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Abstract 

 
Recent trends have seen database clients use 

content addressable storage systems (CASs) for near-
line storage. While CASs have many attractive 
properties such as storage space savings, data integrity, 
and low network bandwidth requirements, CASs are not 
well suited for databases, mainly because of the rigid 
structure of databases, and the way databases 
intersperse metadata with data.  

In this paper, we evaluate where current CAS 
techniques fail for databases and identify properties of 
database systems that can be leveraged for potential 
improvements to CAS techniques specific to databases. 
We propose fives ways in which CAS systems can be 
made “database aware,” and evaluate the potential 
strengths and weakness of each approach. We find that 
our techniques improve memory savings, but at the 
expense of coupling the solution too closely to 
particular database vendors. 
 
 
1 Introduction  
 

CAS divides files into chunks (other names include 
segments [3], blocks [1], atomics [7], or fragments [6]). 
Each chunk is indexed by a descriptor, or fingerprint, 
that uniquely identifies its contents. Files are hence 
content addressable, rather than location addressable.  
Identical chunks have the same fingerprint, which 
insures that redundant data is never stored twice. This 
technique substantially reduces the amount of storage 
space required, provided that duplicate information 
exists in the file system.  

Virtually all the systems we study use the 
cryptographic SHA-1 hash function [5] to calculate the 
fingerprint for each chunk. One of the most desirable 
properties of this hash function is that it is very efficient 
to compute. Yet another desirable property is its strong 
collision resistance. With extremely high probability1, 
                                                
1 Assuming random hash values and a uniform distribution, a 
fingerprint collision for an exabyte (10^18 bytes) of data 
divided into 8 kilobyte chunks will occur with probability less 
than 10^-20, which is many orders of magnitude less than 
hardware error rates [1]. 

each fingerprint will uniquely describe the contents of 
its corresponding chunk.  

A three-way distinction can be made between 
chunking techniques. Data can be chunked based on: 
(1) whole file content, (2) fixed-size chunks, or (3) 
variable-size, content-based chunks. In (1) the chunk 
boundaries are simply determined by the beginning and 
ending of the files being stored. Techniques based on 
(2) determine chunk boundaries by fixed offsets from 
the beginning of each file. Techniques based on (3) are 
more complicated and typically involve discovering 
anchor points throughout each file based on its 
contents. This is usually accomplished using some 
variant of the Rabin fingerprinting technique described 
by Udi Manber in [4]. Although (1) and (2) are simple, 
in most situations they effectively make files stored on 
the system immutable. Variable-size chunking 
techniques do not suffer from this problem.  
 
 
2 Motivation 
 

Content addressable storage systems (CASs) are 
primarily used to store data that changes rarely, and is 
accessed infrequently (write once, read many). 
Databases increasingly use CASs for storing backup 
information, and snapshots. Unlike traditional CAS data 
(business data, MRI Images), which are loosely coupled 
with metadata(if  any), databases are not well-suited for 
CAS. The problem with database storage structures is 
that metadata is A) substantial, and B) tightly 
interspersed with data. It is therefore difficult to exploit 
data redundancy for space savings. 

Another limitation of current CAS techniques is 
that they only exploit identical files, blocks, or chunks. 
Typically, many pages within database storage 
structures are similar, but very few are identical.  

Databases make up a significant portion of storage 
system clients. Simply said, they are too important to 
ignore. Given the increasing use of CASs by database 
systems, we aim to improve CAS techniques 
specifically for the database domain. 
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Table 1: target chunk size vs. actual average chunk size 
Data type Target Chunk Size Actual Average Size

(bytes) (bytes)

128 175
256 303
512 559
1024 1070
2048 2094
4096 4137
8192 8220

16384 16413
32768 32848

330 MB Sparse Oracle Tablespace 8192 21335

5 MB Sparse PostgreSQL Tablespace 8192 15443

560 MB Mix of Files 4096 1100
(pdf, txt, doc, mpg, jpg, etc...) 8192 1849

16384 2062

1 GB Music Data
(mp3, wma, wav, m4a)

 
 

Our approach to this problem is as follows. We 
implement several key features of state-of-the-art CASs 
and evaluate these features on different kinds of data, 
including music files, text data, and database data 
(Oracle [10] and PostgreSQL [9].) We determine 
quantitatively that recent variable-sized chunking 
techniques perform poorly on database data. 

We then study the low-level storage structure of 
databases (mainly Oracle and PostgreSQL) and identify 
properties that can be leveraged for potential 
improvements to CAS techniques. We propose five 
ways in which CAS systems can be made “database 
aware,” and evaluate the potential strengths and 
weakness of each approach. We find that our 
techniques improve memory savings, but at the expense 
of coupling the solution too closely to particular 
database vendors. 

The rest of the paper is organized as follows. 
Section 3 current state-of-the-art CAS techniques; 
Section 4 discusses database semantics; Section 5 
discusses five approaches to improve CAS techniques 
for databases; Section 6 discusses related work; finally, 
we end with some conclusions. 

 
 
3 Evaluation of State-of-the-Art CAS 

techniques 
 
3.1 Implementation 
  

To evaluate state-of-the-art CASs [3], we 
implement the following: 

• Variable-size chunking based on Rabin 
fingerprinting 

• An efficient SHA-1 hash (chunk fingerprint) 
index storage structure based on a binary 
search tree 

• A summary vector to further optimize the 
speed of chunk lookup 

 
We implement a variable-size chunking tech-nique 

based on a widely cited paper by Udi Manber [4]. The 
technique is based on using Rabin fingerprints to 
discover anchor points within each file. A sliding 48-
byte2 window scans through each file. At each new 
byte, the fingerprint is updated and the last N bits are 
compared to zero. The average chunk size is then 2^N 
bytes based on the probability of the last N bits of the 
fingerprint being a certain value (zero is usually 
chosen). We then implement a binary search tree for 
efficient hash lookup.  

Finally, we implement a summary vector to further 
speed up fingerprint lookup. It is not uncommon for 
archival or backup systems to store several terabytes of 
data. This requires gigabytes of fingerprints, the 
majority of which must be stored on disk. To minimize 
the number of actual fingerprint searches, we 
implement a summary vector based on a Bloom filter.  
When each new fingerprint is to be stored, it is first 
hashed using five independent functions. Each hash 
value maps to a single bit of the summary vector. If any 
one of the bits is zero, the system knows with 100% 
accuracy that the current fingerprint has not yet been 
stored and therefore it need not be search for. On the 
other hand, if all of the bits are one then the system 
must search for the fingerprint. Based on results from 
[3], a summary vector of sufficient size can increase 
overall throughput by ~20%. In practice, since our 
program does not store fingerprints to disk, we can only 
record the number of times the search algorithm would 
hypothetically go to disk.   

                                                
2 We actually allow the user to select an arbitrary window 
size, but 48-bytes is most common.  
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Figure 1: Duplicate music file discovery using variable-size chunking  

and fingerprint storage and lookup. Left column is a similarity measure.  
 
 0.99200000000 C:\Workspace\Alicia\Oasis_-_What's_The_Story_... 
 0.99078341013 C:\Workspace\Alicia\Incubus_-_Morning_View_-_... 
 0.99033816425 C:\Workspace\Alicia\Hard_Candy_-_Counting_Cro... 
 0.98913043478 C:\Workspace\Songs\Audioslave_-_Show_Me_How_T... 
 0.98802395209 C:\Workspace\Alicia\The_donavon_frankenreiter... 
 0.98726114649 C:\Workspace\Songs\Cornell-Rage_Demos_-_Track... 
 0.98373983739 C:\Workspace\Alicia\Eric_clapton_-_The_cream_... 
 ...                                                       ... 
 0.09090909090 C:\Workspace\Songs\Blink_182_-_Reebok_Commerc... 
 0.08602150537 C:\Workspace\Songs\311_Wake_Your_Mind_Up-from... 
 0.08333333333 C:\Workspace\Songs\AUDIOSLAVE-getaway_car-.mp... 
 0.07826086957 C:\Workspace\Songs\Glassjaw_-_Lovebites_and_R... 
 0.07692307692 C:\Workspace\Songs\aladdin_-_i_can_show_you_t... 
 0.07594936709 C:\Workspace\Songs\Glassjaw_-_Trailer_Park_Je... 

 
 
 
3.2 Results and Observations 
 

We address several issues not discussed in the 
literature.  

“How well does the average chunk size match the 
target chunk size in practice?” Our results are shown in 
Table 1. Two parameters that affect the average chunk 
size in practice are the min. and max. size limits. We 
reduce their impact on our implementation by setting 
them to very low and high values respectively. 

First, we evaluate the performance for music data, 
where we find that the target size is almost exactly met. 
Next, we evaluate the performance for a mixture of data 
types (PDFs, text files, images, websites, etc.). We now 
find that the target size is not met, primarily due to the 
prevalence of small files, which restrict chunk size.  

Finally, we evaluate the performance of database 
data. Interestingly, we find that the actual chunk sizes 
for database tablespaces are far from the desired chunk 
size. This is because tablespaces are mostly sparse, with 
long stretches of zeros. Very few anchor points can be 
found, and hence the chunk size tends to the maximum. 
The larger the chunk size, the lesser the commonality 
factoring – the result is that a mostly empty database 
that could be compressed down to fractions of its 
original size requires close to the original amount of 
space.  

Using an 8 KB target chunk size, the mostly empty 
Oracle tablespace is only compressed by a factor of 
1.000432:1, and the set of PostgreSQL tablespaces are 
only compressed by a factor of 1.070896:1. This clearly 
indicates that variable-size chunking performs very 
poorly on database data. Even with well-populated 
tablespaces, we do not achieve better performance due 
to the tightly interspersed metadata and data.  

We then put our system to practical use.  We find 
that our implementation is well suited for efficient 

discovery of duplicate (or similar) files. We test it on a 
directory containing 20GB of music data, and  discover 
that ~60 duplicates exist in the music collection. An 
abbreviated list of results is shown in Figure 1. The 
process completed in roughly two hours, indicating a 
throughput of about 3 MB per second for our 
unoptimized program.  

Finally, during the implementation stage, we 
discover an error in a key equation of [4], which 
initially made debugging our program extremely 
difficult. This discovery was surprising given that this 
paper is so widely cited. The problem is given further 
attention in Appendix A.  
 
 
4 Database Semantics 
 

CAS systems can leverage database semantics to 
achieve greater memory savings for databases. We 
discuss specific information that can be used for this 
purpose below. 

 
4.1 Database Structure 
 

Databases store all information in structures of 
defined format. Knowledge of these formats allows the 
CAS system to separate the actual data from the 
metadata, and to better leverage commonality factoring 
algorithms. 

All databases store data on disk in a structure 
called the slotted page. The disk block, which maps to a 
slotted page, is the basic unit of I/O. 
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Figure 2: Space savings for a range of chunk sizes using a naïve fixed  
size chunking technique on an empty 330 MB Oracle tablespace 

 

 
 

 
 
 

4.2 Metadata 
 
Metadata stored at the block level allow the CAS 

system to 'understand' the data stored in the block, to 
achieve finer grained commonality factoring. For 
instance, interpreting the row metadata allows the 
system to check for identical /similar rows. 
Interpreting per-row metadata allows for item level 
commonality factoring.  
 
4.3 Database Parameters 
 

DB configuration parameters allow CAS to set 
“thresholds” for memory saving, to balance saving 
with overhead incurred. For instance, the PCTFREE 
parameter of the Oracle database sets a lower bound 
on the size of the zeroed section of the block, which 
helps in lowering computational overhead. 

 
 

5 Database Aware CAS 
 
We seek lazy techniques, which attempt to 

optimize memory savings by commonality factoring 
while minimizing work done by the CAS system. All 
databases (their access methods) expect the storage 
system to use the database block as the unit of I/O. In 
the first two approaches, we retain the database block 
size as the fixed chunk size, and propose slight 
improvements. Faced with disappointing results, we 
then venture to break/deflate the database block into 
a representation more conducive to finer-grained 
com-monality factoring. 

5.1 NAC for DB - Naive Chunking for DB 
 

The laziest of all our approaches, this “test the 
waters” approach seeks to find if existing database 
block sizes are optimal for CAS systems, in which 
case our project would end without any further ado. 
 We implement a fixed-size chunking technique 
and evaluate the approach with different chunk sizes. 
We use database data: sparse tablespaces from Oracle 
and PostgreSQL. This represents a theoretical best 
case for storage savings, as redundancy is higher than 
in populated databases. Figure 2 shows observed 
memory savings relative to a broad range of chunk 
sizes. The graph shows a savings “sweet spot” at 256 
bytes. 
 In theory, smaller chunk sizes better exploit data 
redundancy for space savings; however, each 
chunk requires a fixed amount of metadata. At a 
certain point, the metadata requirement for a larger 
number of chunks overwhelms any space savings due 
to chunking. As the chunk size increases past 8 
Kbytes, we see no space savings either - all chunks 
include unique metadata and therefore no duplicate 
chunks exist. 
 The 8 Kbyte limit is no coincidence. On looking 
closer at the tablespace flat files, we find that sections 
of non-zero metadata occur exactly every 8 Kbytes. 
Oracle and PostgreSQL use 8 KB database blocks, as 
we discuss in a later section. Figure 3 shows the 
structure of pages used by Oracle and PostgreSQL. 
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Page Header Data
Row Directory 
Free Space 
Row Data 
Special Space 

Common & Var. Header
Table Directory 
Row Directory 
Free Space 
Row Data 

 
Figure 3: page structure for Oracle (left) and PostgreSQL (right) 
  

 
 
 

 
 
 
 
 

 
 
 

 
 
 
5.2 SCROUNGE - Savings via Chunk Redundancy 
with Overlays (UN-GEneric) 
 
 Our second approach takes the concepts of full and 
incremental backups from the database world and 
implements them at the database block level. We seek 
to improve commonality factoring by leveraging 
similarity between chunks of fixed sizes (which map to 
database blocks). 
 We compare a new candidate chunk that is to be 
stored in the system against a predefined set of template 
chunks. The candidate may then be stored as a delta 
chunk, which when overlayed with the template, will 
generate the candidate. The delta takes considerably 
less space than the original chunk, and data integrity is 
ensured by storing the fingerprint of the candidate along 
with the delta. The set of templates may be static or 
dynamic. They may include a few special-case chunks, 
or all existing chunks. We choose to optimize mostly 
zero database storage structures by defining a all-zero 
template. More templates can be defined, as special 
cases are identified. 
 We use a simple technique to compute deltas called 
chunk windowing. Each chunk is divided into smaller 
windows. A candidate chunk is deemed similar to a 
template chunk if it shares a sufficient number of 
identical windows with the template chunk. A threshold 
determines if the candidate is sufficiently similar to be 
stored as a delta of the template chunk. The threshold is 
determined, based on two factors: (1) Memory 
utilization - the delta structure must occupy at most a 
specified fraction of the chunk (2) Computational 
overhead of overlaying. We primarily focus on (1) and 
assume that given our problem, it takes precedence.  
 We find that block level commonality factoring 
performs only slightly better than NAC for DB, though 
it has a much higher computational overhead. More 
sophisticated delta techniques may be used to improve  
 

 
 
 
 
 
 
memory savings, but at the cost of even higher 
computational overhead. Figure 5 illustrates the dismal 
performance of SCROUNGE. Although SCROUNGE 
does marginally better at higher chunk sizes than NAC 
for DB, overlaying is sub-optimal when the chunk sizes 
approach the database block size.  
 We recognize that there are no significant savings 
to be had with commonality factoring at block-level 
granularity. We now look to improve memory saving 
by "breaking the disk block". By leveraging our 
knowledge of database block structure, we construct 
lossless representations of the block that take 
significantly less memory, while incurring slight 
computational overhead while "reconstructing the 
block". 
 
5.3 FRESCO - FREe Space COmmonality factoring 
 
 FRESCO leverages a coarse “awareness” of the 
database block structure. The Storage system is “aware” 
that the block can be parsed into three sections: the 
header, which consists of the page header data, and the 
pointer structures, the free space section, and the actual 
data, along with any special trailer data/checksums.  
 The storage system reads per-block header 
information to identify the zeroed section of the block, 
and stores the non-zero sections alone. Computational 
overhead is incurred while restoring the block using 
zero padding at the required offset. 
 This technique is coarse-grained enough to de-
couple the solution from a specific database vendor. 
Most databases follow similar slotted page structures, 
even if the actual data structures vary. We tested our 
implementation on Oracle. The PCTFREE config-
uration parameter is used to determine the lower bound 
(threshold) for saving. The technique shows significant 
memory savings - 73.6% savings for sparse tablespaces 
(mostly zeros),and 27.1% for denser tablespaces 
(mostly data). 
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Table 2: Memory savings for SCROOGE, tablespace size: 1 MB 
 

Block Type Memory Footprint (%) Memory Savings
Sparse 0.73 99.27

Full 77.3 22.7
Average 8.97 91.03  

 
 
 
 

5.4 SICCO - Savings via Intra Chunk row 
COmmonality factoring 
 
 SICCO takes a finer-grained approach to com-
monality factoring: row redundancy. The CAS system 
“knows” the database block structure, reads the 
metadata of each block, parses the data in the block into 
tuples, and leverages identical tuples. 
 Row commonality factoring is achieved by 
deflating the chunk into a frame. The Frame contains all 
details required to inflate the chunk when required by 
the database. Within each frame, a list of tuple 
structures store the actual data, along with tuple offsets. 
Both the row directory and the row data can be easily 
reconstructed from this list. 
 We chose PostgreSQL as it is open-source, and its 
data block structure much easier to understand than the 
enigmatic Oracle. Figure 4 shows the storage structures 
used in the implementation. 
 After much implementation effort, the results were 
depressing. The memory savings were marginally less 
than FRESCO. On examining the data, we found that 
the rowid attached to every tuple ensured that there was 
no commonality to be factored between duplicate rows. 
SICCO had the same memory savings as FRESCO, 
with the added overhead of the PGTuple data structures 
within the frame.  The storage structures used in SICCO 
are shown in Figure 4 
 
5.5 SCROOGE - Similarity based Chunk ROw 
redundancy, with Overlaying (GEneric) 
 

In SCROOGE, we add the overlaying technique 
from SCROUNGE to SICCO, leveraging similar rows 
(tuples) instead of identical ones. We alter the PGTuple 
structure to include a flag that indicates if the tuple is a 
delta. It also adds a list of chunk windows, which store 
the delta. Overlaying is identical to SCROUNGE, only 
at the finer grained tuple level. Instead of static 
templates, like in SCROUNGE, overlaying in 
SCROOGE uses all valid tuples within a block, In a 
more generic approach to overlaying. 

Evaluation of the SCROOGE technique on a 
PostgreSQL tablespace of 1 MB yielded promising 
results. The 8 KB PostgreSQL database block, on 
average, needed 736.5 bytes in the system. The memory 
savings per block varied greatly from almost 99% (for 
an empty block) to 23% (for an almost full block). 
Results are shown in Table 2. 
 
 
6 Related Work 
 

The system described in [15] chunks data based on 
whole-file content. The system described in [13] uses 
whole-files chunking only on small files that don’t 
benefit from more complicated chunking techniques. 
Other than these two systems, chunking based on 
whole-file content does not seem to be used. 

Fixed-size chunking has more support, as Venti [1] 
and the rsync algorithm [12] would attest. However, 
since the Venti paper was published in 2002, fixed-size 
chunking seems to have fallen out of favor due its more 
restricting nature. However, as we will discuss, CASs 
for databases might benefit from techniques inspired by 
fixed-size chunking due to the fixed structure imposed 
by databases on the data. 

There have been many papers written in the last 
five years or so that discuss CASs based on variable-
size chunking. Interestingly, LBFS [2], which uses 
variable-size chunking, is an exception. It was 
introduced in 2001 before Venti and represents the first 
true CAS in our opinion. The idea of using variable-size 
chunking really began to gain traction in 2003 with the 
introduction of systems like Avamar Technologies’ 
CFS [7], fingerdiff [12], and CASPER [13]. These were 
followed in 2004 with systems like REBL [11] and 
papers like [14]. We discovered an especially 
informative recent paper from FAST 2008 describing 
DDFS [3], which also uses variable-size chunking 
along with several interesting optimizations to 
drastically improve throughput.  
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Figure 4: Storage structures for SICCO and SCROOGE 
 

 
PGFrame {pageHeaderData, specialSpace, zeroBegin, zeroEnd, fingerprint, pTuple} 
 
PGTuple {tupleData, offset} (SICCO) 
 
PGTuple {flag, offset, tupleData (OR) delta} (Modified for SCROOGE) 
 

 
 
 

Figure 5: Space savings for a range of chunk sizes using a 
windowing technique on an empty 330 MB Oracle tablespace 

 

 
 

 
 

7 Conclusions & Future Work 
 
 We evaluated current CAS techniques and have 
found that current CAS techniques don't work well for 
databases. In this process, we observed that code 
involving bit-level operations was difficult to debug. As 
knowledge of database structure and semantics can help 
improve memory savings in CAS for databases. We 
then proposed five ways by which CAS systems can be 
made "database aware", and discussed the strengths and 
weakness of each approach. We emphasized that the 
database block needs to be “broken” to optimize 
memory savings, but that these savings are to be had at 
considerable computational overhead, and at the 
expense of coupling the solution too closely to a 
particular database vendor. 
 Future work involves investigating Inter Chunk 
Commonality Factoring, which would mean frag-

menting, and redistributing block data. Finer grained 
Item-level Commonality factoring can also be explored. 
 
 
Appendix A: Udi Manber’s Illusive 
Mistake 
 

Udi provides an example in [4] in which a 50-byte 
substring is used to generate a fingerprint, F1. He gives 
the equation  
 

( ) MtptptF mod50
48

2
49

11 L+⋅+⋅= ,  
 
where t’s are byte values, and p and M are constants. 
Using Horner’s rule, this equation becomes  
 

( )( )( )( )( ) MttttpppF mod503211 +++⋅⋅⋅= LL  
 

With Window Overlays 

Naïve 
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To find F2, the fingerprint corresponding to the next 
byte minus the oldest byte, the following equation is 
given: 
 

( ) MpttFpF mod49
15112 ⋅−+⋅=  

 
However, this is incorrect. The equation should be 
 

( )( )( ) MtMptFpF modmod 51
49

112 +⋅−⋅= ,  
 
where every possible ( ) Mpt mod49

1 ⋅  is stored in a 
table.  
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