A Large-Scale Study of Flash Memory Failures in the Field

Qiang Wu
Facebook, Inc.

gwu@fb.com

Justin Meza
Carnegie Mellon University

meza@cmu.edu

ABSTRACT

Servers use flash memory based solid state drives (SSDs) as a
high-performance alternative to hard disk drives to store per-
sistent data. Unfortunately, recent increases in flash density
have also brought about decreases in chip-level reliability. In
a data center environment, flash-based SSD failures can lead
to downtime and, in the worst case, data loss. As a result,
it is important to understand flash memory reliability char-
acteristics over flash lifetime in a realistic production data
center environment running modern applications and system
software.

This paper presents the first large-scale study of flash-based
SSD reliability in the field. We analyze data collected across
a majority of flash-based solid state drives at Facebook data
centers over nearly four years and many millions of operational
hours in order to understand failure properties and trends of
flash-based SSDs. Our study considers a variety of SSD char-
acteristics, including: the amount of data written to and read
from flash chips; how data is mapped within the SSD address
space; the amount of data copied, erased, and discarded by the
flash controller; and flash board temperature and bus power.

Based on our field analysis of how flash memory errors man-
ifest when running modern workloads on modern SSDs, this
paper is the first to make several major observations: (1)
SSD failure rates do mot increase monotonically with flash
chip wear; instead they go through several distinct periods
corresponding to how failures emerge and are subsequently
detected, (2) the effects of read disturbance errors are not
prevalent in the field, (3) sparse logical data layout across an
SSD’s physical address space (e.g., non-contiguous data), as
measured by the amount of metadata required to track logical
address translations stored in an SSD-internal DRAM bulffer,
can greatly affect SSD failure rate, (4) higher temperatures
lead to higher failure rates, but techniques that throttle SSD
operation appear to greatly reduce the negative reliability im-
pact of higher temperatures, and (5) data written by the op-
erating system to flash-based SSDs does not always accurately
indicate the amount of wear induced on flash cells due to op-
timizations in the SSD controller and buffering employed in
the system software. We hope that the findings of this first
large-scale flash memory reliability study can inspire others
to develop other publicly-available analyses and novel flash
reliability solutions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

SIGMETRICS’15, June 15-19, 2015, Portland, OR, USA.

ACM 978-1-4503-3486-0/15/06.

http://dx.doi.org/10.1145/2745844.2745848.

Onur Mutlu
Carnegie Mellon University

onur@cmu.edu

Sanjeev Kumar
Facebook, Inc.
skumar@fb.com

Categories and Subject Descriptors

B.3.4. [Hardware]: Memory Structures—Reliability, Test-
ing, and Fault-Tolerance

Keywords

flash memory; reliability; warehouse-scale data centers

1. INTRODUCTION

Servers use flash memory for persistent storage due to the
low access latency of flash chips compared to hard disk drives.
Historically, flash capacity has lagged behind hard disk drive
capacity, limiting the use of flash memory. In the past decade,
however, advances in NAND flash memory technology have
increased flash capacity by more than 1000x. This rapid in-
crease in flash capacity has brought both an increase in flash
memory use and a decrease in flash memory reliability. For
example, the number of times that a cell can be reliably pro-
grammed and erased before wearing out and failing dropped
from 10,000 times for 50 nm cells to only 2,000 times for 20 nm
cells [28]. This trend is expected to continue for newer gen-
erations of flash memory. Therefore, if we want to improve
the operational lifetime and reliability of flash memory-based
devices, we must first fully understand their failure character-
istics.

In the past, a large body of prior work examined the failure
characteristics of flash cells in controlled environments using
small numbers e.g., tens) of raw flash chips (e.g., [36, 23, 21,
27, 22, 25, 16, 33, 14, 5, 18, 4, 24, 40, 41, 26, 31, 30, 37, 6, 11,
10, 7, 13, 9, 8, 12, 20]). This work quantified a variety of flash
cell failure modes and formed the basis of the community’s un-
derstanding of flash cell reliability. Yet prior work was limited
in its analysis because these studies: (1) were conducted on
small numbers of raw flash chips accessed in adversarial man-
ners over short amounts of time, (2) did not examine failures
when using real applications running on modern servers and
instead used synthetic access patterns, and (3) did not account
for the storage software stack that real applications need to go
through to access flash memories. Such conditions assumed in
these prior studies are substantially different from those expe-
rienced by flash-based SSDs in large-scale installations in the
field. In such large-scale systems: (1) real applications access
flash-based SSDs in different ways over a time span of years,
(2) applications access SSDs via the storage software stack,
which employs various amounts of buffering and hence affects
the access pattern seen by the flash chips, (3) flash-based SSDs
employ aggressive techniques to reduce device wear and to cor-
rect errors, (4) factors in platform design, including how many
SSDs are present in a node, can affect the access patterns to
SSDs, (5) there can be significant variation in reliability due
to the existence of a very large number of SSDs and flash
chips. All of these real-world conditions present in large-scale

systems likely influence the observed reliability characteristics

and trends of flash-based SSDs.

Our goal is to understand the nature of flash-based solid
state drive failures in the field. To this end, we provide the
first comprehensive study of flash memory reliability trends in
a large-scale production data center environment. Our study
is based on data collected from a majority of flash-based SSDs
in Facebook’s server fleet, with operational lifetimes extend-
ing over nearly four years and comprising many millions of
device-days of usage. We analyze SSDs of different capacities
and data transfer technologies, with a focus on understand-
ing how various internal factors (i.e., those related to how the
device operates) and external factors (i.e., those related to
the environment the SSD operates in) affect flash-based SSD
reliability.

Our main contribution is a rigorous characterization of the
reliability trends of flash-based SSDs in the field. We observe
several reliability trends for flash-based SSDs that have not
been discussed before in prior works:

1. Flash-based SSDs do mnot fail at a monotonically in-
creasing rate with wear. They instead go through sev-
eral distinct reliability periods corresponding to how
failures emerge and are subsequently detected. Unlike
the monotonically-increasing failure trends for individual
flash chips [6, 12, 20], across a large number of flash-based
SSDs we observe early detection, early failure, usable life,
and wearout periods, whose failure rates can vary by up
to 81.7%.

2. Read disturbance errors (i.e., errors caused in neighbor-
ing pages due to a read [11, 8]) are not prevalent in the
field. SSDs that have read the most data do not show a
statistically significant increase in failure rates.

3. Sparse logical data layout across an SSD’s physical ad-
dress space (e.g., non-contiguous data), as measured by
the amount of SSD-internal DRAM buffer usage for flash
translation layer metadata, greatly affects device failure
rate. In addition, dense logical data layout (e.g., contigu-
ous data) with adversarial access patterns (e.g., small,
sparse writes) also negatively affects SSD reliability.

4. Higher temperatures lead to higher failure rates, but tech-
niques used in modern SSDs that throttle SSD operation
(and, consequently, the amount of data written to flash
chips) appear to greatly reduce the reliability impact of
higher temperatures by reducing access rates to the raw
flash chips.

5. The amount of data written by the operating system to
an SSD is not the same as the amount of data that is
eventually written to flash cells. This is due to system-
level buffering and wear reduction techniques employed in
the storage software stack and the SSDs. It is important
that system-level flash reliability studies account for these
effects.

2. BACKGROUND AND METHODOLOGY

2.1 Server Flash Device Architecture

We examine a set of flash-based SSDs similar to those em-
ployed commonly in server hardware and available from com-
panies such as Fusion-io, Hitachi, Intel, OCZ, Seagate, and
Virident. These SSDs connect to the server using the PCI Ex-
press (PCle) bus. The SSD controller coordinates the transfer
of data to and from the host and performs various functions
designed to improve the performance and reliability of flash

PCle Channel,
[[1
Flash | |Flash Flash
Chipyg | |Chip, Chip,
SSD
Controller
Channel,
[[1
Flash | |Flash Flash
Chipy | [Chip4 Chip,

Figure 1: Server SSD architecture.

memory. Figure 1 provides an illustration of the architecture
of a server SSD.

In order to achieve high bandwidth and low access latency
— despite potentially long chip read and write latencies — these
SSDs typically employ many channels that can be operated in
parallel, with a number of chips connected to each channel.
By mapping data across the channels, multiple channels can
provide data in parallel, helping to ensure that the SSD can
service data at close to the bandwidth of the PCle connection.

In addition to orchestrating flash chip access, the SSD con-
troller logic also plays a role in managing the reliability of the
flash memory chips. Since flash cells wear out after a certain
number of writes, SSD controllers must perform wear leveling
in order to distribute cell wear more evenly across the cells
in each flash chip. To do this, the SSD controller determines
when and where pages of flash data should be erased or copied
and maintains a mapping of logical addresses to physical lo-
cations, known as the flash translation layer (FTL) [15]. FTL
data is stored in a DRAM buffer and is managed by the SSD
controller. When blocks of flash cells are deemed unreliable
for further use, the SSD controller discards them to avoid the
risk of encountering an uncorrectable error on them.

2.2 Flash Errors and Their Handling

As prior works have shown in controlled environments, the
repeated wear caused by reading and writing data from/to
flash cells degrades their reliability over time, leading to rela-
tively high error rates [36, 23, 21, 27, 22, 25, 16, 33, 14, 5, 18,
4, 24, 40, 41, 26, 31, 30, 37, 6, 10, 7, 9, 8, 12, 20]. To protect
against such errors, additional data is stored in each channel
to maintain various error correcting codes (ECC) computed
over data in in the channel. These codes must be sufficiently
strong to protect against the errors that may occur in flash
chips over time.

The SSD controller is responsible for using the ECC infor-
mation to detect errors in the flash chips. Such flash con-
trollers typically use a progressive approach to error correc-
tion: small errors (on the order of bits per KB of data) are
quickly corrected using logic in the SSD controller while large
errors (on the order of >10’s of bits per KB) are corrected
using more complex controller logic or with assistance from a
driver running on the host. Thus, large errors that may be
uncorrectable from an SSD’s perspective, may be correctable
from the system’s perspective. For example, during the course
of a read operation, if the SSD controller is unable to correct
the errors in a particular chunk of data, the data and the ECC
information is sent to the host machine where a driver uses
the host machine’s CPU to perform more complex error cor-

Platform || SSDs | PCle Capacity | Age (years) | Daf;iiviistltjen [Dataread | UBER
T o | o [aisno [20 [B mne
T [em e o Lo o
i vt | orior [e e

Table 1: The platforms examined in our study. PCIe technology is denoted by vX, XY where X = version
and Y = number of lanes. Data was collected over the entire age of the SSDs. Data written and data read
are to/from the physical storage over an SSD’s lifetime. UBER = uncorrectable bit error rate (Section 3.2).

rection and forwards the result to the host’s OS. Errors that
are not correctable by the driver result in data loss.*

Our SSDs allow us to collect information only on large er-
rors that are uncorrectable by the SSD but correctable by the
host. For this reason, our results are in terms of such SSD-
uncorrectable but host-correctable errors, and when we refer
to uncorrectable errors we mean these type of errors. We refer
to the occurrence of such uncorrectable errors in an SSD as
an SSD failure.

2.3 The Systems

We examined the majority of flash-based SSDs in Face-
book’s server fleet, which have operational lifetimes extend-
ing over nearly four years and comprising many millions of
SSD-days of usage. Data was collected over the lifetime of the
SSDs. We found it useful to separate the SSDs based on the
type of platform an SSD was used in. We define a platform as
a combination of the device capacity used in the system, the
PCle technology used, and the number of SSDs in the system.
Table 1 characterizes the platforms we examine in our study.

We examined a range of high-capacity multi-level cell (MLC)

flash-based SSDs with capacities of 720 GB, 1.2 TB, and 3.2 TB.

The technologies we examined spanned two generations of
PCle, versions 1 and 2. Some of the systems in the fleet em-
ployed one SSD while others employed two. Platforms A and
B contain SSDs with around two or more years of operation
and represent 16.6% of the SSDs examined; Platforms C and
D contain SSDs with around one to two years of operation
and represent 50.6% of the SSDs examined; and Platforms E
and F contain SSDs with around half a year of operation and
represent around 22.8% of the SSDs examined.

2.4 Measurement Methodology

The flash devices in our fleet contain registers that keep
track of statistics related to SSD operation (e.g., number of
bytes read, number of bytes written, number of uncorrectable
errors). These registers are similar to, but distinct from, the
standardized SMART data stored by some SSDs to monitor
their reliability characteristics [3]. The values in these regis-
ters can be queried by the host machine. We use a collector
script to retrieve the raw values from the SSD and parse them
into a form that can be curated in a Hive [38] table. This
process is done in real time every hour.

The scale of the systems we analyzed and the amount of data
being collected posed challenges for analysis. To process the
many millions of SSD-days of information, we used a cluster
of machines to perform a parallelized aggregation of the data
stored in Hive using MapReduce jobs in order to get a set of

'We do not examine the rate of data loss in this work.

lifetime statistics for each of the SSDs we analyzed. We then
processed this summary data in R [2] to collect our results.

2.5 Analytical Methodology

Our infrastructure allows us to examine a snapshot of SSD
data at a point in time (i.e., our infrastructure does not store
timeseries information for the many SSDs in the fleet). This
limits our analysis to the behavior of the fleet of SSDs at a
point in time (for our study, we focus on a snapshot of SSD
data taken during November 2014). Fortunately, the number
of SSDs we examine and the diversity of their characteristics
allow us to examine how reliability trends change with vari-
ous characteristics. When we analyze an SSD characteristic
(e.g., the amount of data written to an SSD), we group SSDs
into buckets based on their value for that characteristic in the
snapshot and plot the failure rate for SSDs in each bucket.

For example, if an SSD s is placed in a bucket for N TB of
data written, it is not also placed in the bucket for (N —k) TB
of data written (even though at some point in its life it did
have only (N — k) TB of data written). When performing
bucketing, we round the value of an SSD’s characteristic to
the nearest bucket and we eliminate buckets that contain less
than 0.1% of the SSDs analyzed to have a statistically sig-
nificant sample of SSDs for our measurements. In order to
express the confidence of our observations across buckets that
contain different numbers of servers, we show the 95th per-
centile confidence interval for all of our data (using a binomial
distribution when considering failure rates). We measure SSD
failure rate for each bucket in terms of the fraction of SSDs
that have had an uncorrectable error compared to the total
number of SSDs in that bucket.

3. BASELINE STATISTICS

We will first focus on the overall error rate and error distri-
bution among the SSDs in the platforms we analyze and then
examine correlations between different failure events.

3.1 Bit Error Rate

The bit error rate (BER) of an SSD is the rate at which er-
rors occur relative to the amount of information that is trans-
mitted from/to the SSD. BER can be used to gauge the relia-
bility of data transmission across a medium. We measure the
uncorrectable bit error rate (UBER) from the SSD as:

UBER — Uncorrectable errors

Bits accessed

For flash-based SSDs, UBER is an important reliability met-
ric that is related to the SSD lifetime. SSDs with high UBERs
are expected to have more failed cells and encounter more (se-
vere) errors that may potentially go undetected and corrupt

data than SSDs with low UBERs. Recent work by Grupp et
al. examined the BER of raw MLC flash chips (without per-
forming error correction in the flash controller) in a controlled
environment [20]. They found the raw BER to vary from
1 x 107" for the least reliable flash chips down to 1 x 1073
for the most reliable, with most chips having a BER in the
1x107°% to 1 x 1078 range. Their study did not analyze the
effects of the use of chips in SSDs under real workloads and
system software.

Table 1 shows the UBER of the platforms that we examine.
We find that for flash-based SSDs used in servers, the UBER
ranges from 2.6 x 107° to 5.1 x 10~ '*. While we expect that
the UBER of the SSDs that we measure (which correct small
errors, perform wear leveling, and are not at the end of their
rated life but still being used in a production environment)
should be less than the raw chip BER in Grupp et al.’s study
(which did not correct any errors in the flash controller, exer-
cised flash chips until the end of their rated life, and accessed
flash chips in an adversarial manner), we find that in some
cases the BERs were within around one order of magnitude
of each other. For example, the UBER of Platform B in our
study, 2.6 x 1072, comes close to the lower end of the raw chip
BER range reported in prior work, 1 x 1078.

Thus, we observe that in flash-based SSDs that employ error
correction for small errors and wear leveling, the UBER ranges
from around 1/10 to 1/1000x the raw BER of similar flash
chips examined in prior work [20]. This is likely due to the
fact that our flash-based SSDs correct small errors, perform
wear leveling, and are not at the end of their rated life. As a
result, the error rate we see is smaller than the error rate the
previous study observed.

As shown by the SSD UBER, the effects of uncorrectable
errors are noticeable across the SSDs that we examine. We
next turn to understanding how errors are distributed among
a population of SSDs and how failures occur within SSDs.

3.2 SSD Failure Rate and Error Count

Figure 2 (top) shows the SSD incidence failure rate within
each platform — the fraction of SSDs in each platform that
have reported at least one uncorrectable error. We find that
SSD failures are relatively common events with between 4.2%
and 34.1% of the SSDs in the platforms we examine reporting
uncorrectable errors. Interestingly, the failure rate is much
lower for Platforms C and E despite their comparable amounts
of data written and read (cf. Table 1). This suggests that there
are differences in the failure process among platforms. We
analyze which factors play a role in determining the occurrence
of uncorrectable errors in Sections 4 and 5.

Figure 2 (bottom) shows the average yearly uncorrectable
error rate among SSDs within the different platforms — the
sum of errors that occurred on all servers within a platform
over 12 months ending in November 2014 divided by the num-
ber of servers in the platform. The yearly rates of uncor-
rectable errors on the SSDs we examined range from 15,128
for Platform D to 978,806 for Platform B. The older Platforms
A and B have a higher error rate than the younger Platforms
C through F, suggesting that the incidence of uncorrectable
errors increases as SSDs are utilized more. We will examine
this relationship further in Section 4.

Platform B has a much higher average yearly rate of un-
correctable errors (978,806) compared to the other platforms
(the second highest amount, for Platform A, is 106,678). We
find that this is due to a small number of SSDs having a much

06 08 1.0

SSD failure rate
0.4

|

lm_l.m

A B C D E F

0.0

8e+05
|

4e+05
|

Yearly uncorrectable errors per SSD

0
i
|
u
)

Figure 2: The failure rate (top) and average yearly
uncorrectable errors per SSD (bottom), among SSDs
within each platform.

higher number of errors in that platform: Figure 3 quantifies
the distribution of errors among SSDs in each platform. The x
axis is the normalized SSD number within the platform, with
SSDs sorted based on the number of errors they have had over
their lifetime. The y axis plots the number of errors for a given
SSD in log scale. For every platform, we observe that the top
10% of SSDs with the most errors have over 80% of all un-
correctable errors seen for that platform. For Platforms B, C,
E, and F, the distribution is even more skewed, with 10% of
SSDs with errors making up over 95% of all observed uncor-
rectable errors. We also find that the distribution of number
of errors among SSDs in a platform is similar to that of a
Weibull distribution with a shape parameter of 0.3 and scale
parameter of 5 x 10%. The solid black line on Figure 3 plots
this distribution.

An explanation for the relatively large differences in errors
per machine could be that error events are correlated. Exam-
ining the data shows that this is indeed the case: during a
recent two weeks, 99.8% of the SSDs that had an error during
the first week also had an error during the second week. We
therefore conclude that an SSD that has had an error in the
past is highly likely to continue to have errors in the future.
With this in mind, we next turn to understanding the correla-
tion between errors occurring on both devices in the two-SSD
systems we examine.

3.3 Correlations Between Different SSDs

Given that some of the platforms we examine have two flash-
based SSDs, we are interested in understanding if the likeli-

—— Platform A Plattorm D —— Weibull
--- Platform B Platform E
Platform C Platform F
) _ !
"] |
Q |
@« !
g 8
= 9
a o
w -—
17}
o}
2 |
n
<]
i 8
b9
o T T T T T T
00 02 04 06 08 1.0
Normalized SSD number
Figure 3: The distribution of uncorrectable error

count across SSDs. The total number of errors per
SSD is highly skewed, with a small fraction of SSDs
accounting for a majority of the errors. The solid
dark line plots a Weibull distribution that resembles
the error trends.

hood of one SSD failing is affected by the other SSD failing.
To examine this, we computed the conditional probability of
both SSDs failing given that one SSD failed. We compute the
conditional probability by dividing the number of systems in
which both SSDs failed over their lifetime by the number of
systems in which at least one SSD failed over its lifetime.

We find that the conditional probability of both SSDs failing
given one SSD has failed is 42.2% for Platform B, 59.9% for
Platform D, and 39.8% for Platform F. For comparison, if
there were no correlation between SSD failures in the same
machine and failures were uniformly distributed among SSDs,
we would expect the conditional probability of both devices
failing given that one SSD already failed to be similar to the
uncorrectable error rate. For example, if one SSD in a server
in Platform B fails, and that failure has no influence on the
other SSD in the same server failing, the probability of the
other SSD failing should be the same as the first SSD failing,
27.3%.

Instead, we find that one SSD failing in a machine does
increase the probability of the other SSD failing (by 14.9% for
Platform B, 25.8% for Platform D, and 17.8% for Platform
F). This suggests that operational conditions related to the
platform that SSDs are in contribute to the SSD failure trends
we observe.

These baseline statistics we have examined raise questions
about SSD failure in the field. For example, how do workload-
dependent characteristics (such as the amount of data written
or read) affect failure rates? What role does the SSD controller
play in SSD failure? and How do external factors (such as
temperature) affect SSD failure trends? We seek to answer
these questions by examining how a variety of internal and
external characteristics affect SSD failure trends, in Sections 4
and 5.

< S g 1 Useful life /
2 =0 20
T S 1 F Wearout
g >
> 1 ©
o) £, uy,
- ©
© w ! |
= 1 1
o 1 1
= 1 1
:§ 1 1
a ! '
% 1 1
1 1
1 1
1 1
1
g 1
S 1 1
1 1
Low Flash memory usage High

Figure 4: SSD lifecycle failure pattern. SSDs fail
at different rates during several distinct periods
throughout their lifetime (measured by usage)

4. THE ROLE OF INTERNAL FACTORS

We examine next how factors related to the internals of the
flash chips and the SSD controller affect uncorrectable errors
over an SSD’s lifetime. We examine the effects of writing
data to flash cells, reading data from flash cells, copying and
erasing data, discarding unusable blocks, and the SSD-internal
DRAM buffer usage.

4.1 Data Written to Flash Cells

Due to the physical properties that govern them, flash cels
have been shown to become less reliable the more times their
contents are programmed and erased, i.e., P/E cycles the flash
cell has endured (we refer the reader to [6], which provides
a good summary of flash cell operation and characteristics).
Several recent works have quantified the effects of P/E cycles
on various error mechanisms in small sets of recent flash chips
(e.g., [6,7,8,9,10, 11, 12, 13, 20]). The effects of P/E cycles
on flash reliability are important to understand because they
can be exacerbated in higher capacity MLC chips commonly
used in flash-based SSDs.

In order to examine the effect of P/E cycles on flash re-
liability, we consider the amount of data written directly to
flash cells over each SSD’s lifetime. Our framework allows us
to measure this value, which more accurately portrays flash
memory usage over its lifetime compared to software-level
writes. Note that software-level writes (i.e., write requests
sent by software to the storage device) do not directly get ex-
posed to the flash cells due to layers of buffering in the storage
software stack (we will examine their effects in Section 5.3).

Prior reliability studies on hard disk drives in the field
(e.g., [35]) observed a trend with respect to writes, called the
bathtub curve. The bathtub curve is so named because of its
shape with respect to device failure rate over time: devices
initially experience a high failure rate during an early failure
period, followed by a low rate of failure during the useful life
period, and ultimately a high failure rate once again during
their wearout period. In the SSDs we examine, we notice an
additional period before the early failure period that we call
the early detection period. During the early detection period,
which occurs when SSDs are young (measured by data written

directly to flash cells), cells are read, programmed, and erased,
and unreliable cells are identified by the SSD controller, re-
sulting in an initially high failure rate among devices. Figure 4
pictorially illustrates the lifecycle failure pattern we observe,
which is quantified by Figure 5.

Figure 5 plots how the failure rate of SSDs varies with the
amount of data written to the flash cells. We have grouped
the platforms based on the individual capacity of their SSDs.
Notice that across most platforms, the failure rate is low when
little data is written to flash cells. It then increases at first
(corresponding to the early detection period, region 1 in the
figures), and decreases next (corresponding to the early failure
period, region 2 in the figures). Finally, the error rate gener-
ally increases for the remainder of the SSD’s lifetime (corre-
sponding to the useful life and wearout periods, region 3 in
the figures). An obvious outlier for this trend is Platform C —
in Section 5, we observe that some external characteristics of
this platform lead to its atypical lifecycle failure pattern.

Note that different platforms are in different stages in their
lifecycle depending on the amount of data written to flash
cells. For example, SSDs in Platforms D and F, which have
the least amount of data written to flash cells on average, are
mainly in the early detection or early failure periods. On the
other hand, SSDs in older Platforms A and B, which have
more data written to flash cells, span all stages of the lifecycle
failure pattern (depicted in Figure 4). For SSDs in Platform
A, we observe up to an 81.7% difference between the failure
rates of SSDs in the early detection period and SSDs in the
wearout period of the lifecycle.

As explained before and as depicted in Figure 4, the lifecy-
cle failure rates we observe with the amount of data written
to flash cells does not follow the conventional bathtub curve.
In particular, the new early detection period we observe across
the large number of devices leads us to investigate why this
“early detection period” behavior exists. Recall that the early
detection period refers to failure rate increasing early in life-
time (i.e., when a small amount of data is written to the SSD).
After the early detection period, failure rate starts decreasing.

We hypothesize that this non-monotonic error rate behav-
ior during and after the early detection period can be ac-
counted for by a two-pool model of flash blocks: one pool
of blocks, called the weaker pool, consists of cells whose error

rate increases much faster than the other pool of blocks, called
the stronger pool. The weaker pool quickly generates uncor-
rectable errors (leading to increasing failure rates observed in
the early detection period as these blocks keep failing). The
cells comprising this pool ultimately fail and are taken out of
use early by the SSD controller. As the blocks in the weaker
pool are exhausted, the overall error rate starts decreasing (as
we observe after the end of what we call the early detection
period) and it continues to decrease until the more durable
blocks in the stronger pool start to wear out due to typical
use.

We notice a general increase in the duration of the lifecycle
periods (in terms of data written) for SSDs with larger capac-
ities. For example, while the early detection period ends after
around 3 TB of data written for 720 GB and 1.2TB SSDs (in
Platforms A, B, C, and D), it ends after around 10 TB of data
written for 3.2 TB SSDs (in Platforms E and F). Similarly, the
early failure period ends after around 15TB of data written
for 720 GB SSDs (in Platforms A and B), 28 TB for 1.2TB
SSDs (in Platforms C and D), and 75 TB for 3.2TB SSDs (in
Platforms E and F). This is likely due to the more flexibility
a higher-capacity SSD has in reducing wear across a larger
number of flash cells.

4.2 Data Read from Flash Cells

Similar to data written, our framework allows us to measure
the amount of data directly read from flash cells over each
SSD’s lifetime. Prior works in controlled environments have
shown that errors can be induced due to read-based access
patterns [5, 32, 6, 8]. We are interested in understanding how
prevalent this effect is across the SSDs we examine.

Figure 6 plots how failure rate of SSDs varies with the
amount of data read from flash cells. For most platforms (i.e.,
A, B, C, and F), the failure rate trends we see in Figure 6 are
similar to those we observed in Figure 5. We find this similar-
ity when the average amount of data written to flash cells by
SSDs in a platform is more than the average amount of data
read from the flash cells. Platforms A, B, C, and F show this
behavior.?

2Though Platform B has a set of SSDs with a large amount of
data read, the average amount of data read across all SSDs in
this platform is less than the average amount of data written.

—e— Platform A —=— Platform B —e— Platform C —#— Platform D —e— Platform E —#— Platform F
o o o
o o o I T
- - < (12 3
[[o -
8 © © -1
o o o o
3 B 3 B 3 B84
8 o &8 o &8 o —
) i a P b
0 ! N (7] — i
%] H 1%} %] .
o : o o i
S : S ! e 1
o T f T T T T o T T T o T T T T T T 1
0e+00 4e+13 8e+13 0.0e+00 1.0e+14 0.0e+00 1.5e+14 3.0e+14

Data written (B)

Data written (B)

Data written (B)

Figure 5: SSD failure rate vs. the amount of data written to flash cells. SSDs go through several distinct
phases throughout their life: increasing failure rates during early detection of less reliable cells (1), decreasing
failure rates during early cell failure and subsequent removal (2), and eventually increasing error rates during

cell wearout (3).

—o— Platform A —=— Platform B —o— Platform C —#— Platform D —eo— Platform E —=— Platform F
o o o
o J o {7 T o I T
- - 12 3 - |12 3
) I Lo o)) X
© - © -1 © -1 .
o o . o . .
3 8 . 5 B w 3 B84
B S o o : 8 S : ;
o o ok Qo ok
a9 ik 7] /I .) 4 A M
%) " %) N %] .
g | S [Fheedeee, AN g |-t
S - e LA e :
o I I I I I o I I I I I o I I I I I I
0.0e+00 1.0e+14 2.0e+14 0.0e+00 1.0e+14 2.0e+14 0.0e+00 1.5e+14

Data read (B)

Data read (B)

Data read (B)

Figure 6: SSD failure rate vs. the amount of data read from flash cells. SSDs in Platform E, where over twice
as much data is read from flash cells as written to flash cells, do not show failures dependent on the amount

of data read from flash cells.

In Platform D, where more data is read from flash cells than
written to flash cells (30.6 TB versus 18.9 TB, on average), we
notice error trends associated with the early detection and
early failure periods. Unfortunately, even though devices in
Platform D may be prime candidates for observing the occur-
rence of read disturbance errors (because more data is read
from flash cells than written to flash cells), the effects of early
detection and early failure appear to dominate the types of
errors observed on this platform.

In Platform E, however, over twice as much data is read
from flash cells as written to flash cells (51.1 TB versus 23.9 TB
on average). In addition, unlike Platform D, devices in Plat-
form E display a diverse amount of utilization. Under these
conditions, we do not observe a statistically significant differ-
ence in the failure rate between SSDs that have read the most
amount of data versus those that have read the least amount
of data. This suggests that the effect of read-induced errors in
the SSDs we examine is not predominant compared to other
effects such as write-induced errors. This corroborates prior
flash cell analysis that showed that most errors occur due to
retention effects and not read disturbance [32, 11, 12].

4.3 Block Erases

Before new data can be written to a page in flash mem-
ory, the entire block needs to be first erased.> Each erase
wears out the block as shown in previous works [32, 11, 12].
Our infrastructure tracks the average number of blocks erased
when an SSD controller performs garbage collection. Garbage
collection occurs in the background and erases blocks to en-
sure that there is enough available space to write new data.
The basic steps involved in garbage collection are: (1) select-
ing blocks to erase (e.g., blocks with many unused pages), (2)
copying pages from the selected block to a free area, and (3)
erasing the selected block [29]. While we do not have statistics
on how frequently garbage collection is performed, we exam-
ine the number of erases per garbage collection period metric
as an indicator of the average amount of erasing that occurs
within each SSD.

We examined the relationship between the number of erases
performed versus the failure rate (not plotted). Across the

3Flash pages (around 8 KB in size) compose each flash block.
A flash block is around 128 x 8 KB flash pages.

SSDs we examine, we find that the failure trends in terms of
erases are correlated with the trends in terms of data written
(shown in Figure 5). This behavior reflects the typical opera-
tion of garbage collection in SSD controllers: As more data is
written, wear must be leveled across the flash cells within an
SSD, requiring more blocks to be erased and more pages to be
copied to different locations (an effect we analyze next).

4.4 Page Copies

As data is written to flash-based SSDs, pages are copied to
free areas during garbage collection in order to free up blocks
with unused data to be erased and to more evenly level wear
across the flash chips. Our infrastructure measures the num-
ber of pages copied across an SSD’s lifetime.

We examined the relationship between the number of pages
copied versus SSD failure rate (not plotted). Since the page
copying process is used to free up space to write data and also
to balance the wear due to writes, its operation is largely dic-
tated by the amount of data written to an SSD. Accordingly,
we observe similar SSD failure rate trends with the number of
copied pages (not plotted) as we observed with the amount of
data written to flash cells (shown in Figure 5).

4.5 Discarded Blocks

Blocks are discarded by the SSD controller when they are
deemed unreliable for further use. Discarding blocks affects
the usable lifetime of a flash-based SSD by reducing the amount
of over-provisioned capacity of the SSD. At the same time, dis-
carding blocks has the potential to reduce the amount of errors
generated by an SSD, by preventing unreliable cells from being
accessed. Understanding the reliability effects of discarding
blocks is important, as this process is the main defense that
SSD controllers have against failed cells and is also a major
impediment for SSD lifetime.

Figure 7 plots the SSD failure rate versus number of dis-
carded blocks over the SSD’s lifetime. For SSDs in most plat-
forms, we observe an initially decreasing trend in SSD failure
rate with respect to the number of blocks discarded followed
by an increasing and then finally decreasing failure rate trend.

We attribute the initially high SSD failure rate when few
blocks have been discarded to the two-pool model of flash
cell failure discussed in Section 4.1. In this case, the weaker
pool of flash blocks (corresponding to weak blocks that fail

Platform A Platform B Platform C Platform D Platform E Platform F
o o o o o o
S o S A S o S 1 S 1 S 1
Q
K
o
5 o o o o o o
2 © o B D O O o -
& o (=] (=] o o o
[a]
@
%]
. . . /\‘/M) \/N\“H\‘ - -
S H S 4 S H S S - S -
S T T T T S T T 1T 1 1 17 1T 1T 6 T T T 1T T T 1717 S T T T T To T T T T T T 1T S T T T T 1T 1T 171
0e+00 4e+06 8e+06 0e+00 3e+08 6e+08 0 400000 1000000 0.0e+00 1.0e+07 2.0e+070.0e+00 6.0e+06 1.2e+070.0e+00 6.0e+07 1.2e+08

Discarded blocks Discarded blocks Discarded blocks

Discarded blocks Discarded blocks Discarded blocks

Figure 7: SSD failure rate vs. the number of discarded blocks. We find that (1) failure rate is relatively
high among SSDs that have discarded few blocks (far left of plots), (2) some SSDs seem to effectively mask
failures by discarding blocks (initial decrease in failure rates), and (3) discarding a large amount of blocks is
indicative of higher failure rates (toward the right of plots).

early) cause errors before they can be discarded by the SSD
controller, causing an initially high SSD failure rate. On the
other hand, the stronger pool of flash blocks (which fail due
to gradual wearout over time) contribute to the subsequent
decrease in SSD failure rate. Some SSDs that have discarded
a large number of blocks have high error rates (e.g., Platforms
A, B, and E), indicating that discarding a large number of
blocks is a good indicator of the likelihood of SSD failure.

We further examined the devices with the largest number of
discarded blocks and found that the number of blocks that are
discarded is not correlated with the amount of data written
to or read from flash cells (examined in Sections 4.1 and 4.2).
In other words, we observe SSDs of both low and high usage
across their lifetime (measured by flash cell reads and writes)
that have discarded large amounts of blocks and have high
failure rates. This suggests that the relationship between dis-
carded blocks and failure rate is to some extent intrinsic to
the SSD. Thus, some SSDs, despite discarding many blocks,
continue to encounter uncorrectable errors at a much higher
rate than their peers.

4.6 DRAM Buffer Usage

Flash-based SSDs use internal DRAM to provide buffer
space for SSD controller metadata or for data to be written
to the flash chips. The SSDs we examine use the internal
DRAM buffer space only to store metadata related to the
flash translation layer mapping for logical addresses to physi-
cal addresses. This allows the SSD controller to locate data on
an SSD quickly, reducing the performance impact of address
translation.

The SSDs we examine use the DRAM buffer less when
data is densely allocated (e.g., contiguous data) and use the
DRAM buffer more when data is sparsely allocated (e.g., non-
contiguous data). As an illustrative example, using an SSD
to read from a large file would lead to a contiguous allocation
of data on the SSD and a small DRAM buffer usage (due to
a small number of mappings that need to be tracked in the
FTL). On the other hand, using an SSD to read from and
write to many small files would lead to many non-contiguous
allocations of data on the SSD and a large DRAM buffer usage
(due to a large number of mappings that need to be tracked
in the FTL).

Examining DRAM buffer usage can therefore provide an in-
dication of how system data allocation behavior affects flash
reliability. To capture the DRAM buffer usage of SSDs, we
examine the average amount of DRAM buffer space used over

two recent weeks of SSD operation, sampled at one hour in-
tervals.

Figure 8 plots the failure rate for SSDs that use different
amounts of DRAM buffer space on average. For some plat-
forms (A, B, and D), we observe that as more DRAM buffer
space is used, SSD failure rate increases. Such a trend indi-
cates that some systems that allocate data more sparsely have
higher failure rates. Such behavior is potentially due to the
fact that sparse data allocation can correspond to access pat-
terns that write small amounts of non-contiguous data, caus-
ing the SSD controller to more frequently erase and copy data
compared to writing contiguous data.

While Platform C does not appear to be sensitive to DRAM
buffer usage, Platforms E and F demonstrate a trend of higher
error rates at lower DRAM buffer usage. We attribute this
behavior to a separate pattern of write behavior that we hy-
pothesize these SSDs are subjected to. In these platforms,
we believe that the SSDs allocate large, contiguous regions of
data (resulting in low DRAM buffer usage) but write to them
sparsely but intensely (leading to cell wearout). This could
occur, for example, when frequently updating small fields in
a large, contiguously-allocated data structure.

Interestingly, we observe similar failure behavior with DRAM
buffer usage at the application level (Figure 9). We examine
six of the largest distributions of applications on Platform B:
Graph Search is a distributed graph search service; Batch Pro-
cessor executes long-running asynchronous jobs; Key—Value
Store stores persistent mappings of keys to values; Load Bal-
ancer is a programmable traffic routing framework; Distributed
Key—Value Store is like a Key—Value Store with strong reliabil-
ity, availability, and consistency guarantees; and Flash Cache
is a cache for data with a large working set and low access
frequency [19]. Applications across SSDs have increasing fail-
ure rates with increasing DRAM buffer usage (sparse data
mappings) and in some cases have increases in failure rates at
lower DRAM buffer usage (dense data mappings, e.g., Batch
Processor and Flash Cache).

We conclude that small, sparse writes negatively affect SSD
failure rates the most for sparse data mappings (e.g., non-
contiguous data). But failures are also noticeable for dense
data mappings (e.g., contiguous data). Given this behavior,
we believe that there is the potential for developing more ef-
fective techniques to handle the adversarial access pattern of
small, sparse writes.

—eo— Platform A—=— Platform B —e— Platform C —#— Platform D —o— Platform E —#— Platform F
o o o
o o o
o) o o)
® N © N © N
o e 2
3 8 . 3 8 . 5 3 4
& o 8 o 8 o
m) [m) [m)
N —) — 0 —
%] 9] %]
o o o
o 4 o [T
o I I I I o I I I I o I I I I
5.0e+08 1.5e+09 5.0e+08 1.5e+09 5.0e+08 1.5e+09

DRAM buffer usage (B)

DRAM buffer usage (B)

DRAM buffer usage (B)

Figure 8: SSD failure rate vs. DRAM buffer usage. Sparse data mappings (e.g., non-contiguous data, indicated
by high DRAM buffer usage to store flash translation layer metadata) negatively affect SSD reliability the
most (Platforms A, B, and D). Additionally, some dense data mappings (e.g., contiguous data in Platforms
E and F) also negatively affect SSD reliability, likely due to the effect of small, sparse writes.

Graph Search Batch Processor Key-Value Store Load Balancer Distributed Key-Value Store Flash Cache
o o o o o o
S A S A S A S A S A S A
Q
‘5 — — — — — —
o
2 8 3 3 8 8 38
&8 o o o o o o
a
7]
»
o o o o o o
S A > > S S 4 S 4
o T T T 1T o 1. T 1T T o T T T T S T T 1T 1T TS 1. 717 T T o T T T T
2.5e+08 4.0e+08 2.5e+08 4.0e+08 2.5e+08 3.5e+08 2.5e+08 4.0e+08 2.5e+08 4.0e+08 4e+08 8e+08

DRAM buffer usage (B) DRAM buffer usage (B) DRAM buffer usage (B)

DRAM buffer usage (B) DRAM buffer usage (B) DRAM buffer usage (B)

Figure 9: SSD failure rate vs. DRAM buffer usage across six applications that run on Platform B. We observe
similar DRAM buffer effects to Figure 8, even among SSDs running the same application.

5. THE ROLE OF EXTERNAL FACTORS

We next examine how factors external to the SSD influence
the errors observed over an SSD’s lifetime. We examine the ef-
fects of temperature, PCle bus power, and system-level writes
reported by the OS.

5.1 Temperature

It is commonly assumed that higher temperature negatively
affects the operation of flash-based SSDs. In flash cells, higher
temperatures have been shown to cause cells to age more
quickly due to the temperature-activated Arrhenius effect [39].
Temperature-dependent effects are especially important to un-
derstand for flash-based SSDs in order to make adequate data
center provisioning and cooling decisions. To examine the ef-
fects of temperature, we used temperature measurements from
temperature sensors embedded on the SSD cards, which pro-
vide a more accurate portrayal of the temperature of flash cells
than temperature sensors at the server or rack level.

Figure 10 plots the failure rate for SSDs that have various
average operating temperatures. We find that at an operating
temperature range of 30 to 40°C, SSDs across server platforms
see similar failure rates or slight increases in failure rates as
temperature increases.

Outside of this range (at temperatures of 40°C and higher),
we find that SSDs fall into one of three categories with respect
to their reliability trends vs. temperature: (1) temperature-
sensitive with increasing failure rate (Platforms A and B),
(2) less temperature-sensitive (Platforms C and E), and (3)

temperature-sensitive with decreasing failure rate (Platforms
D and F). There are two factors that may affect the trends we
observe with respect to SSD temperature.

One potential factor when analyzing the effects of temper-
ature is the operation of the SSD controller in response to
changes in temperature. The SSD controllers in some of the
SSDs we examine attempt to ensure that SSDs do not exceed
certain temperature thresholds (starting around 80°C). Simi-
lar to techniques employed in processors to reduce the amount
of processor activity in order to keep the processor within a
certain temperature range, our SSDs attempt to change their
behavior (e.g., reduce the frequency of SSD access or, in the
extreme case, shut down the SSD) in order not to exceed tem-
perature thresholds.

A second potential factor is the thermal characteristics of
the machines in each platform. The existence of two SSDs in
a machine (in Platforms B, D, and F) compared to one SSD
in a machine may (1) increase the thermal capacity of the
machine (causing its SSDs to reach higher temperatures more
quickly and increase the work required to cool the SSDs) and
(2) potentially reduce airflow to the components, prolonging
the effects of high temperatures when they occur.

One hypothesis is that temperature-sensitive SSDs with in-
creasing error rates, such as Platforms A and B, may not em-
ploy as aggressive temperature reduction techniques as other
platforms. While we cannot directly measure the actions the
SSD controllers take in response to temperature events, we
examined an event that can be correlated with temperature

—o— Platform A —=— Platform B —o— Platform C —#— Platform D —e— Platform E —=— Platform F
o o o
S S SEE

o) o o)

® N © N © N

o e 2

3 8 . 3 8 . 5 3 4

& o 8 o 8 o

m) [m) [m)

N —) — 0 —

%] 9] %]
. o e . 3 o L/Q}M
S S S
o I I I I I I I o I I I I I I I o I I I I I

30 40 50 60 35 45 55 65 30 40 50 60 70

Average temperature (°C)

Average temperature (°C)

Average temperature (°C)

Figure 10: SSD failure rate vs. temperature. Operational temperatures of 30 to 40°C generally show increas-
ing failure rates. Failure trends at and above 40°C follow three distinct failure rate patterns: increasing, not

sensitive, and decreasing.

reduction: whether or not an SSD has throttled its operation
in order to reduce its power consumption. Performing a large
number of writes to an SSD consumes power and increases the
temperature of the SSD. Figure 11 plots, for each temperature,
the fraction of machines that have ever been throttled. Exam-
ining this figure confirms that Platforms A and B, where no
machines or few machines have been throttled, exhibit behav-
ior that is typical for SSDs without much preventative action
against temperature increases. In these platforms, as temper-
ature increases, failure rate of SSDs increases.

In contrast to Platforms A and B, Platforms C and E, which
are less temperature-sensitive, throttle their SSDs more ag-
gressively across a range of temperatures. From Figure 10 we
can see that throttled SSDs have lower failure rates (in Plat-
forms C and E) compared to SSDs that are throttled less or
not throttled at all (Platforms A and B). We attribute the
relatively low SSD failure rate for Platforms C and E we have
observed in our measurements to the very aggressive throttling
that occurs for SSDs in these two platforms. Such throttling
could potentially reduce performance, though we are not able
to examine this effect.

SSDs in Platforms D and F employ a relatively low amount
of throttling (Figure 11), but exhibit the counter-intuitive
trend of decreasing failure rate with increased temperature.
Recall from Section 4.1 that these SSDs are predominantly
in their early detection and early failure periods and so the
failure rates for most SSDs in these platforms are relatively
high compared to their peers in Platforms C and E. It is likely

that a combination of power throttling and some other form of
temperature-dependent throttling employed by the SSD con-
troller that we are not able to measure is responsible for re-
ducing the failure rate among the SSDs in Platforms D and F
as temperature increases.

5.2 Bus Power Consumption

According to the PCle standard, the nominal bus power
consumption for the PCle x4 SSDs that we analyze is 10 W
(regardless of PCle version 1 or 2). Our infrastructure allows
us to measure the average amount of power consumed on the
PClIe bus by SSDs. As power consumption in servers can lead
to increased electricity use for operation and cooling in data
centers, we are interested in understanding the role that SSD
power draw plays with respect to errors.

Figure 12 plots the failure rate for SSDs that operate at
different average amounts of bus power consumption. Recall
that Platforms A and B use PCle vl and that Platforms C
through F use PCle v2. We make three observations about
the operation of these SSDs. First, PCle v2 SSDs (Platforms
C through F) support twice the bandwidth of PCle vl SSDs
(Platforms A and B) by operating at twice the frequency, lead-
ing to around twice the amount of power consumed between
the two sets of SSDs: SSDs supporting PCle v1 operate in
the range of 4 to 7.5 W and SSDs supporting PCle v2 oper-
ate in the range of 8 to 14.5 W. Second, we find that the bus
power that SSDs consume can vary over a range of around
2x between the SSDs that consume the least bus power and

Platform A Platform B Platform C Platform D Platform E Platform F
o o o o o o
c 24 e A e A S A S A S A
5 < - - ~ A = - -
©
8
8 o o o o o o
©v © © © © v
@ o o o o o o
o
<
o
[=-} o o o o o
S S o S S e 4 S S
© T T T T T T T o T T T T T T o T T T T T T o T T T T T T T o T T T T T o T T T T T T

60 30 35 40 45 50 55 35 40 45 50 55 60

Average temperature (°C) Average temperature (°C) Average temperature (°C)

Figure 11: Fraction of SSDs ever throttled vs. SSD temperature. While

35 45 55 65 30 40 50 60 70 35 40 45 50 55 60

Average temperature (°C) Average temperature (°C) Average temperature (°C)

SSDs in some platforms are never

throttled (A and B), others are throttled more aggressively (C and E).

—o— Platform A —=— Platform B —e— Platform C —#— Platform D —o— Platform E —#— Platform F
o o o
o o o
o) o [
© . © . © .
o e 2
3 8 . 3 8 . 5 3 4
& o 8 o 8 o
m) [m) [m)
N —) — 0 —
%] 9] %]
o o o
o 4 o [T
o I I I I o I I I I I I I o I I I I I I I
4 5 6 7 8 9 11 13 8 9 11 13

Bus power (W)

Figure 12: SSD failure rate vs. bus power consumption.

Bus power (W)

Bus power (W)

PClIe v2 SSDs (Platforms C through F) consume more

bus power than PCle vl SSDs (Platforms A and B) due to their higher frequency. Bus power consumption
range (1) spans up to around 2x for SSDs within a platform (e.g., Platform B) and (2) is typically different

from the nominal PCle bus power of 10 W.

those that consume the most within a platform. Third, we
find that PCle v2 SSDs in systems that use two SSDs (Plat-
forms D and F) tend to consume lower bus power compared
to PCle v2 SSDs in systems that use one SSD (Platforms C
and E). This may be due to SSD access being distributed be-
tween the two SSDs. Note, however, that the total bus power
consumption of a two-SSD system is larger than a single-SSD
system.

With regard to failure rates, we observe that the trends for
bus power consumption are correlated with those of average
temperature. We believe that the higher bus power consump-
tion is due to more data being transmitted and more data
being transmitted requires more power to read or write from
the SSD, which in turn increases the SSD temperature. One
interesting result of this correlation is that techniques that
aim to reduce SSD temperature in the absence of precise tem-
perature sensors may be able to use bus power consumption
as a proxy.

5.3 Data Written by the System Software

While we have shown that the amount of data that is written
to flash cells has a direct effect on flash-based SSD lifetime, it
is less clear what effect system-level writes reported by the OS
(i-e., writes initiated by the system software on behalf of user
programs or the file system) have on SSD error characteristics.
Note that not all data written by system software may get
written to flash chips due to system-level buffering. However,
the reduction of writes performed by the system software is
often used as a figure of merit in techniques that evaluate flash
reliability in lieu of modeling the wear reduction techniques
present in SSDs. Therefore, we are interested in examining
whether or not different amounts of writes performed by the
system software lead to different error characteristics in SSDs.

To this end, we measured the number of sectors (512B in
size) modified by the OS on behalf of the applications running
on our machines over their lifetime, which we refer to as data
written by the system software. Figure 13 plots the failure
rate for SSDs where the OS has written different numbers of
sectors over their lifetime.

In general, we observe that the total amount of data writ-
ten by the system software is correlated with increased failure
rates (following similar trends as the SSD lifecycle from Fig-

ure 4). There is one important caveat: some systems where
a large amount of data has been written by the system soft-
ware, have lower failure rates. This can be seen, for example,
in Platforms A, B, and F: while there is a general trend toward
higher SSD failure rates with larger amounts of data written
by the system software for other platforms, the SSDs in Plat-
forms A, B, and F can have lower failure rates with larger
amounts of data written by the system software. We believe
that this is due to the fact that systems that write more data
may be able to benefit more from system-level buffering (e.g.,
the OS page cache) along with techniques employed by the
SSD controller to reduce the amount of wear on flash cells
(e.g., data encoding schemes that help reduce the number of
program or erase operations).

To confirm this trend, Figure 14 plots the amount of data
actually written to the flash chips compared to the amount
of data the system software reported as having written. SSDs
in Platforms B and F clearly show that writing more data
at the system software-level does not always imply physically
writing more data to flash chips. In fact, writing more data
at the system software level may actually offer the system
software more opportunities to coalesce data in system-level
buffers before writing it to the flash cells, resulting in smaller
numbers of actual writes to the flash chips. This observation
suggests that work concerned with improving flash reliability
must consider the effects of buffering across the system when
evaluating different techniques.

6. LIMITATIONS AND POTENTIAL

CONFOUNDING FACTORS

Workload changes due to SSD failure. In order to make
systems more resilient to SSD failures, data replication is em-
ployed at the software level in some workloads. Such replica-
tion stores multiple copies of data (e.g., three copies) across
different servers. In the event that data on one SSD becomes
unavailable (e.g., due to an SSD failure), a copy of data can
still be readily accessible.

In Section 3.3, we examined the correlation between SSD
failures within the same server. Note that, with replication,
an SSD failure will not shift the workload to the other SSD
in the same server, as replicated copies are spread out among

—eo— Platform A—=— Platform B —eo— Platform C —#— Platform D —eo— Platform E —=— Platform F

o o o
S S SEE

o) o o)

® N © N © N

o e 2

3 8 . 3 8 . 5 3 4

& o 8 o 8 o

m) [m) [m)

N —) — 0 —

%] 9] %]
o o M o
S S S
o I I I I I I I o I I I I I I I o I I I I I I

0e+00 3e+10 6e+10 0.0e+00 6.0e+10 1.2e+11 0e+00 2e+11 4e+11

System data written (sectors)

System data written (sectors)

System data written (sectors)

Figure 13: SSD failure rate vs. system data written by the system software. Interestingly, the amount of
data written by the system software is not always an accurate indication of the amount of wear induced in
an SSD, as seen in Platforms A and B, where more data written by the system software can correspond to

lower failure rates.

Platform A Platform B Platform C Platform D Platform E Platform F

) -

» . T by T

© — o -

S o < - S

R ? - ‘3: - o) o 2

2 8 o 3 < ¥ %

° © - E 1 + | =}

< - - ~ 3 o

L = ® 7 ;. ~ 4 -

= T + - o -

: & & 8 s g g -

© o T L)

a T T T T T rT T 1T T rTe T T T T T T T g T T T T T T T g T T T T T g T T T T T
S >

0e+00 2e+10 4e+10 0e+00 3e+10 6e+10 0.0e+00 6.0e+10 1.2e+11 0.0e+00 1.5e+10 3.0e+100.0e+00 1.0e+11 2.0e+11 S 0e+00 2e+10 4e+10

System data written (sectors’ System data written (sectors’ System data written (sectors!

Figure 14: Actual data written to flash cells vs. data the OS reported as having been written.

System data written (sectors, System data written (sectors, ~ System data written (sectors’

Due to

buffering present in the system software (e.g., the page cache), the amount of data written by the system
software does not always correspond to the amount of data written to the SSD (e.g., in Platforms A, B, and

F).

different servers. Replication will, however, increase the uti-
lization of other SSDs that contain copies of data. As such,
correlation between SSD failures in different servers may exist,
though we do not examine such effects in this work.

Performance effects. We also did not examine how the per-
formance of a system was affected by the rate of uncorrectable
errors on its SSDs and whether this made machines with SSDs
reporting errors less effective at executing their workload.

SSD and flash chip access patterns. Our data collection in-
frastructure did not allow us to collect detailed access traces
to the SSDs and flash chips we examined. This posed chal-
lenges for understanding the underlying causes of error be-
havior. While we examined the aggregate behavior of SSDs
(e.g., amount of data written/read to/from flash chips in Sec-
tions 4.1 and 4.2) in order to gain insight into potential under-
lying access pattern trends, we believe that further SSD and
flash chip access pattern analysis is needed to fully under-
stand the underlying causes of the reliability trends we have
identified.

Error correction scheme. The SSDs we examined used one
viable strategy for error correction. Data uncorrectable by the
SSD is forwarded to the host for repair. We note that such an
error correction scheme may not be employed on other SSDs
(and may not even be possible for some SSDs, such as those
that use the NVMe interface [1]). While our results are still
representative of the types of uncorrectable errors that such

SSDs face, we believe that it will be beneficial for future stud-
ies to examine the effects of different error correction schemes
in SSDs.

SSD data loss and repair. Recall from Section 2.2 that when
an error is not correctable by an SSD, it is forwarded for repair
to the host that the SSD is connected to. When the host
cannot repair an error, data loss ensues. We did not examine
the rate of data loss in the systems we evaluated. Nor did we
examine the rate of SSD replacement. However, we believe
that such an analysis (potentially combined with various error
correction schemes, as mentioned above) would be very useful
to perform in future work.

As we also mentioned in Section 2.2, the amount of errors
the SSDs we examined can tolerate without the assistance of
the host is on the order of bits per KB of data (similar to
data reported in [17]). However, we do not have visibility into
the error correction schemes employed on the host for larger
amounts of errors (>10’s of bits per KB of data).

7. RELATED WORK

To our knowledge, this paper provides the first comprehen-
sive study of flash-based SSD reliability trends in the field.
Prior flash memory reliability studies focused on flash chip re-
liability and evaluated only a small number of flash chips in
controlled environments.

The closest related work, by Grupp et al. [20], examined
the cost, performance, capacity, and reliability trends of flash
memory in the context of a prototypical server flash storage
device similar in architecture to SSDs deployed in data centers
(Figure 1). Based on their study, the authors project several
challenges for the adoption of flash in a server context. One
drawback of the reliability results presented in [20] is that
the experiments were performed in a controlled environment,
under synthetic workloads, while modeling only the latency —
but not the function — of the SSD controller on a small number
(45) of flash chips.

A recent work by Ouyang et al. [34] performed a study of
programmable SSD controllers at a large-scale web services
company, Baidu. While this work examined flash-based SSDs
in the field, it did not analyze the reliability characteristics of
SSDs and instead focused on bandwidth, capacity, and cost.

Several studies examined flash chips in controlled environ-
ments in order to understand their error characteristics. Our
study is orthogonal to these works. Early analysis of flash
circuitry identified flash reliability trends attributed to pro-
gram disturbance due to tunneling effects and hot-electron
injection [36, 23, 21, 27, 22], quantum-level noise effects [25,
16], erratic tunneling [33, 14], data-retention and read distur-
bance [5, 18, 4], and detrapping-induced retention effects [24,
40, 41, 26, 31, 30, 37]. A series of works by Cai et al. [6, 11,
10, 7, 9, 13, 8, 12] identified patterns of errors for more recent
MLC flash chips and proposed techniques to help mitigate
their effects. These studies can help identify (and mitigate)
the trends in flash error patterns at the raw chip level. How-
ever, it is unclear from these studies to what extent flash-based
SSDs in the field running real workloads and real system soft-
ware over a long time may exhibit such error patterns (and
how to ensure the reliability of such SSDs). For example, com-
pared to prior chip-level studies, we find that SSD failure rates
do not increase monotonically with flash chip wear; that read
disturbance errors are not prevalent in the field; that the data
layout across an SSD’s physical address space has an effect
on SSD failure rate; that SSD controller throttling techniques
can help mitigate temperature-induced errors; and that op-
timizations in the SSD controllers and buffering employed in
the system software reduces the amount of data written to
flash chips. These differences from prior studies can be at-
tributed to our holistic study of flash errors when running on
real SSD controllers, under real system software, and with real
data center workloads.

8. SUMMARY AND CONCLUSIONS

We performed an extensive analysis of the effects of various
factors on flash-based SSD reliability across a majority of the
SSDs employed at Facebook, running production data cen-
ter workloads. We analyze a variety of internal and external
characteristics of SSDs and examine how these characteristics
affect the trends for uncorrectable errors. To conclude, we
briefly summarize the key observations from our study and
discuss their implications for SSD and system design.

Observation 1: We observe that SSDs go through several
distinct failure periods — early detection, early failure, usable
life, and wearout — during their lifecycle, corresponding to the
amount of data written to flash chips.

Due to pools of flash blocks with different reliability charac-
teristics, failure rate in a population does not monotonically
increase with respect to amount of data written to flash chips.
This is unlike the failure rate trends seen in raw flash chips.

We suggest that techniques should be designed to help reduce
or tolerate errors throughout SSD lifecycle. For example, addi-
tional error correction at the beginning of an SSD’s life could
help reduce the failure rates we see during the early detection
period.

Observation 2: We find that the effect of read disturbance
errors is not a predominant source of errors in the SSDs we
examine.

While prior work has shown that such errors can occur un-
der certain access patterns in controlled environments [5, 32,
6, 8], we do not observe this effect across the SSDs we exam-
ine. This corroborates prior work which showed that the effect
of retention errors in flash cells dominate error rate compared
to read disturbance [32, 6]. It may be beneficial to perform
a more detailed study of the effect of these types of errors in
flash-based SSDs used in servers.

Observation 3: Sparse data layout across an SSD’s phys-
ical address space (e.g., non-contiguously allocated data) leads
to high SSD failure rates; dense data layout (e.g., contiguous
data) can also negatively impact reliability under certain con-
ditions, likely due to adversarial access patterns.

Further research into flash write coalescing policies with in-
formation from the system level may help improve SSD reli-
ability. For example, information about write access patterns
from the operating system could potentially inform SSD con-
trollers of non-contiguous data that is accessed very frequently,
which may be one type of access pattern that adversely affects
SSD reliability and is a candidate for storing in a separate
write buffer.

Observation 4: Higher temperatures lead to increased fail-
ure rates, but do so most noticeably for SSDs that do not em-
ploy throttling techniques.

In general, we find techniques like throttling, which may
be employed to reduce SSD temperature, to be effective at
reducing the failure rate of SSDs. We also find that SSD
temperature is correlated with the power used to transmit
data across the PCle bus, which can potentially be used as
a proxy for temperature in the absence of SSD temperature
Sensors.

Observation 5: The amount of data reported to be written
by the system software can overstate the amount of data ac-
tually written to flash chips, due to system-level buffering and
wear reduction techniques.

Techniques that simply reduce the rate of software-level
writes may not reduce the failure rate of SSDs. Studies seeking
to model the effects of reducing software-level writes on flash
reliability should also consider how other aspects of SSD oper-
ation, such as system-level buffering and SSD controller wear
leveling, affect the actual amount of data written to SSDs.

Conclusions. We hope that our new observations, with
real workloads and real systems from the field, can aid in (1)
understanding the effects of different factors, including system
software, applications, and SSD controllers on flash memory
reliability, (2) the design of more reliable flash architectures
and systems, and (3) improving the evaluation methodologies
for future flash memory reliability studies.

9. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful com-
ments. This work is supported in part by Samsung and the
Intel Science and Technology Center for Cloud Computing, as
well as NSF grants 0953246, 1065112, 1212962, and 1320531.

10.

1]
2]

3]

[17]

18]

[19]

[20]

REFERENCES

NVM Express Specification.
http://www.nvmexpress.org/specifications/.

The R Project for Statistical Computing.
http://www.r-project.org/.

American National Standards Institute. AT Attachment
8 — ATA/ATAPI Command Set.
http://www.t13.org/documents/uploadeddocuments/
docs2008/d1699r6a-ata8-acs.pdf, 2008.

H. Belgal, N. Righos, 1. Kalastirsky, et al. A New
Reliability Model for Post-Cycling Charge Retention of
Flash Memories. IRPS, 2002.

A. Brand, K. Wu, S. Pan, et al. Novel Read Disturb
Failure Mechanism Induced By Flash Cycling. IRPS,
1993.

Y. Cai, E. F. Haratsch, O. Mutlu, et al. Error Patterns
in MLC NAND Flash Memory: Measurement,
Characterization, and Analysis. In DATE, 2012.

Y. Cai, E. F. Haratsch, O. Mutlu, et al. Threshold
Voltage Distribution in MLC NAND Flash Memory:
Characterization, Analysis, and Modeling. In DATE,
2013.

Y. Cai, Y. Luo, S. Ghose, et al. Read Disturb Errors in
MLC NAND Flash Memory: Characterization and
Mitigation. In DSN, 2015.

Y. Cai, Y. Luo, E. F. Haratsch, et al. Data Retention in
MLC NAND Flash Memory: Characterization,
Optimization and Recovery. In HPCA, 2015.

Y. Cai, O. Mutlu, E. F. Haratsch, et al. Program
Interference in MLC NAND Flash Memory:
Characterization, Modeling, and Mitigation. In ICCD,
2013.

Y. Cai, G. Yalcin, O. Mutlu, et al. Flash
Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime. In
1CCD, 2012.

Y. Cai, G. Yalcin, O. Mutlu, et al. Error Analysis and
Retention-Aware Error Management for NAND Flash
Memory. ITJ, 2013.

Y. Cai, G. Yalcin, O. Mutlu, et al. Neighbor-Cell
Assisted Error Correction for MLC NAND Flash
Memories. In SIGMETRICS, 2014.

A. Chimenton and P. Olivo. Erratic Erase in Flash
Memories — Part I: Basic Experimental and Statistical
Characterization. IEEE Trans. Elect. Dev., 50(4), 2003.
T.-S. Chung, D.-J. Park, S. Park, et al. A survey of
flash translation layer. J. Sys. Arch., 55, 2009.

C. Compagnoni, A. Spinelli, R. Gusmeroli, et al. First
Evidence for Injection Statistics Accuracy Limitations
in NAND Flash Constant-Current Fowler-Nordheim
Programming. IEDM Tech Dig., 2007.

J. Cooke. The Inconvenient Truths of NAND Flash
Memory. In Flash Memory Summit, 2007.

R. Degraeve, F. Schuler, B. Kaczer, et al. Analytical
Percolation Model for Predicting Anomalous Charge
Loss in Flash Memories. IEEE Trans. Elect. Dev., 51(9),
2004.

A. Gartrell, M. Srinivasan, B. Alger, et al. McDipper: A
Key-Value Cache for Flash Storage. https:
//www.facebook.com/notes/10151347090423920, 2013.
L. M. Grupp, J. D. Davis, and S. Swanson. The Bleak
Future of NAND Flash Memory. In FAST, 2012.

21]

[22]

23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Hur, J. Lee, M. Park, et al. Effective Program
Inhibition Beyond 90nm NAND Flash Memories.
NVSM, 2004.

S. Joo, H. Yang, K. Noh, et al. Abnormal Disturbance
Mechanism of Sub-100 nm NAND Flash Memory.
Japanese J. Applied Physics, 45(8A), 2006.

T. Jung, Y. Choi, K. Suh, et al. A 3.3V 128Mb
Multi-Level NAND Flash Memory for Mass Storage
Applications. ISSCC, 1996.

M. Kato, N. Miyamoto, H. Kume, et al. Read-Disturb
Degradation Mechanism Due to Electron Trapping in
the Tunnel Oxide for Low-Voltage Flash Memories.
IEDM, 1994.

H. Kurata, K. Otsuga, A. Kotabe, et al. The Impact of
Random Telegraph Signals on the Scaling of Multilevel
Flash Memories. VLSI, 2006.

J. Lee, J. Choi, D. Park, et al. Degradation of Tunnel
Oxide by FN Current Stress and Its Effects on Data
Retention Characteristics of 90-nm NAND Flash
Memory. IRPS, 2003.

J. Lee, C. Lee, M. Lee, et al. A New Program
Disturbance Phenomenon in NAND Flash Memory by
Source/Drain Hot-Electrons Generated by GIDL
Current. NVSM, 2006.

A. Maislos. A New Era in Embedded Flash Memory,
2011. Presentation at Flash Memory Summit.

Micron. Garbage Collection in Single-Level Cell NAND
Flash Memory. Technical report, 2011.

N. Mielke, H. Belgal, A. Fazio, et al. Recovery Effects in
the Distributed Cycling of Flash Memories. IRPS, 2006.
N. Mielke, H. Belgal, 1. Kalastirsky, et al. Flash
EEPROM Threshold Instabilities due to Charge
Trapping During Program/Erase Cycling. IEEE Trans.
Dev. and Mat. Reliability, 2(3), 2004.

N. Mielke, T. Marquart, N. Wu, et al. Bit Error Rate in
NAND Flash Memories. In IRPS, 2008.

T. Ong, A. Fazio, N. Mielke, et al. Erratic Erase in
ETOX™ Flash Memory Array. VLSI, 1993.

J. Ouyang, S. Lin, S. Jiang, et al. SDF:
Software-Defined Flash for Web-Scale Internet Storage
Systems. ASPLOS, 2014.

B. Schroeder and G. A. Gibson. Disk Failures in the
Real World: What Does an MTTF of 1,000,000 Hours
Mean to You? In FAST, 2007.

K. Suh, B. Suh, Y. Lim, et al. A 3.3 V 32 Mb NAND
Flash Memory with Incremental Step Pulse
Programming Scheme. IEEE JSSC, 30(11), 1995.

K. Takeuchi, S. Satoh, T. Tanaka, et al. A Negative Vth
Cell Architecture for Highly Scalable, Excellently
Noise-Immune, and Highly Reliable NAND Flash
Memories. IEEE JSSC, 34(5), 1995.

A. Thusoo, J. Sen Sarma, N. Jain, et al. Hive — A
Petabyte Scale Data Warehouse Using Hadoop. In
ICDE, 2010.

M. Xu, C. Tan, and L. MingFu. Extended Arrhenius
Law of Time-to-Breakdown of Ultrathin Gate Oxides.
Applied Physics Letters, 82(15), 2003.

R. Yamada, Y. Mori, Y. Okuyama, et al. Analysis of
Detrap Current Due to Oxide Traps to Improve Flash
Memory Retention. IRPS, 2000.

R. Yamada, T. Sekiguchi, Y. Okuyama, et al. A Novel
Analysis Method of Threshold Voltage Shift Due to
Detrap in a Multi-Level Flash Memory. VLSI, 2001.

