
Meteor Strike  
(CS739 Fall ‘15 Midterm)

A meteor has struck the Earth, and all that is left are these brief essays/pictures/etc. on how to 
build distributed computer systems. Apparently, distributed computer systems are important, so 
we need to understand how to build them. Although we still have not figured out how to “grow 
food” or even what the fancy word “agriculture” means, we are hoping that distributed systems 
will be enough to feed society and move humanity forward after this tragic accident.

Can you help us reconstruct the truth from these fragments? We hope so, because you’re the 
only one left who seems to know anything about “computers” at all. Good luck!
 

Meteor Striking the Earth 
(Artist’s* Rendition)

*: Not a good Artist.

NAME:  

STUDENT 



1. There is a paper on something apparently called Remote Procedure Call. Here is the text 
we recovered: 

“When the callee machine receives this packet the appropriate 
procedure is invoked. When the procedure returns, a result packet 
containing the same call identifier, and the results, is sent back to 
the caller. 

The call identifier consists of the calling machine identifier, a 
machine-relative identifier of the calling process, and a sequence 
number.” 

What is this call identifier used for? Why are all the pieces of it needed?

2. We have also uncovered a paper seemingly about “fast user-level networks”. This U-net 
system seems to be the key to making distributed systems work efficiently. The fragment we 
found from that paper is here:

“… receive queues are similarly allocated such that the host can poll 
them without crossing the I/O bus, while send and free queues are 
actually placed in [can’t read this part] and mapped into user-space 
such that …” 

What issue are the authors talking about here? What are these “receive, send, free” queues, 
and how are they placed in the SBA-200 implementation of U-net?



3. Our deep research team has discovered a paper on an apparently critical technology, TCP. 
We have deduced that sometimes TCP suffered from an incast problem. What is this incast 
problem? What conditions must hold true for it to happen? (we believe there are three, but are 
not sure). Can you help us?

4. We have also found a famous paper on how to build fault tolerant systems. Apparently it is by 
a man whose name is Jim and whose last name is something also quite unmemorable. This 
paper is full of data on what is likely to fail. We have uncovered one such table:

We also found the following text:

“The implications of these statistics are clear: the key to high 
availability is tolerating …” 

Unfortunately, the rest of the system was actually hit by a piece of the meteor, and is now lost to 
history. What is availability? What are they keys to high availability according to the author? 



5. We found a paper that tells us how disk drives fail; it is by “Bianca Schroeder” and “Garth 
Gibson” - we think (but are not sure) that they were a rock duet who also wrote papers on 
system failure. Here is one of the pictures we recovered from their paper:

Why is this figure in the paper? Is this simply a summary of the main results, or perhaps just 
something related to guitars? Do you know what the main result (that relates to this figure) of 
the paper is?

6. Another paper on disk corruption has been found, with this vexing sentence:

“A second component of the data integrity segment is block identity 
information. In this case, the fact that the file system is part of 
the storage system is utilized. The identity is the disk block’s 
identity within the file system (e.g., this block belongs to inode 5 
at offset 100).” 

What is this block identity information used for? Why is it needed? 



7. These figures were located within a paper on the topic of LSEs.

First, what is an LSE? (explain)

Why were these two figures included in the paper? 

Why are the authors differentiating between nearline and enterprise drives?

8. We have concluded that distributed systems have “bugs” in them, which is apparently quite a 
bad thing. We have also concluded we should figure out how to find the bugs automatically. 
Fortunately, we have found a technique that may help. Here is the snippet of a relevant paper:

“To scale dmck [distributed system model checking?], we introduce 
semantic-aware model checking (SAMC), a white-box principle that takes 
simple semantic information of the target system and incorporates that 
knowledge…” 

What problem do typical “model checkers” run into? How does semantic information help?



9. An old paper on a technology known as Flash-based SSDs has also been discovered. 
Unfortunately, a part of an essential graph is missing (boxed in red). It looks like this:

Can you fill in the missing parts of the graph? Why does the graph have the shape that it does?

10. Time was apparently salient in these distributed systems. So much so that one guy named 
Lamport made up some stuff about time and started drawing pictures. Here is one:

Lamport claims that there is something called a happens-before relation, and that some happens-before 
relations can be obviously seen from the figure, and worse, that happens-before is transitive. But, we 
can’t figure this out. Can you tell us what happens-before means? Can you show us an example of the 
transitive nature of happens-before on this picture?



11. Amazingly, somebody improved on the genius Lamport and created vector clocks. 
Unfortunately, the diagram that was left was incomplete. Can you fill the values of these vectors, 
so we can figure out the rules? (we’ve put red boxes where the missing values are).

In what way are vector clocks better than Lamport clocks? Do you know?

12. We have also uncovered a distributed file system called NFS. Apparently this NFS was used 
quite a bit before the meteor hit. Everywhere we look, documents say that NFS writes are 
synchronous. What does this mean? Why is it needed? We think it slows systems down; can 
we remove this behavior from NFS?



13. NFS also apparently implemented some weird feature to preserve “compatibility”. We don’t 
know what compatibility they are talking about; maybe you can help us make sense of this 
sentence?

“…[what we did was] check in the client VFS remove operation if the 
file is open, and if so rename it instead of removing it….” 

What feature are they talking about here? Why is this behavior necessary?

14. NFS wasn’t the only distributed file system in use before the meteor strike. At some 
incredible school in the “middle west” known as “the University of Wisconsin”, the people there 
used AFS, which is clearly different because you know A is different than N.

Here is the one cryptic quote we found about AFS:

“In a conventional 4.2BSD system, a file has a unique, fixed-length 
name, its inode, and one or more variable-length pathnames that map to 
this inode. The routine that performs this mapping, namei, is usually 
one of the most heavily used and time consuming parts of the kernel. 
In our prototype, Venus was aware only of pathnames …” 

What are the authors talking about here? What problem were they having? How did they fix it?



15. In the days before the strike, some systems ran “servers” and apparently making these 
servers as fast as possible was important. One early system to do this, we have learned, was 
called Flash. The following paragraph details a problem the Flash authors found:

“In these operating systems, non-blocking read and write operations 
work as expected on network sockets and pipes, but may actually block 
when used on disk files.” 

Why do the authors think this is an important fact? What can be done about it when developing 
these high-performance servers?

16. The Coda paper we found uses the term hoarding to refer to some important activity. What 
is hoarding? Why is it important in this so-called Coda work? 



17. We recently discovered another critical piece of information about how old distributed 
systems used to work, in an effort known as Grapevine. Here is the text we discovered:

“If a change message gets destroyed because of a software bug or 
equipment failure, there is a danger that a permanent inconsistency 
will result.” 

This sounds important! What does it mean?

18. We have stumbled upon another critical idea known as Leases. Here is the fragment of 
paper we recently dug up:

“Short leases also minimize the false write-sharing that occurs.” 

What could this sentence mean? What is false write sharing, and why do short leases help get 
rid of them? 



19. One of our final discoveries relates to a system known as Remus. Unfortunately, the only 
thing we have found about Remus is this:

“Remus is …”

That’s all we could find! Do you know anything about Remus? What is important about it? How 
does Remus work?

20. One last system has recently been chanced upon: HA-NFS. Our snippet does not include 
much information, alas:

“We separate the problem of network file server reliability into three 
different sub-problems: server reliability, disk reliability, and 
network reliability.” 

What do they mean by this confusing sentence? Can you explain this so we can build an HA-
NFS? (once we figure out what that is?)


