

8/21/95 1

1 Introduction

The increased availability of high-speed local area networks has
shifted the bottleneck in local-area communication from the limited
bandwidth of network fabrics to the software path traversed by
messages at the sending and receiving ends. In particular, in a tradi-
tional UNIX networking architecture, the path taken by messages
through the kernel involves several copies and crosses multiple lev-
els of abstraction between the device driver and the user applica-
tion. The resulting processing overheads limit the peak
communication bandwidth and cause high end-to-end message
latencies. The effect is that users who upgrade from ethernet to a
faster network fail to observe an application speed-up commensu-
rate with the improvement in raw network performance. A solution
to this situation seems to elude vendors to a large degree because
many fail to recognize the importance of per-message overhead and
concentrate on peak bandwidths of long data streams instead. While
this may be justifiable for a few applications such as video play-
back, most applications use relatively small messages and rely
heavily on quick round-trip requests and replies. The increased use
of techniques such as distributed shared memory, remote procedure
calls, remote object-oriented method invocations, and distributed
cooperative file caches will further increase the importance of low
round-trip latencies and of high bandwidth at the low-latency point.

Many new application domains could benefit not only from
higher network performance but also from a more flexible interface
to the network. By placing all protocol processing into the kernel
the traditional networking architecture cannot easily support new
protocols or new message send/receive interfaces. Integrating
application specific information into protocol processing allows for
higher efficiency and greater flexibility in protocol cost manage-
ment. For example, the transmission of MPEG compressed video
streams can greatly benefit from customized retransmission proto-
cols which embody knowledge of the real-time demands as well as
the interdependencies among video frames[26]. Other applications
can avoid copying message data by sending straight out of data
structures. Being able to accommodate such application specific
knowledge into the communication protocols becomes more and
more important in order to be able to efficiently utilize the network
and to couple the communication and the computation effectively.

One of the most promising techniques to improve both the per-
formance and the flexibility of networking layer performance on
workstation-class machines is to move parts of the protocol pro-
cessing into user space. This paper argues that in fact the entire pro-
tocol stack should be placed at user level and that the operating
system and hardware should allow protected user-level access
directly to the network. The goal is to remove the kernel completely
from the critical path and to allow the communication layers used
by each process to be tailored to its demands. The key issues that
arise are
• multiplexing the network among processes,
• providing protection such that processes using the network can-

not interfere with each other,
• managing limited communication resources without the aid of a

kernel path, and
• designing an efficient yet versatile programming interface to the

network.

Some of these issues have been solved in more recent parallel
machines such as in the Thinking Machines CM-5, the Meiko CS-
2, and the IBM SP-2, all of which allow user-level access to the net-
work. However, all these machines have a custom network and net-

U-Net: A User-Level Network Interface
for Parallel and Distributed Computing

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vogels

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

The U-Net communication architecture provides processes with a virtual view of a network interface to enable user-
level access to high-speed communication devices. The architecture, implemented on standard workstations using off-
the-shelf ATM communication hardware, removes the kernel from the communication path, while still providing full
protection.

The model presented by U-Net allows for the construction of protocols at user level whose performance is only lim-
ited by the capabilities of network. The architecture is extremely flexible in the sense that traditional protocols like TCP
and UDP, as well as novel abstractions like Active Messages can be implemented efficiently. A U-Net prototype on an 8-
node ATM cluster of standard workstations offers 65 microseconds round-trip latency and 15 Mbytes/sec bandwidth. It
achieves TCP performance at maximum network bandwidth and demonstrates performance equivalent to Meiko CS-2
and TMC CM-5 supercomputers on a set of Split-C benchmarks.

Authors’ email: {tve,basu,buch,vogels}@cs.cornell.edu.
Software: http://www.cs.cornell.edu/Info/Projects/U-Net/

The U-Net project is supported by the Air Force Material Contract
F30602-94-C-0224 and ONR contract N00014-92-J-1866.

Copyright



1995 by the Association for Computing Machinery,
Inc. Permission to make digital or hard copies of part or all of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that new copies bear this notice and
the full citation on the first page. Copyrights for components of
this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted.

Proc. of the 15th ACM Symposium on Operating Systems Principles, Copper Mountain, Colorado, December 3-6, 1995

Thi d t t d ith F M k 4 0 4

8/21/95 2

work interface, and they usually restrict the degree or form of
multiprogramming permitted on each node. This implies that the
techniques developed in these designs cannot be applied to work-
station clusters directly.

This paper describes the U-Net architecture for user-level com-
munication on an off-the-shelf hardware platform (SPARCStations
with Fore Systems ATM interfaces) running a standard operating
system (SunOS 4.1.3). The communication architecture virtualizes
the network device so that each process has the illusion of owning
the interface to the network. Protection is assured through kernel
control of channel set-up and tear-down. The U-Net architecture is
able to support both legacy protocols and novel networking
abstractions: TCP and UDP as well as Active Messages are imple-
mented and exhibit performance that is only limited by the pro-
cessing capabilities of the network interface. Using Split-C, a
state-of-the-art parallel language, the performance of seven bench-
mark programs on an ATM cluster of standard workstations rivals
that of current parallel machines. In all cases U-Net was able to
expose the full potential of the ATM network by saturating the
140Mbits/sec fiber, using either traditional networking protocols or
advanced parallel computing communication layers.

The major contributions of this paper are to propose a simple
user-level communication architecture (Sections 2 and 3) which is
independent of the network interface hardware (i.e., it allows many
hardware implementations), to describe two high-performance
implementations on standard workstations (Section 4), and to eval-
uate its performance characteristics for communication in parallel
programs (Sections 5 and 6) as well as for traditional protocols
from the IP suite (Section 7). While other researchers have pro-
posed user-level network interfaces independently, this is the first
presentation of a full system which does not require custom hard-
ware or OS modification and which supports traditional network-
ing protocols as well as state of the art parallel language
implementations. Since it exclusively uses off-the-shelf compo-
nents, the system presented here establishes a baseline to which
more radical proposals that include custom hardware or new OS
architectures must be compared to.

2 Motivation and related work

The U-Net architecture focuses on reducing the processing over-
head required to send and receive messages as well as on provid-
ing flexible access to the lowest layer of the network. The intent is
three-fold:
• provide low-latency communication in local area settings,
• exploit the full network bandwidth even with small messages,

and
• facilitate the use of novel communication protocols.

2.1 The importance of low communication latencies

The latency of communication is mainly composed of process-
ing overhead and network latency (time-of-flight). The term

pro-
cessing overhead

 is used here to refer to the time spent by the
processor in handling messages at the sending and receiving ends.
This may include buffer management, message copies, checksum-
ming, flow-control handling, interrupt overhead, as well as con-
trolling the network interface. Separating this overhead from the

network latency

 distinguishes the costs stemming from the net-
work fabric technology from those due to the networking software
layers.

Recent advances in network fabric technology have dramati-
cally improved network bandwidth while the processing overheads
have not been affected nearly as much. The effect is that for large
messages, the

end-to-end latency

—the time from the source appli-
cation executing “send” to the time the destination application
receiving the message—is dominated by the transmission time and

thus the new networks offer a net improvement. For small mes-
sages in local area communication, however, the processing over-
heads dominate and the improvement in transmission time is less
significant in comparison. In wide area networks the speed of light
eventually becomes the dominant latency component and while
reducing the overhead does not significantly affect latency it may
well improve throughput.

U-Net places a strong emphasis on achieving low communica-
tion overheads because small messages are becoming increasingly
important in many applications. For example, in distributed sys-
tems:

• Object-oriented technology is finding wide-spread adoption and
is naturally extended across the network by allowing the transfer
of objects and the remote execution of methods (e.g., CORBA
and the many C++ extensions). Objects are generally small rela-
tive to the message sizes required for high bandwidth (around
100 bytes vs. several Kbytes) and thus communication perfor-
mance suffers unless message overhead is low.

• The electronic workplace relies heavily on sets of complex dis-
tributed services which are intended to be transparent to the
user. The majority of such service invocations are requests to
simple database servers that implement mechanisms like object
naming, object location, authentication, protection, etc. The
message size seen in these systems range from 20-80 bytes for
the requests and the responses generally can be found in the
range of 40-200 bytes.

• To limit the network traversal of larger distributed objects, cach-
ing techniques have become a fundamental part of most modern
distributed systems. Keeping the copies consistent introduces a
large number of small coherence messages. The round-trip times
are important as the requestor is usually blocked until the syn-
chronization is achieved.

• Software fault-tolerance algorithms and group communication
tools often require multi-round protocols, the performance of
which is latency-limited. High processing overheads resulting in
high communication latencies prevent such protocols from
being used today in process-control applications, financial trad-
ing systems, or multimedia groupware applications.

Without projecting into the future, existing more general sys-
tems can benefit substantially as well:

• Numerous client/server architectures are based on a RPC style
of interaction. By drastically improving the communication
latency for requests, responses and their acknowledgments, a
large number of systems may see significant performance
improvements.

• Although remote file systems are often categorized as bulk
transfer systems, they depend heavily on the performance of
small messages. A week-long trace of all NFS traffic to the
departmental CS fileserver at UC Berkeley has shown that the
vast majority of the messages is under 200 bytes in size and that
these messages account for roughly half the bits sent[2].

Finally, many researchers propose to use networks of worksta-
tions to provide the resources for compute intensive parallel appli-
cations. In order for this to become feasible, the communication
costs across LANs must reduce by more than an order of magni-
tude to be comparable to those on modern parallel machines.

2.2 The importance of small-message bandwidth

The communication bandwidth of a system is often measured by
sending a virtually infinite stream from one node to another. While
this may be representative of a few applications, the demand for
high bandwidths when sending many small messages (e.g., a few
hundred bytes) is increasing due to the same trends that demand
low latencies. U-Net specifically targets this segment of the net-

8/21/95 3

work traffic and attempts to provide full network bandwidth with
as small messages as possible, mainly by reducing the per-message
overheads.

Reducing the minimal message size at which full bandwidth can
be achieved may also benefit reliable data stream protocols like
TCP that have buffer requirements that are directly proportional to
the round-trip end-to-end latency. For example the TCP window
size is the product of the network bandwidth and the round-trip
time. Achieving low-latency in local area networks will keep the
buffer consumption within reason and thus make it feasible to
achieve maximal bandwidth at low cost.

2.3 Communication protocol and interface flexibility

In traditional UNIX networking architectures the protocol stacks
are implemented as part of the kernel. This makes it difficult to
experiment with new protocols and efficiently support dedicated
protocols that deal with application specific requirements.
Although one could easily design these protocols to make use of a
datagram primitive offered by the kernel (like UDP or raw IP),
doing so efficiently without adding the new protocol to the kernel
stack is not possible. The lack of support for the integration of ker-
nel and application buffer management introduces high processing
overheads which especially affect reliable protocols that need to
keep data around for retransmission. In particular, without shared
buffer management reference count mechanisms cannot be used to
lower the copy and application/kernel transfer overheads. For
example, a kernel-based implementation of a reliable transport
protocol like TCP can use reference counts to prevent the network
device driver from releasing network buffers that must remain
available for possible retransmission. Such an optimization is not
available if an application specific reliable protocol is implemented
in user space and has to use UDP as transport mechanism.

By removing the communication subsystem's boundary with the
application-specific protocols, new protocol design techniques,
such as Application Level Framing [10,16] and Integrated Layer
Processing [1,6,10], can be applied and more efficient protocols
produced. Compiler assisted protocol development can achieve
maximum optimization if all protocols are compiled together
instead of only a small subset of application specific protocols.

In more specialized settings a tight coupling between the com-
munication protocol and the application can yield even higher sav-
ings. For example, in a high-level language supporting a form of
blocking RPC no copy need to be made in case a retransmission is
required as the high-level semantics of the RPC guarantee that the
source data remains unmodified until the RPC completes success-
fully. Thus the address of a large RPC argument may well be
passed down directly to the network interface’s DMA engine.

Another example is that at the moment a process requests data
from a remote node it may pre-allocate memory for the reply.
When the response arrives the data can be transferred directly into
its final position without the allocation of intermediate buffers or
any intermediate copies.

Taking advantage of the above techniques is becoming a key
element in reducing the overhead of communication and can only
be done if applications have direct access to the network interface.,

2.4 Towards a new networking architecture

A new abstraction for high-performance communication is
required to deliver the promise of low-latency, high-bandwidth
communication to the applications on standard workstations using
off-the-shelf networks. The central idea in U-Net is to simply
remove the kernel from the critical path of sending and receiving
messages. This eliminates the system call overhead, and more
importantly, offers the opportunity to streamline the buffer man-
agement which can now be performed at user-level. As several

research projects have pointed out, eliminating the kernel from the
send and receive paths requires that some form of a message multi-
plexing and demultiplexing device (in hardware or in software) is
introduced for the purpose of enforcing protection boundaries.

The approach proposed in this paper is to incorporate this
mux/demux directly into the network interface (NI), as depicted in
Figure 1, and to move all buffer management and protocol pro-
cessing to user-level. This, in essence, virtualizes the NI and pro-
vides each process the illusion of owning the interface to the
network. Such an approach raises the issues of selecting a good
virtual NI abstraction to present to processes, of providing support
for legacy protocols side-by-side with next generation parallel lan-
guages, and of enforcing protection without kernel intervention on
every message.

2.5 Related work

A number of the issues surrounding user-level network interface
access have been studied in the past. For the Mach3 operating sys-
tem a combination of a powerful message demultiplexer in the
microkernel, and a user-level implementation of the TCP/IP proto-
col suite solved the network performance problems that arose
when the Unix single OS-Server was responsible for all network
communication. The performance achieved is roughly the same as
that of a monolithic BSD system.[22]

More recently, the

application device channel

 abstraction,
developed at the University of Arizona, provides application pro-
grams with direct access to the experimental OSIRIS ATM
board [14] used in the Aurora Gigabit testbed. Other techniques
that are developed for the Osiris board to reduce the processing
overhead are the pathfinder multiplexor [3], which is implemented
in hardware and the

fbufs

 cross domain buffer management [13].

At HP Bristol a mechanism has been developed for the Jet-
stream LAN [15] where applications can reserve buffer pools on
the Afterburner [12] board. When data arrives on a VCI associated
with an application data is transferred directly into the correct
pool. However, the application cannot access these buffers
directly: it is always forced to go through the kernel with a copy
operation to retrieve the data or provide data for sending. Only the
kernel based protocols could be made aware of the buffer pools
and exploit them fully.

In the parallel computing community recent machines (e.g.,
Thinking Machines CM-5, Meiko CS-2, IBM SP-2, Cray T3D)

U

U

U

U

K

node 1 U

U

U

U

K

node 2
User

Operating

U

U

U

U K

node 1

NI

U

U

U

UK

node 2

NI

Figure 1: The traditional networking architecture (a)
places the kernel in the path of all communication. The
U-Net architecture (b) only uses a simple multiplex-
ing/demultiplexing agent—that can be implemented in
hardware—in the data communication path and uses the
kernel only for set-up.

a)

b)

Legend:

kernel

U
application

K system

NI

NI NI

NI Network
interface

NI with
message
multiplex

8/21/95 4

provide user-level access to the network, but the solutions rely on
custom hardware and are somewhat constrained to the controlled
environment of a multiprocessor. On the other hand, given that
these parallel machines resemble clusters of workstations ever
more closely, it is reasonable to expect that some of the concepts
developed in these designs can indeed be transferred to worksta-
tions.

Successive simplifications and generalizations of shared mem-
ory is leading to a slightly different type of solution in which the
network can be accessed indirectly through memory accesses.
Shrimp[4] uses custom NIs to allow processes to establish chan-
nels connecting virtual memory pages on two nodes such that data
written into a page on one side gets propagated automatically to
the other side. Thekkath[27] proposes a memory-based network
access model that separates the flow of control from the data flow.
The remote memory operations have been implemented by emulat-
ing unused opcodes in the MIPS instruction set. While the use of a
shared memory abstraction allows a reduction of the communica-
tion overheads, it is not clear how to efficiently support legacy pro-
tocols, long data streams, or remote procedure call.

2.6 U-Net design goals

Experience with network interfaces in parallel machines made it
clear that providing user-level access to the network in U-Net is
the best avenue towards offering communication latencies and
bandwidths that are mainly limited by the network fabric and that,
at the same time, offer full flexibility in protocol design and in the
integration of protocol, buffering, and appropriate higher commu-
nication layers. The many efforts in developing fast implementa-
tions of TCP and other internetworking protocols clearly affirm the
relevance of these protocols in high-performance networking and
thus any new network interface proposal must be able to support
these protocols effectively (which is typically not the case in paral-
lel machines, for example).

The three aspects that set U-Net apart from the proposals dis-
cussed above are:
• the focus on low latency and high bandwidth using small mes-

sages,
• the emphasis on protocol design and integration flexibility, and
• the desire to meet the first two goals on widely available stan-

dard workstations using off-the-shelf communication hardware.

3 The user-level network interface architecture

The U-Net user-level network interface architecture virtualizes
the interface in such a way that a combination of operating system
and hardware mechanisms can provide every process

1

 the illusion
of owning the interface to the network. Depending on the sophisti-
cation of the actual hardware, the U-Net components manipulated
by a process may correspond to real hardware in the NI, to mem-
ory locations that are interpreted by the OS, or to a combination of
the two. The role of U-Net is limited to multiplexing the actual NI
among all processes accessing the network and enforcing protec-
tion boundaries as well as resource consumption limits. In particu-
lar, a process has control over both the contents of each message
and the management of send and receive resources, such as buff-
ers.

3.1 Sending and receiving messages

The U-Net architecture is composed of three main building
blocks, shown in Figure 2:

endpoints

 serve as an application’s han-
dle into the network and contain

communication segments

 which
are regions of memory that hold message data, and

message
queues

 which hold descriptors for messages that are to be sent or

1. The terms “process” and “application” are used interchangeably
to refer to arbitrary unprivileged UNIX processes.

that have been received. Each process that wishes to access the
network first creates one or more endpoints, then associates a com-
munication segment and a set of

send

,

receive

, and

free

 message
queues with each endpoint.

To send a message, a user process composes the data in the com-
munication segment and pushes a descriptor for the message onto
the send queue. At that point, the network interface is expected to
pick the message up and insert it into the network. If the network is
backed-up, the network interface will simply leave the descriptor
in the queue and eventually exert back-pressure to the user process
when the queue becomes full. The NI provides a mechanism to
indicate whether a message in the queue has been injected into the
network, typically by setting a flag in the descriptor; this indicates
that the associated send buffer can be reused.

Incoming messages are demultiplexed by U-Net based on their
destination: the data is transferred into the appropriate communica-
tion segment and a message descriptor is pushed onto the corre-
sponding receive queue. The receive model supported by U-Net is
either polling or event driven: the process can periodically check
the status of the receive queue, it can block waiting for the next
message to arrive (using a UNIX select call), or it can register an
upcall

2

 with U-Net. The upcall is used by U-Net to signal that the

2. The term “upcall” is used in a very general sense to refer to a
mechanism which allows U-Net to signal an asynchronous
event to the application.

recv
queue

free
queue

send
queuecommunication segment

Figure 2: U-Net building blocks.
a) Endpoints serve as an application’s handle into the net-
work, communication segments are regions of memory that
hold message data, and message queues (send/recv/free
queues) hold descriptors for messages that are to be sent or
that have been received.
b) Regular endpoints are serviced by the U-Net network inter-
face directly. Emulated endpoints are serviced by the kernel
and consume no additional network interface resources but
cannot offer the same level of performance.

U-Net endpoint

U-Net NI

a)

b)

endpoint

kernel

emulated
endpoint

endpoint

endpoint emulated

application 1 application 2 application 3

OS

trap tra
p

8/21/95 5

state of the receive queue satisfies a specific condition. The two
conditions currently supported are: the receive queue is non-empty
and the receive queue is almost full. The first one allows event
driven reception while the second allows processes to be notified
before the receive queue overflows. U-Net does not specify the
nature of the upcall which could be a UNIX signal handler, a
thread, or a user-level interrupt handler.

In order to amortize the cost of an upcall over the reception of
several messages it is important that a U-Net implementation
allows all messages pending in the receive queue to be consumed
in a single upcall. Furthermore, a process must be able to disable
upcalls cheaply in order to form critical sections of code that are
atomic relative to message reception.

3.2 Multiplexing and demultiplexing messages

U-Net uses a tag in each incoming message to determine its des-
tination endpoint and thus the appropriate communication segment
for the data and message queue for the descriptor. The exact form
of this message tag depends on the network substrate; for example,
in an ATM network the ATM virtual channel identifiers (VCIs)
may be used. In any case, a process registers these tags with U-Net
by creating communication channels: on outgoing messages the
channel identifier is used to place the correct tag into the message
(as well as possibly the destination address or route) and on incom-
ing messages the tag is mapped into a channel identifier to signal
the origin of the message to the application.

U-Net’s notion of a message tag is very similar to the idea used
in parallel machines of including a parallel-process id in the header
of messages. The message tag used in U-Net is more general, how-
ever, in that it allows communication between arbitrary processes,
whereas a parallel-process id tag only serves communication
within a parallel program running in a closed environment.

An operating system service needs to assist the application in
determining the correct tag to use based on a specification of the
destination process and the route between the two nodes. The oper-
ating system service will assist in route discovery, switch-path
setup and other (signalling) tasks that are specific for the network
technology used. The service will also perform the necessary
authentication and authorization checks to ensure that the applica-
tion is allowed access to the specific network resources and that
there are no conflicts with other applications. After the path to the
peer has been determined and the request has passed the security
constraints the resulting tag will be registered with U-Net such that
the latter can perform its message multiplexing/demultiplexing
function. A channel identifier is returned to the requesting applica-
tion to identify the communication channel to the destination.

Endpoints and communication channels together allow U-Net to
enforce protection boundaries among multiple processes accessing
the network and, depending on how routes are allocated, may
allow it to extend these boundaries across the network. This is
achieved using two mechanisms:

• endpoints, communication segments, and message queues are
only accessible by the owning process,

• outgoing messages are tagged with the originating endpoint
address and incoming messages are demultiplexed by U-Net
and only delivered to the correct destination endpoint.

Thus an application cannot interfere with the communication
channels of another application on the same host. In addition, if the
set-up of routes is carefully controlled by the collection of operat-
ing systems in a cluster of hosts, then this protection can be
extended across the network such that no application can directly
interfere with communication streams between other parties.

3.3 Zero-copy vs. true zero-copy

U-Net attempts to support a “true zero copy” architecture in
which data can be sent directly out of the application data struc-
tures without intermediate buffering and where the NI can transfer
arriving data directly into user-level data structures as well. In con-
sideration of current limitations on I/O bus addressing and on NI
functionality, the U-Net architecture specifies two levels of sophis-
tication: a

base-level

 which requires an intermediate copy into a
networking buffer and corresponds to what is generally referred-to
as zero copy, and a

direct-access

U-Net which supports true zero
copy without any intermediate buffering.

The base-level U-Net architecture matches the operation of
existing network adapters by providing a reception model based on
a queue of free buffers that are filled by U-Net as messages arrive.
It also regards communication segments as a limited resource and
places an upper bound on their size such that it is not feasible to
regard communication segments as memory regions in which gen-
eral data structures can be placed. This means that for sending each
message must be constructed in a buffer in the communication seg-
ment and on reception data is deposited in a similar buffer. This
corresponds to what is generally called “zero-copy”, but which in
truth represents one copy, namely between the application’s data
structures and a buffer in the communication segment.

1

Direct-access U-Net supports true zero copy protocols by allow-
ing communication segments to span the entire process address
space and by letting the sender specify an offset within the destina-
tion communication segment at which the message data is to be
deposited directly by the NI.

The U-Net implementations described here support the base-
level architecture because the hardware available does not support
the memory mapping required for the direct-access architecture. In
addition, the bandwidth of the ATM network used does not warrant
the enhancement because the copy overhead is not a dominant
cost.

3.4 Base-level U-Net architecture

The base-level U-Net architecture supports a queue-based inter-
face to the network which stages messages in a limited-size com-
munication segment on their way between application data
structures and the network. The communication segments are allo-
cated to buffer message data and are typically pinned to physical
memory. In the base-level U-Net architecture send and receive
queues hold descriptors with information about the destination,
respectively origin, endpoint addresses of messages, their length,
as well as offsets within the communication segment to the data.
Free queues hold descriptors for free buffers that are made avail-
able to the network interface for storing arriving messages.

The management of send buffers is entirely up to the process:
the U-Net architecture does not place any constraints on the size or
number of buffers nor on the allocation policy used. The main
restriction are that buffers lie within the communication segment
and that they be properly aligned for the requirements of the net-
work interface (e.g., to allow DMA transfers). The process also
provides receive buffers explicitly to the NI via the free queue but
it cannot control the order in which these buffers are filled with
incoming data.

1. True zero copy is achieved with base-level U-Net when there is
no need for the application to copy the information received to a
data structure for later reference. In that case data can be
accessed in the buffers and the application can take action based
on this information without the need for a copy operation. A
simple example of this is the reception of acknowledgment mes-
sages that are used to update some counters but do not need to
be copied into longer term storage.

8/21/95 6

As an optimization for small messages—which are used heavily
as control messages in protocol implementation—the send and
receive queues may hold entire small messages in descriptors (i.e.,
instead of pointers to the data). This avoids buffer management
overheads and can improve the round-trip latency substantially.
The size of these small messages is implementation dependent and
typically reflects the properties of the underlying network.

3.5 Kernel emulation of U-Net

Communication segments and message queues are generally
scarce resources and it is often impractical to provide every pro-
cess with U-Net endpoints. Furthermore many applications (such
as telnet) do not really benefit from that level of performance. Yet,
for software engineering reasons it may well be desirable to use a
single interface to the network across all applications. The solution
to this dilemma is to provide applications with kernel-emulated U-
Net endpoints. To the application these emulated endpoints look
just like regular ones, except that the performance characteristics
are quite different because the kernel multiplexes all of them onto
a single real endpoint.

3.6 Direct-Access U-Net architecture

Direct-access U-Net is a strict superset of the base-level archi-
tecture. It allows communication segments to span the entire
address space of a process and it allows senders to specify an offset
in the destination communication segment at which the message
data is to be deposited. This capability allows message data to be
transferred directly into application data structures without any
intermediate copy into a buffer. While this form of communication
requires quite some synchronization between communicating pro-
cesses, parallel language implementations, such as Split-C, can
take advantage of this facility.

The main problem with the direct-access U-Net architecture is
that it is difficult to implement on current workstation hardware:
the NI must essentially contain an MMU that is kept consistent
with the main processor’s and the NI must be able to handle
incoming messages which are destined to an unmapped virtual
memory page. Thus, in essence, it requires (i) the NI to include
some form of memory mapping hardware, (ii) all of (local) physi-
cal memory to be accessible from the NI, and (iii) page faults on
message arrival to be handled appropriately.

At a more basic hardware level, the limited number of address
lines on most I/O buses makes it impossible for an NI to access all
of physical memory such that even with an on-board MMU it is
very difficult to support arbitrary-sized communication segments.

4 Two U-Net implementations

The U-Net architecture has been implemented on SPARCsta-
tions running SunOS 4.1.3 and using two generations of Fore Sys-
tems ATM interfaces. The first implementation uses the Fore SBA-
100 interface and is very similar to an Active Messages implemen-
tation on that same hardware described elsewhere[28]. The second
implementation uses the newer Fore SBA-200 interface and repro-
grams the on-board i960 processor to implement U-Net directly.
Both implementations transport messages in AAL5 packets and
take advantage of the ATM virtual channel identifiers in that all
communication between two endpoints is associated with a trans-
mit/receive VCI pair

1

.

4.1 U-Net using the SBA-100

The Fore Systems SBA-100 interface operates using pro-
grammed I/O to store cells into a 36-cell deep output FIFO and to
retrieve incoming cells from a 292-cell deep input FIFO. The only

1. ATM is a connection-oriented network that uses virtual channel
identifiers (VCIs) to name one-way connections.

function performed in hardware beyond serializing cells onto the
fiber is ATM header CRC calculation. In particular, no DMA, no
payload CRC calculation

2

, and no segmentation and reassembly of
multi-cell packets are supported by the interface. The simplicity of
the hardware requires the U-Net architecture to be implemented in
the kernel by providing emulated U-Net endpoints to the applica-
tions as described in §3.5.

The implementation consists of a loadable device driver and a
user-level library implementing the AAL5 segmentation and reas-
sembly (SAR) layer. Fast traps into the kernel are used to send and
receive individual ATM cells: each is carefully crafted in assembly
language and is quite small (28 and 43 instructions for the send
and receive traps, respectively).

The implementation was evaluated on two 60Mhz SPARCsta-
tion-20s running SunOS 4.1.3 and equipped with SBA-100 inter-
faces. The ATM network consists of 140Mbit/s TAXI fibers
leading to a Fore Systems ASX-200 switch. The end-to-end round
trip time of a single-cell message is 66

µ

s. A consequence of the
lack of hardware to compute the AAL5 CRC is that 33% of the
send overhead and 40% of the receive overhead in the AAL5 pro-
cessing is due to CRC computation.

The cost breakup is shown
in Table 1. Given the send and receive overheads, the

band-
width is limited to 6.8MBytes/s for packets of 1KBytes.

4.2 U-Net using the SBA-200

The second generation of ATM network interfaces produced by
Fore Systems, the SBA-200, is substantially more sophisticated
than the SBA-100 and includes an on-board processor to acceler-
ate segmentation and reassembly of packets as well as to transfer
data to/from host memory using DMA. This processor is con-
trolled by firmware which is downloaded into the on-board RAM
by the host. The U-Net implementation described here uses custom
firmware to implement the base-level architecture directly on the
SBA-200.

The SBA-200 consists of a 25Mhz Intel i960 processor,
256Kbytes of memory, a DMA-capable I/O bus (Sbus) interface, a
simple FIFO interface to the ATM fiber (similar to the SBA-100),
and an AAL5 CRC generator. The host processor can map the
SBA-200 memory into its address space in order to communicate
with the i960 during operation.

The experimental set-up used consists of five 60Mhz SPARCS-
tation-20 and three 50Mhz SPARCStation-10 workstations con-
nected to a Fore Systems ASX-200 ATM switch with 140Mbit/s
TAXI fiber links.

4.2.1 Fore firmware operation and performance

The complete redesign of the SBA-200 firmware for the U-Net
implementation was motivated by an analysis of Fore’s original
firmware which showed poor performance. The apparent rationale
underlying the design of Fore’s firmware is to off-load the specifics

2. The card calculates the AAL3/4 checksum over the payload but
not the AAL5 CRC required here.

Operation Time (µs)

1-way send and rcv across
switch (at trap level) 21

Send overhead (AAL5) 7

Receive overhead (AAL5) 5

Total (one-way) 33

Table 1: Cost breakup for a single-cell round-trip (AAL5)

8/21/95 7

of the ATM adaptation layer processing from the host processor as
much as possible. The kernel-firmware interface is patterned after
the data structures used for managing BSD

mbufs

 and System V
streams bufs. It allows the i960 to traverse these data structures
using DMA in order to determine the location of message data, and
then to move it into or out of the network rather autonomously.

The performance potential of Fore’s firmware was evaluated
using a test program which maps the kernel-firmware interface
data structures into user space and manipulates them directly to
send raw AAL5 PDUs over the network. The measured round-trip
time was approximately 160

µ

s while the maximum bandwidth
achieved using 4Kbyte packets was 13Mbytes/sec. This perfor-
mance is rather discouraging: the round-trip time is almost 3 times
larger than using the much simpler and cheaper SBA-100 inter-
face, and the bandwidth for reasonable sized packets falls short of
the 15.2Mbytes/sec peak fiber bandwidth.

A more detailed analysis showed that the poor performance can
mainly be attributed to the complexity of the kernel-firmware
interface. The message data structures are more complex than nec-
essary and having the i960 follow linked data structures on the
host using DMA incurs high latencies. Finally, the host processor
is much faster than the i960 and so off-loading can easily backfire.

4.2.2 U-Net firmware

The base-level U-Net implementation for the SBA-200 modifies
the firmware to add a new U-Net compatible interface

1

. The main
design considerations for the new firmware were to virtualize the
host-i960 interface such that multiple user processes can commu-
nicate with the i960 concurrently, and to minimize the number of
host and i960 accesses across the I/O bus.

The new host-i960 interface reflects the base-level U-Net archi-
tecture directly. The i960 maintains a data structure holding the
protection information for all open endpoints. Communication
segments are pinned to physical memory and mapped into the
i960’s DMA space, receive queues are similarly allocated such that
the host can poll them without crossing the I/O bus, while send and
free queues are actually placed in SBA-200 memory and mapped
into user-space such that the i960 can poll these queues without
DMA transfers.

The control interface to U-Net on the i960 consists of a single
i960-resident command queue that is only accessible from the ker-
nel. Processes use the system call interface to the device driver that
implements the kernel resident part of U-Net. This driver assists in
providing protection by validating requests for the creation of
communication segments and related endpoints, and by providing
a secure interface between the operating system service that man-
ages the multiplexing tags and the U-Net channel registration with
the i960. The tags used for the ATM network consist of a VCI pair
that implements full duplex communication (ATM is a connection
oriented network and requires explicit connection set-up even
though U-Net itself is not connection oriented). The communica-
tion segments and message queues for distinct endpoints are dis-
joint and are only present in the address space of the process that
creates the endpoint.

In order to send a PDU, the host uses a double word store to the
i960-resident transmit queue to provide a pointer to a transmit
buffer, the length of the packet and the channel identifier to the
i960. Single cell packet sends are optimized in the firmware
because many small messages are less than a cell in size. For larger
sized messages, the host-i960 DMA uses three 32-byte burst trans-

1. For software engineering reasons, the new firmware’s function-
ality is a strict superset of Fore’s such that the traditional net-
working layers can still function while new applications can use
the faster U-Net.

fers to fetch two cells at a time and computes the AAL5 CRC using
special SBA-200 hardware.

To receive cells from the network, the i960 periodically polls the
network input FIFO. Receiving single cell messages is special-
cased to improve the round-trip latency for small messages. The
single cell messages are directly transferred into the next receive
queue entry which is large enough to hold the entire message—this
avoids buffer allocation and extra DMA for the buffer pointers.
Longer messages are transferred to fixed-size receive buffers
whose offsets in the communication segment are pulled off the
i960-resident free queue. When the last cell of the packet is
received, the message descriptor containing the pointers to the
buffers is DMA-ed into the next receive queue entry.

4.2.3 Performance

Figure 3 shows the round trip times for messages up to 1K
bytes, i.e., the time for a message to go from one host to another
via the switch and back. The round-trip time is 65

µ

s for a one-cell
message due to the optimization, which is rather low, but not quite
at par with parallel machines, like the CM-5, where custom net-
work interfaces placed on the memory bus (Mbus) allow round-
trips in 12

µ

s. Using a UNIX signal to indicate message arrival
instead of polling adds approximately another 30

µ

s on each end.
Longer messages start at 120

µ

s for 48 bytes and cost roughly an
extra 6

µ

s per additional cell (i.e., 48 bytes). Figure 4 shows the
bandwidth over the raw base level U-Net interface in Mbytes/sec
for message sizes varying from 4 bytes to 5Kbytes. It is clear from
the graph that with packet sizes as low as 800 bytes, the fiber can
be saturated.

4.2.4 Memory requirements

The current implementation pins pages used in communication
segments down to physical memory and maps them into the SBA-
200’s DMA space. In addition, each endpoint has its own set of

Figure 3: U-Net round-trip times as a function of message
size. The Raw U-Net graph shows the round-trip times for a
simple ping-pong benchmark using the U-Net interface
directly. The inset graph highlights the performance on small
messages. The UAM line measures the performance of U-Net
Active Messages using reliable single-cell requests and
replies whereas UAM xfer uses reliable block transfers of arbi-
trary size.

0

50

100

150

200

250

0

25
6

51
2

76
8

10
24

us

bytes

Raw U-Net

UAM

UAM xfer

60

70

80

90

100

110

120

130

0 12 24 36 48 60

R
aw

 U
-N

et

UAM

UAM
xfer

8/21/95 8

send, receive and free buffer queues, two of which reside on the
i960 and are mapped to user-space. The number of distinct applica-
tions that can be run concurrently is therefore limited by the
amount of memory that can be pinned down on the host, the size of
the DMA address space and, the i960 memory size. Memory
resource management is an important issue if access to the net-
work interface is to be scalable. A reasonable approach would be
to provide a mechanism by which the i960, in conjunction with the
kernel, would provide some elementary memory management
functions which would allow dynamic allocation of the DMA
address space to the communication segments of active user pro-
cesses. The exact mechanism to achieve such an objective without
compromising the efficiency and simplicity of the interface
remains a challenging problem.

5 U-Net Active Messages implementation and per-
formance

The U-Net Active Messages (UAM) layer is a prototype that
conforms to the Generic Active Messages (GAM) 1.1 specifica-
tion[9]. Active Messages is a mechanism that allows efficient over-
lapping of communication with computation in multiprocessors.
Communication using Active Messages is in the form of requests
and matching replies. An Active Message contains the address of a
handler that gets called on receipt of the message followed by upto
four words of arguments. The function of the handler is to pull the
message out of the network and integrate it into the ongoing com-
putation. A request message handler may or may not send a reply
message. However, in order to prevent live-lock, a reply message
handler cannot send another reply.

Generic Active Messages consists of a set of primitives that
higher level layers can use to initialize the GAM interface, send
request and reply messages and perform block gets and stores.
GAM provides reliable message delivery which implies that a

Figure 4: U-Net bandwidth as a function of message size. The
AAL-5 limit curve represents the theoretical peak bandwidth
of the fiber (the sawtooths are caused by the quantization into
48-byte cells). The Raw U-Net measurement shows the band-
width achievable using the U-Net interface directly, while
UAM store/get demonstrate the performance of reliable U-Net
Active Messages block transfers.

0

20

40

60

80

100

120

140
0

51
2

10
24

15
36

20
48

25
60

30
72

35
84

40
96

46
08

51
20

0

2

4

6

8

10

12

14

16

Mbits/s Mbytes/s

AAL5 limit

 Raw
U-Net UAM

store/get

bytes

message that is sent will be delivered to the recipient barring net-
work partitions, node crashes, or other catastrophic failures.

5.1 Active Messages implementation

The UAM implementation consists of a user level library that
exports the GAM 1.1 interface and uses the U-Net interface. The
library is rather simple and mainly performs the flow-control and
retransmissions necessary to implement reliable delivery and the
Active Messages-specific handler dispatch.

5.1.1 Flow Control Issues

In order to ensure reliable message delivery, UAM uses a win-
dow-based flow control protocol with a fixed window size (

w

).
Every endpoint preallocates a total of 4

w

 transmit and receive
buffers for every endpoint it communicates with. This storage
allows

w

 requests and

w

 replies to be kept in case retransmission is
needed and it allows 2

w

 request and reply messages to arrive with-
out buffer overflow.

Request messages which do not generate a reply are explicitly
acknowledged and a standard “go back N” retransmission mecha-
nism is used to deal with lost requests or replies. The flow control
implemented here is an end-to-end flow control mechanism which
does not attempt to minimize message losses due to congestion in
the network.

5.1.2 Sending and Receiving

To send a request message, UAM first processes any outstand-
ing messages in the receive queue, drops a copy of the message to
be sent into a pre-allocated transmit buffer and pushes a descriptor
onto the send queue. If the send window is full, the sender polls for
incoming messages until there is space in the send window or until
a time-out occurs and all unacknowledged messages are retrans-
mitted. The sending of reply messages or explicit acknowledg-
ments is similar except that no flow-control window check is
necessary.

The UAM layer receives messages by explicit polling. On mes-
sage arrival, UAM loops through the receive queue, pulls the mes-
sages out of the receive buffers, dispatches the handlers, sends
explicit acknowledgments where necessary, and frees the buffers
and the receive queue entries.

5.2 Active Messages micro-benchmarks

Four different micro-benchmarks were run to determine the
round trip times and block transfer bandwidths:

For single cell messages, the round trip time for bulk transfers,
the bandwidth for bulk store and the bandwidth for bulk get opera-
tions.
1. The single-cell round trip time was estimated by repeatedly

sending a single cell request message with 0 to 32 bytes of data
to a remote host specifying a handler that replies with an identi-
cal message. The measured round trip times are shown in
Figure 3 and start at 71

µ

s which suggests that the UAM over-
head over raw U-Net is about 6

µ

s. This includes the costs to
send a request message, receive it, reply and receive the reply.

2. The block transfer round-trip time was measured similarly by
sending messages of varying sizes back and forth between two
hosts. Figure 3 shows that the time for an

N

-byte transfer is
roughly . The per-byte cost is higher than for
Raw U-Net because each one-way UAM transfer involves two
copies (from the source data structure into a send buffer and
from the receive buffer into the destination data structure).

3. The block store bandwidth was measured by repeatedly storing
a block of a specified size to a remote node in a loop and mea-
suring the total time taken. Figure 4 shows that the bandwidth
reaches 80% of the AAL-5 limit with blocks of about 2Kbytes.

135µs N 0.2µs⋅+

8/21/95 9

The dip in performance at 4164 bytes is caused by the fact that
UAM uses buffers holding 4160 bytes of data and thus addi-
tional processing time is required. The peak bandwidth at
4Kbytes is 14.8Mbytes/s.

4. The block get bandwidth was measured by sending a series of
requests to a remote node to fetch a block of specified size and
waiting until all blocks arrive. The block get performance is
nearly identical to that of block stores.

5.3 Summary

The performance of Active Messages shows that the U-Net
interface is well suited for building higher-level communication
paradigms used by parallel languages and run-times. The main
performance penalty of UAM over raw U-Net is due to the cost of
implementing reliability and removing the restrictions of the com-
munication segment size: UAM must send acknowledgment mes-
sages and it copies data into and out of buffers in the
communication segment. For large transfers there is virtually no
bandwidth loss due to the extra copies, but for small messages the
extra overhead of the copies and the acknowledgments is notice-
able.

Overall, the performance of UAM is so close to raw U-Net that
using the raw interface is only worthwhile if control over every
byte in the AAL-5 packets is required (e.g., for compatibility) or if
significant benefits can be achieved by using customized retrans-
mission protocols.

6 Split-C application benchmarks

Split-C[7] is a simple parallel extension to C for programming
distributed memory machines using a global address space
abstraction. It is implemented on top of U-Net Active Messages
and is used here to demonstrate the impact of U-Net on applica-
tions written in a parallel language. A Split-C program comprises
one thread of control per processor from a single code image and
the threads interact through reads and writes on shared data. The
type system distinguishes between local and global pointers such
that the compiler can issue the appropriate calls to Active Mes-
sages whenever a global pointer is dereferenced. Thus, dereferenc-
ing a global pointer to a scalar variable turns into a request and
reply Active Messages sequence exchange with the processor
holding the data value. Split-C also provides bulk transfers which
map into Active Message bulk gets and stores to amortize the over-
head over a large data transfer.

Split-C has been implemented on the CM-5, Paragon, SP-1,
Meiko CS-2, IBM SP-2, and Cray T3D supercomputers as well as
over U-Net Active Messages. A small set of application bench-
marks is used here to compare the U-Net version of Split-C to the
CM-5[7,29] and Meiko CS-2[25] versions. This comparison is par-
ticularly interesting as the CM-5 and Meiko machines are easily
characterized with respect to the U-Net ATM cluster as shown in
Table 2: the CM-5’s processors are slower than the Meiko’s and

Machine CPU
speed

message
overhead

round-trip
latency

network
bandwidth

CM-5 33 Mhz
Sparc-2

3µs 12µs 10Mb/s

Meiko
CS-2

40Mhz
Supersparc

11µs 25µs 39Mb/s

U-Net
ATM

50/60 Mhz
Supersparc

6µs 71µs 14Mb/s

Table 2: Comparison of CM-5, Meiko CS-2, and U-Net ATM
cluster computation and communication performance charac-
teristics

the ATM cluster’s, but its network has lower overheads and laten-
cies. The CS-2 and the ATM cluster have very similar characteris-
tics with a slight CPU edge for the cluster and a faster network for
the CS-2.

The Split-C benchmark set used here is comprised of seven pro-
grams: a blocked matrix multiply[7], a sample sort optimized for
small messages[8], the same sort optimized to use bulk trans-
fers[25], two radix sorts similarly optimized for small and bulk
transfers, a connected components algorithm[20], and a conjugate
gradient solver. The matrix multiply and the sample sorts have
been instrumented to account for time spent in local computation
phases and in communication phases separately such that the time
spent in each can be related to the processor and network perfor-
mance of the machines. The execution times for runs on eight pro-
cessors are shown in Figure 5; the times are normalized to the total
execution time on the CM-5 for ease of comparison. The matrix
multiply uses matrices of 4 by 4 blocks with 128 by 128 double
floats each. The main loop multiplies two blocks while it
prefetches the two blocks needed in the next iteration. The results
show clearly the CPU and network bandwidth disadvantages of the
CM-5. The sample sort sorts an array of 4 million 32-bit integers
with arbitrary distribution. The algorithm first samples the keys,
then permutes all keys, and finally sorts the local keys on each pro-
cessor. The version optimized for small messages packs two values
per message during the permutation phase while the one optimized
for bulk transfers presorts the local values such that each processor
sends exactly one message to every other processor. The perfor-

Figure 5: Comparison of seven Split-C benchmarks on the
CM-5, the U-Net ATM cluster, and the Meiko CS-2. The exe-
cution times are normalized to the CM-5 and the computa-
tion/communication breakdown is shown for three
applications.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

netw.
cpu

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

matrix multiply
128x128 16x16

sample sort, 512K
sml msg

blocks blocks
bulk msg

0

1

2

CM-5 ATM Meiko

radix sort
C

M
-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

C
M

-5

A
T

M

M
ei

ko

small msg
radix sort
bulk msg

connected
components

conjugate
gradient

8/21/95 10

mance again shows the CPU disadvantage of the CM-5 and in the
small message version that machine’s per-message overhead
advantage. The ATM cluster and the Meiko come out roughly
equal with a slight CPU edge for the ATM cluster and a slight net-
work bandwidth edge for the Meiko. The bulk message version
improves the Meiko and ATM cluster performance dramatically
with respect to the CM-5 which has a lower bulk-transfer band-
width. The performance of the radix sort and the connected com-
ponents benchmarks further demonstrate that the U-Net ATM
cluster of workstations is roughly equivalent to the Meiko CS-2
and performs worse than the CM-5 in applications using small
messages (such as the small message radix sort and connected
components) but better in ones optimized for bulk transfers.

7 TCP/IP and UDP/IP protocols.

The success of new abstractions often depends on the level to
which they are able to support legacy systems. In modern distrib-
uted systems the IP protocol suite plays a central role, its availabil-
ity on many platforms provides a portable base for large classes of
applications. Benchmarks are available to test the various TCP/IP
and UDP/IP implementations, with a focus on bandwidth and
latency as a function of application message size.

Unfortunately the performance of kernelized UDP and TCP pro-
tocols in SunOS combined with the vendor supplied ATM driver
software has been disappointing: the maximum bandwidth with
UDP is only achieved by using very large transfer sizes (larger
than 8Kbytes), while TCP will not offer more than 55% of the
maximum achievable bandwidth. The observed round-trip latency,
however, is even worse: for small messages the latency of both
UDP and TCP messages is larger using ATM than going over
Ethernet: it simply does not reflect the increased network perfor-
mance. Figure 6 shows the latency of the Fore-ATM based proto-
cols compared to those over Ethernet.

TCP and UDP modules have been implemented for U-Net using
the base-level U-Net functionality. The low overhead in U-Net
protocol processing and the resulting low-latency form the basis

Figure 6: TCP and UDP round-trip latencies over ATM and
Ethernet. as a function of message size.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

us

bytes

Fore ATM TCP

Fore ATM UDP

Ethernet UDP

Ethernet TCP

for TCP and UDP performance that is close to the raw U-Net per-
formance limits presented in §4.2.

7.1 A proof-of-concept implementation.

The TCP and UDP over U-Net implementation effort has two
goals: first to show that the architecture is able to support the
implementation of traditional protocols and second to create a test
environment in which traditional benchmarks can be used to put
U-Net and kernelized protocol processing into perspective.

By basing the U-Net TCP & UDP implementation on existing
software [5] full protocol functionality and interoperability is
maintained. A number of modules that were not in the critical per-
formance path were not ported to U-Net, namely the ARP and
ICMP modules.

At this point the secure U-Net multiplexor does not have sup-
port for the sharing of a single VCI among multiple channels, mak-
ing it impossible to implement the standard IP-over-ATM transport
mechanism which requires a single VCI to carry all IP traffic for
all applications [21]. For IP-over-U-Net a single channel is used to
carry all IP traffic between two applications, which matches the
standard processing as closely as currently possible. This test setup
does not use an exclusive U-Net channel per TCP connection,
although that would be simple to implement.

Work is in progress to resolve the IP-over-ATM incompatibility
and to implement proper ICMP handling when targeting IPv6 over
U-Net. For this an additional level of demultiplexing is foreseen
and will be based on the IPv6 [flow-id, source address] tag when
packets arrive over the dedicated IP-over-ATM VCI. Packets for
which the tag does not resolve to a local U-Net destination will be
transferred to the kernel communication endpoint for generalized
processing and possibly triggering ICMP handling. This will yield
an implementation that is fully interoperable with other IP-over-
ATM implementations and will cover both local and wide-area
communication.

7.2 The protocol execution environment.

The TCP/IP suite of protocols is frequently considered to be ill-
suited for use over high-speed networks such as ATM. However,
experience has shown that the core of the problems with TCP/IP
performance usually lie in the particular

implementations

 and their

integration

 into the operating system and not with the protocols
themselves. This is indeed the case with the Fore driver software
which tries to deal with the generic low-performance buffer strate-
gies of the BSD based kernel.

Using U-Net the protocol developer does not experience a
restrictive environment (like the kernel) where the use of general-
ized buffer and timer mechanisms is mandatory and properties of
network and application can not be incorporated in the protocol
operation. U-Net gives the developer the freedom to design proto-
cols and protocol support software such as timer and buffer mech-
anisms, that are optimized for the particular application and the
network technology used. This yields a toolbox approach to proto-
col and application construction where designers can select from a
variety of protocol implementations.

As a result, U-Net TCP and UDP deliver the low-latency and
high bandwidth communication expected of ATM networks with-
out resorting to excessive buffering schemes or the use of large
network transfer units, while maintaining interoperability with
non-U-Net implementations.

7.3 Message handling and staging.

One of the limiting factors in the performance of kernel based
protocols is the bounded kernel resources available, which need to
be shared between many potential network-active processes. By
implementing protocols at user-level, efficient solutions are avail-

8/21/95 11

able for problems which find their origin in the use of the operating
system kernel as the single protocol processing unit. Not only does
U-Net remove all copy operations from the protocol path but it
allows for the buffering and staging strategies to depend on the
resources of the application instead of the scarce kernel network
buffers.

An example is the restricted size of the socket receive buffer
(max. 52Kbytes in SunOS), which has been a common problem
with the BSD kernel communication path: already at Ethernet
speeds buffer overrun is the cause of message loss in the case of
high bandwidth UDP data streams. By removing this restriction,
the resources of the actual recipient, instead of those of the inter-
mediate processing unit, now become the main control factor and
this can be tuned to meet application needs and be efficiently
incorporated into the end-to-end flow-control mechanisms.

The deficiencies in the BSD kernel buffer (

mbuf

) mechanism
have been identified long ago [11] and the use of high-performance
networks seem to amplify the impact of this mechanism even
more, especially in combination with the Fore driver buffering
scheme. Figure 7 shows the UDP throughput with the saw-tooth
behavior that is caused by the buffer allocation scheme where first
large 1Kbyte buffers are filled with data and the remainder, if less
than 512 bytes, is copied into small mbufs of 112 bytes each. This
allocation method has a strong degrading effect on the perfor-
mance of the protocols because the smaller mbufs do not have a
reference count mechanism unlike the large cluster buffers.

Although an alternative kernel buffering mechanism would sig-
nificantly improve the message handling in the kernel and cer-
tainly remove the saw-tooth behavior seen in Figure 7, it is
questionable if it will contribute as significantly to latency reduc-
tion as, for example, removing kernel-application copies
entirely [18].

Base-level U-Net provides a scatter-gather message mechanism
to support efficient construction of network buffers. The data
blocks are allocated within the receive and transmit communica-
tion segments and a simple reference count mechanism added by
the TCP and UDP support software allows them to be shared by
several messages without the need for copy operations.

7.4 Application controlled flow-control and feedback.

One the major advantages of integrating the communication
subsystem into the application is that the application can be made

Figure 7: UDP bandwidth as a function of message size.

0

20

40

60

80

100

120

140

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

0

2

4

6

8

1 0

1 2

1 4

1 6

Mbits/s Mbytes/s

bytes

U-Net UDP

Fore UDP
sender

Fore UDP
receiver

aware of the state of the communication system and thus can take
application specific actions to adapt itself to changing circum-
stances. Kernel based communication systems often have no other
facility than to block or deny a service to an application, without
being able to communicate any additional information.

At the sending side, for example, feedback can be provided to
the application about the state of the transmission queues and it is
simple to establish a back-pressure mechanism when these queues
reach a high-water mark. Among other things, this overcomes
problems with the current SunOS implementation which will drop
random packets from the device transmit queue if there is overload
without notifying the sending application.

Other protocol specific information such as retransmission
counters, round trip timers, and buffer allocation statistics are all
readily available to the application and can be used to adapt com-
munication strategies to the status of the network. The receive win-
dow under U-Net/TCP, for example, is a direct reflection of the
buffer space at the application and not at the intermediate process-
ing unit, allowing for a close match between application level flow
control and the receive-window updates.

7.5 IP

The main functionality of the IP protocol is to handle the com-
munication path and to adapt messages to the specifics of the
underlying network. On the receiving side IP-over-U-Net is liberal
in the messages that it accepts, and it implements most of the IP
functionality, except for the forwarding of messages and the inter-
facing to ICMP. A transport protocol is selected and the U-Net
demultiplex information is passed on to the transport module to
possibly assist in destination selection.

On the sending side the functionality of the IP protocol is
reduced to mapping messages into U-Net communication chan-
nels. Because of this reduced functionality, this side of the protocol
is collapsed into the transport protocols for efficient processing.

IP over U-Net exports an MTU of 9Kbytes and does not support
fragmentation on the sending side as this is known to be a potential
source for wasting bandwidth and triggering packet retransmis-
sions [19]. TCP provides its own fragmentation mechanism and
because of the tight coupling of application and protocol module it
is relatively simple for the application to assist UDP in achieving
the same functionality.

7.6 UDP

The core functionality of UDP is twofold: an additional layer of
demultiplexing over IP based on port identifiers and some protec-
tion against corruption by adding a 16 bit checksum on the data
and header parts of the message. In the U-Net implementation the
demultiplexing is simplified by using the source endpoint informa-
tion passed-on by U-Net. A simple pcb caching scheme per incom-
ing channel allows for significant processing speedups, as
described by [23]. The checksum adds a processing overhead of
1

µ

s per 100 bytes on a SPARCStation 20 and can be combined
with the copy operation that retrieves the data from the communi-
cation segment. It can also be switched off by applications that use
data protection at a higher level or are satisfied with the 32-bit
CRC at the U-Net AAL5 level.

The performance of U-Net UDP is compared to the kernel based
UDP in Figures 6 and 7. The first shows the achieved bandwidth
while the latter plots the end-to-end round-trip latency as a func-
tion of message size. For the kernel UDP the bandwidth is mea-
sured as perceived at the sender and as actually received: the losses
can all be attributed to kernel buffering problems at both sending
and receiving hosts. With the same experimental set-up, U-Net
UDP does not experience any losses and only the receive band-
width is shown.

8/21/95 12

7.7 TCP

TCP adds two properties that make it an attractive protocol to
use in a number of settings: reliability and flow control. Reliability
is achieved through a simple acknowledgment scheme and flow
control through the use of advertised receive windows.

The performance of TCP does not depend as much on the rate
with which the data can be pushed out on the network as on the
product of bandwidth and round-trip time, which indicates the
amount of buffer space needed to maintain a steady reliable high
speed flow. The window size indicates how many bytes the module
can send before it has to wait for acknowledgments and window
updates from the receiver. If the updates can be returned to the
sender in a very timely manner only a relatively small window is
needed to achieve the maximum bandwidth. Figure 8 shows that in
most cases U-Net TCP achieves a 14-15 Mbytes/sec bandwidth
using an 8Kbyte window, while even with a 64K window the ker-
nel TCP/ATM combination will not achieve more than 9-
10 Mbytes/sec. The round-trip latency performance of both kernel
and U-Net TCP implementations is shown in Figure 9 and high-
lights the fast U-Net TCP round-trip which permits the use of a
small window.

7.8 TCP tuning.

TCP over high-speed networks has been studied extensively,
especially over wide-area networks [17] and a number of changes
and extensions have been proposed to make TCP function cor-
rectly in settings where a relatively high delay can be expected.
These changes need to be incorporated into the U-Net TCP imple-
mentation if it is to function across wide-area links where the high
latencies no longer permit the use of small windows.

It has been argued lately that the same changes are also needed
for the local area case in order to address the deficiencies that
occur because of the high latency of the ATM kernel software. U-
Net TCP shows that acceptable performance can be achieved in
LAN and MAN settings without any modifications to the general
algorithms, without the use of large sequence numbers, and with-
out extensive buffer reservations.

Tuning a number of the TCP transmission control variables is
not without risk when running over ATM [24] and should be done
with extreme caution. The low latency of U-Net allows for very

Figure 8: TCP bandwidth as a function of data generation by
the application.

0

20

40

60

80

100

120

140

0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

0

2

4

6

8

1 0

1 2

1 4

1 6

Mbits/s Mbytes/s

bytes

U-Net TCP

Fore TCP

conservative settings, therefore minimizing the risk while still
achieving maximum performance.

An important tuning factor is the size of the segments that are
transmitted: using larger segments it is more likely that the maxi-
mum bandwidth can be achieved in cases where low latency is not
available. Romanov & Floyd’s work however has shown that TCP
can perform poorly over ATM if the segment size is large, due to
the fact that the underlying cell reassembly mechanism causes the
entire segment to be discarded if a single ATM cell is dropped. A
number of solutions are available, but none provide a mandate to
use large segment sizes. The standard configuration for U-Net TCP
uses 2048 byte segments, which is sufficient to achieve the band-
width shown in Figure 8.

Another popular approach to compensate for high latencies is to
grow the window size. This allows a large amount of data to be
outstanding before acknowledgments are expected back in the
hope to keep the communication pipe filled. Unfortunately,
increasing the window has a number of drawbacks. First of all, the
large amount of data must be buffered to be available for retrans-
mission. Furthermore, there is a risk of triggering the standard TCP
congestion control mechanism whenever there are two or more
segments dropped within a single window. Tuning the window size
to a large value will increase the chance of this situation occurring,
resulting in a drain of the communication pipe and a subsequent
slow-start. It seems unavoidable to run these risks, even in a LAN
setting, when the protocol execution environment is not able to
guarantee low-latency communication.

A final tuning issue that needed to be addressed within U-Net
TCP is the bad ratio between the granularity of the protocol timers
and the round-trip time estimates. The retransmission timer in TCP
is set as a function of the estimated round trip time, which is in the
range from 60 to 700 microseconds, but the BSD kernel protocol
timer (pr_slow_timeout) has a granularity of 500 milliseconds.
When a TCP packet is discarded because of cell loss or dropped
due to congestion, the retransmit timer is set to a relatively large
value compared to the actual round-trip time. To ensure timely
reaction to possible packet loss U-Net TCP uses a 1 millisecond

Figure 9: UDP and TCP round-trip latencies as a function of
message size.

0

200

400

600

800

1000

1200

1400

1600

0

20
0

40
0

60
0

80
0

10
00

bytes

us

Fore UDP

Fore TCP

U-Net UDP

U-Net TCP

8/21/95 13

timer granularity which is constrained by the reliability of the user-
level timing mechanisms.

The BSD implementation uses another timer (pr_fast_timeout)
for the transmission of a delayed acknowledgment in the case that
no send data is available for piggybacking and that a potential
transmission deadlock needs to be resolved. This timer is used to
delay the acknowledgment of every second packet for up to
200ms. In U-Net TCP it was possible to disable the delay mecha-
nism and thereby achieve more reliable performance. Disabling
this bandwidth conserving strategy is justified by the low cost of
an active acknowledgment, which consists of only a 40 byte
TCP/IP header and thus can be handled efficiently by single-cell
U-Net reception. As a result, the available send window is updated
in the most timely manner possible laying the foundation for max-
imal bandwidth exploitation. In wide-area settings, however, the
bandwidth conservation may play a more important role and thus
the delayed acknowledgment scheme may have to be enabled for
those situations.

8 Summary
The two main objectives of U-Net—to provide efficient low-

latency communication and to offer a high degree of flexibil-
ity—have been accomplished. The processing overhead on mes-
sages has been minimized so that the latency experienced by the
application is dominated by the actual message transmission time.
Table 3 summarizes the various U-Net latency and bandwidth
measurements. U-Net presents a simple network interface archi-
tecture which simultaneously supports traditional inter-networking
protocols as well as novel communication abstractions like Active
Messages.

Using U-Net the round-trip latency for messages smaller than
40 bytes is about 65 µsec. This compares favorably to other recent
research results: the application device channels (U. of Arizona)
achieve 150 µsec latency for single byte messages and 16 byte
messages in the HP Jetstream environment have latencies starting
at 300 µsec. Both research efforts however use dedicated hardware
capable of over 600 Mbits/sec compared to the 140 Mbits/sec stan-
dard hardware used for U-Net.

Although the main goal of the U-Net architecture was to remove
the processing overhead to achieve low-latency, a secondary goal,
namely the delivery of maximum network bandwidth, even with
small messages, has also been achieved. With message sizes as
small as 800 bytes the network is saturated, while at smaller sizes
the dominant bottleneck is the i960 processor on the network inter-
face.

U-Net also demonstrates that removing the kernel from the
communication path can offer new flexibility in addition to high
performance. The TCP and UDP protocols implemented using U-
Net achieve latencies and throughput close to the raw maximum
and Active Messages round-trip times are only a few microseconds
over the absolute minimum.

Protocol Round-trip
latency

Bandwidth
4K packets

Raw AAL5 65µs 120Mbits/s

Active Msgs 71µs 118Mbits/s

UDP 138µs 120Mbits/s

TCP 157µs 115Mbits/s

Split-C store 72µs 118Mbits/s

Table 3: U-Net latency and bandwidth Summary.

The final comparison of the 8-node ATM cluster with the Meiko
CS-2 and TMC CM-5 supercomputers using a small set of Split-C
benchmarks demonstrates that with the right communication sub-
strate networks of workstations can indeed rival these specially-
designed machines. This encouraging result should, however, not
obscure the fact that significant additional system resources, such
as parallel process schedulers and parallel file systems, still need to
be developed before the cluster of workstations can be viewed as a
unified resource.

9 Acknowledgments
U-Net would not have materialized without the numerous dis-

cussions, the many email exchanges, and the taste of competition
we had with friends in the UC Berkeley NoW project, in particular
David Culler, Alan Mainwaring, Rich Martin, and Lok Tin Liu.

The Split-C section was only possible thanks to the generous
help of Klaus Eric Schauser at UC Santa Barbara who shared his
Split-C programs and provided quick access to the Meiko CS-2
which is funded under NSF Infrastructure Grant CDA-9216202.
The CM-5 results were obtained on the UCB machine, funded
under NSF Infrastructure Grant CDA-8722788. Thanks also to the
UCB Split-C group for the benchmarks, in particular Arvind
Krishnamurthy.

Most of the ATM workstation cluster was purchased under con-
tract F30602-94-C-0224 from Rome Laboratory, Air Force Mate-
rial Command. Werner Vogels is supported under ONR contract
N00014-92-J-1866. We also thank Fore Systems for making the
source of the SBA-200 firmware available to us.

In the final phase several reviewers and Deborah Estrin, our
SOSP shepherd, provided helpful comments, in particular on
TCP/IP.

10 References

[1] M. Abbot and L. Peterson. Increasing Network Throughput
by Integrating Protocol Layers. IEEE/ACM Transactions on
Networking. Vol. 1, No. 5, pages 600-610, Oct. 1993.

[2] T.E. Anderson, D.E. Culler, D.A. Patterson, et. al. A Case for
NOW (Networks of Workstations). IEEE Micro, Feb. 1995,
pages 54-64.

[3] M. Bailey, B. Gopal, M. Pagels, L. Peterson and P. Sarkar.
PATHFINDER: A pattern Based Packet Classifier. Usenix
Symposium on Operating Systems Design and implementa-
tion, pages 115-124, Nov. 1994.

[4] M. Blumrich, C. Dubnicki, E. W. Felten and K. Li. Virtual-
Memory-Mapped Network Interfaces. IEEE Micro, Feb.
1995, pages 21-28.

[5] L. Brakmo, S. O’Malley and L. Peterson. TCP Vegas: New
Techniques fro Congestion Detection and Avoidence. In Proc.
of SIGCOMM-94, pages 24-35, Aug 1994.

[6] T. Braun and C. Diot. Protocol Implementation Using Inte-
grated Layer Processing. In Proc. of SIGCOMM-95, Sept
1995.

[7] D. E. Culler, A. Dusseau, S. C. Goldstein, A. Krishnamurthy,
S. Lumetta, T. von Eicken, and K. Yelick. Introduction to
Split-C. In Proc. of Supercomputing '93.

[8] D. E. Culler, A. Dusseau, R. Martin, K. E. Schauser. Fast
Parallel Sorting: from LogP to Split-C. In Proc. of
WPPP '93, July 93.

[9] D.E. Culler, et. al. Generic Active Message Interface Specifi-
cation, version 1.1.
http://now.cs.berkeley.edu/Papers/Papers/gam_spec.ps

8/21/95 14

[10] D. Clark and D. Tennenhouse. Architectural Considerations
for a New Generation of protocols. In Proc. of SICOMM-87,
pages 353-359, Aug. 1987.

[11] D. Clark, V. Jacobson, J. Romkey, H. Salwen. An Analysis of
TCP Processing Overhead. IEEE Communications, pages
23-29, June 1989.

[12] C. Dalton, G. Watson, D. Banks, C. Calamvokis, A. Edwards
and J. Lumley. Afterburner. IEEE Network Magazine, Vol 7,
No. 4, pages 36-43, July 1993.

[13] P. Druschel and L. Peterson. Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility. In Proc. of the 14th SOSP.
pages 189-202. December 1993.

[14] P. Druschel, L. Peterson, and B.S. Davie. Experiences with a
High-Speed Network Adaptor: A Software Perspective. In
Proc. of SIGCOMM-94, pages 2-13, Aug 1994.

[15] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis
and C.Dalton. User-space protocols deliver high perfor-
mance to applications on a low-cost Gb/s LAN. In Proc. of
SIGCOMM-94, pages 14-23, Aug. 1994

[16] S. Floyd, V. Jacobson and S. McCanne. A Reliable Multicast
Framework for Light-weight Sessions and Application Level
Framing. In Proc. of SIGCOMM-95, Sept 1995.

[17] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for
High Performance. IETF Request for Comments 1323, May
1992.

[18] J. Kay and J. Pasquale. The importance of Non-Data Touch-
ing Processing Overheads. In Proc. of SIGCOMM-93, pages
259-269, Aug. 1993

[19] C. Kent and J. Mogul. Fragmentation Considered Harmful In
Proc. of SIGCOMM-87. pages 390-410. Aug 1987.

[20] A. Krishnamurthy, S. Lumetta, D. E. Culler, and K. Yelick.
Connected Components on Distributed Memory Machines.
DIMACS Series in Discrete Mathematics and Theoretical
Computer Science

[21] M. Laubach. Classical IP and ARP over ATM. IETF Request
for Comments 1577, January 1994.

[22] C. Maeda and B. N. Bershad. Protocol Service Decomposi-
tion for High-Performance Networking. In Proc. of the 14th
SOSP, pages 244-255. Dec. 1993.

[23] C. Partridge and S. Pink. A Faster UDP. IEEE/ACM Trans-
actions on Networking, Vol. 1, No. 4, pages 429-440, Aug.
1993.

[24] A. Romanow and S. Floyd. Dynamics of TCP traffic over
ATM networks. In Proc. of SIGCOMM-94. pages 79-88,
Aug. 94.

[25] K. E. Schauser and C. J. Scheiman. Experience with Active
Messages on the Meiko CS-2. In Proc. of the 9th International
Parallel Processing Symposium (IPPS'95), Santa Barbara,
CA, April 1995.

[26] Brian C. Smith. Cyclic-UDP: A Priority-Driven Best-Effort
Protocol.
http://www.cs.cornell.edu/Info/Faculty/bsmith/nossdav.ps.

[27] C. A. Thekkath, H. M. Levy, and E. D. Lazowska. Separating
Data and Control Transfer in Distributed Operating Systems.
In Proc. of the 6th Int’l Conf. on ASPLOS, Oct 1994.

[28] T. von Eicken, Anindya Basu and Vineet Buch. Low-Latency
Communication Over ATM Networks Using Active Messages.

IEEE Micro, Feb. 1995, pages 46-53.

[29] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser. Active Messages: A Mechanism for Integrated
Communication and Computation. In Proc. of the 19th ISCA,
pages 256-266, May 1992.

