
 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 1

Improving Content Addressable Storage for Databases

Vandhana Selvaprakash Brandon M. Smith

Department of Computer Sciences
University of Wisconsin, Madison, WI 53706
E-mail: {vandhana,bmsmith}@cs.wisc.edu

Abstract

Recent trends have seen database clients use

content addressable storage systems (CASs) for near-
line storage. While CASs have many attractive
properties such as storage space savings, data integrity,
and low network bandwidth requirements, CASs are not
well suited for databases, mainly because of the rigid
structure of databases, and the way databases
intersperse metadata with data.

In this paper, we evaluate where current CAS
techniques fail for databases and identify properties of
database systems that can be leveraged for potential
improvements to CAS techniques specific to databases.
We propose fives ways in which CAS systems can be
made “database aware,” and evaluate the potential
strengths and weakness of each approach. We find that
our techniques improve memory savings, but at the
expense of coupling the solution too closely to
particular database vendors.

1 Introduction

CAS divides files into chunks (other names include
segments [3], blocks [1], atomics [7], or fragments [6]).
Each chunk is indexed by a descriptor, or fingerprint,
that uniquely identifies its contents. Files are hence
content addressable, rather than location addressable.
Identical chunks have the same fingerprint, which
insures that redundant data is never stored twice. This
technique substantially reduces the amount of storage
space required, provided that duplicate information
exists in the file system.

Virtually all the systems we study use the
cryptographic SHA-1 hash function [5] to calculate the
fingerprint for each chunk. One of the most desirable
properties of this hash function is that it is very efficient
to compute. Yet another desirable property is its strong
collision resistance. With extremely high probability1,

1 Assuming random hash values and a uniform distribution, a
fingerprint collision for an exabyte (10^18 bytes) of data
divided into 8 kilobyte chunks will occur with probability less
than 10^-20, which is many orders of magnitude less than
hardware error rates [1].

each fingerprint will uniquely describe the contents of
its corresponding chunk.

A three-way distinction can be made between
chunking techniques. Data can be chunked based on:
(1) whole file content, (2) fixed-size chunks, or (3)
variable-size, content-based chunks. In (1) the chunk
boundaries are simply determined by the beginning and
ending of the files being stored. Techniques based on
(2) determine chunk boundaries by fixed offsets from
the beginning of each file. Techniques based on (3) are
more complicated and typically involve discovering
anchor points throughout each file based on its
contents. This is usually accomplished using some
variant of the Rabin fingerprinting technique described
by Udi Manber in [4]. Although (1) and (2) are simple,
in most situations they effectively make files stored on
the system immutable. Variable-size chunking
techniques do not suffer from this problem.

2 Motivation

Content addressable storage systems (CASs) are
primarily used to store data that changes rarely, and is
accessed infrequently (write once, read many).
Databases increasingly use CASs for storing backup
information, and snapshots. Unlike traditional CAS data
(business data, MRI Images), which are loosely coupled
with metadata(if any), databases are not well-suited for
CAS. The problem with database storage structures is
that metadata is A) substantial, and B) tightly
interspersed with data. It is therefore difficult to exploit
data redundancy for space savings.

Another limitation of current CAS techniques is
that they only exploit identical files, blocks, or chunks.
Typically, many pages within database storage
structures are similar, but very few are identical.

Databases make up a significant portion of storage
system clients. Simply said, they are too important to
ignore. Given the increasing use of CASs by database
systems, we aim to improve CAS techniques
specifically for the database domain.

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 2

Table 1: target chunk size vs. actual average chunk size
Data type Target Chunk Size Actual Average Size

(bytes) (bytes)

128 175
256 303
512 559
1024 1070
2048 2094
4096 4137
8192 8220

16384 16413
32768 32848

330 MB Sparse Oracle Tablespace 8192 21335

5 MB Sparse PostgreSQL Tablespace 8192 15443

560 MB Mix of Files 4096 1100
(pdf, txt, doc, mpg, jpg, etc...) 8192 1849

16384 2062

1 GB Music Data
(mp3, wma, wav, m4a)

Our approach to this problem is as follows. We
implement several key features of state-of-the-art CASs
and evaluate these features on different kinds of data,
including music files, text data, and database data
(Oracle [10] and PostgreSQL [9].) We determine
quantitatively that recent variable-sized chunking
techniques perform poorly on database data.

We then study the low-level storage structure of
databases (mainly Oracle and PostgreSQL) and identify
properties that can be leveraged for potential
improvements to CAS techniques. We propose five
ways in which CAS systems can be made “database
aware,” and evaluate the potential strengths and
weakness of each approach. We find that our
techniques improve memory savings, but at the expense
of coupling the solution too closely to particular
database vendors.

The rest of the paper is organized as follows.
Section 3 current state-of-the-art CAS techniques;
Section 4 discusses database semantics; Section 5
discusses five approaches to improve CAS techniques
for databases; Section 6 discusses related work; finally,
we end with some conclusions.

3 Evaluation of State-of-the-Art CAS

techniques

3.1 Implementation

To evaluate state-of-the-art CASs [3], we
implement the following:

• Variable-size chunking based on Rabin
fingerprinting

• An efficient SHA-1 hash (chunk fingerprint)
index storage structure based on a binary
search tree

• A summary vector to further optimize the
speed of chunk lookup

We implement a variable-size chunking tech-nique

based on a widely cited paper by Udi Manber [4]. The
technique is based on using Rabin fingerprints to
discover anchor points within each file. A sliding 48-
byte2 window scans through each file. At each new
byte, the fingerprint is updated and the last N bits are
compared to zero. The average chunk size is then 2^N
bytes based on the probability of the last N bits of the
fingerprint being a certain value (zero is usually
chosen). We then implement a binary search tree for
efficient hash lookup.

Finally, we implement a summary vector to further
speed up fingerprint lookup. It is not uncommon for
archival or backup systems to store several terabytes of
data. This requires gigabytes of fingerprints, the
majority of which must be stored on disk. To minimize
the number of actual fingerprint searches, we
implement a summary vector based on a Bloom filter.
When each new fingerprint is to be stored, it is first
hashed using five independent functions. Each hash
value maps to a single bit of the summary vector. If any
one of the bits is zero, the system knows with 100%
accuracy that the current fingerprint has not yet been
stored and therefore it need not be search for. On the
other hand, if all of the bits are one then the system
must search for the fingerprint. Based on results from
[3], a summary vector of sufficient size can increase
overall throughput by ~20%. In practice, since our
program does not store fingerprints to disk, we can only
record the number of times the search algorithm would
hypothetically go to disk.

2 We actually allow the user to select an arbitrary window
size, but 48-bytes is most common.

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 3

Figure 1: Duplicate music file discovery using variable-size chunking

and fingerprint storage and lookup. Left column is a similarity measure.

 0.99200000000 C:\Workspace\Alicia\Oasis_-_What's_The_Story_...
 0.99078341013 C:\Workspace\Alicia\Incubus_-_Morning_View_-_...
 0.99033816425 C:\Workspace\Alicia\Hard_Candy_-_Counting_Cro...
 0.98913043478 C:\Workspace\Songs\Audioslave_-_Show_Me_How_T...
 0.98802395209 C:\Workspace\Alicia\The_donavon_frankenreiter...
 0.98726114649 C:\Workspace\Songs\Cornell-Rage_Demos_-_Track...
 0.98373983739 C:\Workspace\Alicia\Eric_clapton_-_The_cream_...

 0.09090909090 C:\Workspace\Songs\Blink_182_-_Reebok_Commerc...
 0.08602150537 C:\Workspace\Songs\311_Wake_Your_Mind_Up-from...
 0.08333333333 C:\Workspace\Songs\AUDIOSLAVE-getaway_car-.mp...
 0.07826086957 C:\Workspace\Songs\Glassjaw_-_Lovebites_and_R...
 0.07692307692 C:\Workspace\Songs\aladdin_-_i_can_show_you_t...
 0.07594936709 C:\Workspace\Songs\Glassjaw_-_Trailer_Park_Je...

3.2 Results and Observations

We address several issues not discussed in the
literature.

“How well does the average chunk size match the
target chunk size in practice?” Our results are shown in
Table 1. Two parameters that affect the average chunk
size in practice are the min. and max. size limits. We
reduce their impact on our implementation by setting
them to very low and high values respectively.

First, we evaluate the performance for music data,
where we find that the target size is almost exactly met.
Next, we evaluate the performance for a mixture of data
types (PDFs, text files, images, websites, etc.). We now
find that the target size is not met, primarily due to the
prevalence of small files, which restrict chunk size.

Finally, we evaluate the performance of database
data. Interestingly, we find that the actual chunk sizes
for database tablespaces are far from the desired chunk
size. This is because tablespaces are mostly sparse, with
long stretches of zeros. Very few anchor points can be
found, and hence the chunk size tends to the maximum.
The larger the chunk size, the lesser the commonality
factoring – the result is that a mostly empty database
that could be compressed down to fractions of its
original size requires close to the original amount of
space.

Using an 8 KB target chunk size, the mostly empty
Oracle tablespace is only compressed by a factor of
1.000432:1, and the set of PostgreSQL tablespaces are
only compressed by a factor of 1.070896:1. This clearly
indicates that variable-size chunking performs very
poorly on database data. Even with well-populated
tablespaces, we do not achieve better performance due
to the tightly interspersed metadata and data.

We then put our system to practical use. We find
that our implementation is well suited for efficient

discovery of duplicate (or similar) files. We test it on a
directory containing 20GB of music data, and discover
that ~60 duplicates exist in the music collection. An
abbreviated list of results is shown in Figure 1. The
process completed in roughly two hours, indicating a
throughput of about 3 MB per second for our
unoptimized program.

Finally, during the implementation stage, we
discover an error in a key equation of [4], which
initially made debugging our program extremely
difficult. This discovery was surprising given that this
paper is so widely cited. The problem is given further
attention in Appendix A.

4 Database Semantics

CAS systems can leverage database semantics to
achieve greater memory savings for databases. We
discuss specific information that can be used for this
purpose below.

4.1 Database Structure

Databases store all information in structures of
defined format. Knowledge of these formats allows the
CAS system to separate the actual data from the
metadata, and to better leverage commonality factoring
algorithms.

All databases store data on disk in a structure
called the slotted page. The disk block, which maps to a
slotted page, is the basic unit of I/O.

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 4

Figure 2: Space savings for a range of chunk sizes using a naïve fixed
size chunking technique on an empty 330 MB Oracle tablespace

4.2 Metadata

Metadata stored at the block level allow the CAS

system to 'understand' the data stored in the block, to
achieve finer grained commonality factoring. For
instance, interpreting the row metadata allows the
system to check for identical /similar rows.
Interpreting per-row metadata allows for item level
commonality factoring.

4.3 Database Parameters

DB configuration parameters allow CAS to set
“thresholds” for memory saving, to balance saving
with overhead incurred. For instance, the PCTFREE
parameter of the Oracle database sets a lower bound
on the size of the zeroed section of the block, which
helps in lowering computational overhead.

5 Database Aware CAS

We seek lazy techniques, which attempt to

optimize memory savings by commonality factoring
while minimizing work done by the CAS system. All
databases (their access methods) expect the storage
system to use the database block as the unit of I/O. In
the first two approaches, we retain the database block
size as the fixed chunk size, and propose slight
improvements. Faced with disappointing results, we
then venture to break/deflate the database block into
a representation more conducive to finer-grained
com-monality factoring.

5.1 NAC for DB - Naive Chunking for DB

The laziest of all our approaches, this “test the
waters” approach seeks to find if existing database
block sizes are optimal for CAS systems, in which
case our project would end without any further ado.
 We implement a fixed-size chunking technique
and evaluate the approach with different chunk sizes.
We use database data: sparse tablespaces from Oracle
and PostgreSQL. This represents a theoretical best
case for storage savings, as redundancy is higher than
in populated databases. Figure 2 shows observed
memory savings relative to a broad range of chunk
sizes. The graph shows a savings “sweet spot” at 256
bytes.
 In theory, smaller chunk sizes better exploit data
redundancy for space savings; however, each
chunk requires a fixed amount of metadata. At a
certain point, the metadata requirement for a larger
number of chunks overwhelms any space savings due
to chunking. As the chunk size increases past 8
Kbytes, we see no space savings either - all chunks
include unique metadata and therefore no duplicate
chunks exist.
 The 8 Kbyte limit is no coincidence. On looking
closer at the tablespace flat files, we find that sections
of non-zero metadata occur exactly every 8 Kbytes.
Oracle and PostgreSQL use 8 KB database blocks, as
we discuss in a later section. Figure 3 shows the
structure of pages used by Oracle and PostgreSQL.

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 5

Page Header Data
Row Directory
Free Space
Row Data
Special Space

Common & Var. Header
Table Directory
Row Directory
Free Space
Row Data

Figure 3: page structure for Oracle (left) and PostgreSQL (right)

5.2 SCROUNGE - Savings via Chunk Redundancy
with Overlays (UN-GEneric)

 Our second approach takes the concepts of full and
incremental backups from the database world and
implements them at the database block level. We seek
to improve commonality factoring by leveraging
similarity between chunks of fixed sizes (which map to
database blocks).
 We compare a new candidate chunk that is to be
stored in the system against a predefined set of template
chunks. The candidate may then be stored as a delta
chunk, which when overlayed with the template, will
generate the candidate. The delta takes considerably
less space than the original chunk, and data integrity is
ensured by storing the fingerprint of the candidate along
with the delta. The set of templates may be static or
dynamic. They may include a few special-case chunks,
or all existing chunks. We choose to optimize mostly
zero database storage structures by defining a all-zero
template. More templates can be defined, as special
cases are identified.
 We use a simple technique to compute deltas called
chunk windowing. Each chunk is divided into smaller
windows. A candidate chunk is deemed similar to a
template chunk if it shares a sufficient number of
identical windows with the template chunk. A threshold
determines if the candidate is sufficiently similar to be
stored as a delta of the template chunk. The threshold is
determined, based on two factors: (1) Memory
utilization - the delta structure must occupy at most a
specified fraction of the chunk (2) Computational
overhead of overlaying. We primarily focus on (1) and
assume that given our problem, it takes precedence.
 We find that block level commonality factoring
performs only slightly better than NAC for DB, though
it has a much higher computational overhead. More
sophisticated delta techniques may be used to improve

memory savings, but at the cost of even higher
computational overhead. Figure 5 illustrates the dismal
performance of SCROUNGE. Although SCROUNGE
does marginally better at higher chunk sizes than NAC
for DB, overlaying is sub-optimal when the chunk sizes
approach the database block size.
 We recognize that there are no significant savings
to be had with commonality factoring at block-level
granularity. We now look to improve memory saving
by "breaking the disk block". By leveraging our
knowledge of database block structure, we construct
lossless representations of the block that take
significantly less memory, while incurring slight
computational overhead while "reconstructing the
block".

5.3 FRESCO - FREe Space COmmonality factoring

 FRESCO leverages a coarse “awareness” of the
database block structure. The Storage system is “aware”
that the block can be parsed into three sections: the
header, which consists of the page header data, and the
pointer structures, the free space section, and the actual
data, along with any special trailer data/checksums.
 The storage system reads per-block header
information to identify the zeroed section of the block,
and stores the non-zero sections alone. Computational
overhead is incurred while restoring the block using
zero padding at the required offset.
 This technique is coarse-grained enough to de-
couple the solution from a specific database vendor.
Most databases follow similar slotted page structures,
even if the actual data structures vary. We tested our
implementation on Oracle. The PCTFREE config-
uration parameter is used to determine the lower bound
(threshold) for saving. The technique shows significant
memory savings - 73.6% savings for sparse tablespaces
(mostly zeros),and 27.1% for denser tablespaces
(mostly data).

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 6

Table 2: Memory savings for SCROOGE, tablespace size: 1 MB

Block Type Memory Footprint (%) Memory Savings
Sparse 0.73 99.27

Full 77.3 22.7
Average 8.97 91.03

5.4 SICCO - Savings via Intra Chunk row
COmmonality factoring

 SICCO takes a finer-grained approach to com-
monality factoring: row redundancy. The CAS system
“knows” the database block structure, reads the
metadata of each block, parses the data in the block into
tuples, and leverages identical tuples.
 Row commonality factoring is achieved by
deflating the chunk into a frame. The Frame contains all
details required to inflate the chunk when required by
the database. Within each frame, a list of tuple
structures store the actual data, along with tuple offsets.
Both the row directory and the row data can be easily
reconstructed from this list.
 We chose PostgreSQL as it is open-source, and its
data block structure much easier to understand than the
enigmatic Oracle. Figure 4 shows the storage structures
used in the implementation.
 After much implementation effort, the results were
depressing. The memory savings were marginally less
than FRESCO. On examining the data, we found that
the rowid attached to every tuple ensured that there was
no commonality to be factored between duplicate rows.
SICCO had the same memory savings as FRESCO,
with the added overhead of the PGTuple data structures
within the frame. The storage structures used in SICCO
are shown in Figure 4

5.5 SCROOGE - Similarity based Chunk ROw
redundancy, with Overlaying (GEneric)

In SCROOGE, we add the overlaying technique
from SCROUNGE to SICCO, leveraging similar rows
(tuples) instead of identical ones. We alter the PGTuple
structure to include a flag that indicates if the tuple is a
delta. It also adds a list of chunk windows, which store
the delta. Overlaying is identical to SCROUNGE, only
at the finer grained tuple level. Instead of static
templates, like in SCROUNGE, overlaying in
SCROOGE uses all valid tuples within a block, In a
more generic approach to overlaying.

Evaluation of the SCROOGE technique on a
PostgreSQL tablespace of 1 MB yielded promising
results. The 8 KB PostgreSQL database block, on
average, needed 736.5 bytes in the system. The memory
savings per block varied greatly from almost 99% (for
an empty block) to 23% (for an almost full block).
Results are shown in Table 2.

6 Related Work

The system described in [15] chunks data based on
whole-file content. The system described in [13] uses
whole-files chunking only on small files that don’t
benefit from more complicated chunking techniques.
Other than these two systems, chunking based on
whole-file content does not seem to be used.

Fixed-size chunking has more support, as Venti [1]
and the rsync algorithm [12] would attest. However,
since the Venti paper was published in 2002, fixed-size
chunking seems to have fallen out of favor due its more
restricting nature. However, as we will discuss, CASs
for databases might benefit from techniques inspired by
fixed-size chunking due to the fixed structure imposed
by databases on the data.

There have been many papers written in the last
five years or so that discuss CASs based on variable-
size chunking. Interestingly, LBFS [2], which uses
variable-size chunking, is an exception. It was
introduced in 2001 before Venti and represents the first
true CAS in our opinion. The idea of using variable-size
chunking really began to gain traction in 2003 with the
introduction of systems like Avamar Technologies’
CFS [7], fingerdiff [12], and CASPER [13]. These were
followed in 2004 with systems like REBL [11] and
papers like [14]. We discovered an especially
informative recent paper from FAST 2008 describing
DDFS [3], which also uses variable-size chunking
along with several interesting optimizations to
drastically improve throughput.

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 7

Figure 4: Storage structures for SICCO and SCROOGE

PGFrame {pageHeaderData, specialSpace, zeroBegin, zeroEnd, fingerprint, pTuple}

PGTuple {tupleData, offset} (SICCO)

PGTuple {flag, offset, tupleData (OR) delta} (Modified for SCROOGE)

Figure 5: Space savings for a range of chunk sizes using a
windowing technique on an empty 330 MB Oracle tablespace

7 Conclusions & Future Work

 We evaluated current CAS techniques and have
found that current CAS techniques don't work well for
databases. In this process, we observed that code
involving bit-level operations was difficult to debug. As
knowledge of database structure and semantics can help
improve memory savings in CAS for databases. We
then proposed five ways by which CAS systems can be
made "database aware", and discussed the strengths and
weakness of each approach. We emphasized that the
database block needs to be “broken” to optimize
memory savings, but that these savings are to be had at
considerable computational overhead, and at the
expense of coupling the solution too closely to a
particular database vendor.
 Future work involves investigating Inter Chunk
Commonality Factoring, which would mean frag-

menting, and redistributing block data. Finer grained
Item-level Commonality factoring can also be explored.

Appendix A: Udi Manber’s Illusive
Mistake

Udi provides an example in [4] in which a 50-byte
substring is used to generate a fingerprint, F1. He gives
the equation

() MtptptF mod50
48

2
49

11 L+⋅+⋅= ,

where t’s are byte values, and p and M are constants.
Using Horner’s rule, this equation becomes

()()()()() MttttpppF mod503211 +++⋅⋅⋅= LL

With Window Overlays

Naïve

 CS 736 Conference on Reliable Awesome Projects (no acronyms please), 2008 8

To find F2, the fingerprint corresponding to the next
byte minus the oldest byte, the following equation is
given:

() MpttFpF mod49
15112 ⋅−+⋅=

However, this is incorrect. The equation should be

()()() MtMptFpF modmod 51
49

112 +⋅−⋅= ,

where every possible () Mpt mod49

1 ⋅ is stored in a
table.

References

[1] S. Quinlan and S. Dorward. Venti: A New

Approach to Archival Storage. In Proceedings
of the USENIX Conference on File And
Storage Technologies (FAST), January 2002.

[2] A. Muthitacharoen, B. Chen, and D. Mazieres.

A Low-bandwidth Network File System.
Symposium on Operating System Principles,
pages 174-187, 2001.

[3] B. Zhu, K. Li, H. Patterson. Avoiding the Disk

Bottleneck in the Data Domain Deduplication
File System. FAST ’08: 6th USENIX
Conference on File and Storage Technologies,
pages 269 – 282. 2008.

[4] Udi Manber. Finding Similar Files in A Large

File System. Technical Report TR 93-33,
Department of Computer Science, University
of Arizona, October 1993, also in Proceedings
of the USENIX Winter 1994 Technical
Conference, pages 17-21. 1994.

[5] National Institute of Standards and

Technology, FIPS 180-1. Secure Hash
Standard. US Department of Commerce, April
1995.

[6] J. Zhang and T. Suel. Efficient Search in Large

Textual Collections with Redundancy.
Proceedings of the 16th International
Conference on World Wide Web, pages 411 –
420, 2007.

[7] J. Hamilton and E. W. Olsen. Deisgn and
Implementation of a Storage Repository Using
Commonality Factoring. 20th IEEE/11th NASA
Goddard Conference on Mass Storage Systems
and Technologies (MSS ’03), page 178, 2003.

[8] Val Henson. An Analysis of Compare-by-

hash. Proceedings of the 9th conference on Hot
Topics in Operating Systems – Volume 9,
page 3, 2003.

[9] PostgreSQL 8.3.1. http://www.postgresql.org/

[10] Oracle Database 10g Express Edition.

http://www.oracle.com/technology/products/da
tabase/xe/index.html

[11] P. Kulkarni, F. Douglis, J. LaVoie, and J. M.

Tracey. Redundancy Elimination Within Large
Collections of Files. Proceedings of the annual
conference on USENIX Annual Technical
Conference, page. 5, 2004.

[12] A. Tridgell and P. Mackerras. The rsync

algorithm. Joint Computer Science Technical
Report Series, The Australian National
University, TR-CS-96-05, 1996.

[13] N. Tolia, M. Kozuch, M. Satyanarayanan, B.

Karp, T. Bressoud, and A. Perrig.
Opportunistic Use of Content Addressable
Storage for Distributed File Systems. USENIX
Annual Technical Conference, 2003.

[14] C. Policroniades and I. Pratt. Alternatives for

Detecting Redundancy in Storage Systems
Data. Proceedings of the annual conference on
USENIX Annual Technical Conference, page
6, 2004.

[15] W. J. Bolosky, S. Corbin, D. Goebel, and J. R.

Douceur. Single instance storage in windows
2000. In Proceedings of the 4th USENIX
Windows Systems Symposium, August 2000.

[16] Muthian Sivathanu, Lakshmi N.

Bairavasundaram, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Database-
Aware Semantically-Smart Storage. Design,
implementation, and performance of storage
systems, pages 29 – 35, 2006.

