Flash Drives: Performance Study Based On Benchmarks
Chong Sun and Yupu Zhang

Computer Sciences Department
University of Wisconsin, Madison

Abstract Flash drives bring us the promise of both good random
read and sequential access performance and has great po-
Flash drives with nice properties, e.g. good random redential of replacing hard disk drives in many places. How-
performance, has shown great potential to replace tleger, there are not many literatures on systematic study
current dominant storage medium hard disks. Howevef, the real I/O performance on the flash drives. Even
there are not many literatures that have conducted cothough some performance study of flash drives may have
prehensive study on the flash drive performance. In thigen conducted by the manufacturers, they are generally
paper, we aim to design a systematic strategy to efficientiynfined within the companies. Many performance pa-
measure the performance parameters of flash drives. Weters on flash drives are not made public or hidden on
propose several novel benchmarks to exploit the perfgurpose by the manufacturers and it is difficult for us to
mance for us to better understand some interesting amaderstand the performance characteristics.
erratic performance behaviors of flash drives.

) In this paper, we aim to design a systematic strategy
1 Introduction or benchmark to efficiently measure the performance pa-
rameters of the flash drives. Initially, we conduct exper-

The largest obstacle that has been affecting I/0 systemingnts with our designed benchmarks based on the ba-
no longer the storage volume nor the throughput, but thi€ flash drives knowledge. Then we interpret the perfor-
terrible random access performance of the hard disk dri@ance results that match our knowledge and redesign the
Due to the limit of mechanical rotating speed, high cost ¢nchmarks to exploit the erratic I/O performance. We re-
position seeking seems to be unavoidable for random d@Ksively refine our benchmarks until we collect enough
access in the near future. The advent of flash meméljve parameters to systematically understand the 1/O per-
pushes things a great step forward for its nice propef@fmance of the flash drives. Note that we generally need
of great random read performance. It is broadly reco§provide assumptions for some parameters first and then
nized that flash memory can conduct uniformly randoft€sign specific benchmarks to test according to our as-
read without “seek” time as in hard disk drives. BesideSymptions.Therefore, we may not thoroughly test all the
flash memory generally has small size and less weigHgeful parameters, but we do systematically get the pa-
compared with hard disks. Another attractive property idmeters within our assumptions. We find some very in-
that it is both shock resistant and immune to extreme teffiresting I/O performance behaviors, which can be effec-
peratures. tively interpreted by the parameters we get with the de-
Though flash memory still has high cost/bit comparédgned benchmarks.
with hard disk drives, the volume of flash drive has been
gradually increasing and corresponding the price has been
dramatically decreasing. Recently, common laptops hasVe organize our paper as follows. First, we give some
begun to be configured with 32G or 64G flash based sotidckground knowledge about flash drives in Section 2.
state disks and we can even buy 2GB USB flash drivesen in Section 3, we design the prototype benchmarks
with less than 20 dollars. More importantly, currentljo conduct some basic experimental study on the read and
many companies with large data centers, e.g. Google, arée performance. In Section 4, we propose several new
spending a huge amount of money has on powering ésehchmarks to exploit performance and interpret some ir-
cooling their hard disk drives. Flash memory drives geratic results. Section 5 presents several related work. Fi-
erally consume much less power and produce less heally, we give a conclusion and talk about the future work
thus saving much money. in Section 6.

2 Background Operation| Unit Time

Read 4KB Page 25us
A flash drive is usually composed of one or more flash Write 4KB Page 200us - 700ug
memory chips and a Flash Translation Layer (FTL), Erase 256KB Block | 1.2ms-2ms

whose organization is illustrated in Figure 1.
Table 1: NAND Flash Operation Parameters[14]

Flash Translation Layer (FTL)

block functionality, and hiding the erase latency. There-
fore, flash memory can be used as a normal block stor-
age device in current operating systems without modifica-

Page 0 tions.
Page | FTL performs logic-to-physical address translation. In
Pape ? order to hide the erase latency, FTL usually redirects write
Block | | Block — Block requests to a free block which is erased in advance. Thus,
0 1 Paged | n-1 FTL must maintain internal logic-to-physical mapping in-

formation and always keep it updated. Generally, there
are three types of translation schemes: page-mapping
FTL [7], block-mapping FTL [5], log-block FTL [9],
which combines both block-level mapping and page-level
mapping. A page-mapping scheme requires that the FTL
Figure 1:Flash Chip Organization maintains a large page table such that any logical page ad-
dress can be mapped to any physical address. This scheme
has best performance but it costs large space especially
when the capacity is large. So this scheme is not suitable
2.1 Characteristics of Flash Memory for mass storage device. In a block-mapping scheme, the
_) logical address is divided into two parts: a logical block
Generally, there are two kinds of non-volatile flash memg@y mper and a physical page offset. So FTL only main-
ries: NOR and NAND [10]. NAND is designed to salisfy,ing the mapping from logical block number to physical
the requirement of high capacity storage, while NOR o0k number, but the physical page offset is invariant to
used to store small data and codes. So currently, alm@gt remapping. This reduces the size of page table greatly,
all mass storage devices use NAND flash memory. ;¢ ivs so restrictive that any page can only be mapped
A NAND flash memory chip consists of a fixed numbgptg a fixed offset in a block. Log-block FTL takes advan-
of blocks and each block has a fixed number of pages. Rgge of both mapping scheme such that blocks and pages
pending on the manufacturer of the chip, each page coplth pe both remapped to a type of block called log blocks
be 1KB, 2KB or 4KB and each block could contain 64,ch that write performance is increased. Please refer to
128 or 256 pages. Note that in the flash world, a pagqc_{ﬁ for details of this mapping scheme.

the unit of read and write, which is similar to a sector in In log-block FTL, there are mainly four types of blocks:
hard disk or block in the I1/0 system. But a block, WthBata block, log block, free block, map block. Data block

's confusing, is a very large unit here. js used to store data. Log block is always associated with

A special property is that it cannot be overwritten d5 data block, used to hold updates of pages in that data

rectly. Instead, any page In the ﬂE%Sh can be FeWrtig i - Al log blocks are stored in a list called log block
only after the whole containing blockis erased. Moreov% . Free blockis is allocated from a pool to be used as log
erase is much more time-comsuming compared with r

dwri : The ti f h) ?ﬂ ck or data block. Map block is used to maintain map-
and write ope_rat_lons (e time cost oreac operation |'hg information. Generally, assuming the target block is
one example s listed in Table 1). Besides, each block il, FTL handles write requests like this: When a write
only tolerate certain times of erase, which is from 10,000 '

Lo request arrives, it checks whether the target block has a
to 100,000. All these limitations make the erase operatl%rb block or not. If it has, then this request will be redi-
the bottleneck of the whole flash memory. ' '

rected to the log block. If not, alog block will be allocated
to and associated with the data block and All subsequent
2.2 Flash Translation Layer write requests to this block will be redirected to the log
block. When data is written into log block, the orginal
Due to these limitations, a Flash Translation Layer is uspdge is invalidated and remapped to the page in the log
as a controller, emulating a hard disk, implementing thstock, so a certain map block is updated. Since log block

Page m-1

is only used to handle write data temperally, all updatélte experiments. We will provide a summary of the per-

data will be reflected into the data block finally, thus formance parameters of all three flash drives in Section
new operation call merge is needed. This operation copies

out all valid data from the orginal data block and the log To accurately test the flash drives’ performance, we
block, combines them to a new block, writes it back intoran the benchmark directly on the device files rather than
free block and erase the orginal data block and log blo@ccessing files through the file system. As each 1/O re-
There are two situations when merge is triggered: onegigest via the file system will trigger several system calls
when log block is full, the other one is when all log blockand pass through the generic block level, SCSI middle-
are exausted. Since log block FTL is one of the most pdpyer and flash drive drivers to reach the hardware. Extra
ular scheme today [8], we assume that the flash drivestivee cost will be spent on the system calls. More im-

will test are based on similar FTLs. portantly, we have no control of the logical block address
In order to avoid confusing, we will use segment to rejgnd the request size. Besides, we agen()with the flag
resent block in flash in the following sections. O_DIRECT [4] to open the device file. Vi®_DIRECT,

we can read and write on the device file without page
. . cache and read ahead specified by the running files sys-
3 Basic Experiments tems.

.) We usegettimeofday(jo get the disk service time for
To effectively measure the read and write performangg, micro benchmarks. Note that, though the time We get
of flash drives, we conduct our experiments basd on f¢,,ghgettimeofday(includes the cost of several system
following strategies. Initially, we design a set of prog,is pesides the disk service time. It is very accurate with
totype micro benchmarks based on our basic knowledge, nq 504 overhead compared with the time cost we get
and assumptions on flash drives performance. Throughpkirace[2] which is believed to be accurate in collec-

the benchmarks, we expect to check whether the initig)y, e gisk service time for both read and write requests.
assumptions hold with respect to our flash drives. Then

regards to the erect performance behaviors of the flagfb . .
drives we find in the experiments, we either refine or r&- Experiment Design

design the micro benchmarks to conduct further perfqfr this section, we design our prototype micro benchmark
mance experiments. Note that we recursively conduct thigsed on our basic assumptions on general flash drives be-
refinement or redesign of benchmark until we get betigyre we conduct any performance experiment. Our basic
understanding of both the write and read performancegfsumptions of the read and write performance on flash

the flash drives. drive are listed as follows.
. e Random read performance is uniform and excellent
3.1 Experiments Setup as there is no seek time on flash drive compared with

We conduct our experiments on HP Pavilion dv2000 (due- hard disk drives.

core of 1.83GHZ and 1GB memory) running Fedora Core, sequential read performance is good similar to that
7.0. Note that, the parallel execution of the due-core pro- f sequential read on the hard disk drives.

cesses make it difficult to get the benchmark execution _ _ _

time efficiently and accurately. Thus we disable one core® Random write performance is terribly bad as each

during our experiments. write needs to erase a whole data segment and con-
In our experiments, we use three different types of flash ~ duct the data merge into a free segment.

drives separately as follows. e Sequential write performance is good as a bunch of
e Unknown 1G write requests only need one data segment erase and

conduct the data merge into a free segment.

e Kingston Data Traveler 1GB Based on the above assumptions, we design our proto-

e PNY attache 2GB type micro benchmarks separately for read, write as fol-

lows.

Due to space limit, we can only comprehensively Random Read.We randomly read 4 KB data each time
present the experimental results on the Unknown 1G@r n times. Note that the starting address for each read is
And, we think the Unknown 1GB is more interesting angandomly and uniformly distributed over the whole logi-
challenging as it is almost a black box to us before we @g| address space. The number of triaihould be large

enough to make the experiments to be statistically mean-
1we get it free from the job fair. The only thing we know aboisit 'nng|-_ We generally seleat to be 1000 or more in our
its capacity. experiments.

Sequential Read We sequentially read 4 KB data eackinearly along with the number of reads. Actually, there
time forn times. Still we generally taka to be 1000 or is ho much difference between the total costs of random
more. Therefore, we actually sequentially readlocks read and sequential read of 4KB data for 1000 times.
in the logical address space of the flash memory in the exin conclusion, the read performance of our flash drive
periments. Note that, with out affecting the generality, weasically matches our assumptions that both random read
start the first read randomly in the logical address spaa®d sequential read perform relatively well. We note that

of the flash memory.

random read or sequential read of small data has the sim-

Random Write and Sequential Write We adopt the ilar cost. We also note the erratice read performance be-
same benchmark as that for random read except Favior that random read costs could be categerize into two

change read to be write.

3.3 Read

We execute our micro benchmark of read on the
drives and the performance results for random rea
sequential read are separately shown as follows.

35t . .

Time (ms)

15f . B

2. e .. PRI .o
1 0 Oaak el "
Fos o . 7 "
Loy 2 TN el s e’ e fonte AR YT s e 0 ol et ot S A o]

0.5r i

0 I I I I I I I I I
100 200 300 400 500 600 700 800 900 1000

Number of Trials

Figure 2:Random Read Full Range

In Figure 2, we present the time cost for each rar
read of 1000 trials. We find that the most of the cost
each read is less than 1ms. This performance is r
nized to be far better than that of random read on the
disk drives. And, this basically matches our assum
on the random write performance.

However, we note that in Figure 2 reading data o
same size but randomly distributed may result in d
ent costs, most of which are either around 1ms or al
0.75ms. This is contradict to our uniform read acces:
assumption that all the random reads should have |
the same time costs. We will interpret the extra over
of some random reads in our redesigned experimen

We show the sequential read performance of the

kinds, either of 1ms or 0.75ms.

800

700 b

600 [- N

500 (- B

Time (ms)
ey
o
o
.

300 N

200 N

0 0.5 1 15 2 25 3 35 4
Size of Data (MB)

Figure 3:Sequential Read (cumulative)

3.4 Write

140

120 PO e R o TR s SR
100 b

80 B

Time (ms)

60 : 1

200 .]

.
100 200 300 400 500 600 700 800 900 1000
Number of Trials

drive in Figure 3. In this experiments, we sequentially

read 4kB data each time with 1000 times overall(4MB) Figure 4:Random Write Full Range

in the flash memory. We plot the total time costs against

the cumulative data size for the sequential reads in Fig-Similar to read, we conduct the random write and se-
ure 3. Clearly, we find that the total time cost increasgsential write performance experiments with the bench-

mark designed previously. We show the experimen

sults separately as follows. ‘ ‘ ‘ ‘ ‘ ‘ s
Random Write. We randomly write 4KB data for 10 4000 ~

times uniformly distributed over the logical address a ss00l. // |

of flash drive according to the benchmark. In Figure . -

present the time cost for each random write again: 30001 P]

trial number. We find in this figure two different ty| 4 ..l ~ i

of write costs for most of the random writes. Mucl £ -~

the random writes take around 120ms which is very =~ & 2% // 1

compared with that only a few writes costing only 3(1500} - ,

There is even a few writes which only take around ~

According to the our basic knowledge[9], disk ser | ~]

time for only writing 4KB data should be around - 5001 // 1

and the substantial overhead for other writes taking i ‘

120ms might be caused by data merging for writin 0 05 1 L ot ain (MB§-5 3 35 4
introduced in Section 2. Each data merge needsa ... _. _

segment of data read out, modified and then written back

into one free segment as well as reclaiming the segments Figure 6:Sequential Write (cumulative)

by erasing. The overall random write performance ba-

sically matches our assumption that random write is bad

. . IS"huge performance difference between the sequential
and the especially high cost corresponds to our reasonin ge p q

. "Wite and random write. Only a few sequential writes cost
that nearly every random write conducts the data mergi y d

) i . r]’%“Oms appearing at regular logical addresses with fix dis-
However, we are still wondering the following 9€Neratnces of 64*4KB and all other writes cost around 1.5ms

qu_::‘stmn? to get better understanding of the flash dr'élgch. Then clearly, we can have 63 low sequential writes
Write periormance. following 1 high cost write.

e Why some random write costs around 30ms which is Based on our basu? knoyvledge on data merge, we be-
lleve that the sequential write triggers data merge at fixed

in the middle of costs of direct writing data and dat ;
merge? Is the time cost related to the data content aces. Whenever one log segment is aIIocgteq to the cur-
rent data segment, then the subsequent write into the cur-
e Why does every random write need data mergingZent data segment can be redirected into the log segment
directly without any extra data merge until the log seg-
ment is full. Based on the above reasoning, actually we
can determine the size of one log segment of the flash
140 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ drive is 64*4KB.

To clearly show the sequential write performance, we
plot the total time cost against the sequential write data
size in Figure 6. From this figure, we can see that the total
cost increases linearly and there are also intervals with

120F

100 N

& 8ol i size of 64*4KB.
€ In conclusion, the basic write performance matches
E oo} E well with our assumptions that random write is terribly
bad and sequential write is reasonably good. We know
4or] that the data merge is triggered either when the log seg-

ment associated with current data segment is full or a re-
guest for new log segment can not be satisfied by the free
. ‘ s — ‘ — ‘ log segments list. The latter case happens a lot when
0 100 200 300 400 500 600 700 800 900 1000 we conduct random writes. Beside, we are interested in
Number of Trials . . .
the following questions to get better understanding of the
write performance.

201 1

Figure 5:Sequential Write
e How many log segments are in the flash drive? How
Sequential Write. Similar as that for sequential read, are they used?
we execute the designed micro benchmark for sequential
write and show the results in Figure 5, 6. We note there® Can write large data improve write performance?

4 Redesign Experiments

With out initial design of benchmarks, we basically ash ,
the read and write performance of our flash drive. |
ever, we still have many questions on the way of 3r il

understanding the flash drive 1/O performance beha

. . . 25n T
Therefore, we refine our benchmarks in the following :

cording to the specific problems we want to answer. % 2 8
. .
15F . b
4.1 Read Revisited b - _ |
05 E;,‘ B - 5 N - ° .
4 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
350 i Number of Trials
Nl | Figure 8:Random Read (In Group)
25F b
;E; 2t . : . To testify our assumption, we modify the benchmark
£ program to restrict each read fall in to our assumed seg-
Ler " .) i ment group. The performance results are showed in Fig-
L+ e o e bty ot e ang e | ure 8. Nearly all the random reads cost around 0.75ms or
’ W........,,. less, which perfectly match our assumption that read in-
05 1 side one segment groups have no switch time, thus extra
e overhead. Our assumption is confirmed.

0
-1000 -800 -600 -400 -200 0 200 400 600 800 1000
Inter-Request Distance (MB)

4.2 “1"=*0"

Figure 7:Random Read (Inter-Request Distance) In executing the random read benchmark in Section 3.4,
we note several writes with strange time costs which are

In Section 3.3, our benchmarks show that many rapetween the cost for directly writing data and the costs we
dom reads have an extra overhead of around 0.25ms. &ggumed for data merging. Therefore, we are interest in
assume that the overhead may be related to the logic # question that whether the content of the data to write
dress of last read request. Therefore, we design the fill affect the writing performance. Then we design the
lowing inter distance benchmark based on the idea frofi-“1" benchmark to verify our assumptions as follows.
Disk Mimic[11]. To test the effect of data content on the writing perfor-

We randomly readi KB data each time fon times, mance, we separately overwrite bit “1” with “1” or “0”
which is the same as that of benchmark for testing re#fd overwrite bit “0” with “1” or “0". To isolate the many
dom read, except that we use different strategy to int@erformance factors in writing random data, we initially
pret the data. We plot each random read cost against iHgh the flesh drive to store all bit “1” or “0” and then
its distance to last random read in logical address. \#@quentially write 1000 blocks(4KB data) with either all
randomly read 4KB data for 1000 times and plot the pef” OF “0”. The experiment results are shown as follows.

formance result according to the benchmark in Figure 7rom Figure 9 and 11, we see that when sequentially

From this figure, we can see that if the inter—reque‘gfiting blocks with all “0” onto the flash drive with either
’ “0” or “1” get nearly the same data merge cost, which

distance is smaller than around 240MB, most of the rea_Q]E '
have the time cost of around 0.75ms. Otherwise, mostid£oMs for each data merge. On the other hand, from Fig-

reads cost around 1ms. Therefore, we guess that the fidgh10and 12, we find sequentially writing blocks with all

drive may be divided into four segment groups. If an“ " onto the flash drive with either all “1” or all “0” also

read needs to access a segment in a different group fidfiS nearly the same time cost. However, the data merge
the current one. there is an extra switch fime cost for writing “1” is much higher, compared with writ-
’ ing “0”, at around 120ms. Therefore, we claim that se-

guentially writing blocks with “1” pays much higher cost
2\We refer to the overhead of crossing the boundary as swtieh ti - than writing “0”.

140 T T T T T T T T T 140

120+ B 120+ R

100 B 100 |

o 80fF 4 o 80fF 4
E E
(] (3]
€ €

E 60f 4 E 60f 4

40 1 40]

20 b 20 B

N — L I L L L T - L O P T L 1 L . L I L L L
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Starting Address (# of blocks) Starting Address (# of blocks)
Figure 9:Write “0” to “0” Figure 11:Write “0” to “1”
140 T T T T T T T T T 140

1200 ¢ . e e e B 120F - v ..o e B

100 R 100 B

7 80f 1 % 80 1
£ 3
(3] (3]
£

'E 60 R = 60r b

40 1 40f 1

20 R 201 B

O a L L L L L L ; L L 0 L L Cme 1 1 b L - 1 B— L 1
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Starting Address (# of blocks) Starting Address (# of blocks)
Figure 10:Write “1” to “0” Figure 12:Write “1" to “1”

In order to study whether the percentage of bits “1” ithat the page size of this flash drive is 2KB. If either part
the blocks we sequential write will affect the data merg@ntains some “1”, then the data merge cost will be high
performance, we randomly fill the data block to be writteand has the same effect as the whole part is filled “1”s.
with bits containing half “1”s and half “0”s. From Fig-This cost is nearly half of the that for writing blocks with
ure 13, we see that the data merge cost for writing sugh“1"s. If both parts are filled with only “0”s, then the
blocks is still around 120ms, which is nearly the san##&ta merge cost is rather low.
as that for sequentially writing blocks full of “1”s. To
get better understanding of the performance, we cut eqﬁlg Log List
block(4KB) into two parts and each has 2KB. Then we
randomly choose one part to be filled with some “1”s ars we have shown in Section 3.4, the sequential write of
the other part is still filled all with “0"s. We get the perfor4KB data is generally more efficient than random write.
mance in Figure 14 and the data merge only costs arourte major reason is that sequential write can fully ex-
60ms. If again, we fill both parts with some “1"s, themploit each allocated log segment. However, if there are
data merge cost shown in Figure 15 is around 120nesiough free log segments in the log list, random write
Therefore, we can claim that each 4KB data block is cotan also achieve much better performance similar as that
sidered as two parts in writing, based on which we third€ sequential write. Therefore, the size of the log list is

140

ok - i

100 N

80 b

Time (ms)

60 b

n n n T n n n n n
100 200 300 400 500 600 700 800 900
Starting Address (# of blocks)

1000

Figure 13:Write Random“0.5" to “0”

140

120 b

100 b

80 B

Time (ms)

60 7

40t 1

20 B

L L L v L L . L L L L
100 200 300 400 500 600 700 800 900
Starting Address (# of blocks)

1000

Figure 14:Write half “1” to “0”

one important parameter that greatly affects the flash
performance.

To test the size of the log list, we design the follov
benchmark.

Assume the segment size is sgge, initially we cor
tinuously conducin(starts from 1) writes ofKB. Amon¢
the m writes, the first is on a random addressant
then each subsequent write in on an logic address
segsize larger than the previous one. We refer sa
write as one write round. After we are done with the
write round, we repeat thewrites as another round.
all the new writes do not trigger data merge, we cal

140

120F "
100{ 1

80 b

Time (ms)

60 b

= n - n — n T n n
100 200 300 400 500 600 700 800 900
Starting Address (# of blocks)

1000

Figure 15:Write both halves to “0”

size amn-1and stop. Note that, we can determine whether
a write triggers data merge or not easily by checking the
time costs.

We execute the benchmark on our flash drive and the
time cost in the unit of microseconds for each write is
shown in Table 2. The firstrowin Table 2 refersto the rel-
ative positions (in unit of segmentation) to the first write
in each write round Due to space limit, we only present
the time cost for each write whenis 3 and 4. Still, we
can easily determine the log list size of our flash drive is
3 according to our benchmark design.

4.4 Large Read Or Write Requests

35 T T T
O One Block in a Request

X Multiple Blocks in a Request

30F o A

25F o J

Time (ms)
= n
(%)) o

T T

o

o
o
. .

. .
0 5 10 15 20 25 30
Size of Data (# of blocks)

all the data segments which we try to write data into have
already got allocated log segments. Then we can increase
m by 1 and repeat the above experiments. If all the new

Figure 16:Large Read vs Small Read

writes trigger data merge, we easily determine the log listin our initial benchmarks on either read or write, each

ni|l 2 3 4 1 2 3 4
3| 28994 | 28750| 28657 2600 | 2722 | 2598
4 | 29296 | 28495| 28723 | 28919 | 28594 | 28726| 28719 | 28797

o
©

Table 2: Time cosj(s)

Time/Block (ms)
13 o o o
B (%)) o ~

e
w

o
)
T

o
o

o

. . .
5 10 15 20
Size of an Physical Request (# of blocks)

25

Figure 17:Large Read: Cost Per Block

©
o

30

T T T
O One Block in a Request
X Multiple Blocks in a Request

®
o

~
o
T

@

o
T
(e}

% o
w 50 o 4
£ o
2 o®
£ 401 x J
= OO x %
o x X
o x |
30 oO . x
¢} x X
20 o) x X T
o x
x
0 ux*
10 0% 1
o x X
9 %
0
0 5 10 15 20 25

Size of Data (# of blocks)

Figure 18:Large Write vs Small Write

30

15

Time/Block (ms)

0.5 B

0
5 10 15 20 25 30
Size of an Physical Request (# of blocks)

Figure 19:Large Write: Cost Per Block

write as follows.

The benchmark for large read is similar to that for the
random read, except that for each time, we need read data
of larger size from 4KB up to 30*4KB. At the same time,
we conduct read for each data size several times to get the
average value.

We show the performance results of executing bench-
marks in Figure 16 and 17. Note that in Figure 16,
we study the performance of reading the same amount of
data in either one application request or several requests.
Clearly, we see that write large data in one requestis much
more efficient and can cost only less than a quarter of the
time for reading data in multiple chunks of 4KB when the
total data size is 30*4KB.

In Figure 17, we plot the average time cost for each
4KB block by varying the physical request data size from
4KB to 30*4KB. We find that the average time cost
per block gradually become nearly constant and reaches
0.25ms. Therefore, we claim large read had very good

request only takes 4KB data. Actually, in real life workscalability.

load, we need to read and write data of much larger sizeTo design the benchmark for large write, we have paid
in one request. However, there is a size limit of a physiazadreful attention to the data merge to isolate its affects.
request for both the read and write, which is 30*4KB. NAssume we want to measure the time cost for Wik,
matter how large the data is in the application requestsyi¢ issuen pairs of write request continuously. For each
will be cut into small chunks of size less than 30*4KBpair of requests, the first writes at a random logical ad-
Therefore in our benchmarks, we only measure the IfBesssand the other request writeiKB data from the
performance with data size of 30*4Kb and less. We segame address. Since the previous request has got a
arately design our benchmarks for large read and latgg segment, the second request can be serviced without

Brand Capacity| Price | # of Groups| log block size| log list size | 0==17
Unknown | 1GB FREE | 4 64*4KB 3 No
Kingston | 1GB $8 2 128*4KB 4 Yes
PNY 2GB $16 2 256*4KB 4 Yes

Table 3: Summary of Experimental Results

merge. The average of tindrials is the average time cossome interesting experimental results. Besides, these pa-

of dKB write request.

rameters inspire us to rethink about the design of file sys-

We execute the benchmark and get very similar perfeems on the falsh drives. In the future, we would like to
mance shown in Figure 18 and 19 to the performanceedtend our benchmark to study SSD.

large read.

This work gives us a great oppurtunity to get into the

research of storage systems. The great lesson we have

4.5 Summary of Experimental Results

learntin the experiments is “everything has a reason”. An-
other precious experience is that “Solid your base and then

Despite our work in this paper is mainly based on the Umove forward”.

known 1GB, we also execute all the benchmarks on the
other two flash drives. The performance parameters
summarized in Table 3.
[1]
[2]

5 Related Works 3]

Flash Translation Layer (FTL) is an important layer in
a flash storage system. FTL and its specification is fir&]
proposed by PCMCIA[1]. Kawaguchi et al. designeds)
a flash-memory based file system[7], which use similgg)
ideas from LFS[12] to implement FTL-like functions such
as address translation, log block, cleaning(merge). In [6]]
it discussed the FTL specification in detail. Kim et al. de-g]
signed a novel log block based FTL[9] which combineé
both block and page level granularities to achieve beter
performance with smaller space. More recently, Kim et al,
added RAM to flash and proposed a write buffer maneggz]
ment scheme to improve random writes performance[8].
Saavedra et al. developed a new approach, miﬂ]
benchmarks, to analyze the performance of KSR1 mem-
ory architecture and got insights about part of the desigm]
which is unpublished[13]. Disk Mimic[11] applied a set
of micro benchmarks to get hard disk latency and used the
data to predict the response time of hard disk. Birrell)
all. tried limited micro benchmarks on USB flash disks

and gave some interesting results[3]. [13]

6 Conclusions and future works "
In this paper, we have designed a relatively systematic
series of benchmarks to study the performance of flash
drives. We apply the benchmarks on three different types
of flash drives and successfuly get the performance pa-
rameters, some of which are not published by the manu-
facturers. Via the parameters, we can effectively intdrpre

10

References

Pcmcia, http://www.pcmcia.org/.
J. Axboe. Block trace, http://www.kernel.org/git/Apwix/kernel.

A. Birrell, M. Isard, C. Thacker, and T. Wobber. A desigm high-
performance flash disksSIGOPS Oper. Syst. Re41(2):88-93,
2007.

D. P. Bovet and M. Cesati. Understanding the Linux Kernel
O’'Reilly, third edition, 2006.

S. Forum. Smartmedia specification, http://www. ssbd¢p.

Intel. Understanding the flash translation layer (fhesification,
1998.

A. Kawaguchi, S. Nishioka, and H. Motoda. A flash-memory
based file system. IDSENIX Winter pages 155-164, 1995.

H. Kim and S. Ahn. Bplru: a buffer management scheme for im
proving random writes in flash storage. RAST'08: Proceedings
of the 6th USENIX Conference on File and Storage Technapgie
pages 1-14, Berkeley, CA, USA, 2008. USENIX Association.

J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y. Cho. A space-
efficient flash translation layer for compactflash system$EEE
Transactions on Consumer Electronie®lume 48, page 366375,
2002.

M-Systems. White paper: Two technologies comparedr W0
nand.

F. 1. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaaid3eau.
Robust, Portable 1/0 Scheduling with the Disk Mimic.Rroceed-
ings of the USENIX Annual Technical Conference (USENIX,’03)
pages 297-310, San Antonio, Texas, June 2003.

M. Rosenblum and J. K. Ousterhout. The design and imgfem
tation of a log-structured file systerACM Trans. Comput. Syst.
10(1):26-52, 1992.

R. H. Saavedra, R. S. Gaines, and M. J. Carlton. Micrcberark
analysis of the ksrl. IBSupercomputing '93: Proceedings of the
1993 ACM/IEEE conference on Supercomputipages 202-213,
New York, NY, USA, 1993. ACM.

Samsung. K9f8g08uxm datasheet, http://www.samsang,
2007.

