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Abstract
Several recent publications have shown that hardware faults
in the memory subsystem are commonplace. These faults are
predicted to become more frequent in future systems that
contain orders of magnitude more DRAM and SRAM than
found in current memory subsystems. These memory sub-
systems will need to provide resilience techniques to toler-
ate these faults when deployed in high-performance comput-
ing systems and data centers containing tens of thousands of
nodes. Therefore, it is critical to understand the efficacy of
current hardware resilience techniques to determine whether
they will be suitable for future systems.

In this paper, we present a study of DRAM and SRAM
faults and errors from the field. We use data from two
leadership-class high-performance computer systems to an-
alyze the reliability impact of hardware resilience schemes
that are deployed in current systems. Our study has sev-
eral key findings about the efficacy of many currently-
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deployed reliability techniques such as DRAM ECC, DDR
address/command parity, and SRAM ECC and parity. We
also perform a methodological study, and find that count-
ing errors instead of faults, a common practice among re-
searchers and data center operators, can lead to incorrect
conclusions about system reliability. Finally, we use our data
to project the needs of future large-scale systems. We find
that SRAM faults are unlikely to pose a significantly larger
reliability threat in the future, while DRAM faults will be
a major concern and stronger DRAM resilience schemes
will be needed to maintain acceptable failure rates similar to
those found on today’s systems.

Categories and Subject Descriptors B.8.1 [Performance
and Reliability]: Reliability, Testing, and Fault-Tolerance

Keywords Field studies; Large-scale systems; Reliability

1. Introduction
Current predictions are that exascale systems in the early
2020s will have between 32 and 100 petabytes of main
memory (DRAM), a 100x to 350x increase compared to
2012 levels [8]. Similar increases are likely in the amount
of cache memory (SRAM) in such systems. Future data
centers will also contain many more nodes than existing
data centers. These systems and data centers will require
significant increases in the reliability of both DRAM and
SRAM memories in order to maintain hardware failure rates
comparable to current systems.

The focus of this work is to provide insight and guidance
to system designers and operators on characteristics of a reli-
able system. In particular, our focus is on analyzing the effi-
cacy of existing hardware resilience techniques, their impact
on reliable system design, and whether they will be adequate
for future systems.

For our analysis, we use data collected over the past
several years from two leadership-class production sys-



tems: Hopper, a 6,000-node supercomputer located at the
NERSC center at Lawrence Berkeley Labs in Oakland, Cal-
ifornia; and Cielo, an 8,500-node supercomputer located at
Los Alamos National Laboratory (LANL) in Los Alamos,
New Mexico. Both supercomputers are based on AMD
OpteronTMCPUs and contain DDR3 DRAM. In aggregate,
the data that we analyze (which is a subset of the full data
available) comprises over 314 million CPU socket-hours
and 45 billion DRAM device-hours. This scale gives us the
ability to gather statistically representative data on faults
observed during production lifetimes of CPU and DRAM
devices. While our data is collected primarily from super-
computing centers, the results of our analysis are applicable
to any large data center or compute cluster where hardware
reliability is important.

This paper adds several novel insights about system re-
liability to the existing literature and also highlights certain
aspects of analyzing field data that are critical to perform
correctly in order to derive correct insights. Broad contribu-
tions include:

• A detailed analysis of DRAM and SRAM faults on Hop-
per. This data complements existing studies on faults
in other production systems, including Jaguar, Cielo,
and Blue Waters, thus furthering our understanding of
DRAM and SRAM faults [12][33][34].

• The effect of altitude on DRAM fault rates. To our knowl-
edge, this is the first study to present an analysis of alti-
tude effects on DRAM in production systems.

• The impact of counting errors instead of faults to evaluate
system reliability. Counting errors is common among
researchers and data center operators (e.g., [12][30]), but
no one has quantified the effect of this methodology on
the accuracy of the reliability conclusions obtained.

• The effect of several hardware-based resilience tech-
niques on system reliability, including SEC-DED ECC,
chipkill ECC, and command/address parity in DRAM
subsystems. We also examine SRAM resilience schemes,
and analyze in-depth the impact of design choices on
SRAM reliability.

• A projection of the impacts of SRAM and DRAM faults
on future exascale-class systems.

Our study has several key findings that are of interest
to system designers and operators. These findings are wide
ranging and cover a variety of hardware resilience tech-
niques in common use in the industry. We group these find-
ings into three categories: the good, the bad, and the ugly.

The Good. Our study highlights several advances made in
the understanding of fault behavior and system reliability.
These include:

• DDR command and address parity, an addition to JEDEC’s
DDR-3 and DDR-4 specifications, has a substantial pos-

itive effect on system reliability, detecting errors at a rate
comparable to the uncorrected error rate of chipkill ECC.

• The majority of observed SRAM faults in the field
are transient faults from particle strikes. This further
confirms that SRAM faults are a well-understood phe-
nomenon in current and near-future process technologies.

• The majority of uncorrected SRAM errors are due to
single-bit faults; therefore, reducing SRAM uncorrected
error rates is a matter of engineering time and effort (e.g.,
replacing parity codes with ECCs) rather than new re-
search and novel techniques. Furthermore, appropriate
multi-bit fault protection reduces or eliminates the ex-
pected increase in uncorrected error rate from SRAM
faults due to high altitude.

The Bad. Unfortunately, some of our findings point to areas
where more work needs to be done, or more understanding
is required. These include:

• Altitude increases the fault rate of some DRAM devices,
though this effect varies by vendor. This is evidence that
some (but not all) DRAM devices are susceptible to tran-
sient faults from high-energy particle strikes.

• Unlike on-chip SRAM, external memory (e.g., DRAM)
of future systems will require stronger resilience tech-
niques than exist in supercomputing systems today.

The Ugly. Finally, some of our results show potential prob-
lems in commonly-used practices or techniques:

• Performing field studies is difficult. For instance, we
demonstrate that counting errors instead of faults can
lead to incorrect conclusions about system reliability. We
examine results from recent studies that have used error
counts, and use our data to show that using this method-
ology can result in misleading or inaccurate conclusions.

• SEC-DED ECC, a commonly used ECC technique, is
poorly suited to modern DRAM subsystems and may
result in undetected errors (which may cause silent data
corruption) at a rate of up to 20 FIT per DRAM device, an
unacceptably high rate for many enterprise data centers
and high-performance computing systems.

The rest of this paper is organized as follows. Section 2
defines the terminology we use in this paper. Section 3 dis-
cusses related studies and describes the differences in our
study and methodology. Section 4 explains the system and
DRAM configurations of Cielo and Hopper. Section 5 de-
scribes our experimental setup. Section 6 presents baseline
data on faults. Section 7 examines the impact of count-
ing errors instead of faults. Section 8 presents our analy-
sis of existing hardware resilience techniques. Section 9 ex-
tracts lessons from our data for system designers. Section 10
presents our projections for future system reliability, and
Section 11 concludes.



2. Terminology
In this paper, we distinguish between a fault and an error as
follows [6]:

• A fault is the underlying cause of an error, such as a
stuck-at bit or high-energy particle strike. Faults can be
active (causing errors), or dormant (not causing errors).

• An error is an incorrect portion of state resulting from
an active fault, such as an incorrect value in memory.
Errors may be detected and possibly corrected by higher
level mechanisms such as parity or error correcting codes
(ECC). They may also go uncorrected, or in the worst
case, completely undetected (i.e., silent).

Hardware faults can further be classified as transient, in-
termittent, or hard [7] [10] [11]. Distinguishing a hard fault
from an intermittent fault in a running system requires know-
ing the exact memory access pattern to determine whether a
memory location returns the wrong data on every access. In
practice, this is impossible in a large-scale field study such
as ours. Therefore, we group intermittent and hard faults to-
gether in a category of permanent faults.

In this paper, we examine a variety of error detection and
correction mechanisms. Some of these mechanisms include:
parity, which can detect but not correct any single-bit error;
single-error-correction double-error-detection error correct-
ing codes (SEC-DED ECCs), which can correct any single-
bit error and detect any double-bit error; and chipkill ECCs.
We discuss two levels of chipkill ECC: chipkill-detect ECC,
which can detect but not correct any error in a single DRAM
chip; and chipkill-correct, which can correct any error in a
single DRAM chip. To protect against multi-bit faults, struc-
tures with ECC or parity sometimes employ bit interleaving,
which ensures that physically adjacent bitcells are protected
by different ECC or parity words.

3. Related Work
During the past several years, multiple studies have been
published examining failures in production systems. In
2006, Schroeder and Gibson studied failures in supercom-
puter systems at LANL [29]. In 2007, Li et al. published
a study of memory errors on three different data sets, in-
cluding a server farm of an Internet service provider [21]. In
2009, Schroeder et al. published a large-scale field study us-
ing Google’s server fleet [30]. In 2010, Li et al. published an
expanded study of memory errors at an Internet server farm
and other sources [20]. In 2012, Hwang et al. published an
expanded study on Google’s server fleet, as well as two IBM
Blue Gene clusters [16], Sridharan and Liberty presented a
study of DRAM failures in a high-performance computing
system [33], and El-Sayed et al. published a study on tem-
perature effects of DRAM in data center environments [14].

In 2013, Siddiqua et al. presented a study of DRAM
failures from client and server systems [31], and Sridharan
et al. presented a study of DRAM and SRAM faults, with a

Parameter Cielo Hopper
Nodes 8568 6000
Sockets / Node 2 2
Cores / Socket 8 12
DIMMs / Socket 4 4
Location Los Alamos, NM Oakland, CA
Altitude 7,320 ft. 43 ft.

Table 1. System Configuration Information.

focus on positional and vendor effects [34]. Finally, in 2014,
Di Martino et al. presented a study of failures in Blue Waters,
a high-performance computing system at the University of
Illinois, Urbana-Champaign [12].

Our study contains larger scale and longer time intervals
than many of the prior studies, allowing us to present more
representative data on faults and errors. Among those studies
with similar or larger scale to ours, many count errors instead
of faults [12][14][16][30], which we show in Section 7 to be
inaccurate. In addition, few of these prior studies examine
the efficacy of hardware resilience techniques such as SEC-
DED, chipkill, and DDR command/address parity.

There has been laboratory testing on DRAM and SRAM
dating back several decades (e.g., [9][13][23][24][27]), as
well as a recent study by Kim et al. on DRAM disturbance
faults [19]. Lab studies such as these allow an understanding
of fault modes and root causes, and complement field studies
that identify fault modes which occur in practice.

4. Systems Configuration
Our study comprises data from two production systems in
the United States: Hopper, a supercomputer located in Oak-
land, California, at 43 feet in elevation; and Cielo, a super-
computer in Los Alamos, New Mexico, at around 7,300 feet
in elevation. A summary of relevant statistics on both sys-
tems are given in Table 1.

Hopper contains approximately 6,000 compute nodes.
Each node contains two 12-core AMD OpteronTMprocessors,
each with twelve 32KB L1 data caches, twelve 512KB L2
caches, and one 12MB L3 cache. Each node has eight 4GB
DDR-3 registered DIMMs for a total of 32GB of DRAM.

Cielo contains approximately 8,500 compute nodes. Each
node contains two 8-core AMD OpteronTMprocessors, each
with eight 32KB L1 data caches, eight 512KB L2 caches,
and one 12MB L3 cache. Each node has eight 4GB DDR-3
registered DIMMs for a total of 32GB of DRAM.

The nodes in both machines are organized as follows.
Four nodes are connected to a slot which is a management
module. Eight slots are contained in a chassis. Three chassis
are mounted bottom-to-top (numerically) in a rack. Cielo has
96 racks, arranged into 6 rows each containing 16 racks.

4.1 DRAM and DIMM Configuration
In both Hopper and Cielo, each DDR-3 DIMM contains two
ranks of 18 DRAM devices, each with four data (DQ) signals
(known as an x4 DRAM device). In each rank, 16 of the



Figure 1. A simplified logical view of a single channel of
the DRAM memory subsystem on each Cielo and Hopper
node.

DRAM devices are used to store data bits and two are used
to store check bits. A lane is a group of DRAM devices
on different ranks that shares data (DQ) signals. DRAMs
in the same lane also share a strobe (DQS) signal, which
is used as a source-synchronous clock signal for the data
signals. A memory channel has 18 lanes, each with two
ranks (i.e., one DIMM per channel). Each DRAM device
contains eight internal banks that can be accessed in parallel.
Logically, each bank is organized into rows and columns.
Each row/column address pair identifies a 4-bit word in
the DRAM device. Figure 1 shows a diagram of a single
memory channel.

Physically, all DIMMs on Cielo and Hopper (from all
vendors) are identical. Each DIMM is double-sided. DRAM
devices are laid out in two rows of nine devices per side.
There are no heatsinks on DIMMs in Cielo or Hopper.

The primary difference between the two memory subsys-
tems is that Cielo uses chipkill-correct ECC on its memory
subsystem, while Hopper uses chipkill-detect ECC.

5. Experimental Setup
For our analysis we use three different data sets - corrected
error messages from console logs, uncorrected error mes-
sages from event logs, and hardware inventory logs. These
three logs provided the ability to map each error message to
specific hardware present in the system at that point in time.

Corrected error logs contain events from nodes at specific
time stamps. Each node in the system has a hardware mem-
ory controller that logs corrected error events in registers
provided by the x86 machine-check architecture (MCA) [5].
Each node’s operating system is configured to poll the MCA
registers once every few seconds and record any events it
finds to the node’s console log.

Uncorrected error event logs are similar and contain data
on uncorrected errors logged in the system. These are typi-
cally not logged via polling, but instead logged after the node
reboots as a result of the uncorrected error.
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Figure 2. DRAM device-hours per vendor on Hopper. Even
for the least-populous vendor (A), we have almost 1B
device-hours of data.

Both console and event logs contain a variety of other
information, including the physical address and ECC syn-
drome associated with each error. These events are decoded
further using configuration information to determine the
physical DRAM location associated with each error. For
this analysis, we decoded the location to show the DIMM,
as well as the DRAM bank, column, row, and chip.

We make the assumption that each DRAM device experi-
ences a single fault during our observation interval. The oc-
currence time of each DRAM fault corresponds to the time
of the first observed error message per DRAM device. We
then assign a specific type and mode to each fault based on
the associated errors in the console log. Our observed fault
rates indicate that fewer than two DRAM devices will suffer
multiple faults within our observation window, and thus the
error in this method is low. Prior studies have also used and
validated a similar methodology (e.g., [34]).

Hardware inventory logs are separate logs and provide
snapshots of the hardware present in each machine at differ-
ent points in its lifetime. These files provide unique insight
into the hardware configuration that is often lacking on other
systems. In total we analyzed over 400 individual hardware
inventory logs that covered a span of approximately three
years on Hopper and two years on Cielo. Each of these files
consist of between 800 thousand and 1.5 million lines of ex-
plicit description of each host’s hardware, including config-
uration information and information about each DIMM such
as the manufacturer and part number.

We limit our analysis to the subset of dates for which we
have both hardware inventory logs as well as error logs. For
Hopper, this includes 18 months of data from April 2011
to January 2013. For Cielo, this includes 12 months of data
from July 2011 to November 2012. For both systems, we
exclude the first several months of data to avoid attributing
hard faults that occurred prior to the start of our dataset
to the first months of our observation. Also, in the case of
both systems, time periods where the system was not in a
consistent state or was in a transition state were excluded.

For confidentiality purposes, we anonymize all DIMM
vendor information. Because this is not possible for the CPU



vendor, we present all CPU data in arbitrary units (i.e., all
data is normalized to one of the data points in the graph).
While this obscures absolute rates, it still allows the ability to
observe trends and compare relative rates. Since every data
center and computing system is different, this is often the
most relevant information to extract from a study such as
this.

5.1 Methodology
Both Cielo and Hopper include hardware scrubbers in
DRAM, L1, L2, and L3 caches. Therefore, we can identify
permanent faults as those faults that survive a scrub opera-
tion. Thus, we classify a fault as permanent when a device
generates errors in multiple scrub intervals (i.e., when the
errors are separated by a time period that contains at least
one scrub operation), and transient when it generates errors
in only a single scrub interval. For example, Cielo’s DRAM
scrub interval is 24 hours. A fault that generates errors sepa-
rated by more than 24 hours is classified as permanent, while
a fault that generates errors only within a 24-hour period is
classified as transient.

Our observed fault rates indicate that fewer than two
DRAM devices will suffer multiple faults within our obser-
vation window. Therefore, similar to previous field studies,
we make the simplifying assumption that each DRAM de-
vice experiences a single fault during our observation inter-
val [33]. The occurrence time of each DRAM fault corre-
sponds to the time of the first observed error message from
that DRAM device. We then assign a specific type and mode
to each fault based on the subsequent errors from that device
in the console logs. We use a similar methodology (based on
fault rates) for SRAM faults.

6. Baseline Data on Hopper Faults
In this section, we present our baseline data on DRAM and
SRAM fault modes and rates in Hopper. We have published
similar information on Cielo in prior work [34].

6.1 DRAM Faults
Figure 2 shows the number of DRAM-hours per vendor
during our measurement interval on Hopper. Our data con-
sists of approximately 1 billion DRAM-hours of operation
or more for each vendor, enough to draw statistically mean-
ingful conclusions.

Figure 3 shows the DRAM fault rate over time in Hop-
per. Similar to other systems, Hopper experienced a declin-
ing rate of permanent DRAM faults and a constant rate of
transient faults during our measurement interval [33] [34].

Table 2 shows a breakdown of DRAM fault modes ex-
perienced in Hopper. Similar to prior studies, we identify
several unique DRAM fault modes: single-bit, in which all
errors map to a single bit; single-word, in which all errors
map to a single word; single-column, in which all errors map
to a single column; single-row, in which all errors map to a
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Figure 3. Hopper DRAM device fault rates per month (30-
day period); 22.3 billion DRAM device hours total. The rate
of permanent faults decreases over time, while the rate of
transient faults remains approximately constant.

Fault Mode Total Faults Transient Permanent
Single-bit 78.9% 42.1% 36.8%
Single-word 0.0% 0.0% 0.0%
Single-column 5.9% 0.0% 5.9%
Single-row 9.2% 1.8% 7.4%
Single-bank 4.3% 0.4% 3.9%
Multiple-bank 0.6% 0.0% 0.6%
Multiple-rank 1.0% 0.2% 0.8%

Table 2. DRAM fault modes in Hopper.

single row; single-bank, in which all errors map to a single
bank; multiple-bank, in which errors map to multiple banks;
and multiple-rank, in which errors map to multiple DRAMs
in the same lane.

Similar to other DDR-2 and DDR-3 systems, a majority
of DRAM faults are single-bit faults, but a non-trivial minor-
ity of faults are large multi-bit faults, including row, column,
bank, and chip faults.

Figure 4 shows the transient and permanent fault rate in
Hopper in FIT per DRAM device, broken down by DRAM
vendor. Vendors A, B, and C in Hopper are the same as ven-
dors A, B, and C in Cielo [34]. The figure shows substantial
variation in per-vendor FIT rates, consistent with data from
Cielo [34]. This implies that the choice of DRAM vendor is
an important consideration for system reliability.

6.1.1 Effect of Altitude It is well-known that altitude will
have an effect on modern SRAM devices due to high-energy
neutrons from cosmic radiation [7], and particle strikes in
DRAM were a problem in the past [23]. It is uncertain, how-
ever, whether high-energy neutrons are a significant source
of faults in modern DRAM devices. We have previously
published data on DRAM faults in Cielo [34]. We use this
data in conjunction with Hopper data to examine the effect
of altitude on DRAM faults by comparing fault rates of sim-
ilar DRAM devices in Cielo and Hopper.

The Hopper and Cielo memory subsystems are extremely
similar: the systems use memory from the same three
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Figure 4. Fault rate per DRAM vendor. Hopper sees sub-
stantial variation in fault rates by DRAM vendor.

DRAM vendors, share the same DDR-3 memory technol-
ogy, and use the same memory controllers. A major differ-
ence between the two systems is their altitude: the neutron
flux, relative to New York City, experienced by Cielo is
5.53 and the relative neutron flux experienced by Hopper
is 0.91[1]. Therefore, by comparing fault rates in Cielo and
Hopper, we can determine what effect, if any, altitude has on
DRAM fault rates.

Figure 5 plots the rate of transient faults on Cielo rel-
ative to the rate of transient faults on Hopper, using Cielo
data from [34]. The figure shows that vendor A experiences
a substantially higher transient fault rate on Cielo, while ven-
dor B experiences a modestly higher transient fault rate and
vendor C experiences virtually the same transient fault rate.

Table 3 breaks down this data and shows the single-bit,
single-column, and single-row transient fault rates for each
system by DRAM vendor. The table shows that the single-
bit transient fault rates for vendors A and B are substantially
higher in Cielo than in Hopper, as are the single-column and
single-bank transient fault rates for vendor A. The rates of
all other transient fault modes were within 1 FIT of each
other on both systems. Due to the similarities between the
two systems, the most likely cause of the higher single-bit,
single-column, and single-bank transient fault rates in Cielo
is particle strikes from high-energy neutrons.

Our main observation from this data is that particle-
induced transient faults remain a noticeable effect in DRAM
devices, although the susceptibility varies by vendor and
there are clearly other causes of faults (both transient and
permanent) in modern DRAMs. Also, our results show that
while altitude does have an impact on system reliability, ju-
dicious choice of the memory vendor can reduce this impact.

6.1.2 Multi-bit DRAM Faults Figure 6 shows an exam-
ple of a single-bank fault from Hopper of multiple adjacent
DRAM rows with bit flips. The figure shows that errors from
this fault were limited to several columns in three logically
adjacent rows. Multiple faults within our dataset matched
this general pattern, although the occurrence rate was rela-
tively low. All errors from this fault were corrected by ECC.
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Figure 5. Cielo DRAM transient fault rates relative to Hop-
per (Hopper == 1.0). Vendor A shows a significantly higher
transient fault rate in Cielo, likely attributable to altitude.

Fault Mode Vendor Cielo Hopper

Single-bit
A 31.85 18.75
B 15.61 9.70
C 6.10 7.93

Single-column
A 6.05 0.0
B 0.55 0.0
C 0.18 0.0

Single-bank
A 14.65 0.0
B 0.07 0.09
C 0.18 0.10

Table 3. Rate of single-bit, single-column and single-bank
transient DRAM faults in Cielo and Hopper (in FIT). The
higher rate of transient faults in Cielo may indicate that these
faults are caused by high-energy particles.

The pattern of errors from this fault appears to be similar
to a fault mode called DRAM disturbance faults or “row-
hammer” faults [19] [26]. This fault mode results in corrup-
tion of a “victim row” when an “aggressor row” is opened
repeatedly in a relatively short time window. We did not do
root-cause analysis on this part; therefore, we cannot say for
certain that the fault in question is a disturbance fault. How-
ever, it is clear that fault modes with similar characteristics
do occur in practice and must be accounted for.

Our primary observation from data in this section is that
new and unexpected fault modes may occur after a system
is architected, designed, and even deployed: row-hammer
faults were only identified by industry after Hopper was
designed, and potentially after it began service [26]. Prior
work has looked at tailoring detection to specific fault modes
(e.g., [35]), but the data show that we need to be able to han-
dle a larger variety of fault modes and that robust detection
is crucial.

6.2 SRAM Faults
In this section, we examine fault rates of SRAM in the AMD
OpteronTMprocessors in Hopper.
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Figure 6. A single-bank fault from one Hopper node.
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Figure 7. Rate of SRAM faults per socket in Hopper, rela-
tive to the fault rate in the L2TLB. The fault rate is affected
by structure size and organization, as well as workload ef-
fects.

6.2.1 SRAM Fault Rate Figure 7 shows the rate of SRAM
faults per socket in Hopper, broken down by hardware struc-
ture. The figure makes clear that SRAM fault rates are dom-
inated by faults in the L2 and L3 data caches, the two largest
structures in the processor. However, it is clear that faults
occur in many structures, including smaller structures such
as tag and TLB arrays.

A key finding from this figure is that, at scale, faults occur
even in small on-chip structures, and detection and correc-
tion in these structures is important to ensure correctness for
high-performance computing workloads running on large-
scale systems. This result is significant for system designers
considering different devices on which to base their systems.
Devices should either offer robust coverage on all SRAM
and significant portions of sequential logic, or provide alter-
nate means of protection such as redundant execution [36].

6.2.2 Comparison to Accelerated Testing Accelerated
particle testing is used routinely to determine the sensitivity
of SRAM devices to single-event upsets from energetic par-
ticles. To be comprehensive, the accelerated testing must in-
clude all particles to which the SRAM cells will be exposed
to in the field (e.g., neutrons, alpha particles) with energy
spectra that approximate real-world conditions. Therefore,
it is important to correlate accelerated testing data with field
data to ensure that the conditions are in fact similar.
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Figure 8. Rate of SRAM faults in Hopper compared to
accelerated testing.

Accelerated testing on the SRAM used in Hopper was
performed using a variety of particle sources, including the
high-energy neutron beam at the LANSCE ICE House[22] at
LANL and an alpha particle source. The testing was “static”
testing, rather than operational testing. Static testing initial-
izes SRAM cells with known values, exposes them to the
beam, and then compares the results to the initial state to
look for errors.

The L2 and L3 caches employ hardware scrubbers, so
we expect the field error logs to capture the majority of
bit flips that occur in these structures. Figure 8 compares
the per-bit rate of SRAM faults in Hopper’s L2 and L3
data and tag arrays to results obtained from the accelerated
testing campaign on the SRAM cells. The figure shows that
accelerated testing predicts a lower fault rate than seen in
the field in all structures except the L2 tag array. The fault
rate in the L2 tag is approximately equal to the rate from
accelerated testing.

Overall, the figure shows good correlation between rates
measured in the field and rates measured from static SRAM
testing. Our conclusion from this correlation is that the ma-
jority of SRAM faults in the field are caused by known parti-
cles. While an expected result, confirming expectations with
field data is important to ensure that parts are functioning
as specified, to identify potential new or unexpected fault
modes that may not have been tested in pre-production sili-
con, and to ensure accelerated testing reflects reality.

7. Fallacies in Measuring System Health
All data and analyses presented in the previous section refer
to fault rates, not error rates. Some previous studies have re-
ported system error rates instead of fault rates [12][14][16][30].
Error rates are heavily dependent on a system’s software
configuration and its workloads’ access patterns in addition
to the health of the system, which makes error rates an im-
perfect measure of hardware reliability. In this section, we
show that measuring error rates can lead to erroneous con-
clusions about hardware reliability.
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Figure 9. Hopper’s memory error rate relative to Cielo.
Hopper has a memory error rate 4x that of Cielo, but a
memory fault rate 0.625x that of Cielo. Because error counts
are confounded by other factors such as workload behavior,
they are not an accurate measure of system health.

7.1 Error Logging Architecture
In most x86 CPUs, DRAM errors are logged in a register
bank in the northbridge block [4] [31]. Each register bank
can log one error at a time; x86 architecture dictates that the
hardware discard subsequent corrected errors until the bank
is read and cleared by the operating system [5]. The oper-
ating system typically reads the register bank via a polling
routine executed once every few seconds [2]. Therefore,
on a processor which issues multiple memory accesses per
nanosecond, millions of errors may be discarded between
consecutive reads of the register bank.

The error logging architecture described above means
that the console logs represent only a sample of all corrected
errors that have occurred on a system. Moreover, the number
of logged corrected errors is highly dependent on the polling
frequency set by the operating system. For instance, if the
operating system is using a 5-second polling frequency, only
one error per node can be reported per 5-second interval.

Uncorrected errors in x86 processors, on the other hand,
are collected through a separate machine check exception
mechanism [5]. These exceptions are individually delivered
to the operating system, and thus uncorrected error counts
do not suffer this sampling problem.

7.2 Counting Errors vs. Counting Faults
Using our data, we provide two concrete examples of how
counting errors can lead to incorrect conclusions about sys-
tem reliability. Our first example is a study by Di Martino et
al. on the Blue Waters system [12]. The second example is a
study by Schroeder et al. on memory errors in Google data
centers [30].

Example 1. First, we examine the Di Martino et al. claim
that the chipkill ECCs used on Blue Waters’ DRAM cor-
rected 99.997% of all logged errors. Because corrected
errors are sampled while uncorrected errors are not, the
chipkill codes on Blue Waters almost certainly corrected
a much larger fraction of the total errors experienced by

the system. More importantly, however, this type of analy-
sis can lead to incorrect conclusions about the efficacy of
ECC. For instance, using the authors’ methodology, we find
that Hopper’s chipkill-detect ECC corrected 99.991% of all
logged errors, while Cielo’s chipkill-correct ECC corrected
99.806% of all logged errors. This implies that Hopper’s
ECC performs better than Cielo’s ECC. However, Cielo’s
ECC actually had a 3x lower uncorrected error rate than that
on Hopper, leading to the opposite conclusion: the chipkill-
correct code on Cielo performs substantially better than the
chipkill-detect code on Hopper.

Example 2. Our second example comes from a paper by
Schroeder et al., where the authors quote a memory error
rate of 25,000-75,000 FIT/Mbit, and claim that DRAM is or-
ders of magnitude less reliable than previously thought [30].
The rate measured by the authors is the rate of logged errors,
not the rate of faults [28]. Using this methodology, we find
Hopper’s memory error rate was slightly more than 4x that
of Cielo, again giving the impression that Hopper’s DRAM
is less reliable than Cielo’s (see Figure 9). As stated in Sec-
tion 6, however, Hopper has a fault rate of 25 FIT/device,
compared to Cielo’s 40 FIT/device [34], demonstrating that
Hopper’s DRAM is actually more reliable than Cielo’s.

7.3 Importance of Counting Faults
The key observation in this section is, in order to obtain
an accurate picture of system reliability, it is imperative to
analyze the error logs to identify individual faults, rather
than treating each error event as separate. Error event counts:
(a) are more indicative of the OS’s polling frequency than
of hardware health; and (b) overemphasize the effects of
permanent faults, which can lead to thousands or millions
of errors, while underreporting the effects of transient faults,
which typically only result in a few errors but can be equally
deleterious to system reliability.

8. Analysis of Hardware Resilience Schemes
In this section, we use our data to examine various hardware
resilience schemes in both DRAM and SRAM. Our goal is
to understand the effectiveness of current hardware schemes.
This data is useful for silicon and system designers who must
consider a range of resilience techniques.

8.1 Comparing DRAM ECC Schemes
Many DRAM ECC schemes are used in the industry. The
most common schemes are SEC-DED ECCs, chipkill-detect
ECCs, and chipkill-correct ECCs [18]. SEC-DED ECC cor-
rects single-bit errors and detects double-bit errors. Chipkill-
detect ECC detects any error from a single DRAM de-
vice, while chipkill-correct ECC corrects any error from
a single device. Prior studies show that chipkill-correct re-
duces the uncorrected error rate by 42x relative to SEC-DED
ECC [33]. However, no prior study has quantified the differ-
ence in undetected errors between SEC-DED and chipkill.
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Figure 10. Rate of faults that generate errors which are
potentially undetectable by SEC-DED ECC.

Both Cielo and Hopper log the bits in error for each
corrected error. By analyzing each error, we can determine
whether a given error would be undetectable by SEC-DED
ECC. For the purposes of this study, we assume that errors
larger than 2 bits in a single ECC word are undetectable by
SEC-DED (an actual SEC-DED ECC typically can detect
some fraction of these errors). We call a fault that generates
an error larger than 2 bits in an ECC word an undetectable-
by-SECDED fault. A fault is undetectable-by-SECDED if it
affects more than two bits in any ECC word, and the data
written to that location does not match the value produced
by the fault. For instance, writing a 1 to a location with a
stuck-at-1 fault will not cause an error.

Not all multi-bit faults are undetectable-by-SECDED
faults. For instance, many single-column faults only affect
a single bit per DRAM row [33], and manifest as a series
of ECC words with a single-bit error that is correctable by
SEC-DED ECC.

Figure 10 shows the rate of undetectable-by-SECDED
faults on Cielo, broken down by vendor. The rate of these
faults exhibits a strong dependence on vendor. Vendor A
has an undetectable-by-SECDED fault rate of 21.7 FIT per
DRAM device. Vendors B and C, on the other hand, have
much lower rates of 1.8 and 0.2 FIT/device, respectively.
A Cielo node has 288 DRAM devices, so this translates to
6048, 518, and 57.6 FIT per node for vendors A, B, and C,
respectively. This translates to one undetected error every
0.8 days, every 9.5 days, and every 85 days on a machine the
size of Cielo.

Figure 10 also shows that 30% of the undetectable-by-
SECDED faults on Cielo generated 2-bit errors (which are
detectable by SEC-DED) before generating a larger (e.g., 3-
bit) error, while the remaining 70% did not. We emphasize,
however, that this detection is not a guarantee - different
workloads would write different data to memory, and thus
potentially exhibit a different pattern of multi-bit errors.

Our main conclusion from this data is that SEC-DED
ECC is poorly suited to modern DRAM subsystems. The
rate of undetected errors is too high to justify its use in very
large scale systems comprised of thousands of nodes where
fidelity of results is critical. Even the most reliable vendor
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uncorrected data ECC errors.

(vendor C) has a high rate of undetectable-by-SECDED
faults when considering multiple nodes operating in parallel.

Hopper and Cielo use chipkill-detect ECC and chipkill-
correct ECC, respectively, and therefore exhibit much lower
undetected error rates than if they used SEC-DED ECC.

8.2 DDR Command and Address Parity
A key feature of DDR3 (and now DDR4) memory is the
ability to add parity-check logic to the command and ad-
dress bus. The wires on this bus are shared from the mem-
ory controller to each DIMM’s register. Therefore, errors on
these wires will be seen by all DRAM devices on a DIMM.
Though command and address parity is optional on DDR2
memory systems, we are aware of no prior study that exam-
ines the potential value of this parity mechanism.

The on-DIMM register calculates parity on the received
address and command pins and compares it to the received
parity signal. On a mismatch, the register signals the mem-
ory controller of a parity error. The standard does not pro-
vide for retry on a detected parity error, but requires the on-
DIMM register to disallow any faulty transaction from writ-
ing data to the memory, thereby preventing data corruption.

The DDR3 sub-system in Cielo includes command and
address parity checking. Figure 11 shows the rate of de-
tected command/address parity errors relative to the rate of
detected, uncorrected data ECC errors. The figure shows that
the rate of command/address parity errors was 72% that of
the rate of uncorrected ECC errors.

The conclusion from this data is that command/address
parity is a valuable addition to the DDR standard. Further-
more, increasing DDR memory channel speeds will likely
cause an increase in signaling-related errors. Therefore, we
expect the ratio of address parity to ECC errors to increase
with increased DDR frequencies.

8.3 SRAM Error Protection
In this section, we examine uncorrected errors from SRAM
in Hopper and Cielo.

Figure 12 shows the rate of SRAM uncorrected errors
on Cielo in arbitrary units. The figure separately plots un-
corrected errors from parity-protected structures and uncor-
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Figure 12. Rate of SRAM uncorrected errors in Cielo from
parity- and ECC-protected structures.

rected errors from ECC-protected structures, and includes
structures in the core, all caches, and a variety of non-core
arrays and FIFOs. ECC-protected structures include the L1,
L2, and L3 caches, which comprise the majority of the die
area in the processor.

The figure shows that the majority of uncorrected errors
in Cielo come from parity-protected structures, even though
these structures are far smaller than the ECC-protected struc-
tures. Parity can detect, but cannot correct, single-bit faults,
while ECC will correct single-bit faults. Therefore, the ma-
jority of SRAM uncorrected errors in Cielo are the result of
single-bit, rather than multi-bit, faults.

Our primary conclusion in this section is that the best
way to reduce SRAM uncorrected error rates simply is to
extend single-bit correction (e.g., SEC-DED ECC) through
additional structures in the processor. While this is a non-
trivial effort due to performance, power, and area concerns,
this solution does not require extensive new research or
novel technologies.

Once single-bit faults are addressed, the remaining multi-
bit faults may be more of a challenge to address, especially
in highly scaled process technologies in which the rate and
spread of multi-bit faults may increase substantially [17]. In
addition, novel technologies such as ultra-low-voltage oper-
ation will likely change silicon failure characteristics [37].
Current and near-future process technologies, however, will
see significant benefit from increased use of on-chip ECC.

8.4 Analysis of SRAM Errors
In this section, we delve further into the details of observed
SRAM uncorrected errors, to determine the root cause and
potential avenues for mitigation.

Figure 13 shows the rate of uncorrected errors (in arbi-
trary units) from several representative SRAM structures in
Hopper. In the processors used in Hopper, the L1 data cache
tag (L1DTag) is protected by parity, and all errors are un-
correctable. The L2 cache tag (L2Tag), on the other hand,
is largely protected by ECC. However, a single bit in each
L2 tag entry is protected by parity. Because the L2 cache
is substantially larger than the L1, there are approximately
half as many parity-protected bits in the L2 tag as there are
bits in the entire L1 tag. This is reflected in the observed un-
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Figure 13. Rate of SRAM uncorrected errors per structure
in Hopper from cache data and tag arrays. Each Hopper
socket contains 12 L1 instruction and data caches, 12 L2
caches, and 2 L3 caches.
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Figure 14. Rate of SRAM uncorrected errors in Cielo rel-
ative to Hopper. ECC and aggressive interleaving seem to
mitigate the expected increase in uncorrected error rate due
to altitude.

corrected error rate from the L2 tag, which is approximately
half the rate of uncorrected errors from the L1 tag1.

Our observation from this data is that seemingly small
microarchitectural decisions (e.g., the decision to exclude
a single bit from ECC protection) can have a large impact
on overall system failure rates. Therefore, detailed model-
ing and analysis of the microarchitecture (e.g., AVF analy-
sis [25]) is critical to ensuring a resilient system design.

Prior field studies have shown that SRAM fault rates have
a strong altitude dependence due to the effect of atmospheric
neutrons [34]. True to this trend, Cielo experiences substan-
tially more corrected SRAM faults than Hopper. While first
principles would predict a similar increase in SRAM un-
corrected errors at altitude, prior studies have not quantified
whether this is true in practice.

Figure 14 shows the per-bit SRAM uncorrected error rate
in Cielo relative to Hopper in the L1 instruction tag, L2 tag,
and L3 data arrays. The figure shows that Cielo’s error rate
in the L2 and L3 structures is not substantially higher than
Hopper’s error rate, despite being at a significantly higher
altitude. We attribute this to the error protection in these
structures. These structures have both ECC and aggressive
bit interleaving; therefore, a strike of much larger than two
bits is required to cause an uncorrected error. Therefore, the

1 This L2 Tag behavior has been addressed on more recent AMD processors.



data points to the conclusion that the multi-bit error rate from
high-energy neutrons in these structures is smaller than the
error rate from other sources, such as Alpha particles, and a
variety of hard fault mechanisms.

Therefore, the data in this section suggest that appro-
priate error protection mechanisms can successfully offset
the increase in raw fault due to altitude. We conclude that
an appropriately-designed system need not be less reliable
when located at higher elevations.

9. Lessons for Reliable System Design
There are several lessons about reliable system design to be
gleaned from our study. We believe this study both confirms
and rebuts many widely-held assumptions and also provides
new insights valuable to system designers and researchers.

• Faults are unpredictable. Some faults may occur much
more often than expected (e.g., DDR address parity) and
some fault modes may not be known at design time (e.g.,
DRAM disturbance faults). Therefore, providing a robust
set of error detectors is key.

• Details matter. For instance, simply describing a cache
as “ECC-protected” does not convey adequate informa-
tion, since excluding even a single bit from this protec-
tion can have a large negative effect on system reliability.
Careful analysis and modeling (e.g., AVF analysis) are
required to predict the expected failure rate of any device.

• The ability to diagnose is critical. This includes both
ensuring that hardware logs have adequate diagnosis in-
formation as well as having access to appropriate soft-
ware tools. For example, knowing exactly which bits are
in error is critical to understanding fault modes and deter-
mining what went wrong. Adding this level of diagnos-
ability to the hardware can require a much larger invest-
ment of time and effort than adding ECC to a structure in
the first place.

• Analysis is tricky. Qualitatively, our experience is that
this type of field study is difficult to perform correctly.
These studies require understanding the details of hard-
ware and software behavior (some of which may be un-
documented), mining extremely large data sets to sepa-
rate the signal from the noise, and carefully interpreting
the results. Quantitatively, our data shows that not follow-
ing these steps can lead to incorrect conclusions about
system reliability.

• Scale changes everything. In large systems, even very
small structures require protection due to the sheer num-
ber of components in a modern-day supercomputer or
data center. Components that neglect this type of protec-
tion run the risk of corrupting data at non-trivial rates.

10. Projections to Future Systems
In this section, we examine the impact of DRAM and SRAM
faults on a potential exascale supercomputer. Our goal is
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Figure 15. Rate of DRAM uncorrected errors in an exascale
supercomputer relative to Cielo.

to understand whether existing reliability mechanisms can
cope with the challenges presented by likely increases in
system capacity and fault rates for future large-scale systems
and data centers. To accomplish this, we scale our observed
DRAM and SRAM error rates to likely exascale configura-
tions and system sizes. We also model the impact of different
process technologies such as FinFET transistors [15].

All analysis in this section refers to detected errors. Our
projections are for currently-existing technologies and do
not consider the impact of new technologies such as die-
stacked DRAM, ultra-low-voltage CMOS, or NVRAM.

10.1 DRAM
Exascale supercomputers are predicted to have between
32PB and 128PB of main memory. Due to capacity limi-
tations in die-stacked devices [32], much of this memory is
likely to be provided in off-chip memory. The interface to
these off-chip devices is will likely resemble current DDR
memory interfaces. Therefore, it is critical to understand the
reliability requirements for these off-chip sub-systems.

Prior work has shown that DRAM vendors maintain an
approximately constant fault rate per device across technol-
ogy generations, despite reduced feature sizes and increased
densities [9]. Therefore, we expect the per-device fault rates
in an exascale computer will be similar to those observed
in todays DRAM devices. Our goal is to determine whether
current error-correcting codes (ECCs) will suffice for an ex-
ascale supercomputer. Therefore, we assume that each mem-
ory channel in an exascale system will use the same single-
chipkill code in use on Cielo. As a result, we project that the
per-device uncorrected error rate in an exascale supercom-
puter will be the same as the per-device error rate in Cielo.

Because we do not know the exact DRAM device capac-
ity that will be in mass production in the exascale timescale,
we sweep the device capacity over a range from 8Gbit to
32Gbit devices. A larger DRAM device can deliver a speci-
fied system memory capacity with fewer total devices.

Figure 15 shows the results of this analysis. The figure
plots the system-wide DRAM uncorrected error rate for an
exascale system relative to the DRAM uncorrected error
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Figure 16. Rate of SRAM uncorrected errors relative to
Cielo in two different potential exascale computers com-
posed of CPU and GPU/APU nodes.

rate on Cielo. The figure plots two per-device error rates at
each point, each taken from field data on different systems.
The figure shows that uncorrected error rate for an exascale
system ranges from 3.6 times Cielos uncorrected error rate
at the low end to 69.9 times Cielos uncorrected error rate at
the high end.

At a system level, the increase in DRAM uncorrected er-
ror rates at the high end of memory capacity is comparable
to the 40x reduction in DRAM uncorrected errors achieved
when upgrading from SEC-DED ECC to chipkill ECC [33].
If we assume that SEC-DED ECC provides insufficient reli-
ability for todays memory subsystems, our conclusion from
these results is that higher-capacity exascale systems may
require stronger ECC than chipkill.

10.2 SRAM
We now turn our attention to SRAM failures on future sys-
tems. A socket in Cielo contains 18MB of SRAM in the L2
and L3 cache data arrays. Exascale-class processors are pro-
jected to see a substantial increase in processing power per
socket, and thus will contain significantly more SRAM per
node. Taking into account technology trends and reported
structure sizes for CPU and GPU processors [3], we project
that an exascale socket will contain over 150MB of SRAM,
or an 8-10x increase in SRAM per socket over current su-
percomputers. The increase in SRAM relative to todays sys-
tems is less than the increase in DRAM because of the
switch to general-purpose graphical processing units (GPG-
PUs) and/or GPGPUs integrated with CPU cores in an ac-
celerated processing unit (APU), both of which rely less on
large SRAM caches than traditional CPU cores.

Assuming that SRAM fault rates remain constant in fu-
ture years, the per-socket fault rates will increase linearly
with SRAM capacity. Therefore, an exascale processor will
see 8-10x the number of SRAM faults experienced by a cur-
rent processor, and potentially 8-10x the rate of uncorrected
SRAM errors. This translates to a system-level uncorrected
error rate from SRAM errors of 50-100 times the SRAM un-

corrected error rate on Cielo, depending on the system size.
This is shown in the first group of bars of Figure 16, labeled
Small for a low node-count system (50k nodes) and Large
for a high node-count system (100k nodes).

Per-bit SRAM transient fault rates have trended down-
wards in recent years [17]. If this trend continues, the SRAM
uncorrected error rate per socket will be lower than our pro-
jections. For instance, according to Ibe et al. the per-bit SER
decreased by 62% between 45nm and 22nm technology. If
we see a corresponding decrease between current CMOS
technologies and exascale technologies, the exascale system
SRAM uncorrected error rate decreases to 19-39 times the
uncorrected error rate on Cielo, shown in the second group
of bars of Figure 16.

Finally, as noted previously, the majority of uncorrected
SRAM errors are due to single-bit faults. If these errors
are eliminated in an exascale processor (e.g. by replacing
parity with ECC), the exascale system SRAM uncorrected
error rate would be only 3-6.5 times Cielos uncorrected error
rates, shown in the third group of bars in Figure 16.

Our conclusion from this analysis is that, vendors should
focus aggressively on reducing the rate of uncorrected errors
from SRAM faults. However, large potential reductions are
available through reductions in SER due to technology scal-
ing, and much of the remainder may be possible through ex-
panding correction of single-bit faults. Once practical limits
are reached, however, more advanced techniques to reduce
the rate of multi-bit faults may be needed.

11. Summary
Reliability will continue to be a significant challenge in the
years ahead. Understanding the nature of faults experienced
in practice can benefit all stakeholders, including processor
and system architects, data center operators, and even ap-
plication writers, in the quest to design more resilient large-
scale data centers and systems.

In this paper, we presented data on DRAM and SRAM
faults, quantified the impact of several hardware resilience
techniques, and extracted lessons about reliable system de-
sign. Our findings demonstrate that, while systems have
made significant strides over the years (e.g., moving from
SEC-DED ECC to chipkill on the DRAM subsystem), there
is clearly more work to be done in order to provide a robust
platform for future large-scale computing systems.
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