell et
all. tried limited micro benchmarks on USB flash disks
and gave some interesting results[3].

6 Conclusions and future works

In this paper, we have designed a relatively systematic
series of benchmarks to study the performance of flash
drives. We apply the benchmarks on three different types
of flash drives and successfuly get the performance pa-
rameters, some of which are not published by the manu-
facturers. Via the parameters, we can effectively interpret

some interesting experimental results. Besides, these pa-
rameters inspire us to rethink about the design of file sys-
tems on the falsh drives. In the future, we would like to
extend our benchmark to study SSD.

This work gives us a great oppurtunity to get into the
research of storage systems. The great lesson we have
learnt in the experiments is “everything has a reason”. An-
other precious experience is that “Solid your base and then
move forward”.

References
[1] Pcmcia, http://www.pcmcia.org/.

[2] J. Axboe. Block trace, http://www.kernel.org/git/?p=linux/kernel.

[3] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for high-
performance flash disks.SIGOPS Oper. Syst. Rev., 41(2):88–93,
2007.

[4] D. P. Bovet and M. Cesati. Understanding the Linux Kernel.
O’Reilly, third edition, 2006.

[5] S. Forum. Smartmedia specification, http://www. ssfdc.or.jp.

[6] Intel. Understanding the flash translation layer (ftl) specification,
1998.

[7] A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory
based file system. InUSENIX Winter, pages 155–164, 1995.

[8] H. Kim and S. Ahn. Bplru: a buffer management scheme for im-
proving random writes in flash storage. InFAST’08: Proceedings
of the 6th USENIX Conference on File and Storage Technologies,
pages 1–14, Berkeley, CA, USA, 2008. USENIX Association.

[9] J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A space-
efficient flash translation layer for compactflash systems. In IEEE
Transactions on Consumer Electronics, volume 48, page 366375,
2002.

[10] M-Systems. White paper: Two technologies compared: Nor vs
nand.

[11] F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Robust, Portable I/O Scheduling with the Disk Mimic. InProceed-
ings of the USENIX Annual Technical Conference (USENIX ’03),
pages 297–310, San Antonio, Texas, June 2003.

[12] M. Rosenblum and J. K. Ousterhout. The design and implemen-
tation of a log-structured file system.ACM Trans. Comput. Syst.,
10(1):26–52, 1992.

[13] R. H. Saavedra, R. S. Gaines, and M. J. Carlton. Micro benchmark
analysis of the ksr1. InSupercomputing ’93: Proceedings of the
1993 ACM/IEEE conference on Supercomputing, pages 202–213,
New York, NY, USA, 1993. ACM.

[14] Samsung. K9f8g08uxm datasheet, http://www.samsung.com,
2007.

10

