
Optimistic Replication

YASUSHI SAITO

Hewlett-Packard Laboratories, Palo Alto, CA, USA

AND

MARC SHAPIRO

Microsoft Research Ltd., Cambridge, UK

Data replication is a key technology in distributed systems that enables higher
availability and performance. This article surveys optimistic replication algorithms.
They allow replica contents to diverge in the short term to support concurrent work
practices and tolerate failures in low-quality communication links. The importance of
such techniques is increasing as collaboration through wide-area and mobile networks
becomes popular.

Optimistic replication deploys algorithms not seen in traditional “pessimistic”
systems. Instead of synchronous replica coordination, an optimistic algorithm
propagates changes in the background, discovers conflicts after they happen, and
reaches agreement on the final contents incrementally.

We explore the solution space for optimistic replication algorithms. This article
identifies key challenges facing optimistic replication systems—ordering operations,
detecting and resolving conflicts, propagating changes efficiently, and bounding replica
divergence—and provides a comprehensive survey of techniques developed for
addressing these challenges.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]:
Distributed Systems—Distributed applications; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Distributed systems

General Terms: Algorithms, Management, Reliability, Performance

Additional Key Words and Phrases: Replication, optimistic techniques, distributed
systems, large scale systems, disconnected operation

1. INTRODUCTION

Data replication consists of maintaining
multiple copies of data, called replicas,

This work is supported in part by DARPA Grant F30602-97-2-0226 and National Science Foundation Grant
EIA-9870740.
Authors’ addresses: Yasushi Saito, Hewlett-Packard Laboratories, 1501 Page Mill Rd, MS 1134, Palo Alto, CA,
93403, USA; email: yasushi@cs.washington.edu, http://www.ysaito.com; Marc Shapiro, Microsoft Research
Ltd., 7 J. J. Thomson Ave, Cambridge CB3 0FB, United Kingdom; email: http://www-sor.inria.fr/∼shapiro/.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or direct commercial advantage and
that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 1515 Broadway, New York, NY 10036 USA, fax: +1 (212)
869-0481, or permissions@acm.org.
c©2005 ACM 0360-0300/05/0300-0042 $5.00

on separate computers. It is an important
enabling technology for distributed ser-
vices. Replication improves availability
by allowing access to the data even when

ACM Computing Surveys, Vol. 37, No. 1, March 2005, pp. 42–81.

Optimistic Replication 43

some of the replicas are unavailable.
It also improves performance through
reduced latency, by letting users access
nearby replicas and avoiding remote
network access, and through increased
throughput, by letting multiple computers
serve the data simultaneously.

This article surveys optimistic replica-
tion algorithms. Compared to traditional
“pessimistic” techniques, optimistic repli-
cation promises higher availability and
performance but lets replicas temporarily
diverge and allows users to see inconsis-
tent data. The remainder of this introduc-
tion overviews the concept of optimistic
replication, defines its basic elements,
and compares it to traditional replication
techniques.

1.1. Traditional Replication Techniques and
Their Limitations

Traditional replication techniques try to
maintain single-copy consistency [Herlihy
and Wing 1990; Bernstein and Goodman
1983; Bernstein et al. 1987]—they give
users an illusion of having a single, highly
available copy of data. This goal can be
achieved in many ways but the basic
concept remains the same: traditional
techniques block access to a replica unless
it is provably up to date. We call these
techniques “pessimistic” for this reason.
For example, primary-copy algorithms,
used widely in commercial systems, elect
a primary replica that is responsible for
handling all accesses to a particular object
[Bernstein et al. 1987; Dietterich 1994;
Oracle 1996]. After an update, the primary
synchronously writes the change to other
secondary replicas. If the primary crashes,
the remaining replicas confer to elect a
new primary. Such pessimistic techniques
perform well in local-area networks in
which latencies are small and failures un-
common. Given the continuing progress
of Internet technologies, it is tempting to
apply pessimistic algorithms to wide-area
data replication. We cannot expect good
performance and availability in this envi-
ronment, however, for three key reasons.

First, the Internet remains slow and
unreliable; its communication latency and

availability do not seem to be improving
[Zhang et al. 2000; Chandra et al. 2001].
In addition, mobile computers with
intermittent connectivity are becom-
ing increasingly popular. A pessimistic
replication algorithm, attempting to
synchronize with an unavailable site,
would block indefinitely. There is even
a possibility of data corruption. For in-
stance, it is impossible to accurately agree
on a single primary after a failure when
network delay is unpredictable [Fischer
et al. 1985; Chandra and Toueg 1996].

Second, pessimistic algorithms scale
poorly in the wide area. It is difficult to
build a large, pessimistically replicated
system with frequent updates because its
throughput and availability suffer as the
number of sites increases [Yu and Vahdat
2001; Yu and Vahdat 2002]. This is why
many Internet and mobile services are
optimistic for instance Usenet [Spencer
and Lawrence 1998; Lidl et al. 1994],
DNS [Mockapetris 1987; Mockapetris and
Dunlap 1988; Albitz and Liu 2001], and
mobile file and database systems [Walker
et al. 1983; Kistler and Satyanarayanan
1992; Moore 1995; Ratner 1998].

Third, some human activities require
optimistic data sharing. Cooperative
engineering or software development
often requires people to work in relative
isolation. It is better to allow them to
update data independently and repair
occasional conflicts after they happen
than to lock the data out while someone is
editing it [Kawell et al. 1988; Cederqvist
et al. 2001; Vesperman 2003].

1.2. What Is Optimistic Replication?

Optimistic replication is a group of tech-
niques for sharing data efficiently in
wide-area or mobile environments. The
key feature that separates optimistic
replication algorithms from their pes-
simistic counterparts is their approach
to concurrency control. Pessimistic algo-
rithms synchronously coordinate replicas
during accesses and block other users
during an update. Optimistic algorithms
let data be accessed without a priori
synchronization based on the “optimistic”

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

44 Y. Saito and M. Shapiro

Fig. 1. Elements of optimistic replication and their roles. Disks represent
replicas, memo sheets represent operations, and arrows represent commu-
nications between replicas.

assumption that problems will occur only
rarely, if at all. Updates are propagated in
the background, and occasional conflicts
are fixed after they happen. It is not a
new idea,1 but its use has expanded as the
Internet and mobile computing technolo-
gies have become more widespread.

Optimistic algorithms offer many ad-
vantages over their pessimistic counter-
parts. First, they improve availability;
applications make progress even when
network links and sites are unreliable.2
Second, they are flexible with respect
to networking because techniques such
as epidemic replication propagate opera-
tions reliably to all replicas, even when
the communication graph is unknown
and variable. Third, optimistic algorithms
would scale to a large number of repli-
cas because they require little synchro-
nization among sites. Fourth, they allow
sites and users to remain autonomous. For
example, services such as FTP and Usenet
mirroring [Nakagawa 1996; Krasel 2000]
let a replica be added with no change to ex-
isting sites. Optimistic replication also en-

1Our earliest reference is from Johnson and Thomas
[1976], but the idea was certainly developed much
earlier.
2Tolerating Byzantine (malicious) failures is outside
our scope; we cite a few recent papers in this area:
Spreitzer et al. [1997], Minsky [2002], and Mazières
and Shasha [2002].

ables asynchronous collaboration between
users, as in CVS [Cederqvist et al. 2001;
Vesperman 2003] or Lotus Notes [Kawell
et al. 1988]. Finally, optimistic algorithms
provide quick feedback as they can apply
updates tentatively as soon as they are
submitted.

These benefits, however, come at a cost.
Any distributed system faces a trade-off
between availability and consistency [Fox
and Brewer 1999; Yu and Vahdat 2002;
Pendone 2001]. Where a pessimistic algo-
rithm waits, an optimistic one speculates.
Optimistic replication faces the chal-
lenges of diverging replicas and conflicts
between concurrent operations. It is thus
applicable only for applications that can
tolerate occasional conflicts and inconsis-
tent data. Fortunately, in many real-world
systems, especially file systems, conflicts
are known to be rather rare, thanks to the
data partitioning and access arbitration
that naturally happen between users
[Ousterhout et al. 1985; Baker et al. 1991;
Vogels 1999; Wang et al. 2001].

1.3. Elements of Optimistic Replication

This section introduces basic concepts of
optimistic replication and defines com-
mon terms that are used throughout the
article. We will discuss them in more
detail in later sections. Figure 1 illus-

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 45

Table I. Glossary of Recurring Terms
Term Meaning Sections
Abort Permanently reject the application of an operation (e.g., to

resolve a conflict).
5.1, 5.5

Clock A counter used to order operations, possibly (but not always)
related to real time.

4.1

Commit Irreversibly apply an operation. 5.1, 5.5
Conflict Violating the precondition of an operation. 1.3.5, 3.4, 5, 6
Consistency The property that the state of replicas stay close together. 5.1, 5
Divergence control Techniques for limiting the divergence of the state of replicas. 8
Eventual consistency Property by which the state of replicas converge toward one

another’s.
5.1

Epidemic propagation Propagation mode that allows any pair of sites to exchange any
operation.

3.5

Log A record of recent operations kept at each site. 1.3.3
Master (M) A site capable of performing an update locally (M = number of

masters).
1.3.1, 3.1

Object Any piece of data being shared. 1.3.1
Operation (α, β, . . .) Description of an update to an object. 1.3.2
Precondition Predicate defining the input domain of an operation. 1.3.2
Propagate Transfer an operation to all sites. 7
Replica (xi) A copy of an object stored at a site (xi : replica of object x at site i). 1.3.1
Resolver An application-provided procedure for resolving conflicts. 5.4
Schedule An ordered set of operations to execute. 3.3, 5.2
Site (i, j , . . . , N) A network node that stores replicas of objects (i, j : site names;

N = number of sites).
1.3.1

State transfer Technique that propagates recent operations by sending the
object value.

3.2, 6

Submit To enter an operation into the system, subject to tentative
execution, roll-back, reordering, commitment or abort.

1.3.2

Tentative Operation applied on isolated replica; may be reordered or
aborted.

1.3.3, 5.5

Timestamp (See Clock)
Version vector (VV) (See Vector clock)
Thomas’s write rule “Last-writer wins” algorithm for resolving concurrent updates. 6.1
Vector clock (VC) Data structure for tracking order of operations and detecting

concurrency.
4.3

trates how these concepts fit together, and
Table I provides a reference for common
terms.

1.3.1. Objects, Replicas, and Sites. Any
replicated system has a concept of the min-
imal unit of replication. We call such a
unit an object. A replica is a copy of an ob-
ject stored in a site, or a computer. A site
may store replicas of multiple objects, but
we often use terms replica and site inter-
changeably since most optimistic replica-
tion algorithms manage each object inde-
pendently. When describing algorithms, it
is useful to distinguish sites that can up-
date an object—called master sites—from
those that store read-only replicas. We use
the symbol N to denote the total number
of replicas and M to denote the number

of master replicas for a given object. Com-
mon values are M = 1 (single-master sys-
tems) and M = N .

1.3.2. Operations. An optimistic repli-
cation system must allow accesses to a
replica even while it is disconnected. We
call a self-contained update to an object
an operation. Operations differ from tra-
ditional database updates (transactions)
because they are propagated and applied
in the background, often long after they
were submitted by the users.

Conceptually, an operation can be
viewed as a precondition for detect-
ing conflicts combined with a prescrip-
tion to update the object. The con-
crete nature of operations varies widely
among systems. Many systems, includ-
ing Palm [PalmSource 2002] and DNS

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

46 Y. Saito and M. Shapiro

[Albitz and Liu 2001], support only
whole-object updates. Such systems are
called state-transfer systems. Other sys-
tems, called operation-transfer systems,
allow for more sophisticated descrip-
tions of updates. For example, Bayou de-
scribes operations in SQL [Terry et al.
1995].

To update an object, a user submits an
operation at some site. The site locally
applies the operation to let the user con-
tinue working based on that update. The
site also exchanges and applies remote
operations in the background. Such sys-
tems are said to offer eventual consistency
because they guarantee that the state
of replicas will converge only eventually.
Such a weak guarantee is enough for
many optimistic replication applications,
but some systems provide stronger guar-
antees, for example, that a replica’s state
is never more than one hour old.

1.3.3. Propagation. An operation sub-
mitted by the user is logged, that is,
remembered in order to be propagated
to other sites later. These systems often
deploy epidemic propagation to let all
sites receive operations even when they
cannot communicate with each other
directly [Demers et al. 1987]. Epidemic
propagation lets any two sites that hap-
pen to communicate exchange their local
operations as well as operations they
received from a third site—an opera-
tion spreads like a virus does among
humans.

1.3.4. Tentative Execution and Scheduling.
Because of background propagation, oper-
ations are not always received in the same
order at all sites. Each site must recon-
struct an appropriate ordering that pro-
duces an equivalent result across sites and
matches the users’ intuitive expectations.
Thus, an operation is initially considered
tentative. A site might reorder or trans-
form operations repeatedly until it agrees
with others on the final operation order-
ing. We use the term scheduling to refer
to the (often nondeterministic) ordering
policy.

1.3.5. Detecting and Resolving Conflicts.
With no a priori site coordination, multiple
users may update the same object at the
same time. One could simply ignore such
a situation—for instance, a room-booking
system could handle two concurrent re-
quests to the same room by picking one
arbitrarily and discarding the other. Such
a policy, however, causes lost updates. Lost
updates are clearly undesirable in many
applications, including room-booking.

A better way to handle this problem is
to detect operations that are in conflict
and resolve them, for example, by letting
the people renegotiate their schedule. A
conflict happens when the precondition
of an operation is violated, if it is to be
executed according to the system’s
scheduling policy. In many systems,
preconditions are built implicitly into
the replication algorithm. The sim-
plest example is when all concurrent
operations are flagged to be in conflict
as with the Palm Pilot [PalmSource
2002] and the Coda mobile file system
[Kumar and Satyanarayanan 1995].
Other systems let users write precon-
ditions explicitly—for example, in a
room-booking system written in Bayou, a
precondition might accept two concurrent
requests to the same room as long as their
durations do not overlap [Terry et al.
1995].

Conflict resolution is usually highly ap-
plication specific. Most systems simply
flag a conflict and let users fix it manu-
ally. Some systems can resolve a conflict
automatically. For example, Coda resolves
concurrent writes to an object file (compi-
lation output) simply by recompiling the
source file [Kumar and Satyanarayanan
1995].

1.3.6. Commitment. Scheduling and con-
flict resolution often make nondetermin-
istic choices. Moreover, a replica may not
have received all the operations that oth-
ers have. Commitment refers to an algo-
rithm to converge the state of replicas by
letting sites agree on the set of applied op-
erations, their final ordering, and conflict-
resolution results.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 47

1.4. Comparison With Advanced Transaction
Models

Optimistic replication is related to ad-
vanced (or relaxed) transaction models
[Elmagarmid 1992; Ramamritham and
Chrysanthis 1996]. Both relax the ACID3

requirements of traditional database
systems to improve performance and
availability but the motives are different.

Advanced transaction models generally
try to increase the system’s throughput
by, for example, letting transactions read
values produced by noncommitted trans-
actions [Pu et al. 1995]. Designed for a
single-node or well-connected distributed
database, they require frequent commu-
nication during transaction execution.

Optimistic replication systems, in con-
trast, are designed to work with a high
degree of asynchrony and autonomy. Sites
exchange operations in the background
and still agree on a common state. They
must learn about relationships between
operations, often long after they were sub-
mitted, and at sites different from where
they were submitted. Their techniques,
such as the use of operations, scheduling,
and conflict detection, reflect the charac-
teristics of environments for which they
are designed. Preconditions play a role
similar to traditional concurrency control
mechanisms, such as two-phase locking or
optimistic concurrency control [Bernstein
et al. 1987], but it operates without
intersite coordination. Conflict resolution
corresponds to transaction abortion.

That said, there are many commonal-
ities between optimistic replication and
advanced transaction models. Epsilon
serializability allows transactions to see
inconsistent data up to some application-
defined degree [Ramamritham and Pu
1995]. This idea has been incorporated
into optimistic replication systems, in-
cluding TACT and session guarantees

3ACID demands that a group of accesses, called a
transaction, be: Atomic (all-or-nothing), Consistent
(safe when executed sequentially), Isolated (interme-
diate state is not observable by other transactions),
and Durable (the final state is persistent) [Gray and
Reuter 1993].

(Section 8). For another example, Coda’s
isolation-only transactions apply opti-
mistic concurrency control to a mobile file
system [Lu and Satyanarayanan 1995].
It tries to run a set of accesses atomically,
but it merely reports an error when
atomicity is violated.

1.5. Outline

Section 2 overviews several popular
optimistic-replication systems and
sketches a variety of mechanisms they
deploy to manage replicas. Section 3 intro-
duces six key design choices for optimistic
replication systems, including the number
of masters, state- vs. operation transfer,
scheduling, conflict management, op-
eration propagation, and consistency
guarantees. The subsequent sections
examine these choices in more detail.

Section 4 reviews the classic concepts
of concurrency and happens-before re-
lationships, which are used pervasively
in optimistic replication for scheduling
and conflict detection. It also introduces
basic techniques used to implement these
concepts, including logical and vector
clocks. Section 5 introduces techniques for
maintaining replica consistency, includ-
ing scheduling, conflict management, and
commitment. Section 6 focuses on a simple
subclass of optimistic replication systems,
called state-transfer systems, and several
interesting techniques available to them.
Section 7 focuses on techniques for effi-
cient operation propagation. We examine
systems that bound replica divergence in
Section 8. Finally, Section 9 concludes by
summarizing the systems and algorithms
introduced in the article and discussing
their trade-offs.

2. APPLICATIONS OF OPTIMISTIC
REPLICATION

Optimistic replication is used in several
application areas, including wide-area
data management, mobile information
systems, and computer-based collabo-
ration. This section overviews popular
optimistic services to provide a context
for the technical discussion that follows.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

48 Y. Saito and M. Shapiro

2.1. DNS: Internet Name Service

Optimistic replication is particularly attr-
active for wide-area network applications
that must tolerate slow and unreliable
communication between sites. Examples
include WWW caching [Chankhunthod
et al. 1996; Wessels and Claffy 1997;
Fielding et al. 1999], FTP mirroring
[Nakagawa 1996], and directory services
such as Grapevine [Birrell et al. 1982],
Clearinghouse [Demers et al. 1987], DNS
[Mockapetris 1987; Mockapetris and
Dunlap 1988; Albitz and Liu 2001], and
Active Directory [Microsoft 2000].

DNS (Domain Name System) is the
standard hierarchical name service for the
Internet. Names for a particular zone (a
subtree in the name space) are managed
by a single master server that maintains
the authoritative database for that zone
and optional slave servers that copy the
database from the master. The master
and slaves can both answer queries from
remote clients and servers. To update the
database, the administrator updates the
master and increments its timestamp. A
slave server periodically polls the mas-
ter and downloads the database when its
timestamp changes.4 The contents of a
slave may lag behind the master’s and
clients may observe old values.

DNS is a single-master system (all
writes for a zone originate at that zone’s
master) with state transfer (servers ex-
change the whole database contents). We
will discuss these classification criteria
further in Section 3.

2.2. Usenet: Wide-Area Information
Exchange

Our next example targets more inter-
active information exchange. Usenet, a
wide-area bulletin board system deployed
in 1979, is one of the oldest and still a
popular optimistically replicated service
[Kantor and Rapsey 1986; Lidl et al. 1994;
Spencer and Lawrence 1998; Saito et al.
1998]. Usenet originally ran over UUCP, a

4Recent DNS servers also support proactive update
notification from the master and incremental zone
transfer [Albitz and Liu 2001].

network designed for intermittent connec-
tion over dial-up modem lines [Ravin et al.
1996]. A UUCP site could only copy files
to its direct neighbors. Today’s Usenet
consists of thousands of sites, forming a
connected (but not complete) graph built
through a series of human negotiations.

Each Usenet site replicates all news
articles5 so that a user can read any arti-
cle from the nearest site. Usenet lets any
user post articles to any site. From time to
time, articles posted on a site are pushed to
the neighboring sites. A receiving site also
stores and forwards the articles to its own
neighbors. This way, each article “floods”
its way through intersite links, eventu-
ally to all the sites. Infinite propagation
loops are avoided by each site accepting
only those articles missing from its disks.
An article is deleted from a site by time-
out, or by an explicit cancellation request
that propagates among sites just like an
ordinary article. Usenet’s delivery latency
is highly variable, sometimes as long as a
week. While users sometimes find it con-
fusing, it is a reasonable cost to pay for
Usenet’s excellent availability.

Usenet is a multimaster system (an
update can originate at any site) that
propagates article posting and cancella-
tion operations epidemically.

2.3. Personal Digital Assistants

Optimistic replication is especially suited
to environments where computers are
frequently disconnected. Mobile data sys-
tems use optimistic replication as in Lotus
Notes [Kawell et al. 1988], Palm [Rhodes
and McKeehan 1998; PalmSource 2002],
Coda [Kistler and Satyanarayanan 1992;
Mummert et al. 1995], and Roam [Ratner
1998].

A personal digital assistant (PDA) is a
small hand-held computer that keeps a
user’s schedule, address book, and other
personal information. Occasionally, the
user synchronizes the PDA with his PC

5In practice, articles are grouped into newsgroups,
and a site usually stores only a subset of newsgroups
to conserve network bandwidth and storage space.
Still, articles posted to a specific newsgroup are repli-
cated on all sites that subscribe to the newsgroup.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 49

and exchanges the data bidirectionally. A
conflict happens, for instance, when the
phone number of a person is changed
on both ends. PDAs such as Palm use a
“modified bits” scheme [Rhodes and
McKeehan 1998; PalmSource 2002]—each
database record in Palm is associated with
a “modified” bit which is set when the
record is updated and cleared after syn-
chronization. During synchronization, if
only one of the replicas is found to be
modified, the new value is copied to the
other side. If both the modified bits are set,
the system detects a conflict. Conflicts are
resolved either by an application-specific
resolver or manually by the user.

PDAs represent an example of multi-
master, state-transfer systems; a database
record is the unit of replication, update,
and conflict resolution.

2.4. Bayou: A Mobile Database System

Bayou is a research mobile database
system [Terry et al. 1995; Petersen et al.
1997]. It lets a user replicate a database
on a mobile computer, modify it while
disconnected, and synchronize with any
other replica of the database that the user
happens to find. Bayou is a complex sys-
tem because of the challenges of sharing
data flexibly in a mobile environment.

A user of Bayou submits update op-
erations as SQL statements that are
propagated to other sites epidemically. A
site applies operations tentatively as they
are received from the user or from other
sites. Because sites can receive operations
in different orders, they must undo and
redo operations repeatedly as they grad-
ually learn the final order. Conflicts are
detected by an application-specific precon-
dition attached to each operation. They
are resolved by an application-defined
merge procedure that is also attached
to each operation. The final decision re-
garding ordering and conflict resolution is
made by a designated “home,” or primary,
site. The home site orders operations and
resolves conflicts in the order of arrival
and sends the decisions to other sites
epidemically as a side effect of ordinary
operation propagation.

Bayou is a multimaster, operation-
transfer system that uses epidemic propa-
gation over arbitrary, changing communi-
cation topologies.

2.5. CVS: Software Version Control

CVS (Concurrent Versions System) is a
version control system that lets users edit
a group of files collaboratively and re-
trieve old versions on demand [Cederqvist
et al. 2001; Vesperman 2003]. Commu-
nication in CVS is centralized through
a single site. The central site stores the
repository that contains the authoritative
copies of the files, along with all changes
committed to them in the past. A user
creates private copies (replicas) of the
files and edits them using standard
tools. Any number of users can modify
their private copies concurrently. After
the work is done, the user commits the
private copy to the repository. A commit
succeeds immediately if no other user has
committed a change to the same files in
the interim. If another user has modified
the same file but the changes do not over-
lap, CVS merges them automatically and
completes the commit.6 Otherwise, the
user is informed of a conflict which he or
she must resolve manually and recommit.

CVS is a significant departure from
the previous generation of version con-
trol tools, such as RCS and SCCS, which
pessimistically lock the repository while
a user edits a file [Bolinger and Bronson
1995]. CVS supports a more flexible style
of collaboration at the cost of occasional
manual conflict resolutions. Most users
readily accept this trade-off.

CVS is a multimaster operation-
transfer system that centralizes commu-
nication through a single repository in a
star topology.

2.6. Summary

Table II summarizes the characteristics of
the systems just mentioned. The upcom-
ing sections will detail our classification
criteria.

6Of course, the updates might still conflict seman-
tically, for example, a merged source file might not
compile.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

50 Y. Saito and M. Shapiro

Table II.
System # Masters Operations Object Conflict Resolution
DNS 1 Update Database None
Usenet ≥1 Post, cancel Article None
Palm ≥1 Update Record Manual or application-specific
Bayou ≥1 SQL App-defined Application-specific
CVS ≥1 Insert, delete, modify

lines
File Manual

Table III.
Choice Description Effects
Number of writers Which replicas can submit updates?
Definition of operations What kinds of operations are

supported, and to what degree is a
system aware of their semantics?

Defines the system’s basic
complexity, availability and
efficiency.

Scheduling How does a system order operations? Defines the system’s ability to
handle concurrent operations.

Conflict management How does a system define and handle
conflicts?

Operation propagation
strategy

How are operations exchanged
between sites?

Defines networking efficiency and
the speed of replica convergence

Consistency guarantees What does a system guarantee about
the divergence of replica state?

Defines the transient quality of
replica state.

3. OPTIMISTIC REPLICATION: DESIGN
CHOICES

The ultimate goal of any optimistic repli-
cation system is to maintain consistency,
that is, to keep replicas sufficiently sim-
ilar to one another despite operations
being submitted independently at dif-
ferent sites. What exactly is meant by
this differs considerably among systems,
however. This section overviews how
different systems define and implement
consistency. We classify optimistic repli-
cation systems along the axes shown in
Table III.

3.1. Number of Writers: Single-Master
vs. Multimaster

Figure 2 shows the choice regarding where
an update can be submitted and how it is
propagated. Single-master systems desig-
nate one replica as the master (i.e., M =
1). All updates originate at the master and
then are propagated to other replicas, or
slaves. They may also be called caching
systems. They are simple but have lim-
ited availability, especially when the sys-
tem experiences frequent updates.

Multimaster systems let updates be
submitted at multiple replicas indepen-
dently (i.e., M ≥ 1) and exchange them

in the background. They are more avail-
able but significantly more complex. In
particular, operation scheduling and con-
flict management are issues unique to
these systems. Another potential problem
with multimaster systems is their limited
scalability due to their increased con-
flict rate. According to Gray et al. [1996],
a naı̈ve multimaster system would en-
counter concurrent updates at the rate of
O(M 2), assuming that each master sub-
mits operations at a constant rate. The
system will treat many of these updates
as conflicts and resolve them. On the
other hand, pessimistic or single-master
systems with the same aggregate update
rate would experience an abortion rate of
only O(M) as most concurrent operations
can be serialized using local synchroniza-
tion techniques such as two-phase lock-
ing [Bernstein et al. 1987]. Still, there are
remedies to this scaling problem as we dis-
cuss in Section 7.

3.2. Definition of Operations: State Transfer
vs. Operation Transfer

Figure 3 illustrates the main design
choices regarding the definitions of op-
erations. State-transfer systems limit an
operation either to read or to overwrite the
entire object. Operation-transfer systems

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 51

Fig. 2. Single vs. multimaster.

Fig. 3. Definition of operations.

describe operations more semantically.
A state-transfer system can be seen as
a degenerate form of operation transfer,
but there are some qualitative differences
between the two types of systems.

State transfer is simple because main-
taining consistency only involves sending
the newest replica contents to other repli-
cas. Operation-transfer systems must
maintain (or reconstruct) a history of
operations and have replicas agree on the
set of operations and their order. On the
other hand, they can be more efficient,
especially when objects are large and
operations are high level. For example, a
state-transfer file system might transfer
the entire file (or directory) contents
every time a byte is modified [Kistler and
Satyanarayanan 1992]. An operation-
transfer file system, in contrast, could
transfer an operation that produces the
desired effect, sometimes as high level as
“cc foo.c”, resulting in the reduction of
network traffic by a factor of a few hun-
dreds [Lee et al. 2002]. Operation transfer
also allows for more flexible conflict
resolution. For example, in a bibliography
database, updates that modify the authors
of two different books can both be accom-
modated in operation-transfer systems
(semantically, they do not conflict), but it
is difficult to do the same when a system
transfers the entire database contents ev-
ery time [Golding 1992; Terry et al. 1995].

3.3. Scheduling: Syntactic vs. Semantic

The goal of scheduling is to order oper-
ations in a way expected by users and
to produce equivalent states across repli-
cas. Scheduling policies can be classi-
fied into syntactic and semantic policies
(Figure 3). Syntactic scheduling sorts op-
erations based only on information about
when, where, and by whom operations
were submitted. Timestamp-based order-
ing is the most popular example. Semantic
scheduling exploits semantic properties,
such as commutativity or idempotency
of operations, to reduce conflicts or the
frequency of roll-back. Semantic schedul-
ing is used only in operation-transfer
systems, since state-transfer systems
are oblivious to operation semantics by
nature.

Syntactic methods are simpler but may
cause unnecessary conflicts. Consider, for
example, a system for reserving some
equipment on loan where the pool initially
contains a single item. Three requests
are submitted concurrently: (1) user A re-
quests an item, (2) user B requests an
item, and (3) user C adds an item to the
pool. If a site schedules the requests syn-
tactically in the order 1, 2, 3, then request
2 will fail (B cannot borrow from an empty
pool). Using semantic scheduling, the sys-
tem could order 1, 3, then 2, thus satisfy-
ing all the requests.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

52 Y. Saito and M. Shapiro

Fig. 4. Design choices regarding conflict handling.

Semantic scheduling is also seen in
replicated file systems: writing to two dif-
ferent files commutes, as does creating
two different files in the same directory.
File systems can schedule these opera-
tions in any order and still let replicas
converge [Balasubramaniam and Pierce
1998; Ramsey and Csirmaz 2001]. We will
discuss techniques for operation ordering
in more detail in Sections 4 and 5.

3.4. Handling Conflicts

Conflicts happen when some operations
fail to satisfy their preconditions. Figure 4
presents taxonomy of approaches for deal-
ing with conflicts.

The best approach is to prevent conflicts
from happening altogether. Pessimistic
algorithms prevent conflicts by blocking
or aborting operations as necessary.
Single-master systems avoid conflicts
by accepting updates only at one site
(but allow reads to happen anywhere).
These approaches, however, come at the
cost of lower availability as discussed in
Section 1. Conflicts can also be reduced,
for example, by quickening propaga-
tion or by dividing objects into smaller
independent units.

Some systems ignore conflicts: any
potentially conflicting operation is simply
overwritten by a newer operation. Such
lost updates may not be an issue if the
loss rate is negligible, or if users can vol-
untarily avoid lost updates. A distributed
name service is an example where usually
only the owner of a name may modify it
[Demers et al. 1987; Microsoft 2000].

The user experience is improved when
a system can detect conflicts as discussed
in Section 1.3.5. Conflict detection poli-
cies are also divided into syntactic and

semantic policies. In systems with syn-
tactic policies, preconditions are not
explicitly specified by the user or the
application. Instead, they rely on the
timing of operation submission and con-
servatively declare a conflict between
any two concurrent operations. Section 4
introduces various techniques for de-
tecting concurrent operations. Systems
with semantic knowledge of operations
can often exploit that to reduce con-
flicts. For instance, in a room-booking
application, two concurrent reservation
requests to the same room object could be
granted as long as their duration does not
overlap.

The trade-off between syntactic and
semantic conflict detection parallels that
of scheduling: syntactic policies are sim-
pler and generic but cause more conflicts,
whereas semantic policies are more flex-
ible, but application specific. In fact, con-
flict detection and scheduling are closely
related issues: syntactic scheduling tries
to preserve the order of nonconcurrent op-
erations, while syntactic conflict detection
flags any operations that are concurrent.
Semantic policies are attempts to better
handle such concurrent operations.

3.5. Propagation Strategies and Topologies

Local operations must be transmitted
and executed at remote sites. Each site
will record (log) its changes while dis-
connected from others, decide when to
communicate with others, and exchange
changes with other sites. Propagation
policies can be classified along two axes,
communication topology and the degree
of synchrony, as illustrated in Figure 5.

Fixed topologies, such as a star or span-
ning tree can be very efficient but work

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 53

Fig. 5. Design choices regarding operation propagation.

poorly in dynamic, failure-prone network
environments. At the other end of the
spectrum, many optimistic replication
systems rely on epidemic communica-
tion that allows operations to propagate
through any connectivity graph even if it
changes dynamically [Demers et al. 1987].

The degree of synchrony shows the
speed and frequency by which sites
communicate and exchange operations.
At one end of the spectrum, pull-based
systems demand that each site poll other
sites, either manually (e.g., PDAs) or
periodically (e.g., DNS), for new opera-
tions. In push-based systems, a site with
new updates proactively sends them to
others. In general, the quicker the prop-
agation, the lower the degree of replica
inconsistency and the rate of conflict,
but greater the complexity and overhead,
especially when the application is writ
intensive.

3.6. Consistency Guarantees

In an optimistic replication system, the
states of replicas may diverge some-
what. A consistency guarantee defines
how much divergence a client application
may observe. Figure 6 shows some com-
mon choices.

Single-copy consistency, or lineariz-
ability, ensures that a set of accesses to
an object on multiple sites produces an
effect equivalent to some serial execution
of them on a single site, compatible with
their order of execution in the history
of the run [Herlihy and Wing 1990]. At

the other end of the spectrum, eventual
consistency guarantees only that the state
of replicas will eventually converge. In
the meantime, applications may observe
arbitrarily stale state, or even incorrect
state. We define eventual consistency
more precisely in Section 5.1. Eventual
consistency is a fairly weak concept,
but it is the guarantee offered by most
optimistic-replication systems for which
the availability is of paramount impor-
tance. As such, most of the techniques we
describe in this article are for maintaining
eventual consistency.

In between single-copy and eventual
consistency policies, numerous interme-
diate consistency types have been pro-
posed that we call “bounded divergence”
[Ramamritham and Chrysanthis 1996;
Yu and Vahdat 2001]. Bounded diver-
gence is usually achieved by blocking ac-
cesses to a replica when certain consis-
tency conditions are not met. Techniques
for bounding divergence are covered in
Section 8.

4. DETECTING CONCURRENCY AND
HAPPENS-BEFORE RELATIONSHIPS

An optimistic replication system accepts
operations that are submitted indepen-
dently, then schedules them and (often)
detects conflicts. Many systems use in-
tuitive ordering relations between opera-
tions as the basis for this task. This section
reviews these relations and techniques for
expressing them.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

54 Y. Saito and M. Shapiro

Fig. 6. Choices regarding consistency guarantees.

4.1. The Happens-Before and Concurrency
Relations

Scheduling requires a system to know
which events happened in which or-
der. However, in a distributed environ-
ment in which communication delays
are unpredictable, we cannot define a
natural total ordering between events.
The concept of happens-before is an im-
plementable partial ordering that intu-
itively captures the relations between dis-
tributed events [Lamport 1978]. Consider
two operations α and β submitted at sites
i and j , respectively. Operation α happens
before β when:

—i = j and α was submitted before β, or
—i �= j and β is submitted after j has

received and executed α, or
—For some operation γ , α happens before

γ and γ happens before β.

If neither operation α nor β happens
before the other, they are said to be
concurrent.

The happens-before and concurrency
relations are used in a variety of ways in
optimistic replication, for example, as a
hint for operation ordering (Section 5.2),
to detect conflicts (Section 5.3), and to
propagate operations (Section 7.1). The
following sections review algorithms for
representing or detecting these relations.

4.2. Explicit Representation

Some systems represent the happens-
before relation simply by attaching to
an operation the names of operations
that precede it [Birman and Joseph 1987;
Mishra et al. 1989; Fekete et al. 1999;
Kermarrec et al. 2001; Kang et al. 2003].
Operation α happens-before β if α ap-
pears in β ’s predecessors. The size of

this set is independent of the number of
replicas, but it grows with the number of
past operations.

4.3. Vector Clocks

A vector clock (VC), also called a version
vector, timestamp vector, or a multipart
timestamp, is a compact data structure
that accurately captures the happens-
before relationship [Parker et al. 1983;
Fidge 1988; Mattern 1989]. VCs are
proved to be the smallest such data
structure by Charron-Bost [1991].

A vector clock VCi, kept on Site i, is an
M -element array of timestamps (M is the
number of master replicas). In practice,
vector clocks are usually implemented as
a table that maps the site’s name, for
instance, IP address, to a timestamp. A
timestamp is any number that increases
for every distinct event—it is commonly
just an integer counter. To submit a new
operation α, Site i increments VCi[i] and
attaches the new value of VCi, now called
α’s timestamp VCα, to α. The current value
of VCi[i] is called i’s timestamp as it shows
the last time an operation was submitted
at Site i. If VCi[j] = t, this means that
Site i has received all the operations from
Site j with timestamps up to t.7 Figure 7
shows how VCs are computed.

VCβ dominates VCα if VCα �= VCβ and
∀k ∈ {1 . . . M }, VCα[k] ≤ VCβ[k]. Opera-
tion α happens before β if and only if VCβ

dominates VCα. If neither VC dominates
the other, the operations are concurrent.

A general problem with VCs is size
when M is large, and complexity when
sites come and go dynamically, although

7For this property to hold, operations from a partic-
ular site must be propagated to another site in sub-
mission order.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 55

Fig. 7. Generating vector clocks. Every site executes the same algorithm. Variable
myself is the name of the current site.

Fig. 8. Generating logical clocks. Every site executes the same algorithm.

solutions exist [Ratner et al. 1997;
Petersen et al. 1997; Adya and Liskov
1997].

4.4. Logical and Real-Time Clocks

A single, scalar timestamp can also be
used to express happens-before rela-
tionships. A logical clock, also called a
Lamport clock, is a timestamp maintained
at each site [Lamport 1978]. Figure 8
illustrates its use. When submitting
an operation α, the site increments the
clock and attaches the new value, noted
Cα, to α. Upon receiving α, the receiver
sets its logical clock to be a value larger
than either its current value or Cα. With
this definition, if operation α happens
before β, then Cα < Cβ . However, logical
clocks (or any scalar clocks) cannot detect
concurrency because Cα < Cβ does not
necessarily imply that α happens before β.

Real-time clocks can also be used
to track happens-before relationships.
Comparing such clocks between sites,
however, is meaningful only if they are
properly synchronized. Consider two
operations α and β, submitted at sites i
and j , respectively. Even if β is submitted
after j received α, β ’s timestamp could
still be smaller than α’s if j ’s clock lags
far behind i’s. This situation cannot

ultimately be avoided, because clock
synchronization is a best-effort service
in asynchronous environments [Chandra
and Toueg 1996]. Modern algorithms such
as NTP, however, can keep clock skew
within tens of microseconds in a LAN, and
tens of milliseconds in a wide area with
a negligible cost [Mills 1994; Elson et al.
2002]. They are usually accurate enough
to capture most happens-before relations
that happen in practice.

Real-time clocks do have an advantage
over logical and vector clocks: they can
capture relations that happen via a
“hidden channel”, or outside the system’s
control. Suppose that a user submits an
operation α on computer i, walks over to
another computer j , and submits another
operation β. For the user, α clearly hap-
pens before β, and real-time clocks can
detect that. Logical clocks may not detect
such a relation, because i and j might
never have exchanged messages before β
was submitted.

4.5. Plausible Clocks

Plausible clocks combine ideas from
logical and vector clocks to build clocks
with intermediate strength Valot 1993;
de Torres-Rojas and Ahamad 1996]. They
have the same theoretical strength as

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

56 Y. Saito and M. Shapiro

scalar clocks but better practical accu-
racy. The papers introduce a variety of
plausible clocks, including the use of a
vector clock of fixed size K (K ≤ M),
with Site i using (i mod K)th entry of the
vector. This vector clock can often (but not
always) detect concurrency.

5. CONCURRENCY CONTROL AND
EVENTUAL CONSISTENCY

A site in an optimistic replication system
collects and orders operations submitted
independently at this and other sites. This
section reviews techniques for achieving
an eventual consistency of replicas in such
environments. We first define eventual
consistency using the concepts of sched-
ule and its equivalence. We subsequently
examine the necessary steps toward this
goal: computing an ordering, identifying
and resolving conflicts, and committing
operations.

5.1. Eventual Consistency

Informally, eventual consistency means
that replicas eventually reach the same
final value if users stop submitting new
operations. This section tries to clarify
this concept, especially when in practice
sites independently submit operations
continually.

We define two schedules to be equiva-
lent when, starting from the same initial
state, they produce the same final state.8
Schedule equivalence is an application-
specific concept. For instance, if a schedule
contains a sequence of commuting opera-
tions, swapping their order preserves the
equivalence. For the purpose of conflict
resolution, we also allow some operation
α to be included in a schedule but not
executed. We use the symbol α to denote
such an aborted operation.

Definition. A replicated object is
eventually consistent when it meets the
following conditions, assuming that all

8In an optimistic system users may observe different
tentative results. Therefore, we only include commit-
ted results (i.e., the final state) in our definition of
equivalence.

replicas start from the same initial state.

—At any moment, for each replica, there
is a prefix of the schedule that is equiv-
alent to a prefix of the schedule of every
other replica. We call this a committed
prefix for the replica.

—The committed prefix of each replica
grows monotonically over time.

—All nonaborted operations in the com-
mitted prefix satisfy their preconditions.

—For every submitted operation α, either
α or α will eventually be included in the
committed prefix.

This definition leaves plenty of room for
differing implementations. The basic trick
is to play with equivalence and with pre-
conditions to allow for more scheduling
flexibility. For instance, in Usenet, the pre-
condition is always true, it never aborts
an operation, and thus it posts articles in
any order; eventual consistency reduces to
eventual delivery of operations. Bayou, in
contrast, allows explicit preconditions to
be written by users or applications, and it
requires that committed operations be ap-
plied in the same order at every site.

5.2. Scheduling

As introduced in Section 3.3, scheduling
policies in optimistic replication systems
vary along the spectrum between syntac-
tic and semantic approaches. Syntactic
scheduling defines a total order of oper-
ations from the timing and location of
operation submission, whereas semantic
approaches provide more scheduling free-
dom by exploiting operation semantics.

5.2.1. Syntactic Scheduling. A scheduler
should at least try to preserve the
happens-before relationships seen by op-
erations. Otherwise, users may observe an
object’s state to “roll back” randomly and
permanently which renders the system
practically useless. Timestamp scheduling
is a straightforward attempt toward this
goal.

A typical timestamp scheduler uses a
scalar clock technique to order opera-
tions. Examples include Active Directory

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 57

[Microsoft 2000], Usenet [Spencer and
Lawrence 1998], and TSAE [Golding
1992]. In the absence of concurrent
updates, vector clocks also provide a to-
tal ordering, as used in LOCUS [Parker
et al. 1983; Walker et al. 1983] and
Coda [Kistler and Satyanarayanan 1992;
Kumar and Satyanarayanan 1995]. Sys-
tems that maintain an explicit log of op-
erations, such as Bayou, can use an even
simpler solution: exchange the log con-
tents sequentially [Petersen et al. 1997].
Here, a newly submitted operation is ap-
pended to the site’s log. During propaga-
tion, a site simply receives missing opera-
tions from another site and appends them
to the log in first-in-first-out order. These
systems effectively use the log position of
an operation as a logical clock.

Syntactic policies order concurrent op-
erations in some arbitrary order. In some
systems, for example, those that use scalar
timestamps, sites can order concurrent op-
erations deterministically. Other systems,
including Bayou, may produce different
orderings at different sites. They must
be combined with an explicit commitment
protocol to let sites eventually agree on one
ordering. We will discuss such protocols in
Section 5.5.

5.2.2. Semantic Scheduling: Exploiting Com-
mutativity. Semantic scheduling techni-
ques take the semantic relations between
operations into account, either in addition
to the happens-before relationship, or in-
stead of it. A common example is the use
of commutativity [Jagadish et al. 1997]. If
two consecutive operations α and β com-
mute, they can run in either order, even
if one happens before the other. This en-
ables a reduction in the number of roll-
backs and redos when a tentative schedule
is re-evaluated.

A replicated dictionary (or table) is a
popular example where all dictionary op-
erations (insertion and deletion) with dif-
ferent keys commute with each other
[Wuu and Bernstein 1984; Mishra et al.
1989].

5.2.3. Semantic Scheduling: Canonical Or-
dering. Ramsey and Csirmaz [2001] for-

mally study optimistic replication in a file
system. For every possible pair of concur-
rent operations, they define a rule that
specifies how they interact and may be or-
dered (nonconcurrent operations are ap-
plied in their happens-before order.) For
instance, they allow creating two files /a/b
and /a/c in any order, even though they
both update the same directory. Or, if one
user modifies a file, and another deletes its
parent directory, it marks them as conflict-
ing and asks the users to repair them man-
ually. Ramsey and Csirmaz [2001] prove
that this algebra, in fact, keeps replicas of
a file system consistent.

This file system supports few opera-
tion types, including create, remove, and
edit. In particular, it lacks “move”, which
would have increased the complexity sig-
nificantly as moving a file involves three
objects: two directories and a file. Despite
the simplification, the algebra contains
51 different rules. It remains to be seen
how this approach applies to more com-
plex environments.

5.2.4. Semantic Scheduling: Operational
Transformation. Operational transforma-
tion (OT) is a technique developed for
collaborative editors [Ellis and Gibbs
1989; Sun and Ellis 1998; Sun et al. 1996;
Sun et al. 1998; Vidot et al. 2000]. A
command by a user, for example, text
insertion or deletion, is applied at the
local site immediately and then sent to
other sites. Sites apply remote commands
in reception order and do not reorder
already-executed operations; thus two
sites apply the same set of operations
but possibly in different orders. For every
possible pair of concurrent operations, OT
defines a rewriting rule that guarantees
replica convergence while preserving the
intentions of the operations regardless of
reception order.

Consider a text editor that shares a
text “abc”. The user at site i executes in-
sert(“X”, 1), yielding “Xabc”, and sends the
update to Site j . The user at site j ex-
ecutes delete(1), yielding “bc”, and sends
the update to Site i. In a naı̈ve implemen-
tation, Site j would have “Xbc”, whereas

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

58 Y. Saito and M. Shapiro

Site i would have an unexpected “abc”.
Using OT, Site i rewrites j ’s operation
to delete(2). Thus, OT uses semantics to
transform operations to run in any order
even when they do not naturally commute.

The actual set of rewriting rules is
complex and nontrivial because it must
provably converge the state of replicas
given arbitrary pairs of concurrent oper-
ations [Cormack 1995; Vidot et al. 2000].
The problem becomes even more complex
when one wants to support three or more
concurrent users [Sun and Ellis 1998].
Palmer and Cormack [1998] prove the cor-
rectness of transformations for a shared
spreadsheet that supports operations such
as updating cell values, adding or deleting
rows or columns, and changing formulæ.
Molli et al. [2003] extend the OT approach
to support a replicated file system.

5.2.5. Semantic Scheduling: Optimization Ap-
proach. IceCube is a toolkit that supports
multiple applications and data types using
a concept called constraints between op-
erations [Kermarrec et al. 2001; Preguiça
et al. 2003]. A constraint is an object that
reifies a precondition. Constraints can be
supplied from several sources: the user,
the application, a data type, or the system.

IceCube supports several kinds of con-
straints, including dependence (α executes
only after β does), implication (if α exe-
cutes, so does β), choice (either α or β may
be applied, but not both), and a special-
ized constraint for expressing resource al-
location timings [Matheson 2003]. For in-
stance, a user might try to reserve Room
1 or 2 (choice); if Room 2 is chosen, rent
a projector (implication), which is possi-
ble only if sufficient funds are available
(dependence).

IceCube treats scheduling as an opti-
mization problem where the goal is to find
the “best” schedule of operations compati-
ble with the stated constraints. The good-
ness of a schedule is defined by the user
or the application—for example, one may
define a schedule with fewer conflicts to
be better. Furthermore, IceCube supports
an explicit commutativity relation to sub-
divide the search space. Despite the NP-

hard nature of the problem, IceCube uses
an efficient hill-climbing-based constraint
solver that can order 10,000 operations
in less than 3 seconds [Preguiça et al.
2003].

5.3. Detecting Conflicts

An operation α is in conflict when its pre-
condition is unsatisfied, given the state of
the replica after tentatively applying op-
erations before α in the current schedule.
Conflict management involves two sub-
tasks: detecting a conflict, the topic of this
section, and resolving it, which we review
in Section 5.4. Just like scheduling, tech-
niques range over the spectrum between
syntactic and semantic approaches.

Many systems do nothing about con-
flict, for instance, any system using the
Thomas’s write rule (Section 6.1). These
systems simply apply operations in the
order of schedule, oblivious of any con-
flicts that might exist between them. De-
tecting and explicitly resolving conflicts,
however, alleviates the lost-update prob-
lem and helps users better manage data
as discussed in Section 1.3.5.

Syntactic conflict detection uses the
happens-before relationship, or some ap-
proximation of it, to flag conflicts. That is,
an operation is deemed in conflict when it
is concurrent with another operation. We
describe syntactic approaches in more de-
tail in Section 6 in the context of state-
transfer systems because that is where
they are the most often used.

Semantic approaches use the knowledge
of operation semantics to detect conflicts.
In some systems, the conflict detection
procedure is built in. For instance, in a
replicated file system, creating two differ-
ent files concurrently in the same direc-
tory is not a conflict, but updating the
same regular file concurrently is a con-
flict [Ramsey and Csirmaz 2001; Kumar
and Satyanarayanan 1993]. Other sys-
tems, notably Bayou and IceCube, let
the application or the user write explicit
preconditions. This approach isolates the
application-independent components of
optimistic replication—for example, oper-
ation propagation and commitment—from

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 59

conflict detection and resolution. Seman-
tic policies are strictly more expressive
than syntactic counterparts since one can
easily write a semantic conflict detector
that emulates a syntactic algorithm. For
instance, Bayou [Terry et al. 1995] can
be programmed to detect conflict using
the two-timestamp algorithm presented in
Section 6.2.

Most operation-transfer systems use
semantic conflict detectors, mainly be-
cause the application already describes
operations semantically—adding an
application-specific precondition requires
little additional engineering effort. On the
other hand, state-transfer systems could
use both approaches.

5.4. Resolving Conflicts

The role of conflict resolution is to rewrite
or abort offending operations to remove
suspected conflicts. Conflict resolution can
be either manual or automatic. Manual
conflict resolution simply excludes the of-
fending operation from the schedule and
presents two versions of the object. It is up
to the user to create a new, merged version
and resubmit the operation. This strategy
is used by systems such as Lotus [Kawell
et al. 1988], Palm [PalmSource 2002], and
CVS (Section 2.5).

5.4.1. Automatic Conflict Resolution in File
Systems. Automatic conflict resolution is
performed by an application-specific pro-
cedure that takes two versions of an object
and creates a new one. Such an approach
is well studied in replicated file systems
such as LOCUS [Walker et al. 1983], Ficus,
Roam [Reiher et al. 1994; Ratner 1998],
and Coda [Kumar and Satyanarayanan
1995]. For instance, concurrent updates on
a mail folder file can be resolved by com-
puting the union of the messages from the
two replicas. Concurrent updates to com-
piled (*.o) files can be resolved by recom-
piling from their source.

5.4.2. Conflict Resolution in Bayou. Bayou
supports multiple applications types by
attaching an application-specific precon-
dition (called the dependency check) and

resolver (called the merge procedure) to
each operation. Every time an operation
is added to a schedule or its schedule or-
dering changes, Bayou runs the depen-
dency check; if it fails, Bayou runs the
merge procedure which can perform any
fix-up necessary. For instance, if the op-
eration is an appointment request, the de-
pendency check might discover that the re-
quested slot is not free any more, then the
merge procedure could try a different time
slot.

To converge the state of replicas, every
merge procedure must be completely de-
terministic, including its failure behavior
(e.g., it may not succeed on some site and
run out of memory on another). Practical
experience with Bayou has shown that it
is difficult to write merge procedures for
all but the simplest of cases [Terry et al.
2000].

5.5. Commitment Protocols

Commitment serves three practical pur-
poses. First, when sites can make nonde-
terministic choices during scheduling or
conflict resolution, commitment ensures
that sites agree about them. Second, it
lets users know which operations are sta-
ble, that is, their effect will never be
rolled back. Third, commitment acts as a
space-bounding mechanism because infor-
mation about stable operations can safely
be deleted from the site.

5.5.1. Implicit Commitment by Common
Knowledge. Many systems can do without
explicit commitment. Examples include
systems that use totally deterministic
scheduling and conflict-handling algo-
rithms such as single-master systems
(DNS and NIS) and systems that use
Thomas’s write rule (Usenet, Active
Directory). These systems can rely on
timestamps to order operations deter-
ministically and conflicts are either
nonexistent or just ignored.

5.5.2. Agreement in the Background. The
mechanisms discussed in this section al-
low sites to agree on the set of operations
known to be received at all sites. TSAE

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

60 Y. Saito and M. Shapiro

Fig. 9. Relationship between operations, schedule, and ack vectors. The circles rep-
resent operations ordered according to an agreed-upon schedule. AVi[k] shows a con-
servative estimate of operations received by k. It is no larger than AVk[k] which itself
is a conservative representation of the set of operations that k has received.

(Time-Stamped Anti Entropy) is an
operation-transfer algorithm that uses
real-time clocks to schedule operations
syntactically [Golding 1992]. TSAE
uses ack vectors in conjunction with
vector clocks (Section 7.1) to let each
site learn about the progress of other
sites. The ack vector AVi on Site i is an
N -element array of timestamps. AVi[i]
is defined to be min j∈{1...M }(VCi[j]), that
is, Site i has received all operations
with timestamps no newer than AVi[i],
regardless of their origin. Ack vectors
are exchanged among sites and updated
by taking pair-wise maxima, just like
VCs. Thus, if AVi[k] = t, then i knows
that k has received all messages up to
t. Figure 9 illustrates the relationship
among operations, the schedule, and ack
vectors. With this definition, all oper-
ations with timestamps no larger than
min j∈{1...N }(AVi[j]) are guaranteed to have
been received by all sites, and they can
safely be executed in the timestamp order
and deleted. For liveness and efficiency,
this algorithm must use loosely synchro-
nized real-time clocks (Section 4.4) for
timestamps. Otherwise, a site with a very
slow timestamp could stall the progress
of ack vectors of all other sites. Moreover,
even a single unresponsive site could stall
the progress of ack vectors on all other
sites. This problem becomes more likely
as the number of sites increases.

Timestamp matrices (TMs), or matrix
clocks, achieve a similar effect using a ma-
trix of timestamps [Wuu and Bernstein
1984; Agrawal et al. 1997]. A site i of an
object stores an N × M matrix of times-

tamps TMi. TMi[i] holds i’s vector clock,
VCi. Other rows of TMi hold Site i’s con-
servative estimate of the vector clocks of
other sites. Thus, if TMi[k][j] = t, then
Site i knows that Site k has received op-
erations submitted at Site j with times-
tamps at least up to t. TMs are exchanged
among sites and updated by taking pair-
wise maxima, just like VCs. With this defi-
nition, on any site i, all operations submit-
ted by j with timestamps no larger than
mink∈1...N (TMi[k][j]) are guaranteed to be
received by all sites. Unlike ack vectors,
TMs allow any scalar values to be used
as timestamps but they still suffer from
the liveness problem. As we will discuss
in Section 7.4.4, TMs can also be used to
push operations to other sites efficiently.

ESDS is also an operation-transfer sys-
tem, but it uses nondeterministic syntac-
tic policy to order concurrent operations.
Each operation in ESDS is associated with
a set of operations that should happen
before it, using a graph representation
(Section 4.2). For each operation, each site
independently assigns a timestamp that is
greater than those that happen before it.
The final total order of commitment is de-
fined by the minimal timestamp assigned
to each operation. Thus, a site can com-
mit an operation α when it receives α’s
timestamps from all other sites, and it
has committed all operations that happen
before α.

Neither TSAE nor ESDS performs any
conflict detection or resolution. Their com-
mitment protocols are thus simplified—
they only need to agree on the set of op-
erations and their order.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 61

Table IV.
Problem Solution Advantages Disadvantages
Ordering Syntactic Simple, generic Unnecessary conflicts

Commuting operations Simple App-specific, limited applicability
Canonical ordering Formal App-specific, limited applicability
Operational transformation Formal Complexity, limited applicability
Semantic optimization Expressive, powerful Complexity

Conflicts Syntactic Simple, generic Unnecessary conflicts
Semantic Reduces conflicts, expressive App-specific

Commitment Common knowledge Simple Limited applicability
Ack vector — Weak liveness
Timestamp matrix — Weak liveness
Consensus — Complex

5.5.3. Commitment by Consensus. Some
systems use consensus protocols to agree
on which operations are to be com-
mitted or aborted and in which order
[Fischer et al. 1985].

The primary-based commitment proto-
col, used in Bayou, designates a single site
as the primary that makes such decisions
unilaterally [Petersen et al. 1997]. The
primary orders operations as they arrive
(Section 5.2.1) and commits operations
by assigning them monotonically increas-
ing commit sequence numbers (CSN). The
mapping between operations and their
CSNs is transmitted as a side effect of
ordinary operation propagation process.
Other sites commit operations in the CSN
order and delete them from the log. No-
tice the difference between Bayou and
single-master systems. In the latter, the
lone master submits updates and commits
them immediately. Other sites must sub-
mit changes via the master. In contrast,
Bayou allows any site to submit opera-
tions and propagate them epidemically,
and users see the effects of operations
quickly.

Deno uses a quorum-based commitment
protocol [Keleher 1999]. Deno is a pes-
simistic system that yet exchanges oper-
ations epidemically. Deno decides the out-
come of each operation independently. A
site that wishes to commit an operation
runs a two-phase weighted voting [Gifford
1979]. Upon receiving a commit request,
a site votes in favor of the update if the
operation does not conflict locally with
any prior operations. When a site observes
that votes for an operation have reached a
majority, it locally commits the operation

and sends a commit notice to other sites.
Simulation results suggest that the perfor-
mance of this protocol is similar to a classic
single-master scheme in the common case
when no site has failed. Even though Deno
is a pessimistic system, the idea of commit-
ment using weighted voting should apply
to optimistic environments as well.

5.6. Summary

Eventual consistency involves agreement
over the scheduling of operations. While
tentative state of replicas might diverge,
sites must eventually agree on the con-
tents and ordering of a committed prefix
of their schedules. Table IV summarizes
the techniques discussed in this section for
this task.

6. STATE-TRANSFER SYSTEMS

State-transfer systems restrict each oper-
ations to overwrite the entire object. They
can be considered degenerate instances of
operation-transfer systems, but they allow
for some interesting techniques—replicas
can converge simply by receiving the
newest contents, skipping any intermedi-
ate operations. Section 6.1 discusses a sim-
ple and popular technique called Thomas’s
write rule. Sections 6.2 to 6.4 introduce
several algorithms that enable more re-
fined conflict detection and resolution.

6.1. Replica-State Convergence Using
Thomas’s Write Rule

State-transfer systems need to agree only
on which replica stores the newest con-
tents. Thomas’s write rule is the most

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

62 Y. Saito and M. Shapiro

Fig. 10. State propagation using Thomas’s write
rule. Each object keeps timestamp ts that shows
the last time it was updated and its contents data.
An update is submitted by a site by SubmitUpdate.
Each site calls ReceiveUpdate occasionally and
downloads a peer’s contents when its own timestamp
is older than the peer’s.

popular epidemic algorithm for achiev-
ing eventual consistency [Johnson and
Thomas 1976; Thomas 1979]. Here, each
replica stores a timestamp that represents
the “newness” of its contents (Section 4.4).
Occasionally, a replica, for instance i, re-
trieves another replica j ’s timestamp. If
j ’s timestamp is newer than i’s, i copies
the contents and timestamp from j to it-
self. Figure 10 shows the pseudocode of
Thomas’s write rule. This algorithm does
not detect conflicts—it silently discards
contents with older timestamps. Systems
that need to detect conflicts will use algo-
rithms described later in this section.

With Thomas’s write rule, deleting an
object requires special treatment. Simply
deleting a replica and its associated times-
tamp could cause an update/delete ambi-
guity. Suppose that Site i updates the ob-
ject contents (timestamp Ti), and Site j
deletes the object (timestamp Tj) simulta-
neously. Later, Site k receives the update
from j and deletes the replica and times-
tamp from a disk. Site k then contacts Site
i. The correct action for k would be to cre-
ate a replica when Ti > Tj , and ignore the
update otherwise, but Site k cannot make
that decision because it no longer stores
the timestamp.

Two solutions have been proposed to
address the update/delete ambiguity. The
first solution is simply to demand an off-
line, human intervention to delete objects
as in DNS [Albitz and Liu 2001] and NIS

[Sun Microsystems 1998]. The second so-
lution is to use so-called “death certifi-
cates” or “tombstones,” which maintain
the timestamps (but not the contents) of
deleted objects on a disk. This idea is
used by Fischer and Michael [1982], Clear-
inghouse [Demers et al. 1987], Usenet
[Spencer and Lawrence 1998], and Active
Directory [Microsoft 2000].

6.2. Two-Timestamp Algorithm

The two-timestamp algorithm is an
extension to Thomas’s write rule to en-
able conflict detection [Gray et al. 1996;
Balasubramaniam and Pierce 1998].
Here, a replica i keeps a timestamp that
shows the newness of the data, and a
“previous” timestamp that shows the last
time the object was updated. A conflict is
detected when the previous timestamps
from two sites differ. Figure 11 shows the
pseudocode. The same logic is sometimes
used by operation-transfer systems to
detect conflicts [Terry et al. 1995].

The downside of this technique is that
it may detect false conflicts with more
than two replicas as shown in Figure 12.
Thus, it is feasible only in systems that
employ few sites and experience conflicts
infrequently.

6.3. Modified-Bit Algorithm

The modified-bit algorithm, used in the
Palm PDA, is a simplification of the two-
timestamp algorithm [PalmSource 2002].
It works only when the same two sites syn-
chronize repeatedly.

Palm organizes user data as a set of
database records. It associates with each
record a set of bits that tells whether the
record is modified, deleted, or archived
(i.e., to be deleted from the PDA but kept
separately on the PC).

Palm employs two mechanisms, called
fast and slow synchronization, to ex-
change data between a PDA and a PC. Fast
synchronization happens in the common
case where a PDA is repeatedly synchro-
nized with a particular PC. Here, each side
transfers items with the “modified” bit set.
A site inspects the attribute bits of each

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 63

Fig. 11. Operation propagation and conflict detection using the two-timestamp
algorithm. An update is submitted locally by SubmitUpdate. Two sites synchronize
occasionally, and they both call Synchronize to retrieve the timestamps and data
of the peer.

Fig. 12. An example of erroneous conflict detection using the two-timestamp algo-
rithm. A lightening bolt shows the submission of an operation, and an arrow shows
bidirectional operation propagation. Tx shows the current timestamp of replica x
(noted ts in Figure 11), and Px show its previous timestamp (i.e., prevTs). Initially
in (1), the contents of the replicas are identical, with Tx = Px = 0 for all the replicas.
In step (4), Replicas i and k try to synchronize. The algorithm incorrectly detects a
conflict because Pi(= 2) �= Pk(= 0). In reality, Replica k is strictly older than Replica i.

record and decides on the reconciliation
outcome. For instance, if it finds the “modi-
fied” bit set on both PDA and PC, it marks
them as in conflict. This use of modified
bit can be seen as a variation of the two-
timestamp algorithm: it replaces Ti with
a boolean flag which is set after a replica
is modified and cleared after the replicas
synchronize.

When the PDA is found to have syn-
chronized with a different PC before, the
modified-bit algorithm cannot be used.

Two sides then revert to the slow mode, in
which both ignore the modified bits and ex-
change the entire database contents. Any
record with different values at the two
sites is flagged to be in conflict.

6.4. Vector Clocks and Their Variations

Vector clocks accurately detect concur-
rent updates to an object (Section 4.3).
Several state-transfer systems use vector
clocks to detect conflicts, defining any two

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

64 Y. Saito and M. Shapiro

Fig. 13. Example of the use of version timestamps (VTs). An object starts as a single
replica I1 with a VT of [{}|{}]. It is forked into two replicas I2 and J1. Site i updates
the replica, which becomes I3. Merging replicas I3 and J2 detects no conflict as I3
dominates J2, as apparent from the fact that {1} ⊃ {}. In contrast, concurrent updates
are detected when merging replicas J3 and K2 as neither of the upd-ids, {00} and {1},
subsumes the other.

concurrent updates to the same object to
be in conflict. Vector clocks used for this
purpose are often called version vectors
(VV). LOCUS introduced VVs and coined
the name [Parker et al. 1983; Walker et al.
1983]. Other systems in this category are
Coda [Kistler and Satyanarayanan 1992;
Kumar and Satyanarayanan 1995], Ficus
[Reiher et al. 1994], and Roam [Ratner
1998].

A replica of an object at Site i carries a
vector clock VVi. VVs for different objects
are independent from one another. VVi[i]
shows the last time an update to the ob-
ject was submitted at i, and VVi[j] indi-
cates the last update to the object submit-
ted at Site j that Site i has received. The
VV is exchanged, updated, and compared
according to the usual vector clock algo-
rithm (Section 4.3). Conflicts are detected
between two sites i and j as follows:

(1) If VVi = VV j , then the replicas have
not been modified.

(2) Otherwise, if VVi dominates VV j , then
i is newer than j ; that is, Site i has
applied all the updates that Site j has,
and more. Site j copies the contents
and VV from i. Symmetrically, if VV j
dominates VVi, the contents and VV
are copied from j to i.

(3) Otherwise, the operations are concur-
rent, and the system marks them to be
in conflict.

Unlike the two-timestamp algorithm,
VVs are accurate: a VV provably detects
concurrent updates if and only if real
concurrency exists [Fidge 1988; Mattern
1989]. The following two sections describe
data structures with similar power to VVs
but with different representations.

6.4.1. Version Timestamps. Version time-
stamps (VTs) are a technique used in
the Panasync file replicator [Almeida
et al. 2002; Almeida et al. 2000]. They
adapt VVs to environments with frequent
replica creation and removal. VT supports
only three kinds of operations: fork cre-
ates a new replica, update modifies the
replica, and join(i, j) merges the contents
of replica i into j , destroying i. The idea
behind VTs is to create a new replica iden-
tifier on the fly at fork time and to merge
VTs into a compact form at join time.
Figure 13 shows an example of VTs.

The VT of a replica is a pair [upd-
id}hist-id]. Hist-id is a set of bitstrings
that uniquely identifies the history of fork
and join operations that the replica has
seen. An object is first created with a hist-
id of {}. After forking, one of the replicas
appends 0 to each bitstring in its hist-id,
and the other appends 1. Thus, forking
a replica with the hist-id of {00, 1} yields
{000, 10} and {001, 11}. After joining, the
new hist-id becomes the union of the orig-
inal two, except that when the set contains

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 65

Fig. 14. Example of the use of hash histories (HHes) using the same scenario as
Figure 13. The object starts as a single replica on i with a HH of H0, where H0 is
a hash of the current contents of the object. After an update at i, the HH becomes
H0-H1 by appending the new contents hash. The result of merging and resolving
two conflicting updates (K3) is represented in the HH by creating an acyclic graph
as shown.

two bitstrings of the form x0 and x1, then
they can be merged and contracted to just
x. Thus, the result of joining replicas {0}
and {1} is {}; the result of joining {001, 10}
and {11} is {001, 1}. On the other hand, an
upd-id simply records the history-id of the
replica at the moment when it was last
modified.

VTs of replicas of an object precisely cap-
ture the happens-before and concurrency
relations between them: Site i has seen all
updates applied to j if and only if, for each
bitstring x in j ’s upd-id, a bitstring y ex-
ists in i’s upd-id, such that x is a prefix of
y (∃z, y = xz).

6.4.2. Hash Histories. Hash histories
(HHs) [Kang et al. 2003] are a variation
of the graph representation introduced
in Section 4.2. The basic ideas behind
HHs are to (1) record causal dependencies
directly by how an object has branched,
updated, and merged, and (2) to use a
hash of the contents (e.g., MD5), rather
than timestamps, to represent the state
of a replica. Figure 14 shows an example.
While the size of a HH is independent of
the number of master replicas, it grows
indefinitely with the number of updates.
The authors use a simple expiration-based
purging to remove old HH entries, similar
to the one described in Section 6.5.

6.5. Culling Tombstones

We mentioned in Section 6.1 a system
that retains a tombstone to mark a deleted
object. This is in fact true for any state-
transfer system. For instance, when using
VVs, the VV is retained as a tombstone.
Unless managed carefully, the space over-
head of tombstones will grow indefinitely.
In most systems, tombstones are erased
unilaterally at each site after a fixed pe-
riod, long enough for most updates to com-
plete propagation, but short enough to
keep the space overhead low; for exam-
ple, two weeks [Spencer and Lawrence
1998; Kistler and Satyanarayanan 1992;
Microsoft 2000]. This technique is clearly
unsafe (e.g., a site rebooting after be-
ing down for three weeks may send
spurious updates) but works well in
practice.

Clearinghouse [Demers et al. 1987] low-
ers the space overhead drastically using a
simple technique. In Clearinghouse, tomb-
stones are removed from most sites after
the expiration period but are retained on a
few designated sites indefinitely. When a
stale operation arrives after the expiration
period, some sites may incorrectly apply
that operation. However, the designated
sites will distribute an operation that un-
does the update and reinstalls tombstones
on all other sites.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

66 Y. Saito and M. Shapiro

Table V.
Problem Solution Advantages Disadvantages
Eventual Thomas’s write rule Simple Lost updates

consistency, Two timestamps Simple False-positive conflicts
conflict Modified bits Simple, space efficient False-positive conflicts
management. Vector clock Accurate conflict detection Complexity, space

Tombstone Expire Simple Unsafe
management. Keep only at Simple Overhead grows indefinitely

designated sites. at these sites.
Commit Safe Complexity, liveness

Some systems rely on a form of com-
mitment algorithm to delete tombstones
safely. Roam and Ficus use a two-phase
protocol to ensure that every site has re-
ceived an operation before purging the cor-
responding tombstone [Guy et al. 1993;
Ratner 1998]. The first phase informs a
site that all sites have received the oper-
ation. The second phase ensures that all
sites receive the “delete the tombstone”
request. A similar protocol is also used
in Porcupine [Saito and Levy 2000]. The
downside of these techniques is liveness:
all sites must be alive for the algorithm to
make progress.

6.6. Summary

This section has focused on the specific
case of state-transfer optimistic repli-
cation systems. Compared to operation-
transfer systems, these are amenable
to simpler management algorithms, as
summarized in the following Table V.

7. PROPAGATING OPERATIONS

This section examines techniques for prop-
agating operations among sites. A naı̈ve
solution exists for this problem: every site
records operations in a log, and it occasion-
ally sends its entire log contents to a ran-
dom other site. Given enough time, this
algorithm eventually propagates all oper-
ations to all sites, even in the presence of
incomplete links and temporary failures.
Of course, it is expensive and slow to con-
verge. Algorithms described hereafter im-
prove efficiency by controlling when and
which sites communicate and by reducing
the amount of data sent between the sites.
Section 7.1 describes a propagation tech-

nique using vector clocks for operation-
transfer systems. Section 7.2 discusses
techniques for state-transfer systems to
allow for identifying and propagating only
the parts of an object that have actu-
ally been modified. Controlling communi-
cation topology is discussed in Section 7.3.
Section 7.4 discusses various techniques
for push-based propagation.

7.1. Operation Propagation Using
Vector Clocks

Many operation-transfer systems use vec-
tor clocks (Section 4.3) to exchange oper-
ations optimally between sites [Golding
1992; Ladin et al. 1992; Adly 1995; Fekete
et al. 1997; Petersen et al. 1997]. Here, a
Site i maintains vector clock VCi. VCi[i]
contains the number of operations sub-
mitted at Site i, whereas VCi[j] shows
the timestamp of the last operation, sub-
mitted at Site j , received by Site i.9 The
difference between two VCs shows pre-
cisely the set of operations that need to
be exchanged to make the sites identi-
cal. Figure 15 shows the pseudocode of
the algorithm, and Figure 16 shows an
example.

To propagate operations from Site i to
Site j , i first receives j ’s vector clock, VC j .
For every k such that VCi[k] > VC j [k],
Site i sends to Site j those operations
submitted at Site k that have timestamps
larger than VC j [k]. This process ensures
that Site j receives all operations stored
on Site i and that Site j does not receive
the same operation twice. After swapping

9Alternatively, one could store real-time clock values
instead of counters as done in TSAE [Golding 1992].
VCi[j] would show the timestamp of the latest oper-
ation received by Site i submitted at Site j .

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 67

Fig. 15. Operation propagation using vector clocks. The receiving site first calls the
sender’s “Send” procedure and passes its vector clock. The sending site sends updates
to the receiver which processes them in “Receive” procedure.

Fig. 16. Example of operation propagation using vector clocks. Symbols α, β and γ show updates submitted
at i, j , and k, respectively. Shaded rectangles show changes at each step.

the roles and letting Site i receive opera-
tions from Site j , the two sites will have
received the same set of operations.

7.2. Efficient Propagation in State-Transfer
Systems

In state-transfer systems, update prop-
agation is usually done by sending the
entire replica contents to another site

that becomes inefficient as the object size
grows. We review several techniques for
alleviating this problem without losing the
simplicity of state transfer.

7.2.1. Hybrid State and Operation Transfer.
Some systems use a hybrid of state and
operation transfer. Here, each site keeps a
short history of past updates (diffs) to the

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

68 Y. Saito and M. Shapiro

object along with past timestamps record-
ing when these updates were applied.
When updating another replica whose
timestamp is recorded in the history, it
sends only the set of diffs needed to bring
it up to date. Otherwise (i.e., if the replica
is too old or the timestamp is not found in
the history), it sends the entire object con-
tents. Examples include DNS incremental
zone transfer [Albitz and Liu 2001], CVS
[Cederqvist et al. 2001; Vesperman 2003],
and Porcupine [Saito and Levy 2000].

7.2.2. Hierarchical Object Division and Com-
parison. Some systems divide an object
into smaller subobjects. One such tech-
nique is to structure an object into a tree
of subobjects (which happens naturally for
a replicated file system) and let each in-
termediate node record the timestamp of
the newest update to its children [Cox and
Noble 2001; Kim et al. 2002]. It then ap-
plies Thomas’s write rule on that times-
tamp and walks down the tree progres-
sively to narrow down changes to the data.
Archival Intermemory uses a variation of
this idea, called range synchronization, to
reconcile a key-value database [Chen et al.
1999]. To reconcile two database replicas,
the replicas first compare the collision-
resistant hash values (e.g., MD5, SHA1,
or Rabin’s fingerprints [Rabin 1981]) of
both replicas. If they do not match, then
each replica splits the database into
multiple parts using a well-known de-
terministic function, for instance, into
two subdatabases, one with keys start-
ing with letters A-L, and the other start-
ing with letters M-Z. It then performs
hash comparison recursively to narrow
down the discrepancies between the two
replicas.

Some systems explicitly maintain the
list of the names of modified subobjects
and use a data structure similar to vector
clocks to detect the set of subobjects that
are modified [Microsoft 2000; Rabinovich
et al. 1996]. They resemble operation-
transfer systems but differ in several es-
sential aspects. First, instead of an un-
bounded log, they maintain a (usually
small) list of modified objects. Second, they

still use Thomas’s write rule to serialize
changes to individual subobjects.

7.2.3. Use of Collision-Resistant Hash Func-
tions. This line of techniques also divide
objects into smaller chunks, but they are
designed for objects that lack a natural
structure, for example, large binary files.
In the simplest form, the sending side di-
vides the object into chunks and sends the
other side a collision-resistant hash value
for each chunk. The receiver requests the
contents of every chunk found to be miss-
ing on the receiver side. This scheme, how-
ever, fails to work efficiently when bytes
are inserted or deleted in the middle of the
object.

To avoid this problem, the rsync file syn-
chronization utility sends hashes in the
opposite direction [Tridgell 2000]. The re-
ceiving side first sends the hash of each
chunk of its replica to the sending side.
The sender then exhaustively computes
the hash value of every possible chunk at
every byte position in the file, discovers
data that are missing on the other side,
and pushes those.

The Low-Bandwidth File System
(LBFS) divides objects at boundaries
defined by content rather than a fixed
chunk size [Muthitacharoen et al. 2001].
The sending side first computes a hash
of every possible 48-byte sequence in the
object (Rabin’s fingerprints [Rabin 1981]
can be used efficiently for this purpose).
Each 48-byte sequence that hashes to
a particular (well-known but arbitrary)
value constitutes a chunk boundary. LBFS
sender then sends the hash of each chunk
to the receiver. The receiver requests only
those chunks that it is missing. LBFS
reports up to a 90% reduction in band-
width requirements in typical scenarios,
over both Unix and Windows file systems.
Spring and Wetherall [2000] propose a
similar approach for compressing network
traffic over slow links.

7.2.4. Set-Reconciliation Approach. Min-
sky et al. [2001] propose a number-
theoretic approach for minimizing the
transmission cost for state-transfer

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 69

systems. This algorithm is applicable
when the state of a replica can be rep-
resented as a set of fixed-size bitstrings,
for example, hash values. To transmit an
object, the sender applies special poly-
nomial functions to its set of bitstrings
and sends the values to the receiver. The
receiver solves the equation to derive at
the exact set of bitstrings it is lacking.

This basic algorithm assumes that the
size of the difference between the two sets,
D, is known a priori. It has networking
overhead of O(D) and computational com-
plexity of O(D3). If D is not known a priori,
the sites can still start from a small guess
of D, say D′. The algorithm can bound the
probability of giving false answers given
D and D′. Thus, one can gradually in-
crease the value of D′ until the probabil-
ity of an error is as low as the user de-
sires. Minsky [2002] proposes a variation
of this algorithm in which the system uses
a fixed D′. The system recursively parti-
tions the sets using a well-known deter-
ministic function until the D′ successfully
merges the subobjects. This algorithm in-
curs slightly higher networking overhead
but only O(D′) computational overhead.

7.3. Controlling Communication Topology

We introduced in Section 3.1 the argument
by Gray et al. [1996] that multimaster sys-
tems do not scale well because the conflict
rate increases at O(M 2). To derive this re-
sult, the authors make two key assump-
tions: that objects are updated equiproba-
bly by all sites, and that sites exchange
updates with uniform-randomly chosen
sites. These assumptions, however, do not
necessarily hold in practice. First, simul-
taneous writes to the same data item are
known to be rare in many applications, in
particular file systems [Ousterhout et al.
1985; Baker et al. 1991; Vogels 1999]. Sec-
ond, as we discuss next, choosing the right
communication topology and proactively
controlling the flow of data will improve
propagation speed and reduce conflicts.

The perceived rate of conflicts can be
reduced by connecting replicas in spe-
cific ways. Whereas a random communi-
cation topology takes O(log N) time to

propagate a particular update to all sites
[Hedetniemi et al. 1988; Kempe et al.
2001], specific topologies can do better.
A star shape propagates in O(1), for in-
stance. A number of actual systems are
indeed organized with a central hub act-
ing as a sort of clearinghouse for updates
submitted by other masters. CVS is a
well-known example (Section 2.5); see also
Wang et al. [2001] and Ratner [1998].

Two-tier replication is a generalization
of the star topology [Gray et al. 1996;
Kumar and Satyanarayanan 1993]. Here,
sites are split into mostly connected
“core sites” and more weakly connected
“mobile sites”. The core sites often use
a pessimistic replication algorithm to
remain consistent with each other, but a
mobile site uses optimistic replication and
communicates only with the core. Note
the difference between single-master sys-
tems and two-tier multimaster systems.
The latter types of systems still need to
solve the challenges of multimaster opti-
mistic replication systems—for example,
operation scheduling, commitment, and
conflict resolution—but they scale better,
at the cost of sacrificing the flexibility of
communication.

Several other topologies are used in
real-world systems. Roam connects core
replicas in a ring and hangs other repli-
cas off them [Ratner 1998]. Many choose a
tree topology which combines the proper-
ties of both the star and random topologies
[Chankhunthod et al. 1996; Yin et al. 1999;
Adly 1995; Johnson and Jeong 1996].
Usenet and Active Directory often connect
sites in a tree or ring structure, supple-
mented by short-cut paths [Spencer and
Lawrence 1998; Microsoft 2000].

In practice, choosing a topology involves
a trade-off between propagation speed,
load balancing, and availability [Wang
et al. 2001]. At one end of the spectrum,
the star topology boasts quick propaga-
tion, but its hub site could become over-
loaded, slowing down propagation in prac-
tice; it is also a single point of failure.
A random topology, on the other hand,
is slower but has extremely high avail-
ability and balances load well among
sites.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

70 Y. Saito and M. Shapiro

7.4. Push-Transfer Techniques

So far, we have assumed that sites could
somehow figure out when they should
start propagating to one another. This is
not too difficult in services that rely on ex-
plicit manual synchronization (e.g., PDA),
or ones that rely on occasional polling for
a small number of objects (e.g., DNS). In
other cases it is better to push, that is, to
have a site with a new operation proac-
tively deliver it to others. This can reduce
the propagation delay and eliminates the
polling overhead.

7.4.1. Blind Flooding. Flooding is the
simplest pushing scheme. Here, a site
with a new operation blindly forwards it
to its neighbors. The receiving site uses
Thomas’s write rule or vector clocks to
filter out duplicates. This technique is
used in Usenet [Spencer and Lawrence
1998], Active Directory [Microsoft 2000],
and Porcupine [Saito and Levy 2000].

Flooding has an obvious drawback: it
sends duplicates when a site communi-
cates with many other sites [Demers et al.
1987]. This problem can be alleviated by
guessing whether a remote site has an op-
eration. We review such techniques next.

7.4.2. Link-State Monitoring Techniques.
Rumor mongering and directional gos-
siping are techniques for suppressing
duplicate operations [Demers et al. 1987;
Lin and Marzullo 1999]. Rumor monger-
ing starts like blind flooding, but each
site monitors the number of duplicates
it has received for each operation. It
stops forwarding an operation when the
number of duplicates exceeds a limit. In
directional gossiping, each site monitors
the number of distinct “paths” operations
have traversed. An intersite link not
shared by many paths is likely to be more
important because it may be the sole link
connecting some site. Thus, the site sends
operations more frequently to such links.
For links shared by many paths, the site
pushes less frequently with a hope that
other sites will push the same operation
via different paths.

Both techniques are heuristic and can
wrongly throttle propagation for a long
time. For reliable propagation, the system
occasionally must resort to plain flooding
to flush operations that have been omitted
at some sites. Simulation results, however,
show that reasonable parameter settings
can nearly eliminate duplicate operations
while keeping the reliability of operation
propagation very close to 100%.

7.4.3. Multicast-Based Techniques. Multi-
cast transport protocols can be used for
push transfer. These protocols solve the
efficiency problem of flooding by building
spanning trees of sites, over which data
are distributed. They cannot be applied di-
rectly to optimistic replication, however,
because they are “best effort” services—
they may fail to deliver operations when
sites and network links are unreliable.
Examples of multicast protocols include
IP multicast [Deering 1991], SRM [Floyd
et al. 1997], XTP [XTP 2003], and RMTP
[Paul et al. 1997].

MUSE is an early attempt to distribute
Usenet articles over an IP multicast chan-
nel [Lidl et al. 1994]. It solves the lack of
reliability of multicast by laying it on top
of a traditional blind-flooding mechanism,
that is, most of the articles will be sent via
multicast, and those that dropped through
are sent slowly but reliably by flooding.
Work by Birman et al. [1999] and Sun
[2000] also use multicast in the common
case and point-to-point epidemic propaga-
tion as a fall-back mechanism.

7.4.4. Timestamp Matrices. A timestamp
matrix (TM), discussed in Section 5.5.2,
can also be used to estimate the progress
of other sites and push only those opera-
tions that are likely to be missing [Wuu
and Bernstein 1984; Agrawal et al. 1997].
Figure 17 shows the pseudocode for prop-
agation using TMs. The operation prop-
agation procedure, shown in Figure 17,
is similar to the one using vector clocks
(Section 7.1). The only difference is that
the sending Site i uses TMi[j] as a con-
servative estimate of Site j ’s vector clock
rather than obtaining the vector from j .

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 71

Fig. 17. Site reconciliation using timestamp matrices.

Table VI.
System Type Solution Advantages Disadvantages
Operation transfer Whole-log exchange Simple Duplicate updates

Vector clocks Avoids duplicates O(M) space overhead; complex
when sites come and go.

State transfer Hybrid — Overhead of maintaining diffs
Object division — App-specific, limited applicability.
Hash function Supports any data type Computational cost
Set reconciliation Efficient Computational cost, limited

applicability
Push transfer Blind flooding — Duplicate updates

Link-state monitoring — Somewhat unreliable
Timestamp matrix Efficient O(M 2) space overhead; complex

when sites come and go.

7.5. Summary

This section focused on efficient propaga-
tion techniques. After briefly discussing
operation propagation, we mainly de-
scribed techniques for improving the effi-
ciency of state propagation in the presence
of large objects. Our findings are summa-
rized in Table VI.

8. CONTROLLING REPLICA DIVERGENCE

The algorithms described so far are de-
signed to implement eventual consis-
tency—that is, consistency up to some un-
known moment in the past. They offer lit-

tle clue to users regarding the quality of
replica contents at the present point in
time. Many services do fine with such a
weak guarantee. For example, replica in-
consistency in Usenet is no worse than
problems inherent in Usenet such as
duplicate article submission, misnamed
newsgroups, or out-of-order article deliv-
ery [Spencer and Lawrence 1998].

Many applications, however, would ben-
efit if the service can guarantee some-
thing about the quality of replica contents,
for example, that users will never read
data that is more than X hours old. This
section reviews several techniques for

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

72 Y. Saito and M. Shapiro

making such guarantees. These tech-
niques work by estimating replica diver-
gence and prohibiting accesses to repli-
cas if the estimate exceeds a threshold.
Thus, they are not a panacea as they im-
prove data quality by prohibiting accesses
to data and decreasing availability [Yu
and Vahdat 2001; Yu and Vahdat 2002].

8.1. Enforcing Read/Write Ordering

One of the most common complaints with
eventual consistency is that a user some-
times sees the value of an object “move
backward” in time. Consider a replicated
password database [Birrell et al. 1982;
Terry et al. 1994]. A user may change the
password on one site and later fail to log in
from another site using the new password
because the change has not reached the
latter site. Such a problem can be solved
by restricting when a read operation can
take place.

8.1.1. Explicit Dependencies. The solu-
tion suggested by Ladin et al. [1990, 1992]
is to let the user define the causal rela-
tionship explicitly: a read operation speci-
fies the set of update operations that must
be applied to the replica before the read
can proceed. This feature is easily im-
plemented using one of the representa-
tions of happens-before introduced in Sec-
tion 4. Ladin et al. [1990] represent both
a replica’s state and an operation’s depen-
dency using a vector clock. The system de-
lays the operation until the operation’s VC
dominates the replica’s VC. ESDS follows
the same idea but instead uses a graph
representation [Fekete et al. 1999].

8.1.2. Session Guarantees. A problem
with the previous approach is that speci-
fying dependency for each read operation
is hard for users. Session guarantees are
a mechanism to generate dependencies
automatically from a user-chosen combi-
nation of the following predefined policies
[Terry et al. 1994].

—“Read your writes” (RYW) guarantees
that the contents read from a replica

incorporate previous writes by the same
user.

—“Monotonic reads” (MR) guarantees
that successive reads by the same user
return increasingly up-to-date contents.

—“Writes follow reads” (WFR) guarantees
that a write operation is accepted only
after writes observed by previous reads
by the same user are incorporated in the
same replica.

—“Monotonic writes” (MW) guarantees
that a write operation is accepted only
after all write operations made by the
same user are incorporated in the same
replica.

These guarantees are sufficient to solve
a number of real-world problems. The
stale-password problem can be solved by
RYW. MR, for example, allows a repli-
cated email service to retrieve the mailbox
index before the email body. A source code
management system would enforce MW
for the case where one site updates a
library module and another updates an
application program that depends on the
new library module.

Session guarantees are implemented
using a session object carried by each user
(e.g., in a PDA). A session records two
pieces of information: the write-set of past
write operations submitted by the user,
and the read-set of writes that the user has
observed through past reads. Each of them
can be represented in a compact form us-
ing vector clocks. Table VII describes how
the session guarantees can be met using a
session object.

8.2. Bounding Replica Divergence

This section overviews techniques that try
to bound a quantitative measure of incon-
sistency among replicas. The simplest are
real-time guarantees [Alonso et al. 1990],
allowing an object to be cached and re-
main stale for up to a certain amount of
time. This is simple for single-master, pull-
based systems that can enforce the guar-
antee simply by periodic polling. Exam-
ples include Web services [Fielding et al.
1999], NFS [Stern et al. 2001] and DNS

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 73

Table VII. Implementation of Session Guarantees
Property Session Updated: Session Checked:
RYW on write, expand write-set on read, ensure write-set ⊆ writes applied by site.
MR on read, expand read-set on read, ensure read-set ⊆ writes applied by site.
WFR on read, expand read-set on write, ensure read-set ⊆ writes applied by site.
MW on write, expand write-set on write, ensure write-set ⊆ writes applied by site.

For example, to implement RYW, the system updates a user’s session when the user submits
a write operation. It ensures RYW by delaying a read operation until the user’s write-set is a
subset of what has been applied by the replica. Similarly, MR is ensured by delaying a read
operation until the user’s read-set is a subset of those applied by the replica.

[Albitz and Liu 2001]. TACT offers a real-
time guarantee via pushing (Section 7.4)
[Yu and Vahdat 2000].

Other systems provide more explicit
means of controlling the degree of replica
inconsistency. One such approach is order
bounding, or limiting the number of
uncommitted operations that can be seen
by a replica. In the context of traditional
database systems, this can be achieved
by relaxing the locking mechanism to in-
crease concurrency between transactions.
For example, bounded ignorance allows
a transaction to proceed even though the
replica has not received the results of
a bounded number of transactions that
are serialized before it [Krishnakumar
and Bernstein 1994]. See also Kumar
and Stonebraker [1988], Kumar and
Stonebraker [1990], O’Neil [1986], Pu and
Leff [1991], Carter et al. [1998], and Pu
et al. [1995].

TACT applies a similar idea to opti-
mistic replication [Yu and Vahdat 2001].
TACT is a multimaster operation-transfer
system, similar to Bayou but it adds mech-
anisms for controlling replica divergence.
TACT implements an order guarantee by
having a site exchange operations and
the commit information (Section 5.5) with
other sites. A site stops accepting new up-
dates when its number of tentative (un-
committed) operations exceeds the user-
specified limit.

TACT also provides a numeric bound-
ing that bounds the difference between
the values of replicas. The implementa-
tion uses a “quota”, allocated to each mas-
ter replica, that bounds the number of
operations that the replica can buffer lo-
cally before pushing them to a remote

replica. Consider a bank account, repli-
cated at ten master replicas, where the
balance on any replica is constrained to
be within $50 of the actual balance. Then,
each master receives a quota of $5 (=
50/10) for the account. A master site in
TACT exchanges operations with other
sites. As a side effect, it also estimates the
progress of other sites. TACT uses ack vec-
tors (Section 5.5.2) for this purpose, but
timestamp matrices (Sections 5.5.2, 7.4.4)
could also be used. The site then computes
the difference between its current value
and the value of another site, estimated
from its progress. Whenever the difference
reaches the quota of $5, the site stops ac-
cepting new operations and pushes opera-
tions to other replicas. Numeric bounding
is stronger and more useful than ordering
bounding, although it is more complex and
expensive.

8.3. Probabilistic Techniques

The techniques discussed in this section
rely on the knowledge of the workloads
to reduce the replica’s staleness proba-
bilistically with small overhead. Cho and
Garcia-Molina [2000] study policies based
on frequency and order of page refetching
for web proxy servers under the simplify-
ing assumption that the update interval
follows a Poisson distribution. They find
that to minimize average page staleness,
replicas should be refetched in the same
deterministic order and at a uniform in-
terval, even when some pages are updated
more frequently than others.

Lawrence et al. [2002] do a similar
study using real workloads. They present
a probabilistic-modeling tool that learns

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

74 Y. Saito and M. Shapiro

Table VIII.
Problem Solution Advantages Disadvantages
Enforcing causal Explicit — Cumbersome for users.
read & write

ordering.
Session guarantees Intuitive A user must carry a session

object.
Real-time staleness Polling — Polling overhead
guarantee. Pushing — Slightly more complex; network

delay must be bounded.
Explicit bounding Order bounding — Not intuitive

Numerical bounding More intuitive. Complex; often too conservative
Best-effort staleness

reduction.
Exploit workload

pattern.
— App-specific

Table IX. Summary of Main Algorithms Used for Classes of Optimistic-Replication Strategies
Single Master, state- or

op-transfer
Multi master, state transfer Multi master, operation

transfer
Operation

propagation
Thomas’s write rule (6.1) vector clock (4.3)

Scheduling Syntactic or semantic (5.2)
Commitment

Local concurrency
control

Thomas’s write rule, modified
bits, version vector (6)

Operational transformation
(5.2.4), ack vector (5.5.2),
primary commit (5.5.3),
voting (5.5.3)

Conflict
detection

Two timestamps, modified bits,
version vector

Syntactic or semantic

Conflict
resolution

Ignore, exclude, manual, app. specific (5.4)

Divergence
bounding

Temporal (8.2), session (8.1.2) Temporal, session,
numerical, order

Pushing
techniques

Flooding (7.4.1), rumor mongering, directed gossiping (7.4.2) Flooding, rumor mongering,
directed gossiping,
timestamp matrix (5.5.2)

patterns from a log of past updates. The
tool selects an appropriate period, for in-
stance, daily or weekday/weekend. Each
period is subdivided into time-slots, and
the tool creates a histogram representing
the likelihood of an update per slot. A mo-
bile news service is chosen as an exam-
ple. Here, the application running on the
mobile device connects when needed to
the main database to download recent up-
dates. Assuming that the user is willing to
pay for a fixed number of connections per
day, the application uses the probabilis-
tic models to select the connection times
that optimize the freshness of the replica.
Compared to connecting at fixed intervals,
their adaptive strategy shows an average
freshness improvement of 14%.

8.4. Summary

Beyond eventual consistency, this section
has focused on the control of replica diver-

gence over short time periods. Table VIII
summarizes the approaches discussed in
this section.

9. CONCLUSIONS

This section concludes the article by
summarizing optimistic-replication algo-
rithms and systems and discussing their
trade-offs. Table IX summarizes the key
algorithms used to solve the challenges
of optimistic replication introduced in
Section 3. Table X compares their com-
munication aspects, including the defini-
tion of objects and operations, the number
of masters, and propagation strategies.
Table XI summarizes the concurrency con-
trol aspects of these systems: scheduling,
conflict handling, and commitment. Bib-
liographical sources and cross reference
into the text are provided in Table XII.

Table XIII summarizes how different
classes of optimistic replication systems
compare in terms of availability, conflict

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 75

Table X. Communication Aspects of Representative Optimistic Replication Systems
System Object Op M Topology Propagation Space Reclamation
Active Directory name-value pair state any pull expiration
Bayou single DB op any TV/manual primary commit
Sessn. Guar.
Clearinghouse name-value pair state any push/pull expiration
Coda file/directory both star push log rollover
VS File op star manual manual
Deno record op any — quorum commit
DNS whole DB state 1 star push/pull manual
ESDS arbitrary op any — —
Ficus, Roam file/directory state star/ring pull commitment
IceCube arbitrary op any TV/manual —
NIS whole DB state 1 star push manual
Op. Trans. arbitrary op any push —
Palm Pilot DB record state star manual —
Ramsey & Csirmaz file/directory op — — —
TACT single DB op any TV/push/pull primary commit
TSAE single DB op any TV/push/pull ack vector
Unison file/directory op any — —
Usenet article state any blind push expiration
Web/file mirror file state 1 tree pull manual

Op shows whether the system propagates the object state or semantic operation description. Coda uses
state transfer for regular files but operation transfer for directory operations. M stands for the number of
masters; it can be any number unless specified. Topology shows the communication topology. Propagation
specifies the propagation protocol used by the system. Space reclamation tells the system’s approach to
delete old data structures. “— ” means that this aspect either does not apply or is not discussed in the
available literature. (Sessn. Guar. = Bayou Session Guarantees; Op. Transf. = Operational Transforma-
tion).

Table XI. Concurrency Control Aspects of Some Optimistic Replication Systems
System Ordering Detecting Conflicts Resolving Conflicts Commit Consistency
Active Directory logical clock none TWR none eventual
Bayou reception

order at
primary

predicate user defined
primary eventual

Sessn. Guar.
ordering

Clearinghouse real-time clock none TWR none eventual
Coda reception

order at
primary

vector clock/semantic user defined primary eventual

CVS primary commit two timestamps exclude primary eventual
Deno quorum concurrent RW exclude quorum 1 copy
DNS single master — — — temporal
ESDS scalar clock none none implicit 1 copy
Ficus, Roam vector clock vector clock user defined none eventual
IceCube optimization graph user defined primary eventual
NIS single master — — — eventual
Op. Transf. reception order none none implicit eventual
Palm reception

order at
primary

modified bits resolver primary eventual

Ramsey & Csirmaz canonical semantic exclude — eventual
TACT reception

order at
primary

predicate user-defined primary bounded

TSAE scalar clock none none ack vector eventual
Unison canonical semantic exclude primary eventual
Usenet real-time clock none TWR none eventual
Web/file mirror single master — — — eventual/

temporal
Ordering indicates the order the system executes operations. Detecting conflicts indicates how the system
detects conflicts, if at all, and Resolving conflicts how it resolves them. Commit is the system’s commitment
protocol. Consistency indicates the system’s consistency guarantees. “TWR” stands for Thomas’s write rule,
“1 copy” for single-copy linearizability.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

76 Y. Saito and M. Shapiro

Table XII. Cross Reference
System Main Reference Main Section
Active Directory Microsoft 2000 —
Bayou Petersen et al. 1997 2.4
Sessn. Guar. Terry et al. 1994 8.1.2
Clearinghouse Demers et al. 1987 —
Coda Kistler and Satyanarayanan 1992 —
CVS Cederqvist et al. 2001 2.5
Deno Keleher 1999 5.5.3
DNS Albitz and Liu 2001 2.1
ESDS Fekete et al. 1999 5.5.2
Ficus, Roam Ratner 1998 —
IceCube Preguiça et al. 2003 5.2.5
NIS Sun Microsystems 1998 —
Op. Transf. Sun et al. 1998 5.2.4
Palm Pilot PalmSource 2002 2.3
Ramsey & Csirmaz Ramsey and Csirmaz 2001 5.2.3
TACT Yu and Vahdat 2001 8.2
TSAE Golding 1992 5.5.2
Unison Balasubramaniam and Pierce 1998 —
Usenet Spencer and Lawrence 1998 2.2
Web/file mirror Nakagawa 1996 —

Table XIII. Comparing the Behaviors and Costs of Optimistic Replication Strategies
Single master,

state transfer
Single master, op

transfer
Multi master, state

transfer
Multi master, op

transfer
Availability low: master single point of failure high
Conflict resolution

flexibility N/A inflexible
flexible: semantic

operation
scheduling

Algorithmic
complexity very low low

high: scheduling and
commitment.

Space overhead low: Tombstones high: log low: Tombstones high: log
Network overhead O(object-size) O(#operations) O(object-size) O(#operations)

resolution, algorithmic complexity, and
space and networking overheads. It is
clear that there is no single winner, each
strategy has advantages and disadvan-
tages.

Single-master systems are a good choice
if the workload is read-dominated or if
there is a natural single writer. It is sim-
ple, conflict-free and scales well in prac-
tice. Multimaster state transfer works
well for many applications. It is rea-
sonably simple and has a low space
overhead—a single timestamp or version
vector per object. Its communication cost
is independent of the rate of updates as
multiple updates to the same object are co-
alesced. The overhead increases with the
object size, but it can be reduced substan-
tially as we discussed in Section 7.2. These
systems have difficulty exploiting opera-
tion semantics during conflict resolution.
Thus, it is a good choice when objects are
naturally small, the conflict rate is low,

and conflicts can be resolved by a syntactic
rule such as “last writer wins”.

Multimaster operation transfer over-
comes the shortcomings of the state-
transfer approach but pays the cost in
terms of algorithmic complexity and the
log space overhead. The networking costs
of state and operation transfer depend
on various factors including the object
size, update size, update frequency, and
synchronization frequency. While state-
transfer systems are expensive for large
objects, they can amortize the cost when
the object is updated multiple times be-
tween synchronization.

Optimistic, asynchronous data repli-
cation is an appealing technique; it
improves networking flexibility and
scalability. Many applications would not
function without optimistic replication.
However, it also comes with a cost. The al-
gorithmic complexity of ensuring eventual
consistency can be high. Conflicts usually

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 77

require application-specific resolution,
and the lost update problem is ultimately
unavoidable. It is important not to ov-
erengineer. Traditional pessimistic repli-
cation, with many off-the-shelf solutions,
is perfectly adequate in small-scale, fully
connected, reliable networking environ-
ments. Advanced techniques such as ver-
sion vectors and operation transfer should
be used only when you need flexibility
and semantically rich conflict resolution.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their con-
structive comments as well as the following people
for their valuable feedback on early versions of this
article: Miguel Castro, Yek Chong, Svend Frølund,
Christos Karamanolis, Anne-Marie Kermarrec,
Dejan Milojicic, Ant Rowstron, Susan Spence, and
John Wilkes.

REFERENCES

ADLY, N. 1995. Management of replicated data in
large scale systems. Ph.D. thesis, Corpus Cristi
College, University of Cambridge.

ADYA, A. AND LISKOV, B. 1997. Lazy consistency us-
ing loosely synchronized clocks. In 16th Sym-
posium on Principles of Distributed Computing
(PODC). Santa Barbara, CA. 73–82.

AGRAWAL, D., ABBADI, A. E., AND STEIKE, R. C. 1997.
Epidemic algorithms in replicated databases. In
16th Symposium on Principles of Database Sys-
tems (PODS). Tucson, AZ. 161–172.

ALBITZ, P. AND LIU, C. 2001. DNS and BIND, 4th
Ed. O’Reilly & Associates. Sebastopol, CA. ISBN
0-596-00158-4.

ALMEIDA, P. S., BAQUERO, C., AND FONTE, V. 2000.
Panasync: Dependency tracking among file
copies. In 9th ACM SIGOPS European Work-
shop, P. Guedes, Ed. Kolding, Denmark. 7–
12.

ALMEIDA, P. S., BAQUERO, C., AND FONTE, V. 2002.
Version stamps—decentralized version vectors.
In 22nd International Conference on Distributed
Computing Systems (ICDCS). Vienna, Austria.
544–551.

ALONSO, R., BARBARA, D., AND GARCIA-MOLINA, H.
1990. Data caching issues in an information re-
trieval system. ACM Trans. Datab. Syst. 15, 3
(Sept.), 359–384.

BAKER, M., HARTMAN, J. H., KUPFER, M. D., SHIRRIFF, K.,
AND OUSTERHOUT, J. K. 1991. Measurements of
a distributed file system. In 13th Symposium
on Operating Systems Principles (SOSP). Pacific
Grove, CA. 198–212.

BALASUBRAMANIAM, S. AND PIERCE, B. C. 1998. What
is a file synchronizer? In 4th International Con-

ference on Mobile Computing and Networking
(MOBICOM). ACM/IEEE. Dellas, TX.

BERNSTEIN, P. A. AND GOODMAN, N. 1983. The failure
and recovery problem for replicated databases.
In 2nd Symposium on Principles of Distributed
Computing (PODC). Montréal, QC, Canada.
114–122.

BERNSTEIN, P. A., HADZILACOS, V., AND GOODMAN,
N. 1987. Concurrency Control and Recovery
in Database Systems. Addison Wesley, Boston,
MA. Available at http://research.microsoft.com/
pubs/ccontrol/.

BIRMAN, K. P., HAYDEN, M., OZKASAP, O., XIAO, Z., BUDIU,
M., AND MINSKY, Y. 1999. Bimodal multicast.
ACM Trans. Comp. Syst. 17, 2, 41–88.

BIRMAN, K. P. AND JOSEPH, T. A. 1987. Reliable com-
munication in the presence of failures. ACM
Trans. Comp. Syst. 5, 1 (Feb.), 272–314.

BIRRELL, A. D., LEVIN, R., NEEDHAM, R. M., AND

SCHROEDER, M. D. 1982. Grapevine: An exer-
cise in distributed computing. Comm. ACM 25, 4
(Feb.), 260–274.

BOLINGER, D. AND BRONSON, T. 1995. Applying RCS
and SCCS. O’Reilly & Associates, Sebastopol,
CA.

CARTER, J., RANGANATHAN, A., AND SUSARLA, S.
1998. Khazana: An infrastructure for build-
ing distributed services. In 18th International
Conference on Distributed Computer Systems
(ICDCS). Amsterdam, The Netherlands. 562–
571.

CEDERQVIST, P., PESCH, R., ET AL. 2001. Version
management with CVS. Available at http://
www.cvshome.org/docs/manual.

CHANDRA, B., DAHLIN, M., GAO, L., AND NAYATE, A.
2001. End-to-end WAN service availability. In
3rd USENIX Symposium on Internet Technology
and Systems (USITS). San Francisco, CA.

CHANDRA, T. D. AND TOUEG, S. 1996. Unreliable fail-
ure detectors for reliable distributed systems. J.
ACM 43, 2 (Mar.), 225–267.

CHANKHUNTHOD, A., DANZIG, P. B., NEERDAELS, C.,
SCHWARTZ, M. F., AND WORRELL, K. J. 1996. A
hierarchical internet object cache. In USENIX
Winter Technical Conference. San Diego, CA.
153–164.

CHARRON-BOST, B. 1991. Concerning the size of log-
ical clocks in distributed systems. Information
Processing Letters 39, 1 (July), 11–16.

CHEN, Y., EDLER, J., GOLDBERG, A., GOTTLIEB, A., SOBTI,
S., AND YIANILOS, P. N. 1999. A prototype im-
plementation of archival intermemory. In Fourth
ACM Conference on Digital Libraries (DL’99).
ACM, Berkeley CA. 28–37.

CHO, J. AND GARCIA-MOLINA, H. 2000. Synchroniz-
ing a database to improve freshness. In Inter-
national Conference on Management of Data
(SIGMOD). Dallas, TX. 117–128.

CORMACK, G. V. 1995. A calculus for concurrent
update. Tech. Rep. CS-95-06, University of
Waterloo.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

78 Y. Saito and M. Shapiro

COX, L. P. AND NOBLE, B. D. 2001. Fast reconcilia-
tions in fluid replication. In 21st International
Conference on Distributed Computer Systems
(ICDCS). Phoenix, AZ.

DE TORRES-ROJAS, F. AND AHAMAD, M. 1996. Plau-
sible clocks: Constant size logical clocks for
distributed systems. In 10th International
Workshop on Distributed Algorithms (WDAG).
Bologna, Italy.

DEERING, S. E. 1991. Multicast routing in a
datagram internetwork. Ph.D. thesis, Stanford
University.

DEMERS, A. J., GREENE, D. H., HAUSER, C., IRISH, W.,
AND LARSON, J. 1987. Epidemic algorithms for
replicated database maintenance. In 6th Sym-
posium on Princeples of Distributed Computing
(PODC). Vancouver, BC, Canada. 1–12.

DIETTERICH, D. J. 1994. DEC data distributor: For
data replication and data warehousing. In In-
ternational Conference on Management of Data
(SIGMOD). ACM, Minneapolis, MN. 468.

ELLIS, C. A. AND GIBBS, S. J. 1989. Concurrency
control in groupware systems. In International
Conference on Management of Data (SIGMOD).
Portland, OR.

ELMAGARMID, A. K., Ed. 1992. Database Transac-
tion Models for Advanced Applications. Morgan
Kaufmann, San Francisco, CA.

ELSON, J., GIROD, L., AND ESTRIN, D. 2002. Fine-
grained network time synchronization using ref-
erence broadcasts. In 5th Symposium on Operat-
ing Systems Design and Implementation (OSDI).
Boston, MA.

FEKETE, A., GUPTA, D., LUCHANGCO, V., LYNCH, N., AND

SHVARTSMAN, A. 1999. Eventually serializable
data services. Theor. Comput. Sci. 220: Spe-
cial issue on Distributed Algorithms, 113–
156.

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. 1997.
Specifying and using a partitionable group com-
munication service. In 16th Symposium on Prin-
ciples of Distributed Computing (PODC). Santa
Barbara, CA. 53–62.

FIDGE, C. J. 1988. Timestamps in message-passing
systems that preserve the partial ordering. In
11th Australian Computer Science Conference.
University of Queensland, Australia. 55–66.

FIELDING, R., GETTYS, J., MOGUL, J., FRYSTYK, H.,
MASINTER, L., LEACH, P., AND BERNERS-LEE, T.
1999. RFC2616: Hypertext transfer protocol—
HTTP/1.1. Available at http://www.faqs.org/rfcs/
rfc2616.html.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S.
1985. Impossibility of distributed consensus
with one faulty process. J. ACM 32, 2, 374–382.

FISCHER, M. J. AND MICHAEL, A. 1982. Sacrificing
serializability to attain availability of data in an
unreliable network. In 1st Symposium on Prin-
ciples of Database Systems (PODS). Los Angeles,
CA. 70–75.

FLOYD, S., JACOBSEN, V., LIU, C.-G., MCCANNE, S., AND

ZHANG, L. 1997. A reliable multicast frame-
work for light-weight sessions and application
level framing. IEEE/ACM J. Netw. 5, 6 (Dec.),
784–803.

FOX, A. AND BREWER, E. A. 1999. Harvest, yield,
and scalable tolerant systems. In 6th Workshop
on Hot Topics in Operating Systems (HOTOS-
VI). Rio Rico, AZ. 174–178.

GIFFORD, D. K. 1979. Weighted voting for repli-
cated data. In 7th Symposium on Operating Sys-
tems Principles (SOSP). Pacific Grove, CA. 150–
162.

GOLDING, R. A. 1992. Weak-consistency group
communication and membership. Ph.D. thesis.
Tech. Report no. UCSC-CRL-92-52. University
of California Santa Cruz, CA.

GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D. 1996.
Dangers of replication and a solution. In In-
ternational Conference on Management of Data
(SIGMOD). Montréal, Canada. 173–182.

GRAY, J. AND REUTER, A. 1993. Transaction Pro-
cessing: Concepts and Techniques. Morgan
Kaufmann, San Francisco, CA.

GUY, R. G., POPEK, G. J., AND PAGE, T. W., JR. 1993.
Consistency algorithms for optimistic replica-
tion. In Proceedings to 1st IEEE International
Conference on Network Protocols. San Francisco,
CA.

HEDETNIEMI, S., HEDETNIEMI, S., AND LIESTMAN, O.
1988. A survey of gossiping and broadcasting
in communication networks. Networks 18, 319–
349.

HERLIHY, M. P. AND WING, J. M. 1990. Linearizabil-
ity: A correctness condition for concurrent ob-
jects. ACM Trans. Program. Lang. Syst. 12, 3,
463–492.

JAGADISH, H. V., MUMICK, I. S., AND RABINOVICH,
M. 1997. Scalable versioning in distributed
databases with commuting updates. In 13th
International Conference on Data Engineering
(ICDE). Birmingham, U.K. 520–531.

JOHNSON, P. R. AND THOMAS, R. H. 1976. RFC677:
The maintenance of duplicate databases. Avail-
able at http://www.faqs.org/rfcs/rfc677.html.

JOHNSON, T. AND JEONG, K. 1996. Hierarchical ma-
trix timestamps for scalable update propaga-
tion. Tech. Rep. (June). TR96-017, University of
Florida.

KANG, B. B., WILENSKY, R., AND KUBIATOWICZ, J. 2003.
The hash history approach for reconciling mu-
tual inconsistency. In 23rd International Confer-
ence on Distributed Computer Systems (ICDCS).
Providence, RI.

KANTOR, B. AND RAPSEY, P. 1986. RFC977: Network
news transfer protocol. Available at http://www.
faqs.org/rfcs/rfc977.html.

KAWELL, L., JR., BECKHART, S., HALVORSEN, T., OZZIE, R.,
AND GREIF, I. 1988. Replicated document man-
agement in a group communication system. In
Conference on Computer Supported Cooperative
Work (CSCW). Chapel Hill, NC.

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 79

KELEHER, P. J. 1999. Decentralized replicated-
object protocols. In 18th Symposium on Princi-
ples of Database Computing (PODC). Atlanta,
GA. 143–151.

KEMPE, D., KLEINBERG, J., AND DEMERS, A. 2001.
Spatial gossip and resource location protocols.
In 33rd Symposium on Theory of Computing
(STOC). Crete, Greece.

KERMARREC, A.-M., ROWSTRON, A., SHAPIRO, M., AND

DRUSCHEL, P. 2001. The IceCube approach to
the reconciliation of diverging replicas. In 20th
Symposium on Principles of Distributed Com-
puting (PODC). Newport, RI.

KIM, M., COX, L. P., AND NOBLE, B. D. 2002. Safety,
visibility, and performance in a wide-area file
system. In USENIX Conference on File and Stor-
age Technologies (FAST). Monterey, CA.

KISTLER, J. J. AND SATYANARAYANAN, M. 1992. Dis-
connected operation in the Coda file system.
ACM Trans. Comput. Syst. 10, 5 (Feb.), 3–25.

KRASEL, C. 2000. Leafnode: An NNTP server for
small sites. Available at http://www.leafnode.
org.

KRISHNAKUMAR, N. AND BERNSTEIN, A. 1994.
Bounded ignorance: A technique for increasing
concurrency in replicated systems. ACM Trans
Datab. Syst. 19, 4 (Dec.), 685–722.

KUMAR, A. AND STONEBRAKER, M. 1988. Semantic
based transaction management techniques for
replicated data. In International Conference on
Management of Data (SIGMOD). Chicago, Il.
117–125.

KUMAR, A. AND STONEBRAKER, M. 1990. An analysis
of borrowing policies for escrow transactions in
a replicated environment. In 6th International
Conference on Data Engineering (ICDE). Los
Angeles, CA. 446–454.

KUMAR, P. AND SATYANARAYANAN, M. 1993. Log-
based directory resolution in the coda file sys-
tem. In 2nd International Confernce on Paral-
lel and Distributed Information Systems (PDIS).
San Diego, CA. 202–213.

KUMAR, P. AND SATYANARAYANAN, M. 1995. Flexible
and safe resolution of file conflicts. In USENIX
Winter Technical Conference. New Orleans, LA.
95–106.

LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S.
1990. Lazy replication: Exploiting the seman-
tics of distributed services. Tech. Rep. TR-484
(July). MIT LCS.

LADIN, R., LISKOV, B., SHRIRA, L., AND GHEMAWAT, S.
1992. Providing high availability using lazy
replication. ACM Trans. Comput. Syst. 10, 4,
360–391.

LAMPORT, L. 1978. Time, clocks, and the order-
ing of events in a distributed system. Comm.
ACM 21, 7 (July), 558–565.

LAWRENCE, N. D., ROWSTRON, A. I. T., BISHOP, C. M.,
AND TAYLOR, M. J. 2002. Optimising synchro-
nisation times for mobile devices. In Advances
in Neural Information Processing Systems, T. G.

Dietterich, S. Becker, and Z. Ghahramani, Eds.
Vol. 14. MIT Press, Cambridge, MA. 1401–1408.

LEE, Y.-W., LEUNG, K.-S., AND SATYANARAYANAN, M.
2002. Operation shipping for mobile file sys-
tems. IEEE Trans. Comput. 51, 1410–1422.

LIDL, K., OSBORNE, J., AND MALCOLM, J. 1994. Drink-
ing from the firehose: Multicast USENET news.
In USENIX Winter Technical Conference. San
Francisco, CA. 33–45.

LIN, M. J. AND MARZULLO, K. 1999. Directional gos-
sip: Gossip in a wide-area network. In Third
European Dependable Computing Conference.
Prague, Czechoslovakia. 364–379.

LU, Q. AND SATYANARAYANAN, M. 1995. Improving
data consistency in mobile computing using
isolation-only transactions. In 4th Workshop on
Hot Topics in Operating Systems (HOTOS-IV).
Orcas Island, WA.

MATHESON, C. 2003. Personal communication.
MATTERN, F. 1989. Virtual time and global states

of distributed systems. In International Work-
shop on Parallel and Distributed Algorithms.
Elsevier Science Publishers B.V. (North-
Holland). 216–226.

MAZIÈRES, D. AND SHASHA, D. 2002. Building secure
file systems out of Byzantine storage. In 21st
Symposium on Principles of Distribted Comput-
ing (PODC). Monterey, CA.

MICROSOFT. 2000. Windows 2000 Server: Dis-
tributed systems guide. Microsoft Press,
Redmond, WA. Chapter 6, 299–340.

MILLS, D. L. 1994. Improved algorithms for syn-
chronizing computer network clocks. In ACM
SIGCOMM. London, UK. 317–327.

MINSKY, Y. 2002. Spread rumors cheaply, quickly
and reliably. Ph.D. thesis, Cornell University.

MINSKY, Y., TRACHTENBERG, A., AND ZIPPEL, R. 2001.
Set reconciliation with nearly optimal commu-
nication complexity. In International Sympo-
sium on Information Theory. IEEE. Washington,
DC.

MISHRA, S., PETERSON, L., AND SCHLICHTING, R. 1989.
Implementing fault-tolerant replicated objects
using Psync. In 8th Symposium on Reliable Dis-
tributed Systems (SRDS). Seattle, WA. 42–53.

MOCKAPETRIS, P. V. 1987. RFC1035: Domain
names—implementation and specification.
Available at http://www.faqs.org/rfcs/rfc1035.
html.

MOCKAPETRIS, P. V. AND DUNLAP, K. 1988. Devel-
opment of the domain name system. In ACM
SIGCOMM. Stanford, CA. 123–133.

MOLLI, P., OSTER, G., SKAF-MOLLI, H., AND IMINE, A.
2003. Safe generic data synchronizer. Rapport
de recherche A03-R-062 (May). LORIA.

MOORE, K. 1995. The lotus notes storage system.
In International Conference on Management of
Data (SIGMOD). San Jose, CA. 427.

MUMMERT, L. B., EBLING, M. R., AND SATYANARAYANAN, M.
1995. Exploiting weak connectivity for mobile
file access. In 15th Symposium on Operating

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

80 Y. Saito and M. Shapiro

Systems Principles (SOSP). Copper Mountain,
CO. 143–155.

MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D.
2001. A low-bandwidth network file system. In
18th Symposium on Operating Systems Princi-
ples (SOSP). Lake Louise, AB, Canada. 174–187.

NAKAGAWA, I. 1996. FTPmirror—mirroring direc-
tory hierarchy with FTP. Available at http://
noc.intec.co.jp/ftpmirror.html.

O’NEIL, P. E. 1986. The escrow transactional
method. ACM Trans. Datab. Syst. 11, 4, 405–430.

Oracle. 1996. Oracle7 Server Distributed Systems
Manual, Vol. 2. Oracle.

OUSTERHOUT, J. K., DA COSTA, H., HARRISON, D., KUNZE,
J. A., KUPFER, M. D., AND THOMPSON, J. G. 1985.
A trace-driven analysis of the Unix 4.2 BSD file
system. In 10th Symposium on Operating Sys-
tems Principles (SOSP). Orcas Island, WA. 15–
24.

PALMER, C. AND CORMACK, G. 1998. Operation
transforms for a distributed shared spread-
sheet. In Conference on Computer Supported
Cooperative Work (CSCW). Seattle, WA. 69–
78.

PALMSOURCE, I. 2002. Introduction to conduit de-
velopment. Available at http://www.palmos.
com/dev/support/docs/.

PARKER, D. S., POPEK, G., RUDISIN, G., STOUGHTON, A.,
WALKER, B., WALTON, E., CHOW, J., EDWARDS, D.,
KISER, S., AND KLINE, C. 1983. Detection of mu-
tual inconsistency in distributed systems. IEEE
Trans. Softw. Eng. SE-9, 3, 240–247.

PAUL, S., SABNANI, K. K., LIN, J. C., AND BHATTACHARYYA,
S. 1997. Reliable multicast transport proto-
col (RMTP). IEEE J. Select. Areas Comm. 15, 3
(Apr.), 407–421.

PEDONE, F. 2001. Boosting system performance
with optimistic distributed protocols. IEEE
Computer 34, 7 (Dec.), 80–86.

PETERSEN, K., SPREITZER, M. J., TERRY, D. B., THEIMER,
M. M., AND DEMERS, A. J. 1997. Flexible up-
date propagation for weakly consistent replica-
tion. In 16th Symposium on Operating Systems
Principles (SOSP). St. Malo, France. 288–301.

PREGUIÇA, N., SHAPIRO, M., AND MATHESON, C. 2003.
Semantics-based reconciliation for collaborative
and environments. In Proceedings of 10th Inter-
national Conference on Cooperative Information
Systems (CoopIS). Catania, Sicily, Italy.

PU, C., HSEUSH, W., KAISER, G. E., WU, K.-L., , AND YU,
P. S. 1995. Divergence control for distributed
database systems. Dist. Parall. Datab. 3, 1 (Jan.),
85–109.

PU, C., HSEUSH, W., KAISER, G. E., WU, K.-L., AND YU,
P. S. 1995. Divergence control for distributed
database systems. Dist. Parall. Datab. 3, 1 (Jan.),
85–109.

PU, C. AND LEFF, A. 1991. Replica control in dis-
tributed systems: An asynchronous approach.
In International Conference on Management of
Data (SIGMOD). Denver, CO. 377–386.

RABIN, M. O. 1981. Fingerprinting by random
polynomials. Tech. Rep. TR-15-81, Harvard Uni-
versity.

RABINOVICH, M., GEHANI, N. H., AND KONONOV, A.
1996. Efficient update propagation in epidemic
replicated databases. In International Confer-
ence on Extending Database Technology (EDBT).
Avignon, France. 207–222.

RAMAMRITHAM, K. AND CHRYSANTHIS, P. K. 1996.
Executive Briefing: Advances in Concurrency
Control and Transaction Processing. IEEE
Computer Society. Los Alamitos, CA. ISBN
0818674059.

RAMAMRITHAM, K. AND PU, C. 1995. A formal charac-
terization of epsilon serializability. IEEE Trans.
Knowl. Data Eng. 7, 6 (Dec.), 997–1007.

RAMSEY, N. AND CSIRMAZ, E. 2001. An algebraic ap-
proach to file synchronization. In 9th Interna-
tional Symposium on the Foundations of Soft-
ware Engineering (FSE). Austria.

RATNER, D., REIHER, P., AND POPEK, G. 1997. Dy-
namic version vector maintenance. Tech. Rep.
CSD-970022, UCLA (June).

RATNER, D. H. 1998. Roam: A scalable replica-
tion system for mobile and distributed comput-
ing. Ph.D. thesis, Tech. Report. no. UCLA-CSD-
970044. University of California, Los Angeles,
CA.

RAVIN, E., O’REILLY, T., DOUGHERTY, D., AND TODINO, G.
1996. Using and Managing UUCP. O’Reilly &
Associates, Sebastopol, CA.

REIHER, P., HEIDEMANN, J. S., RATNER, D., SKINNER, G.,
AND POPEK, G. J. 1994. Resolving file conflicts
in the ficus file system. In USENIX Summer
Technical Conference. Boston, MA. 183–195.

RHODES, N. AND MCKEEHAN, J. 1998. Palm Pro-
gramming: The Developer’s Guide. O’Reilly & As-
sociates, Sebastopol, CA.

SAITO, Y. AND LEVY, H. M. 2000. Optimistic repli-
cation for Internet data services. In 14th Inter-
national Conference on Distributed Computing
(DISC). Toledo, Spain. 297–314.

SAITO, Y., MOGUL, J., AND VERGHESE, B. 1998.
A Usenet performance study. Available at
http://www.hpl.hp.com/personal/Yasushi Saito/
pubs/newsbench.ps.

SPENCER, H. AND LAWRENCE, D. 1998. Managing
Usenet. O’Reilly & Associates, Sebastopol, CA.
ISBN 1-56592-198-4.

SPREITZER, M. J., THEIMER, M. M., PETERSEN, K.,
DEMERS, A. J., AND TERRY, D. B. 1997. Deal-
ing with server corruption in weakly consistent,
replicated data systems. In 3rd International
Conference on Mobile Computing and Network-
ing (MOBICOM). Budapest, Hungary.

SPRING, N. T. AND WETHERALL, D. 2000. A protocol-
independent technique for eliminating redun-
dant network traffic. In ACM SIGCOMM Stock-
holm, Sweden.

STERN, H., EISLEY, M., AND LABIAGA, R. 2001. Man-
aging NFS and NIS, 2nd Ed. O’Reilly &

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

Optimistic Replication 81

Associates, Sebastopol, CA. ISBN 1-56592-
510-6.

SUN, C. AND ELLIS, C. 1998. Operational transfor-
mation in real-time group editors: Issues, al-
gorithms, and achievements. In Conference on
Computer Supported Cooperative Work (CSCW).
Seattle, WA. 59–68.

SUN, C., JIA, X., ZHANG, Y., YANG, Y., AND CHEN,
D. 1998. Achieving convergence, causality-
preservation, and intention-preservation in
real-time cooperative editing systems. ACM
Trans. Comput.-Hum. Interact. 5, 1 (Mar.), 63–
108.

SUN, C., YANG, Y., ZHANG, Y., AND CHEN, D.
1996. A consistency model and supporting
schemes for real-time cooperative editing
systems. In 19th Australian Computer Sci-
ence Conference. Melbourne, Australia. 582–
591.

SUN, Q. 2000. Reliable multicast for publish/
subscribe systems. M.S. thesis, MIT.

SUN MICROSYSTEMS. 1998. Sun directory services
3.1 administration guide.

TERRY, D. B., DEMERS, A. J., PETERSEN, K., SPREITZER,
M. J., THEIMER, M. M., AND WELCH, B. B. 1994.
Session guarantees for weakly consistent repli-
cated data. In 3rd International Conference on
Parallel and Distributed Information Systems
(PDIS). Austin, TX. 140–149.

TERRY, D. B., THEIMER, M., PETERSEN, K., AND SPREITZER,
M. 2000. An examination of conflicts in a
weakly-consistent, replicated application. Per-
sonal communication.

TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS,
A. J., SPREITZER, M. J., AND HAUSER, C. H.
1995. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In
15th Symposium on Operating Systems Prin-
ciples (SOSP). Copper Mountain, CO. 172–
183.

THOMAS, R. H. 1979. A majority consensus ap-
proach to concurrency control for multiple copy
databases. ACM Trans. Datab. Syst. 4, 2 (June),
180–209.

TRIDGELL, A. 2000. Efficient algorithms for sorting
and synchronization. Ph.D. thesis, Australian
National University.

VALOT, C. 1993. Characterizing the accuracy of dis-
tributed timestamps. In Workshop on Parallel
and Distributed Debugging. 43–52.

VESPERMAN, J. 2003. Essential CVS. O’Reilly & As-
sociates, Sebastopol, CA.

VIDOT, N., CART, M., FERRI’E, J., AND SULEIMAN, M.
2000. Copies convergence in a distributed
real-time collaborative environment. In Confer-
ence on Computer Supported Cooperative Work
(CSCW). Philadelphia, PA. 171–180.

VOGELS, W. 1999. File system usage in Windows
NT 4.0. In 17th Symposium on Operating Sys-
tems Principles (SOSP). Kiawah Island, SC,
USA, 93–109.

WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND

THIEL, G. 1983. The LOCUS distributed oper-
ating system. In 9th Symposium on Operating
Systems Principles (SOSP). Bretton Woods, NH.
49–70.

WANG, A.-I. A., REIHER, P. L., AND BAGRODIA, R.
2001. Understanding the conflict rate metric
for peer optimistically replicated filing environ-
ments. Submitted for publication.

WESSELS, D. AND CLAFFY, K. 1997. RFC2186: In-
ternet Cache Protocol. Available at http://www.
faqs.org/rfcs/rfc2186.html.

WUU, G. T. J. AND BERNSTEIN, A. J. 1984. Efficient
solutions to the replicated log and dictionary
problems. In 3rd Symposium on Principles of
Distributed Computing (PODC). Vancouver, BC,
Canada. 233–242.

XTP. 2003. The xpress transport protocol. Avail-
able at http://www.ca.sandia.gov/xtp/.

YIN, J., ALVISI, L., DAHLIN, M., AND LIN, C. 1999.
Hierarchical cache consistency in a WAN. In
2nd USENIX Symposium on Internet Technol-
ogy and Systems (USITS). Boulder, CO. 13–24.

YU, H. AND VAHDAT, A. 2000. Design and evaluation
of a continuous consistency model for replicated
services. In 4th Symposium on Operating Sys-
tems Design and Implementation (OSDI). San
Diego, CA. 305–318.

YU, H. AND VAHDAT, A. 2001. The costs and limits
of availability for replicated services. In 18th
Symposium on Operating Systems Principles
(SOSP). Lake Louise, AB, Canada. 29–42.

YU, H. AND VAHDAT, A. 2002. Minimal replication
cost for availability. In 21st Symposium on
Principles of Distributed Computing (PODC).
Monterey, CA. 98–107.

ZHANG, Y., PAXON, V., AND SHENKAR, S. 2000. The sta-
tionarity of Internet path properties: Routing,
loss and throughput. Tech. rep. (May), ACIRI.

Received September 2003; revised October 2004; accepted February 2005

ACM Computing Surveys, Vol. 37, No. 1, March 2005.

