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Abstract
Emerging high-speed networks will allow machines to
access remote data nearly as quickly as they can access
local data. This trend motivates the use ofcooperative
caching: coordinating the file caches of many machines
distributed on a LAN to form a more effective overall file
cache. In this paper we examine four cooperative caching
algorithms using a trace-driven simulation study. These
simulations indicate that for the systems studied coopera-
tive caching can halve the number of disk accesses,
improving file system read response time by as much as
73%. Based on these simulations we conclude that cooper-
ative caching can significantly improve file system read
response time and that relatively simple cooperative cach-
ing algorithms are sufficient to realize most of the poten-
tial performance gain.

1. Introduction
Cooperative caching seeks to improve network file

system performance by coordinating the contents of client
caches and allowing requests not satisfied by a client’s
local in-memory file cache to be satisfied by the cache of
another client.

Two technology trends push us to consider coopera-
tive caching. First, processor performance is increasing
much more rapidly than disk performance. This diver-
gence makes it increasingly important to reduce the num-
ber of disk accesses by the file system. Second, emerging
high-speed low-latency switched networks can supply file
system blocks across the network much faster than stan-
dard Ethernet as indicated in Figure1. Where fetching
data from remote memory over an older network might be
only three times faster than getting the data from remote
disk, remote memory may now be accessed ten to twenty
times as quickly as disk, increasing the payoff for cooper-
ative caching.

Existing file systems use a three-level memory hierar-
chy, implementing a limited form of “cooperative cach-
ing” by locating a shared cache in server memory to
supplement the other two memory levels, client memory
and server disk. Although we can often reduce disk
accesses by increasing the fraction of the system’s RAM
that resides in the server, four factors make cooperative
caching more attractive than physically moving memory
from clients to the server. First, cooperative caching can
provide better performance: although either approach can
improve the global hit rate and thus reduce the system’s
disk accesses, cooperative caching leaves large memories
at the clients and so can also maintain high hit rates in the

Figure 1. Time to service a file system local
cache miss from remote memory or disk for a
slow network,Ethernet, and a faster network,
155 MBit/s ATM. Local memory copy time is the
measured time to read 8KB from the file cache
on a DEC AXP 3000/400. Network overhead
times indicate round trip small packet latencies
based on TCP times reported in [Mart94] for a
Hewlett-Packard 9000/735 workstation.
Ethernet data transfer figures makes the
unrealistically optimistic assumption that data is
transferred at the full 10 Mbit/s link speed (in
reality, transfer times would likely be at least
double those listed above for unswitched
Ethernet). The ATM transfer time assumes the
full 155 Mbit/s bandwidth is attained (also an
optimistic assumption, but one likely to be met
in a year or two as processor speeds continue to
increase.) The disk transfer time is based on
measured physical disk time (excluding
queueing) for the fastest of three systems
measured under real workloads by Ruemmler
and Wilkes [Ruem93].

Ethernet 155 Mbit/s ATM

Remote
Memory

Remote
Disk

Remote
Memory

Remote
Disk

Mem. Copy 250µs 250µs 250µs 250µs

Net Overhead

Data

400µs

6250µs

400µs

6250µs

400µs

400µs

400µs

400µs

Disk -- 14,800µs -- 14,800µs

Total 6,900 µs 21,700 µs 1050 µs 15,850 µs



2

clients’ local caches, saving network latencies compared
to going to the server. Second, the server in the coopera-
tive caching system will be less loaded since it can satisfy
many requests with small packets to forward requests
rather than large data transfers. Third, cooperative caching
allows more flexible use of memory: since the memory is
still physically located at the clients, it can also be used for
client virtual memory as system demands warrant
[Nels88]. Finally, cooperative cache systems are more cost
effective than building a system with an extremely large
server cache. For example, it would be significantly
cheaper to add 16MB of industry-standard SIMM mem-
ory to each of one hundred clients than it would be to buy
a specialized server machine capable of holding the addi-
tional 1.6GB of memory. We quantify the trade-offs
between centralized and distributed memory in more
detail at the end of Section4.

Cooperative caching introduces a fourth level in the
network file system’s cache hierarchy. Not only can data
be found in local memory, in server memory, or on server
disk, but it can also be found in another client’s memory.
Depending on the cooperative caching algorithm used, this
new level may be found between a client’s local memory
and the server memory or between the server memory and
the disk. Note that we are examining cooperative caching
assuming that clients cache file system data in their local
memories but not on their local disks. For the fast net-
works of the future, it will be much faster for a client to
fetch data from another client’s memory than to fetch that
data from local disk.

In this paper we make the assumption that all clients
in the system are equally secure. We believe this to be a
fair assumption in most LAN environments where all
machines are administered in the same way. Our trust is no
stronger than that given to clients in currently popular file
systems like NFS; in either case, if the client’s operating
system is compromised, the client can issue unauthorized
file system requests. The increasing availability of process
migration among networks of workstations [Nich87,
Doug91, Litz92, Zhou93] is likely to speed the trend
towards trust within an administrative domain—if a sys-
tem allows a user’s jobs to be migrated among machines,
that user’s data may be cached in the memories of many
machines regardless of cooperative caching.

This study has two goals. Our first goal is to ascertain
whether cooperative caching can provide significant bene-
fits under real workloads. Our trace-driven simulation
approach contrasts with previous efforts to evaluate coop-
erative caching using synthetic workloads [Leff93a,
Fran92]. Our second goal is to evaluate a range of algo-
rithms to find practical algorithms to implement effective
cooperative caching. Previous studies have focused on
algorithms requiring global knowledge of client cache
contents [Leff93a] or on algorithms that sacrifice perfor-

mance by not coordinating the contents of client caches
[Fran92].

Our primary result is that cooperative caching can
improve file read performance by as much as 73% for the
configurations and workloads studied. We further con-
clude that an algorithm called N-Chance Forwarding is a
practical algorithm that achieves nearly all of the potential
performance gains for these workloads.

Cooperative caching is designed to improve cache
performance for file system reads. This technique does not
address issues such as write performance and large file
performance that are also important to end users of the file
system. To study these and other issues, we are imple-
menting cooperative caching as a part of the xFS project
[Wang93, Dahl94]. Cooperative caching illustrates a pri-
mary design philosophy of xFS, the use of the vast aggre-
gate resources of the system’s clients to improve
performance.

Section2 describes the four cooperative caching algo-
rithms we examine. Section3 describes our simulation
methodology and Section4 examines our simulation
results. We compare our work to previous efforts to
improve file cache performance in Section5. Finally,
Section6 summarizes our conclusions.

2. Cooperative Caching Algorithms
This paper examines four variations of cooperative

caching in detail, covering a range of algorithm design
decisions. Cooperative caching creates a new level in the
file system storage hierarchy: remote client memory. Dif-
ferent cooperative caching algorithms could manage this
new level in many different ways. Figure2 illustrates four
fundamental design questions and the relationship of the
four algorithms to these questions. Although the algo-
rithms we examine are by no means an exhaustive set of
cooperative caching algorithms, the subset contains repre-
sentative examples from large portion of the design space
and includes a practical algorithm with close to optimal
performance.

Note that the algorithms examined do not affect data
storage reliability since they do not alter the write-
through, write-delay, or write-back policy of the file sys-
tem. Clients still send modified data to the server when
they would have without cooperative caching, and the
server commits data to disk as it would in a traditional sys-
tem.

The rest of this section describes the four algorithms
under scrutiny and then briefly discusses two other algo-
rithms.

2.1.  Direct Client Cooperation
A very simple cooperative caching approach, Direct

Client Cooperation, allows an active client to use an idle
client’s memory as backing store. The active client for-
wards cache entries that overflow its local cache directly
to an idle machine. The active client can then access this
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private remote cache to satisfy its read requests until the
remote machine becomes active and evicts the cooperative
cache. The system must define criteria for designating
active and idle clients and must provide a mechanism for
the former to locate the latter.

Direct Client Cooperation is appealing because of its
simplicity—it can be implemented without server modifi-
cation. As far as the server is concerned, a client utilizing
remote memory appears to have a temporarily enlarged
local cache. A drawback of this lack of server coordination
is that active clients do not benefit from the contents of
other active clients’ memories. A client’s data request
must go to disk if the desired block no longer happens to
be in the limited server memory even if another client is
caching that block. As a result, the performance benefits of
Direct Client Cooperation are limited, motivating the next
algorithm.

2.2.  Greedy Forwarding
Another simple cooperative caching approach, called

Greedy Forwarding, treats the cache memories of all cli-
ents in the system as a global resource that may be
accessed to satisfy any client’s request, but the algorithm
does not attempt to coordinate the contents of these
caches. As for traditional file systems, each client manages
its local cache greedily, without regard to the contents of
the other caches in the system or the potential needs of
other clients. If a client does not find a block in its local
cache, it asks the server for the data. If the server has the
required data in its memory cache, it supplies the data.
Otherwise, the server consults a data structure listing the

Figure 2. Cooperative caching algorithm design
space. Each box represents a design decision
while each oval represents an algorithm
examined in this study. We focus on the four
highlighted algorithms and do not consider the
other two in detail due to space constraints.
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contents of the client caches. If any client is caching the
required data, the server forwards the request to that cli-
ent. The client receiving the forwarded request sends the
data directly to the client that made the request. Note that
the block is not sent back through the server since that
would unnecessarily increase latency and add to the
server’s workload. If no client is caching the data, the
request is satisfied by the server disk as it would have been
if there were no cooperative caching.

With Greedy Forwarding the only change to the file
system is that the server needs to be able to forward
requests and the clients need to be able to handle for-
warded requests; this support is also needed by the next
two algorithms discussed. This server forwarding can be
implemented with the data structures already present in
systems implementing write-consistency with call backs
[Howa88] or cache disabling [Nels88]. In those systems
the server tracks the files being cached by each client so
that it can take appropriate action to guarantee consistency
when a file is modified. In this study we assume that coop-
erative caching extends a call back data structure to track
the individual file blocks cached by each client to allow
forwarding. For systems such as NFS whose servers do
not maintain precise information about what clients are
caching [Sand85], implementation of this directory may
be simplified if its contents are taken as hints; some for-
warded requests may be sent to clients no longer caching
the desired block. In that case the client would inform the
server of the mistake and the server would either forward
the request to another client or get the data from disk.

Although the per-block forwarding table is larger than
traditional per-file callback lists, the additional server
memory overhead is reasonable since each entry allows
the server to leverage a block of client cache. For instance,
if the forwarding table is implemented as a hash table with
each hash entry containing a four byte file identifier, a four
byte block offset, a four byte client identifier, a four byte
pointer for linked-list collision resolution, and two four
byte pointers for a doubly linked LRU list, the server
would require 24bytes for every block of client cache. For
a system caching 8KB file blocks, such a data structure
would consume 0.3% as much memory as it indexes. For a
system with 64clients each with 32MB of cache, the
server could track the contents of the 2GB distributed
cache with a 6MB index.

Greedy Forwarding is also appealing because it pre-
serves fairness—clients manage their local resources for
their local good while still deriving benefit from the other
clients. On the other hand, this lack of coordination among
cache contents may cause unnecessary data duplication,
not taking the best advantage of the system’s memory to
avoid disk accesses [Leff91, Fran92]. The next two algo-
rithms attempt to address this lack of coordination.
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2.3.  Centrally Coordinated Caching
Centrally Coordinated Caching adds coordination to

the Greedy Forwarding algorithm by statically partitioning
each client’s cache into a locally managed section, man-
aged greedily by that client, and a globally managed sec-
tion, coordinated by the server as an extension of its
central cache. If a client does not find a block in its locally
managed cache, it sends the request to the server. If the
server has the desired data in memory, it supplies the data.
Otherwise the server checks to see if it has stored the
block in centrally coordinated client memory. If it locates
the data in client memory, it forwards the request to the
client storing the data. If all else fails, the server supplies
the data from disk.

Centrally Coordinated Caching behaves very much
like physically moving memory from the clients to the
server. The server manages the globally managed fraction
of each client’s cache using a global replacement algo-
rithm. When the server evicts a block from its local cache
to make room for data fetched from disk, it sends the vic-
tim block to replace the least recently used block among
all of the blocks in the centrally coordinated distributed
cache. When the server forwards a client request to a dis-
tributed cache entry, it renews the entry on its LRU list for
the global distributed cache. Unless otherwise noted we
simulate a policy where the server manages 80% of each
client’s cache.

The primary advantage of Centrally Coordinated
Caching is the high global hit rate that it can achieve
through global management of the bulk of its memory
resources. The main drawbacks to this approach are that
the clients’ local hit rates may be reduced since their local
caches are effectively made smaller and also that the cen-
tral coordination may impose significant load on the
server.

2.4.  N-Chance Forwarding
The final algorithm that we quantitatively evaluate, N-

Chance Forwarding, dynamically adjusts the fraction of
each client’s cache managed cooperatively, depending on
client activity. The N-Chance algorithm modifies the
Greedy Forwarding algorithm to have clients cooperate to
preferentially cache singlets, blocks stored in only one cli-
ent cache. Except for singlets, N-Chance Forwarding
works like Greedy Forwarding.

N-Chance Forwarding attempts to avoid discarding
singlets from client memory. When a client discards a
block, it checks to see if that block is the last copy cached
by any client. This check may require a message to the
server or it may be done by consulting some flags associ-
ated with each block as described below. If the block is a
singlet, rather than throw the block away, the client sets
the block’s recirculation count to n, forwards the data to a
random peer, and then sends the server a message telling it
that the block has moved. The peer that receives the data
adds the block to its LRU list as if the block had been

recently referenced. If a recirculating block reaches the
end of the LRU list, its count is decremented and it is for-
warded again unless the count is now zero, in which case
it is simply discarded. If a client references a singlet, it
resets the block’s recirculation count and caches the data
normally while the client that had been cooperatively
caching the singlet discards the block from its cache.

The parameter n indicates how many times a singlet
should be allowed to recirculate through different clients’
LRU lists without being referenced before finally being
discarded. Greedy forwarding is simply the degenerate
case of this algorithm with n = 0. Unless otherwise noted
we use n = 2 for our simulations.

This algorithm provides a dynamic trade-off for each
client cache’s allocation between local data, data being
cached because the client referenced it, and global data,
singlets being cached for the good of aggregate system
performance. Active clients will tend to force any global
data sent to them out of their caches quickly as local refer-
ences displace global data. Idle clients will tend to accu-
mulate global blocks and hold them in memory for long
periods of time. An enhancement to this algorithm might
be to preferentially forward singlets to idle clients to avoid
disturbing active clients. For this study, however, clients
forward singlets uniformly randomly to the other clients in
the system.

An implementation of this algorithm must prevent a
ripple effect where a block forwarded from one client dis-
places a block to another client and so on. Note that in the
common case, the displaced block is not the last copy of
data and so no ripple occurs, however we simulate a pol-
icy that prevents deep recursion from ever occurring: a cli-
ent receiving a recirculating block is not allowed to
forward a block to make space. When a client receives
such a block, it uses a modified replacement algorithm,
discarding its oldest duplicated block. If the cache con-
tains no duplicated blocks, the client discards the oldest
recirculating block with the fewest recirculations remain-
ing.

Several optimizations to this algorithm reduce the
amount of communication with the server. First, on a
cache miss, the client combines its messages to the server,
updating the server’s directory of client cache contents in
the same message that requests data to satisfy the miss.
This update indicates what block the client has discarded
from its cache and where, if anywhere, that block has been
forwarded.

The second set of optimizations reduces the number
of messages asking the server if a block is the last cached
copy when a client is deciding if a block should be recir-
culated or discarded. First, any block whose recirculation
count is set must be a singlet, so no server message is nec-
essary to decide its fate. For non-recirculating blocks, the
client must usually send a message to the server, but once
it has determined if the block is a singlet the client will
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discard or forward it, so only one message is needed dur-
ing a block’s lifetime in a cache. In the special case where
the client is making space for a singlet that was kicked out
of another client’s cache, it will not discard blocks that it
discovers to be singlets, but it will mark those blocks as
singlets (without setting the recirculation count) so that it
will not need to ask the server again unless another client
references the block. If another client references such a
block, the server forwards the request to the singlet, and
the client resets the singlet flag.

The main advantage of N-Chance Forwarding is that
it provides a simple dynamic trade-off between each cli-
ent’s private cache data and the data being cached for the
good of the overall system. Favoring singlets provides bet-
ter performance than the simple Greedy algorithm since
discarding a singlet is potentially more expensive than dis-
carding a duplicated block; later references to the dupli-
cate can still be satisfied from another client’s memory
[Leff91]. A potential disadvantage of this approach is that
a given block may be bounced among multiple caches
while living in the “cooperative” portion of the caches,
resulting in unnecessary system load.

2.5.  Other Algorithms
We considered two other cooperative caching algo-

rithms. Performance measurements for these algorithms
are omitted from this report because each performed simi-
larly to one of the other algorithms we examined.

Hash-Distributed Caching differs from Centrally
Coordinated Caching in that Hash-Distributed Caching
partitions the centrally managed cache based on block
identifiers, with each client managing one partition of the
cache. The central server sends blocks displaced from its
local cache to a client selected by hashing on the block’s
identifier. On a local miss a client accesses this distributed
cache by sending its request directly to the appropriate cli-
ent. That client supplies the data if it is currently caching
that block, or forwards the request to the server if it does
not have that block. Our simulations indicate that Hash-
Distributed caching provides nearly identical hit rates
compared to Centrally Coordinated caching; fixed parti-
tioning of the centrally managed cache does not hurt the
hit rate. The main advantage of Hash-Distributed caching
over Centrally Coordinated Caching is that Hash-Distrib-
uted caching significantly reduces server load since many
requests satisfied by the cooperative cache don’t go
through the server.

We also examinedWeighted LRU, a dynamic algo-
rithm that attempts to replace the object with the globally
lowest value/cost ratio. As with N-Chance, objects that are
duplicated in multiple client caches are not very valuable
since even if one copy is discarded, the data may be
fetched from another client’s memory. On the other hand
the last cached copy of a block is very valuable since its
loss might cause a disk access. The opportunity cost of
keeping an object in memory is the cache space it con-

sumes until the next time the block is referenced [Smit81],
approximately the time since the last reference. Thus,
weighted LRU explicitly balances keeping frequently used
duplicates to avoid network accesses against keeping less
frequently used singlets to avoid disk accesses. For our
traces, however, response time was slightly worse than for
the substantially simpler N-Chance Forwarding.

3. Simulation Methodology
We use trace-driven simulation to evaluate the coop-

erative caching algorithms. Our simulator tracks the state
of all caches in the system and monitors the requests and
hit rates seen by each client. We assume a cache block size
of 8 KB, and we do not allow partial blocks to be allocated
even for files smaller than 8KB. We verified our simulator
by using the synthetic workload described in [Leff93a] as
input.

We calculate response times by multiplying the local
memory, remote client memory, server memory, and disk
hit rates by the times it takes to access those memories.
Our baseline technology assumptions are the same as for
the 155Mbit/s ATM columns of Figure1, that an 8KB
block can be fetched from local memory in 250µs, that a
fetch from remote memory takes an additional 400µs plus
200µs per network hop, and that an average disk access
takes a further 14,800µs. Figure3 summarizes access
times to different resources for the algorithms. In
Section4.3 we examine the sensitivity of our results to
technology changes. Note that we do not include any
queueing delays in our response time figures. Since the
most attractive algorithms studied do not increase server
load and since emerging high performance networks use a
switched topology, we would not expect queueing to sig-
nificantly alter our results.

To maintain data consistency on writes, we assume
that data modifications are written through to the central
server and that client caches are kept consistent using a
write-invalidate protocol [Arch86]. Since we focus on
read performance, a delayed write or write back policy
would not affect our results.

Local
Mem.

Remote
Client
Mem.

Server
Mem.

Server
Disk

Direct 250µs 1050µs 1050µs 15,850µs

Greedy 250µs 1250µs 1050µs 15,850µs

Central 250µs 1250µs 1050µs 15,850µs

N-Chance 250µs 1250µs 1050µs 15,850µs

Figure 3. Access times for the different levels in
the memory hierarchy for different cooperative
caching algorithms. The differences among the
Remote Client times for the different algorithms
depends on the number of network hops to reach
the data for the algorithm.
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For most of the results in this paper, we use traces five
and six from the Sprite workload, described in detail by
Baker et al. [Bake91]. The Sprite user community
included about 30 full time and 40 part time users of the
system. These users included operating systems research-
ers, computer architecture researchers, VLSI designers,
and “others” including administrative staff and graphics
researchers. These traces list the activity of 42 client
machines and one server over a two day period measured
under the Sprite operating system.1 They contain over
700,000 read and write block accesses, and we use the first
400,000 accesses (a little over a day) to warm the simu-
lated caches. Section4.4 describes simulation results for
an additional workload.

When reporting our results, we compare against a set
of baseline cache management assumptions and against an
unrealistic best case model. Thebase case assumes that
each client has a cache and that the central server also has
a cache, but that no cooperative caching is used. The unre-
alizable best case assumes that the cooperative caching
algorithm is able to achieve a global hit rate as high as if
all client memory were managed as a single global cache,
but that the local hit rates are as if all client memory were
managed as a private local cache. This best case provides a
lower bound for the response time for cooperative caching
algorithms that physically distribute client memory
equally to each client and that use LRU replacement. We
simulate this algorithm by doubling each client’s local
cache and allowing the clients to manage half of it locally
and allowing the server to manage half of it globally as it
does for the centrally coordinated case. For the best case
we assume that data found in remote client memory is
fetched with three network hops (request, forward, and
reply) for a total of 1250µs per remote memory hit.

4. Simulation Results
This section presents the main results from our simu-

lation studies of cooperative caching. Section4.1 com-
pares the different cooperative caching algorithms to the
base case, to each other, and to the unrealizable best case.
For clarity, this comparison is made assuming a particular
set of parameters for each algorithm, for a given set of
technology and memory assumptions, and under a single
workload. Section4.2 examines the individual algorithms
more closely, studying different values for the algorithms’
parameters. Section4.3 examines the sensitivity of our
results to technology and memory assumptions such as the
client cache size, server cache size, and hardware perfor-
mance. Section4.4 examines the algorithms under an
additional workload. Finally, Section4.5 summarizes our
results, highlights our conclusions, and compares coopera-
tive caching to moving more of the system’s memory to
the server.

1. Baker et al.’s traces also included requests to three auxiliary serv-
ers. We just used accesses to the main server, 81% of the trace.

4.1.  Comparison of Algorithms
This section compares the algorithms’ response times,

hit rates, server loads, and impact on individual clients.
Our initial comparison of the algorithms fixes the client
caches to be 16MB per client and fixes the server cache to
be 128MB for the Sprite workload. For the Direct Coop-
eration algorithm we made the optimistic assumption that
clients do not interfere with each other when they use
remote caches; we simulate this assumption by allowing
each client to maintain a permanent remote cache of a size
equal to its local memory size, effectively doubling the
size of each client’s cache. For the Central Coordination
algorithm, we assume that 80% of each client’s cache
memory is dedicated to the cooperative cache and that
20% is managed locally. For the N-Chance algorithm, we
choose a recirculation count of two; unreferenced data will
be passed to two random caches before being purged from
memory. We will examine why these are appropriate
parameters in Section4.2.

Figure4 illustrates the response times for each of the
four algorithms being examined and compares these times
to the base case on the left and the best case on the right.
Direct Cooperation provides only a small speedup of 1.052

compared to the base case despite our optimistic assump-
tions for this algorithm. Greedy Forwarding shows a mod-
est but significant performance gain, with a speedup of
1.22. The two algorithms that coordinate cache contents to
reduce redundant cache entries show more impressive
gains. Central Coordination provides a speedup of 1.64
and N-Chance Forwarding provides a performance

2. All speedup and performance improvement figures in this paper
use the terminology in [Henn90]. Speedup is defined as the execution
time of the slower algorithm divided by the execution time for the faster
algorithm. Performance improvement percentages are calculated by sub-
tracting 1.00 from the speedup and then multiplying by 100 to get a per-
centage.

Figure 4. Average block read time. Each bar
represents the time to complete an average read
for one of the algorithms. The segments of the
bars show the fraction of the total read time for
data accesses satisfied byLocal memory, Server
Memory, Remote Client memory, orServer Disk.

0 ms

1 ms

2 ms

3 ms

Base DirectGreedyCoord N- Best

Local
Server Memory
Remote Client

Server Disk

Chance

R
es

po
ns

e 
T

im
e

Algorithm

2.75 ms
2.62 ms

2.24 ms

1.68 ms1.59 ms1.57 ms



7

improvement of 1.73. Both coordinated algorithms are
within 10% of the ideal cooperative caching response
time.

Two conclusions seem apparent from Figure4. First,
disk accesses are the dominant source of latency for the
base case, so efforts like cooperative caching that improve
the overall hit rate will be beneficial. Second, the most
dramatic improvements in performance come from the
coordinated algorithms, where the system makes an effort
to reduce the duplication among cache entries to improve
the overall hit rate.

Figure5 provides additional insight into the perfor-
mance of the algorithms by illustrating the access rates at
different levels of the memory hierarchy. The total height
of each bar represents the miss rate for each algorithm’s
local cache. The base, Direct Cooperation, Greedy, and
best case algorithms all manage their local caches greedily
and so have identical local miss rates of 22%.3 Central
Coordination has a local miss rate of 36%, over 60%
higher than the baseline local miss rate. This algorithm
makes up for this local deficiency with aggressive coordi-
nation of most of the memory in the system, providing
combined memory miss rates essentially identical to those
achieved in the best case, with just 7.6% of all requests
going to disk. This disk access rate is less than half of the
15.7% rate for the base caching scheme. The N-Chance
algorithm’s emphasis on holding onto the last data copies
hurts the local miss rate by a surprisingly small amount;
recirculation increases the local miss rate from 22% to

3. The simulated local miss rate is lower than the 40% miss rate
measured for the Sprite machines in [Bake91] because we simulate larger
caches than the average 7MB caches observed in that study and because
these larger caches service requests to only one server.

Figure 5. Fraction of requests satisfied at each
level of the memory hierarchy for different
algorithms. The total height of the bar is the
local miss rate for each algorithm. The sum of
the Server Disk and Remote Client segments
shows the miss rate for the combined local and
server memories. The bottom segment shows the
miss rate once all memories are included, i.e. the
disk access rate.
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23%. N-Chance also provides a very low overall disk
access rate of 7.7%.

A comparison between the static memory partition
algorithm, Centralized Coordination, and the dynamic par-
tition algorithm, N-Chance Forwarding, illustrates that
both the local and global miss rates must be considered in
evaluating these algorithms. Although the static algorithm
provides the lower disk access rates, it provides this low
miss rate at significant cost to its local cache performance.
The N-Chance algorithm coordinates a smaller fraction of
the client cache contents, protecting the local cache hit
rate but sacrificing some global hits.

Another important metric of comparison is the server
load imposed by the algorithms. If a cooperative caching
algorithm significantly increases server load, increased
queueing delays might reduce the performance gains.
Figure6 illustrates the relative server loads for the algo-
rithms.

Since we are primarily interested in verifying that
cooperative caching’s increased server coordination
doesn’t greatly increase server load, we make a number of
simplifications in our server load calculations. First, we do
not include the load for write-backs, deletes, file attribute
requests, or other sources of server load in the load com-
parison. Including these loads would add equally to the
load for each algorithm, reducing the relative differences
among them.

Figure 6. Server loads for the algorithms as a
percentage of the baseline no cooperative
caching server load. TheHit Disk segment
includes both the network and disk load for all
requests satisfied at the server disk. TheHit
Remote Client segment shows the server load for
receiving and forwarding requests to remote
clients. The Hit Server Memory segment
includes the cost of receiving requests and
supplying data from the server’s memory. Local
hits generate no server load. TheOther Load
segment includes server overhead for
invalidating client cache blocks and for
answering client queries (e.g. N-Chance asks,
“Is this block the last cached copy”).
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Also, we base the server load calculations on the net-
work messages and disk transfers made by the server for
each algorithm. We assume that a network message over-
head costs one load unit and that a block data transfer
costs two load units. A small network message therefore
costs one unit; a network data transfer costs one for over-
head plus two for data transfer for a total of three units. We
also charge the server two load units for a disk data trans-
fer.

The results of the server load measurements suggest
that most of the cooperative caching algorithms will not
significantly increase server load and that our response
time approximation of ignoring queueing delay should
provide valid comparisons with the base case. The Cen-
tralized Coordinated algorithm does appear to increase
server load somewhat, at least under these simple assump-
tions. This increase is because the centralized algorithm
significantly increases the local miss rate, and all local
misses are sent to the server. More detailed measurements
would have to be made to determine if the centralized
algorithm can be implemented without increasing server
queueing delays.

A final comparison among the algorithms examines
individual client performance rather than the aggregate
average performance. Figure 7 illustrates the relative per-
formance for individual clients under each cooperative

Figure 7. Performance of each individual client.
Each point represents the speedup or slowdown
seen by one client for a cooperative caching
algorithm compared to that client’s performance
in the base case. Speedups are above the line and
slowdowns are below it. A client’s slowdown is
defined as the inverse of its speedup if its
speedup is less than one. The x-axis indicates the
number of read requests made by each client;
relatively inactive clients appear near the left
edge of the graph, and active clients appear on
the right.
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Direct Client Cooperation

caching algorithm compared to that client’s performance
in the base case. The graph positions data points for the
clients so that inactive clients appear on the left of the
graph and active clients on the right. Speedups or slow-
downs for inactive clients may not be significant both
because the clients are spending relatively little time wait-
ing for the file system in either case and because these
inactive clients’ response times can be significantly
affected by adding just a few disk accesses.

One important aspect of individual performance is
fairness: are any clients significantly worse off because
they contribute resources to the community rather than
managing their local caches greedily? Fairness is impor-
tant because even if the average client performance is
improved, some clients may refuse to participate in coop-
erative caching if their performance would be worse.

The data in Figure 7 suggest that fairness is not a
widespread problem for this workload. Direct Client
Cooperation and Centrally Coordinated Caching each
slow a few clients by modest amounts. Greedy Forward-
ing and N-Chance Forwarding do no harm to any clients
in this workload.

Although we would expect the two algorithms with
greedy client cache management to always be fair, Direct
Client Cooperation causes a few clients to suffer up to
25% worse performance than they had without the addi-
tional cooperative cache memory. These clients do not
benefit greatly from their cooperative cache memory but
have lower server cache hit rates under Direct Client
Cooperation than in the base case. The lower server hit
rates occur because the accesses to the server cache by all
the clients in the system are filtered by their effectively
larger local caches, reducing the correlation among client
access streams at the server.

Although both the N-Chance and Centrally Coordi-
nated algorithms disturb local greedy caching, their signif-
icant improvements in global caching provide a net benefit
to almost all clients. N-Chance Forwarding hurts no cli-
ents for this workload, and Centrally Coordinated Caching
damages the response of one client by 19%. Neither of
these algorithms help a client whose working set fits com-
pletely into its local cache, but such a client can be hurt by
interference with its local cache contents. Since N-Chance
Forwarding interferes with local caching less than Cen-
trally Coordinated Caching as was indicated in Figure 5, it
is less likely to be unfair to individual clients. Other algo-
rithms that statically partition client memory, such as Hash
Distributed Caching or physically moving cache from the
clients to the server, would suffer from the same vulnera-
bility as Centrally Coordinated Caching.

4.2.  Detailed Algorithm Analysis
This subsection examines the cooperative caching

algorithms in more detail and evaluates their sensitivity to
algorithm-specific parameters.
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4.2.1  Direct Client Cooperation
Although Direct Client Cooperation is appealingly

simple, achieving even the modest 5% response time
improvement seen above may be difficult. We based the
above results on the optimistic assumption that clients
could recruit sufficient remote cache memory to double
their caches without interfering with each other. In reality
the algorithm must meet three challenges to provide even
these modest gains.

The first difficulty for Direct Client Cooperation is
that clients may not be able to find enough remote memory
to significantly affect performance. Figure 8 plots Direct
Cooperation response time as a function of the amount of
remote memory recruited by each client. If, for instance,
clients can only recruit enough memory to increase their
cache size by 25% (4 MB), the response time improve-
ment drops to under 1%. Significant speedups of 40% are
only achieved if each client is able to recruit about
64 MBs—four times the size of its local cache.

Interference from other clients is likely to further limit
Direct Client Cooperation benefits. When a client donating
memory becomes active, it will flush any other client’s
data from its memory. A client trying to take advantage of
remote memory sees a series of temporary caches, reduc-
ing its hit rate since a new cache will not be warmed with
its data. Studies of workstation activity [Nich87, Thei89,
Doug91, Mutk91, Arpa94] suggest that although many
idle machines are usually available, the length of their idle
periods can be relatively short. A possible solution to this
problem would be to send the evicted data to a new idle
client rather than discarding it, but that would increase the
system’s complexity.

A final challenge for Direct Client Cooperation is
dynamically selecting which clients should donate mem-
ory and which should utilize remote memory. This prob-

Figure 8. Direct Client Cooperation speedup
compared to the base case as a function of each
client’s remote cache size. The circle indicates
the result for the 16 MB per client remote cache
assumed for this algorithm in the previous
section.
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lem appears solvable; if only the most active 10% of
clients are able to recruit a cooperative cache they would
achieve 85% of the maximum benefits available to Direct
Client Cooperation for this trace. On the other hand, the
implementation of a recruiting mechanism detracts from
the algorithm’s simplicity and may require server involve-
ment.

4.2.2  Greedy Forwarding
Although the performance gains for the greedy algo-

rithm are modest, the greedy algorithm may still be attrac-
tive because of its simplicity, because it does not increase
server load, and because it is fair. In other words, this 22%
performance improvement comes essentially for free once
the clients and server have been modified to forward
requests and the server’s callback state is expanded to
track individual blocks.

4.2.3  Centrally Coordinated Caching
Centrally Coordinated Caching can provide signifi-

cant speedups and very high global hit rates. On the other
hand, devoting a large fraction of each client’s cache to
Centrally Coordinated Caching reduces the local hit rate,
potentially increasing the server load and reducing overall
performance for some of the clients.

The fraction of each client’s cache that is treated as a
centralized resource determines the effectiveness of the
algorithm. Figure 9 plots the overall response time as the
centrally coordinated fraction is increased. As the fraction
is increased, the global hit rate improves, reducing the
time spent fetching data from disk. At the same time, the
local hit rate decreases, driving up the time spent fetching
from remote caches. These two trends create a response

Figure 9. Response time for Centrally
Coordinated Caching depends on the percent of
the cache that is centrally coordinated. 0%
corresponds to the baseline no cooperative
caching case. The Total time is the sum of the
time for requests that are satisfied by the Disk
and the time for Other requests that are satisfied
by a local or remote memory. The rest of this
study uses a centrally coordinated fraction of
80% for this algorithm, indicated by the circled
points.
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time plateau when 40% to 90% of each client’s local cache
is managed as a global resource. Note that these measure-
ments do not take increased server load into account;
increasing the centrally managed cache fraction also
increases the load on the central server as local caches sat-
isfy fewer requests. This effect may increase queueing
delays at the server as the centrally-managed fraction is
increased, reducing the overall speedups and pushing the
“break-even” point towards smaller centrally managed
fractions.

We chose to use 80% as the default centrally managed
fraction because that appears to be the more “stable” part
of the plateau under different workloads and cache sizes.
For instance, the plateau runs from 60% to 90% for the
same workload but with 8MB client caches. A high cen-
trally managed fraction tends to achieve good perfor-
mance because of the large disparity between disk and
network memory access times compared to the gap
between network and local memory. If the network were
slower, a smaller percentage would be appropriate.

4.2.4  N-Chance Forwarding
N-Chance Forwarding also provides very good over-

all performance, but it does so by improving overall hit
rates without significantly reducing local hit rates. This
algorithm also has good server load and fairness character-
istics.

Figure10 plots response time against the recirculation
count parameter, n, for this algorithm. The largest
improvement comes whenn is increased from zero (the
Greedy algorithm) to one. Increasing the count from one
to two also provides a small improvement while larger val-
ues make little difference. Relatively low values forn are
effective since data that is recirculated through a random

Figure 10. Response time for N-Chance
algorithms depends on number of times
unreferenced blocks are recirculated through
random caches. Zero corresponds to the Greedy
algorithm (no recirculation). TheTotal time is
the sum of the time for requests that are satisfied
by going to Disk and Other requests that are
satisfied by a local or remote memory. The rest
of this study uses a recirculation count of two for
this algorithm, indicated by the circled points.
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cache often lands in a relatively idle cache and so remains
in memory for a significant period of time before being
flushed. When the parameter is two, the random forward-
ing almost always gives a block at least one relatively long
period of time in a mostly idle cache. Higher values make
little additional difference both because few blocks need a
third try to find an idle cache and because the algorithm
sometimes discards old cache items without recirculating
them alln times to avoid a “ripple” effect among caches.

4.3.  Sensitivity
This subsection explores the sensitivity of the results

we present here to assumptions about each client’s cache
size, the central server’s cache size, and the performance
of the LAN over which the machines are connected.

Figure11 plots the performance of the algorithms as a
function of the size of each client’s local cache. The graph
shows that the two coordinated algorithms, Centralized
Coordination and N-Chance Forwarding, perform well as
long as caches are reasonably large. If caches are too
small, however, coordinating the contents of client caches
provides little benefit because borrowing any client mem-
ory causes a large increase in local misses with little
aggregate benefit in reducing disk accesses. The simple
Greedy algorithm also performs relatively well over the
range of cache sizes.

Figure12 illustrates the effect of varying the size of
the cache at the central server. Increasing the server cache
size significantly improves the base no cooperative cach-
ing case, while only modestly improving the performance
of the cooperative algorithms that already have good glo-
bal hit rates. For sufficiently large server caches, coopera-
tive caching provides no benefit once the server cache is
about as large as the aggregate client caches. Such a large
cache, however, would double the system’s memory cost
compared to using cooperative caching. Note that when
the server cache is very large Centrally Coordinated Cach-
ing performs poorly because of its degraded local hit rate.

Figure 11. Response time as a function of client
cache memory for the algorithms. Other graphs
in this study have assumed a client cache size of
16MB (circled).
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The emergence of fast networks means that the time is
ripe to begin utilizing cooperative caching in file systems.
Although Ethernet-speed networks are too slow to get
large benefits from cooperative caching, emerging ATM
networks promise to be fast enough to see significant
improvements. Figure 13 plots response time as a function
of the network time to fetch a remote block. For an Ether-
net-speed network, where a remote data access can take
nearly 10 ms, the maximum speedup seen for a coopera-
tive caching algorithm is 20%. If network fetch time were
reduced to 1 ms, for instance by using a fast ATM net-
work, the peak speedup increases to 70%. This graph
shows little benefit from reducing network block fetch
time below 100 µs because once the network is that fast,

Figure 12. Response time v. total central server
cache size. The circled points highlight the
results for the default 128 MB server
assumption.
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Figure 13. Response time as function of
network speed. The X axis is the round trip time
to request and receive an 8 KB packet. Disk
access time is held constant at 15 ms and the
memory access time is held constant at 250 µs.
For the rest of this study we have assumed
200 us per hop plus 400 us per block transfer for
a total remote fetch time of 800 us (request-reply
excluding memory copy time), indicated by the
vertical bar. The N-Chance and Best lines nearly
overlap over the entire range of the graph.
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network times are not a significant source of delay com-
pared to the constant memory and disk times.

Although either coordinated algorithm can provide
nearly ideal performance when the network is fast, N-
Chance Forwarding appears to be much less sensitive to
network speed than Centrally Coordinated Caching. Cen-
trally Coordinated Caching only makes sense in environ-
ments where accessing remote data is much closer to
accessing local data than going to disk. Otherwise, its
reduced local hit rate outweighs the increased global hit
rate.

4.4.  Berkeley Auspex Workload
The response time results for a second workload,

called Berkeley Auspex, appear in Figure 14. The Berke-
ley Auspex workload traces the NFS file system network
requests for 237 clients in the U.C. Berkeley Computer
Science Division that are serviced by an Auspex file
server. This workload is interesting because it follows the
activity of a larger number of clients and includes a longer
period of time than any of the Sprite traces. The large
number of clients provide an extremely large pool of
memory for cooperative caching to exploit. The traces
cover a 6 day period and include five million read and
write events of which we use the first million to warm the
caches.

The trace was taken by snooping on the network;
because it does not include local hits, we must adjust the
simulation to account for the missing local accesses. We
use Smith’s Stack Deletion method [Smit77] to approxi-
mate the response time results based on this incomplete
trace. Smith found that omitting references that hit in a
small cache makes little difference in the number of faults
seen when simulating a larger cache. The actual miss rate
can be accurately approximated by dividing the number of
faults seen when simulating the reduced trace by the

Figure 14. Response time for algorithms under
the Auspex workload. The Inferred Local Hits
segment indicates an estimate of the amount of
time spent processing local hits that do not
appear in the incomplete Auspex traces
assuming that the traced system had an 80%
local hit rate.
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actual number of references in the full trace.4 As a further
refinement, we utilize the read attribute requests present in
our trace to more accurately simulate the local client LRU
lists. NFS uses read attribute requests to validate cached
blocks before referencing them. We can therefore use read
attribute requests as a hint that the cached blocks of a file
are being referenced even though the block requests do not
appear in our trace. The attribute requests still provide
only an approximation—an attribute cache hides attribute
requests validated in the previous three seconds, and not
all read attribute requests really signify that a file’s cached
blocks are about to be referenced—but they do allow us to
infer some of the “missing” block hits.

Although the results for the Auspex workload are
only approximate, they support the results seen for the
Sprite workloads. The relative ranking of the algorithms
under the Auspex workload is the same as it was for the
Sprite workload: Centrally Coordinated Caching and N-
Chance Forwarding work nearly as well as the best case,
and the Greedy algorithm also provides significant speed-
ups. Direct Cooperation provides more modest gains. This
result is insensitive to the hit rate assumed. The predicted
speedup factors for the Auspex workload does depend on
the hit rate assumed but is significant over a wide range of
assumed local hit rates.

4.5.  Summary
N-Chance Forwarding is a relatively simple algorithm

that appears to provide very good performance over a
wide range of conditions. Centrally Coordinated Caching
and the omitted Hash Distributed Caching can also pro-
vide very good performance, but they are more likely to
degrade the performance of individual clients and depend
heavily on fast network performance to make up for the
reduced local hit rates they impose. The Weighted LRU
algorithm (results omitted) performs similarly to the N-
Chance algorithm, but it is more complicated and may also
load the server with requests for information about global
state.

The Greedy Forwarding algorithm appears to be the
algorithm of choice if simplicity is the primary concern.
Although the Direct Cooperation algorithm is also simple,
satisfying the demands of cooperative caching without
interfering with other client activities may be difficult, par-
ticularly since the Direct algorithm would have to locate
32MB to 64MB of remote memory per active client to
equal the Greedy algorithm’s performance.

Finally, consider the alternative to cooperative cach-
ing: physically moving more memory to the central server.

4. Unfortunately, the Auspex trace does not indicate the total num-
ber of references. For the results in Figure14 we assume a “hidden” hit
rate of 80% (to approximate the 78% rate simulated for the Sprite trace),
giving a maximum speedup of 2.00 for N-Chance Forwarding. If the
local hit rate were higher, all of the bars would have a slightly larger con-
stant added and the differences among the algorithms would be smaller
(e.g. a 90% local hit rate reduces the N-Chance speedup to 1.67). If the
local hit rate were lower, the differences would be magnified (e.g. a 70%
local hit rate gives an N-Chance speedup of 2.20).

This approach is very similar to the Centrally Coordinated
algorithm and provides similar performance; moving 80%
of client memory to the server yields improvements of
66% and 93% over the standard memory distribution for
the Sprite and Auspex workloads respectively. These
speedups are nearly equal to the speedups for the N-
Chance algorithm, but fall short of equalling the N-
Chance algorithm because of the reduced local hit rates
resulting from smaller local caches. Moving large frac-
tions of the clients’ caches to the server has a number of
other disadvantages compared to a good cooperative cach-
ing algorithm such as N-Chance Forwarding:

• Static allocation of the global/local caches is more likely
to provide bad performance for some individual clients
as was seen for Centrally Coordinated Caching in
Figure7.

• A system with more cache memory at the server and less
at the clients would be very sensitive to network speed
as was seen for Centrally Coordinated Caching in
Figure13. As the ratio of network performance to local
memory performance is reduced, moving memory to the
server becomes less attractive.

• Reducing the size of client local caches and transferring
more data from the server can increase server load. The
read load for a traditional caching system with the
enlarged central cache is 50% higher than for N-Chance
Forwarding under the Sprite workload.

• Memory physically moved for use as central server file
system cache cannot be used by clients for other activi-
ties. Cooperative caching, on the other hand, may allow
client cache memory to be released for use as client vir-
tual memory as system demands warrant [Nels88].

• Configuring servers with large amounts of memory may
be less cost-effective than spreading the same amount of
memory among the clients. For instance, 80% of the
16MB of cache memory for the 237 clients in the Aus-
pex trace would be 3GB of memory, demanding an
extremely expandable and potentially expensive server.

5. Related Work
This paper evaluates the performance benefits and

implementation issues of cooperative caching. Its primary
contributions are evaluating realistic management algo-
rithms under real file system workloads and a systematic
exploration of implementation options.

Leff et al. [Leff91, Leff93a, Leff93b] investigate
remote caching architectures, a form of cooperative cach-
ing, using analytic and simulation-based models under a
synthetic workload. Two important characteristics of their
workload were that the access probabilities for each object
by each client were fixed over time and that each client
knew what these distributions were. Leff found that if cli-
ents base their caching decisions on global knowledge of
what other clients are caching, they could achieve nearly
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ideal performance, but that if clients made decisions on a
strictly local basis, performance suffered greatly.

This paper differs from the Leff studies in a number of
important ways. First, this paper uses actual file system
reference traces as a workload, allowing us to quantify the
benefits of cooperative caching realizable under real work-
loads. A second major feature of this study is that we have
focused on getting good performance while controlling the
amount of central coordination and knowledge required by
the clients rather than focusing on optimal replacement
algorithms.

Franklin et al. [Fran92] examined cooperative caching
in the context of client-server data bases where clients
were allowed to forward data to each other to avoid disk
accesses. The study used synthetic workloads and focused
on techniques to reduce replication between the clients’
caches and the server cache. The server did not attempt to
coordinate the contents of the clients’ caches to reduce
replication of data among the clients. Their “Forward-
ing—Sending Dropped Pages” algorithm is similar to our
N-Chance Forwarding algorithm, but they send the last
copy of a block to the server cache rather than to another
client.

Blaze [Blaz93] proposed allowing file system clients
to supply hot data to each other from their local on-disk
file caches. The focus of this work was on reducing server
load rather than improving responsiveness. He found that
the use of client-to-client data transfers allowed dynamic
hierarchical caching and avoided the store and forward
delays experienced by static hierarchical caching systems
[Munt92].

The idea of forwarding data from one cache to
another has also been used to build scalable shared mem-
ory multiprocessors. DASH hardware implements a
scheme similar to Greedy Forwarding for dirty cache lines
[Leno90]. This policy avoids the latency of writing dirty
data back to the server when it is shared. The same optimi-
zation could be used for a cooperative caching file system
that uses delayed writes. Several “Cache Only Memory
Architecture” (COMA) designs have also relied on cache
to cache data transfers [Hage92, Rost93].

Other researchers have examined the idea of using
remote client memory rather than disk for virtual memory
paging. Felten and Zahorjan [Felt91] examined this idea in
the context of traditional LANs. Schilit and Duchamp
[Schi91] scrutinized using remote memory paging to
allow diskless portable computers, and Iftode, Li, and
Petersen [Ifto93] explored using memory servers in paral-
lel supercomputers. Comer and Griffioen propose a com-
munications protocol for remote paging in [Come92].

6. Conclusions
The advent of high-speed networks provides the

opportunity for clients to work closely together to signifi-
cantly improve the performance of file systems. We have
investigated the technique of cooperative caching and con-

clude that cooperative caching can reduce read response
times by nearly a factor of two for the workloads studied
and that a relatively simple algorithm allows clients to
efficiently manage their shared cache.
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