A Highly Available Network File Server

Anupam Bhide
IBM T.J. Watson Research Center

Elmootazbellah N. Elnozahy *

Department of Computer Science, Rice University

Stephen P. Morgan
IBM T.J. Watson Research Center

Abstract

This paper presents the design and implementa-
tion of a Highly Available Network File Server
(HA-NFS). We separate the problem of network
file server reliability into three different subprob-
lems: server reliability, disk reliability, and net-
work reliability. HA-NFS offers a different solu-
tion for each: dual-ported disks and impersonation
are used to provide server reliability, disk mirror-
ing can be used to provide disk reliability, and op-
tional network replication can be used to provide
network reliability. The implementation shows
that HA-NFS provides high availability without
the excessive resource overhead or the performance
degradation that characterize traditional replica-
tion methods. Ongoing operations are not aborted
during fail-over and recovery is completely trans-
parent to applications. HA-NFS adheres to the
NFS protocol standard and can be used by exist-
ing NFS clients without modification.

1 Introduction

Traditional approaches for providing reliability in
network file systems by server replication suffer

*Supported by an IBM fellowship.

from excessive resource overheads, performance
degradation, and increased complexity. Replicated
servers use expensive protocols to maintain con-
sistency and coherence, leading to performance
They
also use complex protocols to update the state of a

degradation during failure-free operation.

stale replica when it is repaired after failure. Fur-
ther, handling network partition requires quorum
management, increasing system complexity.

This paper describes the design and imple-
mentation of a Highly Available Network File
Server (HA-NFS) that adheres to the semantics
of SUN’s Network File System' (NFS) [1]. HA-
NFS differs from traditional approaches in that it
considers the problem of providing a reliable net-
work file system as three separate subproblems,
namely: recovering from server failures, recover-
ing from disk failures, and recovering from network
failures. HA-NF'S offers a different solution to each
of these subproblems.

Server failures are tolerated by wusing dual-
ported disks that are accessible to two servers, each
acting as a backup for the other. The disks are
divided into two sets, each served by one server
during normal operation. Each server maintains

!Network File System and NFS are trademarks of Sun
Microsystems, Inc.



on its disks enough information to reconstruct its
current volatile state. The two servers periodi-
cally exchange liveness-checking messages. If one
server fails, its disks will be taken over by the other
server, which will reconstruct the lost volatile state
using the information on disk. Then, it imperson-
ates the failed server, and operation continues with
a potential reduction in performance due to the
increased load. The machines on the network are
oblivious to the failure, and continue to access the
file system using the same address. During normal
operation, the servers communicate only for peri-
odic liveness-checking. The servers do not main-
tain any information about each other’s volatile
state or attempt to access each other’s disks.

Fast recovery from disk failures is achieved by
mirroring files on different disks. However, all
copies of the same file are on disks that are con-
trolled by the same file server, eliminating the over-
head of ensuring consistency and coherence be-
tween the two servers that would otherwise occur.
Since disk failures are not frequent, mirroring is
only used for applications that require continuous
availability. Otherwise, archival backups could be
used to recover from disk failures.

Network failures are tolerated by optional repli-
cation of the network components, including the
transmission medium. However, packets are not
replicated over the two networks. Instead, the net-
work load is distributed over the networks.

HA-NFS servers conform with the server proto-
col of SUN’s NFS. NFS has gained wide acceptance
as a general purpose network file system. By ad-
hering to a standard file system, our results can
have direct application in practical environments.
In addition to adherence to standards, our design
has several important goals:

e Failure and recovery must be completely

transparent to applications running on the
file-server’s clients.
operations in progress to terminate.

A failure must not force

o Failure-free performance must not be penal-
ized to provide high availability.

e NFS client protocol implementations should
not require modification to use HA-NFS
servers.

We have implemented a prototype of HA-NF'S
on a network of workstations and two file servers
from the IBM RISC System/6000 family? of
computing systems running the AIX Version 3
(AIXv3) operating system, and connected by both
a 10 Mbit/s Ethernet network and a 4 Mbit/s to-
ken ring network. We construct dual-ported disks
from off-the-shelf SCSI disks attached to a SCSI
bus that is shared by the two servers. The pro-
totype is operational and has satisfied the design
goals.

In section 2, we present background information
on NFS and AIXv3. We present the design of an
HA-NFS server in section 3. We discuss the per-
formance in section 4. We compare our design to
related work in section 5. Finally, we draw conclu-
sions and outline future work in section 6.

2 Background

HA-NFS is implemented on top of the AIXv3 jour-
naled file system. The AIXv3 file system provides
serializable and atomic modification of file system
meta-data by using transactional locking and log-
ging techniques. File system meta-data are com-
posed of directories, inodes, and indirect blocks.

2RISC System /6000 and AIX are trademarks of Interna-
tional Business Machines Corporation.



Every AIXv3 system call that modifies the meta-
data does so as a transaction, locking meta-data as
they are referenced, and recording the changes in a
disk log before allowing the meta-data to be writ-
ten to their “home” locations on disk. In the case
of system failure, the meta-data are restored to a
consistent state by applying the changes contained
in the log. The reliability of ordinary files is en-
sured by NFS semantics, which require forcing the
data to disk before sending an acknowledgement
to the client.

AIXv3 supports logical volumes, which provide
the abstraction of logical disks. Logical volumes
can be mirrored to provide disk reliability. Each
logical volume can have up to three copies, each
on a different physical disk.

Although NFS is defined as a stateless file server
protocol, most NFS implementations maintain a
small amount of state information. Some NF'S
operations, such as erasing a file, cannot be im-
plemented by idempotent remote procedure calls
(RPC). An NFS server maintains a reply cache® to
remember successful, non-idempotent RPC’s. If
an RPC is unsuccessful, the server uses the reply
cache to tell whether the RPC is a retry of a previ-
ously successful, non-idempotent RPC. If it is, the
server responds to the client that the RPC com-
pleted successfully. HA-NFS records changes to
this volatile state in the AIXv3 disk log, so that
the reply cache can be reconstructed in the case of
failure.

3 HA-NFS Architecture

An HA-NFS node consists of two NF'S servers shar-
ing a number of SCSI buses. Fach shared SCSI

bus and the disks connected to it have one of the

3 Also called a duplicate cache.

servers designated as their primary server. Dur-
ing normal operation, the disks are served only
by their corresponding primary server, the other
server does not access the bus. The primary server
for each bus is selected such that the total load is
balanced (statically) over the two servers. Both
servers act as backups for each other. NFS clients
perceive an HA-NFS node as two independent NF'S
servers, each serving a distinct set of file systems.

Each server has two network interfaces and IP
The server uses its primary interface
for normal operation, and its secondary interface
when impersonating the other server after its fail-
The server also uses its secondary interface
when re-integrating with the system after repair
or maintenance.

addresses.

ure.

Figure 1 shows a single HA-NFS node consisting
of two servers on a single network.

3.1 Normal Operation

During normal operation, a server performs the
operation described in each NFS RPC it receives.
If the operation is successful, the server will record
the meta-data changes in the AIXv3 file system log
and enough information to identify the RPC if it
is non-idempotent. (This information is identical
to that in the volatile reply cache and will be used
in the case of failure to reconstruct the volatile
state.) If the operation completes successfully and
is non-idempotent, the server will add an entry in
its reply cache for the RPC.

If the operation did not complete successfully,
the server will determine whether there is an entry
in the reply cache corresponding to the RPC. If an
entry is found, then the RPC is a retry of a non-
idempotent operation that succeeded before. The
server will reply to the client that the RPC com-
pleted successfully; otherwise, the server replies to



the client with an appropriate error code, indicat-
ing the failure of the requested operation.

Both servers in the node exchange NFS
RFS_NULL RPC’s to monitor the liveness of each
other. An RFS_NULL is a “no operation” RPC
that is echoed back from the server if it is run-
ning. If a server does not receive an acknowledge-
ment for the RFS_NULL after a specified number
of such RPC’s, it will start failure detection. First,
it checks if it can “ping” the suspect server by send-
ing an ICMP echo packet. Second, it attempts
to communicate with the suspect server via the
shared SCSI bus in “target mode”. This is analo-
gous to pinging except that the requests are sent
over the SCSI bus rather than the network, and
the response is sent by a device driver which must
respond within a certain period of time. Both the
ICMP communication and the target mode com-
munication on the SCSI bus are performed con-
ceptually at the interrupt handler level. Thus, a
response is generated even though the server may
be so overloaded that it cannot respond to NFS
RPC’s.

If a response is obtained from either of these two
tests, it is likely that the suspect server is under-
going a period of slow response. The failure de-
tection tests are conservative, so it is possible that
the tests indicate that a server is alive while it is
“brain-dead”, i.e., able to respond correctly to the
tests, but incapable of processing NFS RPC’s. In
such unlikely cases, HA-NFS refrains from contin-
uing the take-over and relies on operator interven-
tion. In a network, it is impossible to determine
with absolute certainty whether a certain machine
has failed [2]. However, the failure detection tests
never declare a server dead while it is operational.
This prevents a race condition where both servers
attempt to access all the disks in the node at the
same time, which can lead to corruption of the file

systems.

3.2 Take-over

If a server fails, its disks will be taken over by
the other server. The live server brings the failed
server’s volume groups on-line by running their
logs and restoring the file systems to a consistent
state. The server also uses the log to retrieve the
reply cache entries of the failed server and inserts
them in its own cache. Then, it starts imperson-
ating the failed server by changing the IP address
of its secondary network interface to the primary
address of the failed server. The live server also
changes the hardware address of its secondary in-
terface to that of the primary interface of the failed
server. Thus, packets that were intended for the
failed server can now be received by the live server
on its secondary interface.

If network interfaces that can change their hard-
ware address are not available, an alternate scheme
may be used to allow the live server to receive the
packets intended for the failed one. The scheme
consists of using the ARP [3] protocol to update
the mapping between the failed server’s IP address
and the hardware address to reflect the change.
HA-NFS updates stale mappings in the clients’
ARP caches by sending an ARP request which
queries for the hardware address corresponding to
some machine’s IP address. The query appears to
have been sent from the failed server’s IP address,
but with the live server’s secondary interface as the
source hardware address. On receiving this ARP
broadcast, each machine on the local network up-
dates its mappings to reflect the change. The up-
date is automatically performed by the ARP pro-
tocol layer on the clients, so no modification in the
network software is necessary. The broadcast is
repeated several times to ensure that virtually all



clients on the local network will eventually receive
it.

We have decided to use the hardware address
change approach in our final prototype since the
ARP approach relies on the correct implementa-
tion of the ARP protocol on all types of clients.
However, the take-over time reported in section
4 was measured using the ARP approach since
at that time we did not have the special type of
network interfaces that allowed changing hardware
addresses.

During take-over, clients of the failed server con-
tinue to retransmit their requests. When the live
server starts to impersonate the failed one, it re-
ceives the clients’ requests and begins to serve
them. Clients are oblivious to the change, all they
can detect is that the server has gone through a
period of slow response.

3.3 Re-Integration

When a server comes up, either normally or after
repair or maintenance, it cannot immediately con-
figure its primary network interface to its primary
IP address, since it may be impersonated by its
backup.

Instead, the server comes up with its primary
network interface turned off, and uses its secondary
interface to send a re-integration request to the
backup.

If the backup is running, it will acknowledge
the receipt of the re-integration request. After
unmounting the corresponding file systems, the
backup switches the IP and hardware addresses
of its secondary network interface back to their
normal settings, thereby stopping the imperson-
ation of the other server. Finally, the backup sends
a message to the re-integrating server allowing it
to proceed. The re-integrating server reclaims its

SCSI buses and disks, runs the log and recon-
structs the reply cache, switches its own primary
interface on, and starts serving NF'S requests.
Care is taken to recover from failures of ei-
ther server during re-integration. The servers
periodically exchange liveness messages until the
backup relinquishes the buses. Communication
through the SCSI buses will also be used if either
server suspects the failure of the other. If the re-
integrating server fails, the backup will reclaim the
disks as in take-over. If the backup fails, the re-
integrating server will start normal operation on its
own. Later, it will start impersonating the failed

backup.

3.4 Network Failure

To tolerate network failures, HA-NFS relies on
replicating the network. Figure 2 shows an HA-
NF'S node in a two-network configuration.

Recovery from server failures does not require
any changes to clients. Recovery from network
failure, however, requires a daemon to run on the
client to observe the status of each network and
reroute requests to the operational network if a
failure occurs. Since the daemon is run as a user
process, no change to the kernel or to the NFS
protocol is necessary.

When an HA-NFS node is connected to two net-
works, each server has its network interfaces con-
nected to different networks. Further, the two
servers have their primary interfaces on different
networks. Thus, the servers receive their requests
on different networks, which provides a degree of
network (static) load balancing. Clients are also
configured to (statically) balance the load on both
networks.

In addition to its roles during take-over and re-
integration, the secondary network interface now



serves as an alternate path to the server, should
its primary interface becomes unreachable because
of a network failure. Each server broadcasts a
“heartbeat” message from its primary interface.
The daemon on every client detects the heartbeats
of the servers on both networks. When the dae-
mon detects the loss of the heartbeat of one server,
the daemon concludes after a timeout period that
the path to the server’s primary network interface
is broken. In this case, the daemon updates the
client’s routing table to use the alternate path to
the server. The daemon also sends a request to
the daemon on the server to update the routes for
RPC acknowledgements to that client to the oper-
ational network, if necessary?*.

Once the daemon detects the return of the server
heartbeat on a broken path, it restores routing
to its normal setting and requests that the server
reroute the path for the RPC acknowledgements,
if necessary.

When a server takes over the role of its counter-
part in the HA-NFS node, it needs to broadcast
a heartbeat on behalf of the failed server, so that
clients continue to believe that the server is still
reachable across its default path. The server will
set its secondary interface’s IP address to that of
the failed server’s primary interface (which is on
the same network). Combinations of network and
server failures are tolerated. For example, a server
taking over the role of a failed server may face a
failure on the network on which the failed server’s
primary interface resides. In this case, the dae-
mons on the clients should route requests for the
failed server to the primary interface of the live
server, since the secondary interface used for im-

*If the

client’s main address is on the opera-
tional network, then the server need not reroute the
acknowledgements.

personation is now unreachable.

4 Performance

HA-NFS provides high availability without incur-
ring excessive performance penalty. We measured
the performance of HA-NFS by running a set of
experiments on a number of RISC System /6000
family workstations (25 MHz), connected by a
10 Mbit/sec Ethernet. All measurements were ob-
tained by directly calling the SUN RPC layer, by-
passing the NF'S client cache. The underlying sys-
tem uses 4 KByte disk blocks.

4.1 The Effect of Disk Logging

Table 1 shows a comparison between HA-NFS, and
a traditional implementation of NFS that does
not use disk logging. The traditional implemen-
tation of NFS forces the data and the meta-data
to their home locations on disk before responding
to the RPC. In contrast, HA-NFS records meta-
data modifications as a log record, requiring no
disk arm movement.
asynchronously to their home locations. Because
the reply cache entries are piggybacked on the nor-
mal disk log information, saving the volatile state
on disk does not incur appreciable overhead be-
yond the cost of basic disk logging. As expected,
disk logging improves the response time of all
RPC’s that modify the file system structure, such
as SETATTR, CREATE, REMOVE, MKDIR, and
RMDIR RPC’s. The table shows that disk logging
improvement ranges from 33% for SETATTR and
WRITE RPC’s, up to 75% for MKDIR RPC.

In the above measurements, the log was placed
on a separate disk. Placing the disk log on the
same disk with the data reduces the performance

The meta-data are written



gain due to the extra disk arm movement. For ex-
ample, the improvement in CREATE RPC drops
from 58% to 20%.

HA-NFS NFS Improvement

(ms) (ms) %o
NULL 5.26 5.26 0
GETATTR 6.04 6.04 0
SETATTR 32.08 48.32 33
LOOKUP 6.96 6.96 0
READ 12.13 12.13 0
WRITE 72.28 108.80 33
CREATE 38.07 91.81 58
REMOVE 35.22 87.37 60
RENAME 35.58 75.96 53
MKDIR 37.20 151.47 75
RMDIR 34.73 118.40 70
READDIR 11.08 11.08 0
STATFS 6.05 6.05 0

Table 1: Traditional NFS vs. HA-NFS.

4.2 The Effect of Mirroring

The only overhead introduced by mirroring is a
17% slow-down for the WRITE RPC. This over-
head is attributed to the variation in the disk arm
position among the mirrors at the time of writing
to disk and to the performance overhead of the
mirroring software. When client caching is turned
on, the overhead drops to 2% at the application-
program level.

Because of disk logging, mirroring does not in-
troduce any overhead to the RPC’s that maintain
the file system structure (eg. CREATE).

4.3 Take-over and Re-integration

A second set of measurements shows how long it
takes a backup to take over the failed server’s role,

and how long it takes a recovering server to re-
integrate with the rest of the system.

Failure detection consists of an empirically cho-
sen timeout period of 10 seconds and a number of
precautionary tests for liveness which take 5 sec-
onds (these parameters are configurable.). We
measured a total time of 15 seconds for the backup
to perform all take-over operations, excluding fail-
ure detection. Thus, the backup takes about
30 seconds before starting to serve the disks of the
failed server. During that time, the disks are not
available.

We measured a total time of 60 seconds for a
server to re-integrate into the system after repair.
Re-integration takes longer than fail-over because
the backup must wait for ongoing NFS RPC’s to
terminate in addition to the overhead of unmount-
ing the corresponding file systems.

5 Related Work

HA-NF'S is unique in that it considers the problem
of providing reliability to file servers as three sep-
arate subproblems, namely: server reliability, disk
reliability, and network reliability. Each subprob-
lem is handled differently. Logging the server’s
volatile state to a disk accessible to the backup tol-
erates server failures, optional replication of disks
tolerates disk failures, and optional replication of
the network components tolerates network failures.

HA-NFS does not suffer from the problems as-
sociated with the traditional approaches based on
replicating the file server as a unit [4, 5, 6, 7, 8, 9].
Replicating the file server as a unit introduces ad-
ditional overhead during failure-free operation due
to the need to enforce consistency among the repli-
cas. Re-integrating a recovering server into the
system can be expensive since it requires updating



the server’s stale view of the replicated file sys-
tem. To tolerate network partition, a replication-
based system must support read and write quo-
rums, incurring a substantial performance penalty.
This penalty has led some systems [4, 9] to aban-
don quorums, allowing divergence in replicas dur-
ing network partition. While this solution may be
acceptable in many practical environments, it can-
not be relied on in general and it exposes failures
to the users. In HA-NF'S, we direct our effort to
making the network more reliable independent of
the solution we employ to provide server reliabil-
ity. After all, the effects of a network partition are
not limited to file servers. Also, the availability of
a replicated file server is greatly compromised for
the clients that are in a partition without a replica.

On the other hand, replicated file servers can
distribute the file-read load on the different repli-
cas to achieve load balancing. Replicated file
servers are also better suited for wide area net-
works where a client can access its files from the
nearest replica, reducing network load during file
read. A recent comparison study with the Deceit
file server [10] shows that the performance bene-
fits of HA-NFS and its relative simplicity come at
the expense of a lack of flexibility. Both servers
of an HA-NFS node must be physically close to
each other because of the restriction on the SCSI
bus length. HA-NFS cannot resist site disasters
or total site failures. Installing an HA-NFS node
is complicated by the provisions taken to ensure
independent failure modes of the servers and the
disks in the node.

Like HA-NFS, several reliable file servers at-
tempt to provide reliability to NFS without chang-
ing the client implementation of the protocol [5,
6, 8. HA-NFS is unique in that it uses imper-
sonation to mask fail-over from the clients. In
the other systems [5, 6], the clients continue to

attempt to access the files from the failed server,
therefore “hanging” until the user intervenes and
remounts the file systems from an alternate source.
The reliable file system of MIT [8] suggests the use
of IP multicast addressing to solve this problem,
but no implementation has been reported. When
compared to impersonation, IP multicast increases
the load on the replicas and introduces complex-
ity, since all replicas must process the multicasts
in the same order.

Using dual-ported disks is also the basis of
the reliable file system of Tolerant [11] and the
Echo [12] reliable file system. Tolerant and HA-
NFS are similar in that they rely on a non-
dedicated backup to provide reliability against
server failure. However, Tolerant relies on transac-
tion semantics at the application level, and ongo-
ing transactions are aborted during fail-over. In
contrast, HA-NFS does not rely on transaction
semantics at the application level, and ongoing
operations are not affected during fail-over. HA-
NFS differs from Fcho in that an HA-NFS backup
does not maintain information about the current
volatile state of the main server, and that HA-NF'S
clients are oblivious to the backup take-over. In
Echo, the primary informs the backup about its
state, and each client has a “clerk” layer that iso-
lates the application programs from failures and
recoveries.

6 Conclusions and Future Work

As modern computer hardware becomes intrinsi-
cally more reliable, traditional solutions to provide
reliability in network file systems by server repli-
cation become less attractive because of the per-

formance penalty and the complexity they incur.
We have presented HA-NFS, a reliable file server



based on offering different treatment to the relia-
bility of each component of the file system. Our ap-
proach offers server reliability by using dual-ported
disks and impersonation, disk reliability by using
mirroring, and network reliability by replication.
HA-NFS is one of the few designs that recognize
that network failures require an independent solu-
tion from that used to provide reliability to the file
server.

Comparing the performance of HA-NFS with
traditional implementation of NF'S shows that disk
logging improves the performance of many NFS
RPC’s. Mirroring, when used, adds only 17 %
overhead to WRITE RPC. Saving the reply cache
entries is piggybacked on the normal disk logging
operation, thus adding no more overhead beyond
that of the basic disk logging.

Recovery in HA-NFS is completely transparent
to applications and does not involve aborting ongo-
ing operations. Impersonation prevents the client
from “hanging” during fail-over. User programs
and NFS client protocol implementation need no
modification to use HA-NFS. HA-NFS shows that
it is possible to add transparent fault-tolerance to
existing systems without adding significant over-
head.

The high performance and relative simplicity of
HA-NFS come at the expense of a loss in flexibil-
ity. HA-NF'S cannot tolerate more than one server
failure. During fail-over, the disks are not avail-
able for a period of 30 seconds. The servers must
be physically close because of the restriction on the
length of the SCSI bus. HA-NFS cannot tolerate
total site failures or site disasters.

We are currently addressing the shortcomings
of HA-NFS. We are considering the use of optical
links instead of the shared SCSI bus to simulate
dual-ported disks. Because of their high perfor-
mance and capability of extending over relatively

long distances, optical links can remove the restric-
tions of installing servers and their disks in close
proximity. This will also facilitate the realization
of independent failure conditions and allow more
than two servers to share the same disk. We are
considering adding stable semiconductor memory
on the disk controller to remove all the overhead
of disk logging. We are also considering adding
extensions to HA-NFS operations to support con-
sistency of concurrent file access in the presence
of client caching. Finally, we plan to use the HA-
NFS methodology to provide higher availability for
stateful server protocols such as Andrew [13].

References

[1] Sun Microsystems, Inc. NFS: Network file system pro-
tocol specification. RFC 1094, Network Information
Center, SRI International, March, 1989.

[2] M.J. Fisher, N.A. Lynch, and M.S. Paterson. Impossi-
bility of distributed consensus with one faulty process.
JACM, 32(2):374-382, April 1985.

[3] D. C. Plummer. Ethernet address resolution protocol;
RFC 826. In ARPANET Working Group Requests for
Comments, no. 826. SRI International, Menlo Park,
California, November 1982.

[4] Mahadev Satyanarayanan, James J. Kistler, Puneet
Kumar, Maria E. Okasaki, Ellen H. Seigel, and
David C. Steere. Coda: A highly available file sys-
tem for a distributed workstation environment. IEEE
Transactions on Computers, 39(4):447-459, April
1990.

[5] Keith Marzullo and Frank Schmuck. Supplying high
availability with a standard network file system. In
Proceedings of the 8th International Conference on
Distributed Computing Systems, pages 447-453, May
1988.

[6] Alex Siegel, Kenneth Birman, and Keith Marzullo.
Deceit: A flexible distributed file system. Techni-



[10]

[11]

[12]

[13]

cal Report TR 89-1042, Cornell University, November
1989.

Uppaluru Premkumar, W. Kevin Wilkinson, and
Hikyu Lee. Reliable servers in the JASMIN distributed
system. In Proceedings of the 7th International Con-
ference on Distributed Computing Systems, pages 105—
112, September 1987.

Barbara Liskov, R. Gruber, P. Johnson, and L. Shrira.
A replicated Unix file system. In Proceedings of the
First IEEE Workshop on Management of Replicated
Data, pages 11-14, November 1990.

Richard G. Guy, John S. Heidemann, Wai Mak,
Thomas W. Page, Jr., Gerald Popek, and Dieter Roth-
meier. Implementation of the Ficus replicated file sys-
tem. In USENIX Conference Proceedings, pages 63—
71, USENIX, June 1990.

Anupam Bhide, Elmootazbellah N. Elnozahy, Stephen
Morgan, and Alex Siegel. A comparison between two
reliable file servers. In preparation.

Dale L. Shipley, Joan D. Arnett, William A. Arnett,
Steven D. Baumel, Anil Bhavnani, Chuenpu J. Chou,
David L. Nelson, Maty Soha, and David H. Yamada.
Distributed multiprocess transaction processing sys-
tem and method. U.S. Patent No. 4819159, April 1989.

Andy Hisgen, Andrew Birrell] Timothy Mann,
Michael Schroeder, and Garret Swart. Availability
and consistency tradeoffs in the ECHO distributed file
system. In Proceedings of the 2nd Workshop on Work-
station Operating Systems, pages 49—54, 1989.

John H. Howard, Micheal L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyaranayanan, and Robert N.
Sidebotham. Scale and performance in a distributed
file system. In ACM Transactions on Computer Sys-
tems, pages 51-81, February 1988.

10



