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Abstract

The fact that systems fail should come as no sur-
prise to anymore who has ever developed or worked
on a system. A failure reduces the availabil-
ity of the system and hence the productivity of
entities using this system. To increase system
availability, several approaches have been de-
veloped; these approaches range from simple
techniques such as restarting the entire system,
to complex algorithms that isolate and restart
the failed subsystem. We find the simple ap-
proach of a system reboot to be particularly in-
teresting because it is a widely deployed ap-
proach. We profile the set of instructions ex-
cuted during the startup phase of the system
and identify heavily utilized segments. We im-
plement, in Xen, a framework for both monitor-
ing the start-up sequence and identifying highly
utilized segments of code. We show that mod-
ifications to the identified segments affect the
start-up sequence. Finally, we examine the iden-
tified segments and suggest modifications that
will, if implemented, increase availability by re-
ducing the boot up time.

1 Introduction

The system restart plays a key role in the recov-
ery model for many large and popular systems.
For example, The Blue Screen of Death or sys-
tem failure, is perceived as the default recovery
behavior for failures in the Windows O.S. [4]. In
the famous Blue Screen of Death scenario, Win-

dows panics and prompts the user to restart the
system. System reboot as a recovery model is
not native to Windows Operating Systems, in
[7], Prabhakaran et al. show that the system re-
boot model is employed by several Linux file
systems. There are many reasons for the preva-
lent usage of this model. The reasons range
from simplicity of implementation to negligible
overhead. Although simple, this model is not
without its drawbacks; it forces the system to
perform the entire boot-up sequence. The boot-
up sequence is often time consuming as it loads
and initializes modules and drivers required by
programs that use the system. The amount of
time spent executing the boot-up sequence di-
rectly impacts the availability of the system; sys-
tem availability is the
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Mean time to recovery is essentially the amount
of time spend executing the boot up sequence
and it follow from eq(1), that optimizating the
boot up sequence will increase the system avail-
ability.

In this paper, we pose the following question:
Is it possible to identify a small portion of the boot-up
sequence which if optimized will result in significant
improvements in the availability of the system? To
answer this question, we design and implement
a framework to profile the boot-up sequence.
This framework utilizes pc sampling to identify
the distribution of time spent in each segment of
code executed during boot-up. The framework



identifies and ranks code segments based on the
frequency with which we sample them.

With the framework in place, we develop and
apply a ballooning technique, to increase the
amount of instruction executed in a segment.
The goal of ballooning is to quantify/validate
the achievable gains from the optimization of
the identified regions. We show that by bal-
looning and increasing the number of executed
instructions we increase the boot-up time and
the rank of the modified segment. We claim
that the inverse of this holds; deflating a func-
tion or decreasing the number of executed in-
structions should reduce boot-up time and the
rank of the modified segments. Upon exami-
nation and analysis of the top 5 segments iden-
tified by the framework, we developed a few
suggestions for reducing the cycles spent exe-
cuting boot-up sequence. Finally, we validate
our the framework by analyzing the profiles of
certain code segments over different boot-up se-
quences.

The rest of this paper is as follows: section 2
presents a brief literature survey of the domain
space. In section 3, we discuss the implemen-
tation of our framework. We then present and
evaluate the results of running our framework
on a real linux operating system in 4. Finally we
conclude with a summary of our achievements
in section 5.

2 Related Works

Our work builds on [7] which identifies failure
models employed in various portions of the file
system code. Our work looks into increasing
the availability of systems that employ system
restart recovery model. We believe that sys-
tem restart recovery is the most widely applied
failure recovery model in the systems commu-
nity. The systems community has worked for
many years on profiling techniques to identify
code which requires optimization. Most of the
work in the profiling space focuses on user-level
applications [2], and kernel code [1]. Recently,
however, [6] presented a seminal approach to
profiling virtual machines.

Our current approach differs from [2], in that
our framework doesnt discriminate between
user level processes and treats all user level pro-
cess as one. Unlike our architecture, the ar-
chitecture presented in [2] targets specific pro-
cesses and only analyses time spent in user
space.

Unlike, prior kernel profilers [1] which re-
quire the kernel to load certain modules before
profiling can be initiated our approach can be-
gin profile from startup time. In comparison,
our method suffers a major draw back because
we only profile kernels that have been modified
to run on the xen virtual machine. These mod-
ifications alter the shape of our results and add
noise that would otherwise not be present in the
environment profiled by other kernel profilers.
Contrary to the approach taken in [1], we per-
form software level monitoring.

Finally, seminal work in [6] presents a frame-
work similar to ours, however, we defer in two
things; where profiling analysis is performed
and the amount of data-structures used. [6]
runs profiling anlysis tools from within the pro-
filed operating system while we run our tools
from the main operating system running in do-
main 0.

3 Architecture

Our profiler implementation requires changes
in three different levels: the Xen Hypervisor, the
Linux kernel, and user-level tools. This imple-
mentation supports flexibility and ease of use
with regard to acquiring profiling data.

3.1 Program Counter Sampling

A useful way to determine a performance pro-
file is with program counter sampling. The
program counter contains the address of the
next instruction to be executed. By reading this
value, it is possible to determine what code is
currently running.

Therefore, this value can be sampled many
times to determine where in the code most of
the time is being spent. For example, if two



functions are always called in sequence yet one
function shows up in the profile more often, it
can be inferred that this function is consuming
more processor time than the other.

Consequently, program counter sampling is
an unobtrusive way to determine where the per-
formance bottlenecks of a system are. Source
code is not required and does not need to be an-
alyzed to determine this. However, a symbol
table compiled with executables is necessary to
correlate a program counter value to functions
in an executable.

3.2 Xen

Since the motivation behind our project is to dis-
cover performance information of the operating
system startup, we required an implementation
that could profile performance over the entire
startup process. As a result, building our pro-
filer into a virtual machine monitor was a natu-
ral choice; the virtual machine gives us the free-
dom to sample P.C. while various key subsys-
tems are being brough online. We choose Xen
as the virtual machine monitor to build our pro-
filer on.

Xen is an open-source virtual machine moni-
tor that runs directly on hardware as the kernel
[3]. Each guest operating system running on top
of Xen is referred to as a domain. Domain-0 is
the first guest operating system, which receives
special privileges. These privileges include
scheduling other domains, multiplexing hard-
ware devices, and providing a user-interface.
This allows the Xen Hypervisor to be as simple
as possible.

Most of our modifications to the Xen Hyper-
visor are in the timer_interrupt function. In this
interrupt handler, we profile the guest operat-
ing systems. The high level pseudocode for this
operation is presented in Figure 1:

The program counter buffer is implemented
as a circular buffer, where the buffer overwrites
the oldest values if it becomes full. We did in-
crease the frequency of the timer_interrupt in
the Xen Hypervisor from 100 ticks a second to
1000. This allowed us to get more program
counter values in a single run and reduce the to-

domai nl D = get Current Donmai nl () ;
if (domainlD > 0) {
pcBuf fer.record(currentPC);

}

Figure 1: Xen Hypervisor Profiler: pseudocode for
profiling Program Counters in Xen

tal number of runs required to get a large sam-
ple. Program counter values originating from
Domain-0 are not sampled. Only those P.C.s
generated by unprivileged domains are sam-
pled. The reasoning for this is explained in the
usage section.

Xen improves virtual machine performance
by allowing the guest operating system to know
they are being virtualized. Therefore, the guest
operating system can make upcalls to the Hy-
pervisor known as Hypercalls. A Hypercall is
very similar to a system call, other than it uses
interrupt 82 instead of interrupt 80. By directly
calling into the Hypervisor, the number of con-
text switches between the guest operating sys-
tem and Xen can be reduced.

Consequently, we added a Hypercall to Xen
to allow the guest operating system to retrieve
the program counter values from the buffer. The
Hypercall simply copies the values in the pro-
gram counter buffer to the buffer supplied by
the guest operating system. The pseudo-code
for this operation is presented in Figure 2:

PCVal uesLoaded = 0;

Foreach entry in the supplied buffer {
I f (program counter val ues exist) {
CopyPCVal ueToBuf f er (pcBuffer. Get());
PCVal uesLoaded++;

}

}
Enpt yBuf f er (PCVal uesLoaded) ;

Ret urn PCVal ueslLoaded,;

Figure 2: Xen Hypervisor Profiler: Pseudocode for
retrieving Program Counters

The Hypercall returns the number of program
counter values retrieved. All the program val-
ues that are copied to the buffer supplied by
calling program are then cleared from the Hy-



pervisor’s buffer.

3.3 Linux

In order to support profiling, we made several
Changes to the Linux kernel. In our framework,
analysis of the samples is performed in user
realm while the samples themselves are stored
in xen realm. To facilitate analysis of data we
added a system call to Linux. This system call
simply forwards the request to the Hypervisor
via a Hypercall. The Hypercall fills the pro-
vided buffer with program counter values.

3.4 User-level

The final piece of our framework is the user-
level application which analyzes the data re-
ceived. The first user-level program acquires
the entire program counter values currently
stored in the Hypervisor. This process repeat-
edly calls the system call added in 3.3 until
all the program counter values have been re-
trieved. When the user-level program calls the
system call, the interrupt is trapped by the Hy-
pervisor, which then transfers control to the
Linux kernel. The Linux system call then trans-
fers control back to the Hypervisor with the Hy-
percall. The same process happens in reverse
when transferring control back to the user-level
program.

Once the program counter values have been
retrieved, a variety of scripts are run to inter-
pret these results. The first task is to map pro-
gram values into the three different realms, the
Xen Hypervisor, the Linux kernel, and the user-
level. Memory Addresses is partitioned into
three different realms. The addresses belonging
to the Xen Hypervisor are all greater than Oxfc
(in hexadecimal). Values that originated from
the Linux kernel will be greater than Oxc (in hex-
adecimal). Any address value below the kernel
boundary belongs to the user-space.

In addition to mapping values to the different
realms, we also map program counter values
to functions in both the Xen and Linux realm.
The symbol tables for both of these realms are
provided, so we just need to check the specific

range the program counter value falls in to de-
termine the function. The user-level program
counter values cannot be mapped to the func-
tion level, because this requires knowledge of
the exact process from which the P.C. was sam-
pled.

Once program counter values are mapped to
realms and functions, the most important in-
formation is to get the profile from the data.
The profile contains the frequency for both the
realms and the function over the sample data.
We consider both the number of times sampled
and the percentage of total samples. We get the
profile for both aggregate frequencies in realms
and frequencies in individual functions.

The profile of the sample is important be-
cause this contains the information on where
optimization should be done. For instance, if
one function is accounting for over 50

In addition to determining the frequency pro-
tile, we also get frequency information based on
time. This allows us to see how much a func-
tion is being called for a specific time interval.
One use of a time frequency profile is to validate
that multiple executions produce similar results
in terms of when functions are heavily called.

3.5 Limitations

One limitation of this architecture is that user-
level applications cannot be profiled. All pro-
gram counter values in the user-space are ag-
gregated into a single entry in profile results.
This is due to the fact that user-level programs
will have overlapping program counter values.
Since our profiler is built into the Xen Hyper-
visor, it is not possible to determine the pro-
cess that is running. We could have queried
the Linux kernel to derive this information,
which would allow us to determine the fre-
quency information for individual processes.
However, none of the user-level executables
we checked included symbol table information.
This combined with the fact that we were profil-
ing startup, which does not spend a lot of time
in user-space, we decided this was of little util-
ity. By modifying Linux of the unprivileged do-
main, it also may have affected the profile.



The fact that Xen uses paravirtualization also
affects the profile returned by our architecture.
Since the guest operating system is modified
to make Hypercalls, this will return a different
profile than a Linux install running directly on
the hardware. This limitation is visible in our
results.

Finally, operating system startup in a virtual
machine is not identical to startup directly on
a physical machine. For instance, Xen must
emulate BIOS since the guest operating system
cannot access these basic devices directly. We
are unsure of how this affects the profile results
since we cannot get profile information without
Xen.

3.6 Usage

With this framework in place, we can record
program counter values from any non-
privileged domain. Then, we can run our
user-level tools in the privileged domain. Then,
perform whatever operation to record profile
information in the unprivileged domain. The
program counter values then can then be
accessed in Domain-0.

This makes it easy to profile startup. First,
the program counter values in the Xen Hyper-
visor should be cleared. The unprivileged do-
main can be created from Domain-0. Once the
unprivileged domain is finished starting up, it
can be killed. The program values retained in
the Xen Hypervisor will correspond to the en-
tire startup process.

4 Analysis

In this section, we present the environment in
which our experiments were performed and
methodology used to perform them. Then we
discuss the repercussions of our results and con-
clude by summarizing insights gained.

4.1 Experiment Setup

We profile the boot-up sequence for the Ubuntu
6.06 Linux Disto [5]. The variant of ubuntu that

we profiled was modified to allow for integra-
tion with the xen hypervisor. We built the hy-
pervisor from the xen 3.0 code which we mod-
ified to instrument our architecture. Our tests
were performed on two sets of computers; these
computers had slightly different hardware. We
now present that parameters for the machine on
which most of our tests were performed; this
computer was equipped with a Pentium 2.33
Core 2 duo processor, 2 GB DRAM, and 160 GB
HDD(7200rpm, 12ms seek).

4.2 Experiment Procedure

In our experiments, we define the boot-up se-
quence as the set of instructions executed from
the time power comes on until the user receives
a login prompt. We limit our profile to the boot-
up sequence by manually monitoring the guest
operating system and stopping the user level
profiler once the prompt comes up.

Using the profilers dump as input for our perl
script we resolve the P.C. values to Symbols.
The frequency and distribution of these sym-
bols are graphed and presented in the next sec-
tion. We note that this manual step introduces
some error; we sample a few P.C. values from af-
ter the boot-up sequence. We ignore the effects
of the extra P.C. values because they are statisti-
cally insignificant: 10 extra values do not affect
the distribution in a sample of roughly 25,000
values.

4.3 Experiment Results

In this section, we present two groups of results,
the first displays the percent of time spent in the
realms. The second presents the portion of time
spent in the sampled symbols of each realms.
In Figure 3, we present the percent of time
spend in each of the three realms over the
course of the boot-up sequence. From this fig-
ure, we observe that the overheard of virtualiza-
tion is significant and relatively constant; time
spent in the xen realm accounts for virtualiza-
tion overhead. Unlike the profile for the xen
realm, we notice that user and kernel realm both
present interesting and distinct profiles. In Fig-
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Figure 4: Distribution of time spend in
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ure 4, we graph the profiles for the two realms,
user and kernel, without the noise of virtualiza-
tion. In this new graph we notice that time spent
in user space is relatively insignificant, averag-
ing 3%, until the last mile of the boot-sequence.
During the last mile the time spent in user realm
more than doubles that spent in kernel realm.

We believe that the kernel and user profiles
can be explained by the structure of the Linux
bootup sequence. In linux, the first process cre-
ated after suitable initialization of hardware is
the init process. This process runs in user realm
and parses several configuration files during the
boot-up sequence. The init process uses the con-
tents of the configuration files to load and con-
figure modules. The loading and configuration
takes place in kernel space. For example, the
configuration file for networking contains the
interface to bring up and the parameters for
this interface; while the configuration file may
be read in user realm jumps need to be made
to kernel realm to access privileged instructions
that deal with the ethernet driver.

Switching between user and kernel realms re-
quires the use of a system call. In figure 6,
we present the profile for the system_call sym-
bol over the course of the boot up period. We
find that system_calls are sampled frequently
and consistently through out the boot-up se-
quence. These findings lead us to propose the
following question: Are symbols correlated? Is
there a sequence of symbols that are sampled repeat-
edly?  In response, we developed perl scripts
to correlate symbols and we find one such se-
quence of correlated symbols; scrit system_call
scrit system_call. An interesting observation
from this sequence is that at several points dur-
ing boot-up, code is essentially switching back
and forth between realms. The sequence is gen-
erated from 1 millisecond samples and while a
lot could indeed occur between these samples,
we still find it interesting that the sequence oc-
curs frequently.

In our correlation analysis we notice that
scrit and system call symbols are sampled fre-
quently, in Table 1 we present the top 10 most
sampled symbols. Of the 10 symbols presented,
we noticed that only the top 6 are relevant as
these account for over 70% of the cycles used
during boot-up. Of these 6 symbols, 5 are used
for context switching either between the user
and the kernel or between the kernel and xen
realm. We notice that the more frequent switch
between kernel and xen account for 40% of the
cyles lost during boot-up sequence. In contrast,
the user user to kernel switch accounts for half,
or 14%, of the time spent during boot up.

From these results we conclude that the cost
of virtualization is significant and that opti-
mization of the context switching code will pro-
vide faster boot-up sequence.

4.4 Experiment Validation

In the previous section, we observed that an
operating system running in a virtual machine
wastes approximately 60% of its time switch-
ing between the various realms. Also we note
that an operating system on physical hardware
would loose 30% of its bootup time to context
switching. From these observations, we con-



Version of Fraction of |boot-up| Fraction of
Flush Area Local | Cyles Sampled | time |Times Sampled
Control 0.019 30.1 0.6
Ballooned 0.719 94.2 67.5

Realm Symbol Fraction of | Symbol
Name Time Sampled | Rank
Xen | handle-exception 0.28891 1
Xen hypercall 0.16096 2
Xen | hypercall-page 0.12231 3
User 0.09183 4
Kernel scrit 0.07392 5
Kernel system-call 0.06101 6
Kernel page-fault 0.04858 7
Kernel error-code 0.03929 8
Xen | flush-area-local 0.02421 0
Kernel paging-init 0.00968 10

Table 1: The Top 10 Symbols sampled. For each sym-
bol the realm, fraction of time sampled, and its ranks
are displayed in the table
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Figure 5: Frequency Profile for flush area local
Compare the frequency of the balloned flush area local
in blue against the frequency of the normal, unballooned
flush area local.

clude that modifying the switching code would
greatly improve bootup time.

Modifying kernel switching code requires
some level of familiarity which we currently
lack. In the face of inexperience, we show that
modifying the number of executed instructions
in a code segment changes the boot-up times
and affects the frequency with which the as-
sociated symbol is sampled. Instead of opti-
mizing a symbol, we slow down or balloon the
symbol. Our Ballooning technique consisted of
adding a for-loop which performed trivial math
calculations. In figure 5, we show the results
of ballooning the flush_area_local symbol. The
flush_area_local symbol was chosen for balloon-
ing bcause it is one of the less frequently sam-
pled symbols. Figure 5, shows that the bal-
looned flush-area-local is consistently sampled
3 orders of magnitude more than the normal
flush_area_local. In Table 2, we show that boot-

Table 2: Percent of time flush area local is sampled
and the amount of time (in secs) taken to complete
the bootup sequence
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Figure 6: Frequency profile for System call. Fre-
quency of profiling the system call symbol over three dif-
ferent runs.

up lasts 30.1 seconds for normal runs but lasted
94.2 seconds for the ballooned runs. From The
numbers in Table 2, we see that in normal boot
up flush_area_local takes 0.6 seconds and onced
ballooned it takes 68 seconds. The amount of
time not spent in flush area local varies by 2
seconds, with control spending 29 seconds ev-
erywhere else and the ballooned run spendign
27 seconds everywhere else. We believe this dif-
ference of 2 seconds isn’t large enough to invali-
date our theory; from these results we conclude
that reducing the number of executed instruc-
tions will have the desired effect of optmizing
the bootup sequence.

4.5 Experiment Verification

In this section, we provide verification of our
framework in two ways; first, by showing that
our results are reproducible. Second, by show-
ing that the symbol profiles recorded align with
expected symbol usage patterns. In figure 7, we
show the profile for the page_init symbol across
3 randomly chosen runs. We see that in all three
runs the function has the identical profile. In
tigure 6, we display the profile for the system
call symbol from the same 3 runs as those used
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Figure 7: Frequency profile for page init. Frequency
of profiling the page init symbol over three different runs.

in Figure 7. We notice some minor variations
in the profiles but nothing significant enough to
raise questions in the reproducibility of our ap-
proach. In figure 7, we see that the profile for
the page_init function aligns well with how we
expect it to be used. Page_init, initializes page
related datastructures and should ideally be run
before paging is used. We find that in figure 7,
the symbols are used during the initial 1000 cy-
cles and then never again.

5 Conclusion

Fast recovery from failures is crucial in profit
or productivity yielding systems. Different sys-
tems employ different and sometimes appropri-
ate failure recovery models. One of the preva-
lent failure recovery models is the system restart
model. In the system restart model, the avail-
ability of the system is inversely proportional to
the time required to execute the boot-up code.
We make two contributions to the domain of
failure recovery; (1) we implement a framework
that identifies critical code segments in the boot-
up sequence; (2) we use the framework to iden-
tify the critical segments in a real Linux distro
and suggest a few ways to speed up the boot
sequence.
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