
"1,TANDEMCOMPUTERS

Why Do Computers Stop
and What Can Be Done
About It?

Jim Gray

Technical Report 85.7
June 1985
PN87614

Why Do Computers Stop and What Can Be Done About It?

Jim Gray

June 1985

Tandem Technical report 85.7

Tandem TR 85.7

Why Do Computers Stop and What Can Be Done About It?

Jim Gray

June, 1985
Revised November, 1985

ABSTRACT

An analysis of the failure statistics of a commercially available

fault-tolerant system shows that administration and software are the

major contributors to failure. Various approachs to software fault-

tolerance are then discussed notably process-pairs, transactions

and reliable storage. It is pointed out that faults in production

software are often soft (transient) and that a transaction mechanism

combined with persistent process-pairs provides fault-tolerant

execution -- the key to software fault-tolerance.

DISCLAIMER

This paper is not an "official" Tandem statement on fault-tolerance.
Rather, it expresses the author's research on the topic.

An early version of this paper appeared in the proceedings of the
German Association for Computing Machinery Conference on Office
Automation, Erlangen, Oct. 2-4, 1985.

TABLE OF CONTENTS

Introduct ion 1

Hardware Availability by Modular Redundancy•.•.....•..•..•• 3

Analysis of Failures of a Fault-tolerant System•.••......•••.•. 7

Implications of the Analysis of MTBF ...•••.•.•••••...•........ 12

Fault-tolerant Execution 15

Software Modularity Through Processes and Messages 16

Fault Containment Through Fail-Stop Software Modules 16

Software Faults Are Soft, the Bohrbug-Heisenbug Hypothesis.17

Process-pairs For Fault-tolerant Execution 20

Transactions for Data Integrity ..•......................... 24

Transactions for Simple Fault-tolerant Execution 25

Fault-tolerant Communication•..•.....•.•.•.•.•.•....... 27

Fault-tolerant Storage 29

Summary 31

Ac knoW' 1edgme nt s ••••••••••.•.•....•..•.•...••..•••.•.•.•••.. " .• 33

Ref erenees. • . • • . • • . • . • . • . • • . • • • . • . • . • • . . . • . . . • . • • • . . . ,I • • 3 4

Introduction

Computer applications such as patient

online transaction processing, and

availability.

monitoring, process control,

electronic mail require high

The anatomy of a typical large system failure is interesting:

Assuming, as is usually the case, that an operations or software fault

caused the outage, Figure 1 shows a time line of the outage. It takes

a few minutes for someone to realize that there is a problem and that

a restart is the only obvious solution. It takes the operator about 5

minutes to snapshot the system state for later analysis. Then the

restart can begin. For a large system, the operating system takes a

few minutes to get started. Then the database and data communications

systems begin their restart. The database restart completes ~ithin a

few minutes but it may take an hour to restart a large terminal

network. Once the network is up, the users take a while to refocus on

the tasks they had been performing. After restart, much work has been

saved for the system to perform -- so the transient load presented at

restart is the peak load. This affects system sizing.

Conventional well-managed transaction processing systems fa.il about

once every two weeks [Mourad], [Burman]. The ninety minute outage

outlined above translates to 99.6% availability for such systems.

99.6% availability "sounds" wonderful, but hospital patients, steel

mills, and electronic mail users do not share this view -- a 1.5 hour

outage every ten days is unacceptable. Especially since outages

1

usually corne at times of peak demand [Mourad].

These applications require systems which virtually never fail -- parts

of the system may fail but the rest of the system must tolerate

failures and continue delivering service. This paper reports on the

structure and success of such a system -- the Tandem NonStop system.

It has MTBF measured in years -- more than two orders of magnitude

better than conventional designs.

Figure 1. A time line showing how a simple fault mushrooms
into a 90 minute system outage.

Minutes

+ 0
3

+ 8
12

+ 17

+ 30

+ 40

+ 50

+ 60

+ 70

+ 80

+ 90

Problem occurs
Operator decides problem needs dump/resart
Operator completes dump
OS restart complete, start DB/DC restart
DB restart complete (assume no tape handling)

Network restart continuing

Network restart continuing

Network restart continuing

Network restart continuing

DC restart complete, begin user restart

User restart complete

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

I
I

2

Hardware Availability ~ Modular Redundancy

Reliability and availability are different: Availability is doing the

right thing within the specified response time. Reliability is not

doing the wrong thing.

Expected reliability is proportional to the Mean Time Between Failures

(MTBF). A failure has some Mean Time To Repair (MTTR). Availability

can be expressed as a probability that the system will be available:

MTBF
Availability =

MTBF+MTTR

In distributed systems, some parts may be available while others are

not. In these situations, one weights the availability of all the

devices (e.g. if 90% of the database is availab]~ to 90% of the

terminals, then the system is .9x.9 = 81% available.)

The key to providing high availability is to modularize the system so

that modules are the unit of failure and replacement. Spare modules

are configured to give the appearance of instantaneous repalr if

MTTR is tiny, then the failure is "seen" as a delay rather than a

failure. For example, geographically distibuted terminal networks

frequently have one terminal in a hundred broken. Hence, the system is

limited to 99% availability (because terminal availability is 99%).

Since terminal and communications line failures are largely

independent, one can provide very good "site" availability by placing

two terminals with two communications lines at each site. In essence,

the second ATM provides instantaneous repair and hence very high

3

availability. Moreover, they increase transaction throughput at

locations with heavy traffic. This approach is taken by several high

availability Automated Teller Machine (ATM) networks.

This example demonstrates the concept: modularity and redundancy

allows one module of the system to fail without affecting the

availability of the system as a whole because redundancy leads to

small MTTR. This combination of modularity and redundancy is the key

to providing continuous service even if some components fail.

Von Neumann was the first to analytically study the use of redundancy

to construct available (highly reliable) systems from unreliable

components [von Neumann]. In his model, a redundancy 20,00J was

needed to get a system MTBF of 100 years. Certainly, his components

were less reliable than transistors, he was thinking of human neurons

or vacuum tubes. Still, it is not obvious why von Neumann's machines

required a redundancy factor of 20,000 while current electronic

systems use a factor of 2 to achieve very high availability. The key

difference is that von Neumann's model lacked modularity, a failure in

any bundle of wires anywhere, implied a total system failure.

VonNeumann's model had redundancy without modularity. In co~trast,

modern computer systems are constructed in a modular fashion a

failure within a module only affects that module. In addition each

module is constructed to be fail-fast -- the module either functions

properly or stops [Schlichting]. Combining redundancy with modularity

allows one to use a redundancy of two rather than 20,000. Quite an

4

economy!

To gIve an example, modern discs are rated for an MTBF abovE~ 10,000

hours -- a hard fault once a year. Many systems duplex pairs of such

discs, storing the same information on both of them, and using

independent paths and controllers for the discs. Postulating a very

leisurely MTTR of 24 hours and assuming independent failure modes, the

MTBF of this pair (the mean time to a double failure within a 24 hour

window) is over 1000 years. In practice, failures are not quite

independent, but the MTTR is less than 24 hours and so one observes

such high availability.

Generalizing this discussion,

constructed as follows:

fault-tolerant hardware can be

* Hierarchically decompose the system into modules.

* Design the modules to have MTBF in excess of a year.

* Make each module fail-fast -- either it does the right thing or

stops.

* Detect module faults promptly by having the module signal

failure or by requiring it to periodically send an I AM ALIVE

message or reset a watchdog timer.

5

* Configure extra modules which can pick up the load of failed

modules. Takeover time, including the detection of the module

failure, should be seconds. This gives an apparent modulE! MTBF

measured in millennia.

The resulting systems have hardware MTBF measured in decades or

centuries.

This gives fault-tolerant hardware. Unfortunately, it says nothing

about tolerating the major sources of failure: software and

operations. Later we show how these same ideas can be applied t~ gain

software fault-tolerance.

An Analysis of Failures of a Fault-Tolerant System

There have been many studies of why computer systems fail. To my

knowledge, none have focused on a commercial fault-tolerant system.

The statistics for fault-tolerant systems are quite a bit different

from those for conventional mainframes [Mourad]. Briefly, the MTBF of

hardware, software and operations is more than 500 times higher than

those reported for conventional computing systems fault-tolerance

works. On the other hand, the ratios among the sources of failure are

about the same as those for conventional systems. Administration and

software dominate, hardware and environment are minor contribu~:ors to

total system outages.

Tandem Computers Inc. makes a line of fault-tolerant systems

[Bartlett] [Borr 81, 84]. I analyzed the causes of system failures

reported to Tandem over a seven month period. The sample set covered

more than 2000 systems and represents over 10,000,000 system hours or

over 1300 system years. Based on interviews with a sample of

customers, I believe these reports cover about 50% of all total system

failures. There is under-reporting of failures caused by customers or

by environment. Almost all failures caused by the vendor are

reported.

During the measured period, 166 failures were reported including one

fire and one flood. Overall, this gives a system MTBF of 1.8 years

reported and 3.8 years MTBF if the systematic under-reporting is taken

into consideration. This is still well above the 1 week MTBF typical

7

of conventional designs.

By interviewing four large customers who keep careful books on system

outages, I got a more accurate picture of their operation. They

averaged a 4 year MTBF (consistent with 7.8 years with 50% reporting).

In addition, their failure statistics had under-reporting in the

expected areas of environment and operations. Rather than skew the

data by multiplying all MTBF numbers by .5, I will present the

analysis as though the reports were accurate.

About one third of the failures were "infant mortality" failures -- a

product having a recurring problem. All these fault clusters are

related to a new software or hardware product still having the bugs

shaken out. If one subtracts out systems having "infant" failures or

non-duplexed-disc failures, then the remaining failures, 107 in all,

make an interesting analysis (see table 1).

First, the system MTBF rises from 7.8 years to over 11 years.

System administration, which includes operator actions, system

configuration, and system maintenance was the main source of failures

-- 42%. Software and hardware maintenance was the largest category.

High availability systems allow users to add software and hardware and

to do preventative maintenance while the system is operating. By and

large, online maintenance works VERY well. It extends system

availability by two orders of magnitude. But occasionally, once every

52 years by my figures, something goes wrong. This number is s8mewhat

8

speculative if a system failed while it was undergoing online

maintenance or while hardware or software was being added, I ascribed

the failure to maintenance. Sometimes it was clear that the

maintenance person typed the wrong command or unplugged the wrong

module, thereby introducing a double failure. Usually, the evidence

was circumstantial. The notion that mere humans make a single

critical mistake every few decades amazed me -- clearly these people

are very careful and the design tolerates some human faults.

9

Table 1. Contributors to Tandem System outages reported to the
vendor. As explained in the text, infant failures (30%) are
subtracted from ~his sample set. Items marked by"?" are
probably under-reported because the customer does not
generally complain to the vendor about them. Power outages
below 4 hours are tolerated by the NonStop system and hence
are under-reported. We estimate 50% total under-reporting.

System Failure Mode Probability

Administration 42%
Maintenance: 25%
Operations 9% (?)
Configuration 8%

Software 25%
Applicat ion 4% (?)
Vendor 21%

Hardware 18%
Central 1%
Disc 7%
Tape 2%
Comm Controllers 6%
Power supply 2%

Environment 14%
Power 9% (?)
Communications 3%
Facilities 2%

Unknown 3%

Total 103%

MTBF in years

31 years

50 years

73 years

87 years

11 years

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
!
I
I
I
I

System operators were a second source of human failures. I suspect

under-reporting of these failures. If a system fails because of the

operator, he is less likely to tell us about it. Even so, operators

reported several failures. System configuration, getting the right

collection of software, microcode, and hardware, is a third major

headache for reliable system administration.

10

Software faults were a major source of system outages -- 25% in all.

Tandem supplies about 4 million lines of code to the customer.

Despite careful efforts, bugs are present in this software. In

addition, customers write quite a bit of software. Application

software faults are probably under-reported here. I guess that only

30% are reported. If that is true, application programs contribute 12%

to outages and software rises to 30% of the total.

Next come environmental failures. Total communications failures

(losing all lines to the local exchange) happened three times, in

addition, there was a fire and a flood. No outages caused by cooling

or air conditioning were reported. Power outages are a major source

of failures among customers who do not have emergency backup power

(North American urban power typically has a 2 month MTBF). Tandem

systems tolerate over 4 hours of lost power without losing any data or

communications state (the MTTR is almost zero), so customers do not

generally report minor power outages (less than 1 hour) to us.

Given that power outages are under-reported, the smallest co~tributor

to system outages was hardware, mostly discs and communications

controllers. The measured set included over 20,000 discs over

100,000,000 disc hours. We saw 19 duplexed disc failures, but if one

subtracts out the infant mortality failures then there were only 7

duplexed disc failures. In either case, one gets an MTBF in excess of

5 million hours for the duplexed pair and their controllers. This

approximates the 1000 year MTBF calculated in the earlier section.

11

Implications of the Analysis of MTBF

The implications of these statistics are clear: the key to high­

availability is tolerating operations and software faults.

Commercial fault-tolerant systems are measured to have a 73 year

hardware MTBF (table 1). I believe there was 75% reporting of outages

caused by hardware. Calculating from device MTBF, there were about

50,000 hardware faults in the sample set. Less than one in a thousand

resulted in a double failure or an interruption of service.

fault-tolerance works!

Hardware

In the future, hardware will be even more reliable due to better

design, increased levels of integration, and reduced numbers of

connectors.

By contrast, the trend for software and system administration IS not

positive. Systems are getting more complex. In this study,

administrators reported 41 critical mistakes in over 1300 years of

operation. This gives an operations MTBF of 31 years! operators

certainly made many more mistakes, but most were not fatal.

administrators are clearly very careful and use good practices.

These

The top priority for improving system availability is to reduce

administrative mistakes by making self-configured systems with minimal

maintenance and minimal operator interaction. Interfaces that ask the

operator for information or ask him to perform some function must be

12

simple, consistent and operator fault-tolerant.

The same discussion applies to system maintenance. Maintenance

interfaces must be simplified. Installation of new equipment must

have fault-tolerant procedures and the maintenance interfaces must

simplified or eliminated. To give a concrete example, Tandem's newest

discs have no special customer engineering training (installa~ion is

"obvious") and they have no scheduled maintenance.

A secondary implication of the statistics is actually a contradiction:

* New and changing systems have higher failure rates. Infant

products contributed one third of all outages. Maintenance caused

one third of the remaining outages. A way to improve availability

is to install proven hardware and software, and then leave it

alone. As the adage says, "If it's not broken, don't fix it".

* On the other hand, a Tandem study found that a high percentage of

outages were caused by "known" hardware or software bugs, which had

fixes available, but the fixes were not yet installed in the

failing system. This suggests that one should install software and

hardware fixes as soon as possible.

There is a contradiction here: never change it and change it ASAP! By

consensus, the risk of change is too great. Most installations are

slow to install changes, they rely on fault-tolerance to protect them

until the next major release. After all, it worked yesterday, so it

13

The last implication

tolerance is important.

rest of the paper.

will probably work tomorrow.

Here one must separate software and hardware maintenance. Software

fixes outnumber hardware fixes by several orders of magnitude. I

believe this causes the difference in strategy between hardware and

software maintenance. One cannot forego hardware preventative

maintenance -- our studies show that it may be good in the short term

but it is disasterous in the long term. One must install hardware

fixes in a timely fashion. If possible, preventative maintenance

should be scheduled to minimize the impact of a possible mistake.

Software appears to be different. The same study recommends

installing a software fix only if the bug IS causing outages.

Otherwise, the study recommends waiting for a major software release,

and carefully testing it In the target environment prior to

installation. Adams comes to similar conclusions [Adams], he points

out that for most bugs, the chance of "rediscovery" is very slim

indeed.

The statistics also suggest that if availability is a major goal, then

avoid products which are immature and still suffering infant

mortality. It is fine to be on the leading edge of technolo~IY, but

avoid the bleeding edge of technology.

of the statistics is that software fault­

Software fault-tolerance is the topic of the

Fault-tolerant Execution

Based on the analysis above, software accounts for over 25% of system

outages. This is quite good -- a MTBF of 50 years! The volume of

Tandem's software is 4 million lines and growing at about 20% per

year. Work continues on improving coding practices and code testing

but there is little hope of getting ALL the bugs out of all the

software. Conservatively, I guess one bug per thousand lines of code

remains after a program goes through design reviews, quality

assurance, and beta testing. That suggests the system has several

thousand bugs. But somehow, these bugs cause very few system failures

because the system tolerates software faults.

The keys to this software fault-tolerance are:

* Software modularity through processes and messages.

* Fault containment through fail-fast software modules.

* Process-pairs to tolerate hardware and transient software faults.

* Transaction mechanism to provide data and message integri~y.

* Transaction mechanism combined with process-pairs

exception handling and tolerate software faults.

This section expands on each of these points.

to ease

15

Software modularity through processes and messages

As with hardware, the key to software fault-tolerance 1S to

hierarchically decompose large systems into modules, each module being

a unit of service and a unit of failure. A failure of a module does

not propagate beyond the module.

There is considerable controversy about how to modularize software.

Starting with Burroughs' Esbol and continuing through languages like

Mesa and Ada, compiler writers have assumed perfect hardware and

contended that they can provide good fault isolation through static

compile-time type checking. In contrast, operating systems designers

have advocated run-time checking combined with the process as the unit

of protection and failure.

Although compiler checking and exception handling provided by

programming languages are real assets, history seems to have favored

the run-time checks plus the process approach to fault containment. It

has the virtue of simplicity if a process or its prccessor

misbehaves, stop it. The process provides a clean unit of modularity,

service, fault containment, and failure.

Fault containment through fail-fast software modules.

The process approach to fault isolation advocates that the process

software module be fail-fast, it should either function correctly or

it should detect the fault, signal failure and stop operating.

16

Processes are made fail-fast by defensive programming. They check all

their inputs, intermediate results, outputs and data structures as a

matter of course. If any error is detected, they signal a failure and

stop. In the terminology of [Cristian], fail-fast software has small

fault detection latency.

The process achieves fault containment by sharing no state with other

processes; rather, its only contact with other processes is via

messages carried by a kernel message system.

Software faults are soft the Bohrbug/Heisenbug hypothesis

Before developing the next step in fault-tolerance, process-pairs, we

need to have a software failure model. It is well known that most

hardware faults are soft that is, most hardware faults are

transient. Memory error correction and checksums plus retransmission

for communication are standard ways of dealing with transient hardware

faults. These techniques are variously estimated to boost hardware

MTBF by a factor of 5 to 100.

I conjecture that there IS a similar phenomenon in software -- most

production software faults are soft. If the program state is

reinitialized and the failed operation retried, the operation will

usually not fail the second time.

If you consider an industrial software system which has gone through

structured design, design reviews, quality assurance, alpha test, beta

17

test, and months or years of production, then most of the "hard"

software bugs, ones that always fail on retry, are gone. The residual

bugs are rare cases, typically related to strange hardware conditions

(rare or transient device fault), limit conditions (out of storage,

counter overflow, lost interrupt, etc,), or race conditions

(forgetting to request a semaphore).

In these cases, resetting the program to a quiescent state and

reexecuting it will quite likely work, because now the environment is

slightly different. After all, it worked a minute ago!

The assertion that most production software bugs are soft

Heisenbugs that go away when you look at them is well known to

systems programmers. Bohrbugs, like the Bohr atom, are solid, easily

detected by standard techniques, and hence boring. But Heisenbugs may

elude a bugcatcher for years of execution. Indeed, the bugcatcher may

perturb the situation just enough to make the Heisenbug disappear.

This is analogous to the Heisenberg Uncertainty Principle in Physics.

I have tried to quantify the chances of tolerating a Heisenbug by

reexecution. This is difficult. A poll yields nothing quantit.ative.

The one experiment I did went as follows: The spooler error log of

several dozen systems was examined. The spooler is constructed as a

collection of fail-fast processes. When one of the processes detects

a fault, it stops and lets its brother continue the operation. The

brother does a software retry. If the brother also fails, then the

bug is a Bohrbug rather than a Heisenbug. In the measured period, one

18

out of 132 software faults was a Bohrbug, the remainder

Heisenbugs.

were

A related study IS reported in [Mourad]. In MVS/XA functional

recovery routines try to recover from software and hardware faults. If

a software fault is recoverable, it is a Heisenbug. In that study,

about 90% of the software faults In system software had functional

recovery routines (FRRs). Those routines had a 76% success rate in

continuing system execution. That is, MVS FRRs extend the system

software MTBF by a factor of 4.

It would be nice to quantify this phenomenon further. As it is,

systems designers know from experience that they can exploit the

Heisenbug hypothesis to improve software fault-tolerance.

19

Process-pairs for fault-tolerant execution

One might think that fail-fast modules would produce a reliable but

unavailable system -- modules are stopping all the time. But, as with

fault-tolerant hardware, configuring extra software modules gives a

MTTR of milliseconds in case a process fails due to hardware failure

or a software Heisenbug. If modules have a MTBF of a year, then dual

processes give very acceptable MTBF for the pair. Process triples do

not improve MTBF because other parts of the system (e.g., operators)

have orders of magnitude worse MTBF. So, in practice fault-tolerant

processes are generically called process-pairs. There are several

approaches to designing process-pairs:

Lockstep: In this design, the primary and backup processes

synchronously execute the same instruction stream on independent

processors [Kim]. If one of the processors fails, the other

simply continues the computation. This approach gives good

tolerance to hardware failures but gives no tolerance of

Heisenbugs. Both streams will execute any programming bug ln

lockstep and will fail in exactly the same way.

State Checkpointing: In this scheme, communication sessions are

used to connect a requestor to a process-pair. The primary

process in a pair does the computation and sends state changes

and reply messages to its backup prior each major event. If the

primary process stops, the session switches to the backup process

which continues the conversation with the requestor. Session

20

sequence numbers are used to detect duplicate and lost messages,

and to resend the reply if a duplicate request arrives

[Bartlett]. Experience shows that checkpointing process-pairs

give excellent fault-tolerance (see table 1), but that

programming checkpoints is difficult. The trend is away from

this approach and towards the Delta or Persistent approaches

described below.

Automatic Checkpointing: This scheme is much like state check­

points except that the kernel automatically manages the check­

pointing, relieving the programmer of this chore. As described

in [Borg], all messages to and from a process are saved by the

message kernel for the backup process. At takeover, these

messages are replayed to the backup to roll it forward to the

primary process' state. When substantial computation or storage

is required in the backup, the primary state is copied to the

backup so that the message log and replay can be discarded. This

scheme seems to send more data than the state checkpointing

scheme and hence seems to have high execution cost.

Delta Checkpointing: This is an evolution of state checkpointing.

Logical rather than physical updates are sent to the backup [Borr

84]. Adoption of this scheme by Tandem cut message traffic 1n

half and message bytes by a factor of 3 overall [EnrightJ.

Deltas have the virtue of performance as well as making the

coupling between the primary and backup state logical rather than

physical. This means that a bug in the primary process is less

21

likely to corrupt the backup's state.

Persistence: In persistent process-pairs, if the primary process

fails, the backup wakes up in the null state with amnesia about

what was happening at the time of the primary failure. Only the

opening and closing of sessions is checkpointed to the backup.

These are called stable processes by [Lampson]. Persistent

processes are the simplest to program and have low overhead. The

only problem with persistent processes is that they do not hide

failures! If the primary process fails, the database or devices

it manages are left in a mess and the requestor notices that the

backup process has amnesia. We need a simple way to

resynchronize these processes to have a common state. As

explained below, transactions provide such a resynchronization

mechanism.

Summarizing the pros and cons of these approaches:

* Lockstep processes don't tolerate Heisenbugs.

* State checkpoints give fault-tolerance but are hard to program.

* Automatic checkpoints seem to be inefficient -- they send a lot of

data to the backup.

* Delta checkpoints have good performance but are hard to program.

22

* Persistent processes lose state in case of failure.

We argue next that transactions combined with persistent processes are

simple to program and give excellent fault-tolerance.

23

Transactions for data integrity

A transaction is a group of operations, be they database updates,

messages, or external actions of the computer, which form a consistent

transformation of the state.

Transactions should have the ACID property [Haeder]:

Atomicity: Either all or none of the actions of the transaction

should "happen". Either it commits or aborts.

Consistency: Each transaction should see a correct picture of the

state, even if concurrent transactions are updating the state.

Integrity: The transaction should be a correct state transformation.

Durability: Once a transaction commits, all its effects must be

preserved, even if there is a failure.

The programmer's interface to transactions is quite simple: he starts

a transaction by asserting the BeginTransaction verb, and ends it by

asserting the EndTransaction or AbortTransaction verb. The system

does the rest.

The classical implementation of transactions uses locks to guarantee

consistency and a log or audit trail to insure atomicity and

durability. Borr shows how this concept generalizes to a distJ~ibuted

fault-tolerant system [Borr 81, 84].

Transactions relieve the application programmer of handling many error

conditions. If things get too complicated, the programmer (or the

24

system) calls AbortTransaction which cleans up the state by resetting

everything back to the beginning of the transaction.

Transactions for simple fault-tolerant execution

Transactions provide reliable execution and data availability (recall

reliability means not doing the wrong thing, availability means doing

the right thing and on time). Transactions do not directly provide

high system availability. If hardware fails or if there is a software

fault, most transaction processing systems stop and go through a

system restart -- the 90 minute outage described in the introduction.

It is possible to combine process-pairs and transactions to get fault­

tolerant execution and hence avoid most such outages.

As argued above, process-pairs tolerate hardware faults and software

Heisenbugs. But most kinds of process-pairs are difficult to

implement. The "easy" process-pairs, persistent process-pairs, have

amnesia when the primary fails and the backup takes over. Persistent

process-pairs leave the network and the database in an unkno~n state

when the backup takes over.

The key observation is that the transaction mechanism knows how to

UNDO all the changes of incomplete transactions. So we can simply

abort all uncommitted transactions associated with a failed persistent

process and then restart these transactions from their input messages.

This cleans up the database and system states, resetting them to the

25

point at which the transaction began.

So, persistent process-pairs plus transactions gIve a simple execution

model which continues execution even if there are hardware faults or

Heisenbugs. This is the key to the Encompass data management system's

fault-tolerance [Borr 81]. The programmer writes fail-fast modules in

conventional languages (Cobol, Pascal, Fortran) and the transaction

mechanism plus persistent process-pairs makes his program robust.

Unfortunately, people implementing the operating system kernel, the

transaction mechanism itself and some device drivers still have to

write "conventional" process-pairs, but application programmers do

not. One reason Tandem has integrated the transaction mechanism with

the operating system is to make the transaction mechanism available to

as much software as possible [Borr 81].

26

Fault-tolerant Communication

Communications lines are the most unreliable part of a distributed

computer system. Partly because they are so numerous and partly

because they have poor MTBF. The operations aspects of managing them,

diagnosing failures and tracking the repair process are a real

headache [Gray].

At the hardware level, fault-tolerant communication is obtained by

having multiple data paths with independent failure modes.

At the software level, the concept of session is introduced. A

session has simple semantics: a sequence of messages is sent via the

session. If the communication path fails, an alternate path is tried.

If all paths are lost, the session endpoints are told of the failure.

Timeout and message sequence numbers are used to detect lost or

duplicate messages. All this is transparent above the session layer.

Sessions are the thing that make process-pairs work: the session

switches to the backup of the process-pair when the primary process

fails [Bartlett]. Session sequence numbers (called SyncIDs by

Bartlett) resynchronize the communication state between the sender and

receiver and make requests/replies idempotent.

Transactions interact with sessions as follows: if a transaction

aborts, the session sequence number is logically reset to the sequence

number at the beginning of the transaction and all intervening

27

messages are canceled. If a transaction commits, the messages on the

session will be reliably delivered EXACTLY once [Spector].

28

Fault-tolerant Storage

The basic form of fault-tolerant storage is replication of a file on

two media with independent failure characteristics -- for example two

different disc spindles or, better yet, a disc and a tape. If one

file has an MTBF of a year then two files will have a millennia MTBF

and three copies will have about the same MTBF -- as the Tandem system

failure statistics show, other factors will dominate at that point.

Remote replication is an exception to this argument. If one can

afford it, storing a replica In a remote location gives good

improvements to availability. Remote replicas will have different

administrators, different hardware, and different environment. Only

the software will be the same. Based on the analysis in Table 1, this

will protect against 75% of the failures (all the non-software

failures). Since it also gives excellent protection against

Heisenbugs, remote replication guards against most software faults.

There are many ways to remotely replicate data, one can have exact

replicas, can have the updates to the replica done as soon as possible

or even have periodic updates. [Gray] describes representative

systems which took different approaches to long-haul replication.

Transactions provide the ACID properties for storage Atomicity,

Consistency, Integrity and Durability [Haeder]. The transaction

journal plus an archive copy of the data provide a replica of the data

on media with independent failure modes. If the primary copy fails, a

29

new copy can be reconstructed from the archive copy by applying all

updates committed since the archive copy was made. This is Durability

of data.

In addition, transactions coordinate a set of updates to the data,

assuring that all or none of them apply. This allows one to correctly

update complex data structures without concern for failures. The

transaction mechanism will undo the changes if something goes 'Nrong.

This is Atomicity.

A third technique for fault-tolerant storage is partitioning the data

among discs or nodes and hence limiting the scope of a failure. If

the data is geographically partitioned, local users can access local

data even if the communication net or remote nodes are down. Again,

[Gray] gives examples of systems which partition data for better

availability.

30

Summary

computer systems fail for a variety of reasons. Large computer

systems of conventional design fail once every few weeks due to

software, operations mistakes, or hardware. Large fault-tolerant

systems are measured to have an MTBF at orders of magnitude higher-­

years rather than weeks.

The techniques for fault-tolerant hardware are well documented. They

are quite successful. Even in a high availability system, hardware is

a minor contributor to system outages.

By applying the concepts of fault-tolerant hardware to software

construction, software MTBF can be raised by several orders of

magnitude. These concepts include: modularity, defensive

programming, process-pairs, and tolerating soft faults -- Heisenbugs.

Transactions plus persistent process-pairs give fault--tolerant

execution. Transactions plus resumable communications sessions give

fault-tolerant communications. Transactions plus data replication

give fault-tolerant storage. In addition, transaction atomicity

coordinates the changes of the database, the communications net, and

the executing processes. This allows easy construction of high

availability software.

31

Dealing with system configuration, operations, and maintenance remains

an unsolved problem. Administration and maintenance people are doing

a much better job than we have reason to expect. We can't hope' for

better people. The only hope is to simplify and reduce human

intervention in these aspects of the system.

32

Acknowledgments

The following people helped in the analysis of the Tandem system

failure statistics: Robert Bradley, Jim Enright, Cathy Fitzgerald,

Sheryl Hamlin, Pat Helland, Dean Judd, Steve Logsdon, Franco Putzolu,

Carl Niehaus, Harald Sammer, and Duane Wolfe. In present:ng the

analysis, I had to make several outrageous assumptions and "integrate"

contradictory stories from different observers of the same events.

For that, I must take full responsibility. Robert Bradley, Gary

Gilbert, Bob Horst, Dave Kinkade, Carl Niehaus, Carol Minor, Franco

Putzolu, and Bob White made several comments that clarified the

presentation. Special thanks are due to Joel Bartlett and especially

Flaviu Cristian who tried very hard to make me be more accurate and

precise.

33

References

[Adams] Adams,
Products" ,

E., "Optimizing Preventative Service of Software
IBM J. Res. and Dev., Vol. 28, No.1, Jan. 1984.

Production Online
High Performance

[Bartlett] Bartlett, J.,"A NonStop Kernel," Proceedings of the Eighth
Symposium on Operating System Principles, pp. 22-29, Dec. 1981.

[Borg] Borg, A., Baumbach, J., Glazer, S., "A Message System
Supporting Fault-tolerance", ACM OS Review, Vol. 17, No.5, 1984.

[Borr 81] Borr, A., "Transaction Monitoring in ENCOMPASS," Proc. 7Th
VLDB, September 1981. Also Tandem Computers TR 81.2.

[Borr 84] Borr, A., "Robustness to Crash in a Distributed Database: A
Non Shared-Memory Multi-processor Approach," Proc. 9th VLDB,
Sept. 1984. Also Tandem Computers TR 84.2.

[Burman] Burman, M. "Aspects of a High Volume
Banking System", Proc. Int. Workshop on
Transaction Systems, Asilomar, Sept. 1985.

[Cristian] Cristian, F., "Exception Handling and Software Fault
Tolerance", IEEE Trans. on Computers, Vol. c-31, No.6, 1982.

[Enright] Enright, J. "DP2 Performance Analysis", Tandem memo, 1985.

[Gray] Gray, J., Anderton, M., "Distributed Database Systems Four
Case Studies", to appear in IEEE TODS, also Tandem TR 85.5.

[Haeder] Haeder, T., Reuter, A., "Principals of
Database Recovery", ACM Computing Surveys,
1983.

Transaction-Or~ented

Vol. 15, No.4. Dec.

[Kim] Kim, W., "Highly Available Systems for Database Applications",
ACM Computing Surveys, Vol. 16, No.1, March 1984

[Lampson] Lampson, B.W. ed, Lecture Notes in Computer Science Vol.
106, Chapter 11, Springer Verlag, 1982.

[Mourad] Mourad, S. and Andrews, D., "The Reliability of the
Operating System", Digest of 15th Annual Int. Sym. on
Tolerant Computing, June 1985. IEEE Computer Society Press.

IBM/XA
:<'ault-

[Schlichting] Schlichting, R.D., Schneider, F.B.,
Processors, an Approach to Designing Fault-Tolerant
Systems", ACM TOCS, Vol. 1, No.3, Aug. 1983.

"Fail-Stop
Computing

[Spector] "Multiprocessing Architectures for Local Computer Networks",
PhD Thesis, STAN-CS-81-874, Stanford 1981.

34

[von Neumann] von Neumann, J. "Probabilistic Logics and the Synthesis
of Reliable Organisms From Unreliable Components", Automata
Studies, Princeton University Press, 1956.

35

Distributed by
'~TANDEMCOMPUTERS

Corporate Information Center
19333 Valleo Parkway MS3-07
Cupertino, CA 95014-2599

