
Sparrow: Distributed, Low Latency Scheduling

Kay Ousterhout, Patrick Wendell, Matei Zaharia, Ion Stoica
University of California, Berkeley

Abstract

Large-scale data analytics frameworks are shifting to-
wards shorter task durations and larger degrees of paral-
lelism to provide low latency. Scheduling highly parallel
jobs that complete in hundreds of milliseconds poses a
major challenge for task schedulers, which will need to
schedule millions of tasks per second on appropriate ma-
chines while offering millisecond-level latency and high
availability. We demonstrate that a decentralized, ran-
domized sampling approach provides near-optimal per-
formance while avoiding the throughput and availability
limitations of a centralized design. We implement and
deploy our scheduler, Sparrow, on a 110-machine clus-
ter and demonstrate that Sparrow performs within 12%
of an ideal scheduler.

1 Introduction

Today’s data analytics clusters are running ever shorter
and higher-fanout jobs. Spurred by demand for lower-
latency interactive data processing, efforts in re-
search and industry alike have produced frameworks
(e.g., Dremel [12], Spark [26], Impala [11]) that stripe
work across thousands of machines or store data in
memory in order to analyze large volumes of data in
seconds, as shown in Figure 1. We expect this trend to
continue with a new generation of frameworks target-
ing sub-second response times. Bringing response times
into the 100ms range will enable powerful new appli-
cations; for example, user-facing services will be able
to run sophisticated parallel computations, such as lan-
guage translation and highly personalized search, on a
per-query basis.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. Forall other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).

SOSP ’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522716

10 min. 10 sec. 100 ms 1 ms

2004:

MapReduce

batch job

2009: Hive

query

2010: Dremel query

2010: In-memory

Spark query

2012: Impala query

Figure 1: Data analytics frameworks can analyze
large volumes of data with ever lower latency.

Jobs composed of short, sub-second tasks present a
difficult scheduling challenge. These jobs arise not only
due to frameworks targeting low latency, but also as a
result of breaking long-running batch jobs into a large
number of short tasks, a technique that improves fair-
ness and mitigates stragglers [17]. When tasks run in
hundreds of milliseconds, scheduling decisions must be
made at very high throughput: a cluster containing ten
thousand 16-core machines and running 100ms tasks
may require over 1 million scheduling decisions per
second. Scheduling must also be performed with low
latency: for 100ms tasks, scheduling delays (includ-
ing queueing delays) above tens of milliseconds repre-
sent intolerable overhead. Finally, as processing frame-
works approach interactive time-scales and are used in
customer-facing systems, high system availability be-
comes a requirement. These design requirements differ
from those of traditional batch workloads.

Modifying today’s centralized schedulers to support
sub-second parallel tasks presents a difficult engineer-
ing challenge. Supporting sub-second tasks requires
handling two orders of magnitude higher throughput
than the fastest existing schedulers (e.g., Mesos [8],
YARN [16], SLURM [10]); meeting this design require-
ment would be difficult with a design that schedules and
launches all tasks through a single node. Additionally,
achieving high availability would require the replication
or recovery of large amounts of state in sub-second time.

This paper explores the opposite extreme in the design
space: we propose scheduling from a set of machines
that operate autonomously and without centralized or
logically centralized state. A decentralized design offers

attractive scaling and availability properties. The system
can support more requests by adding additional sched-
ulers, and if a scheduler fails, users can direct requests to
an alternate scheduler. The key challenge with a decen-
tralized design is providing response times comparable
to those provided by a centralized scheduler, given that
concurrently operating schedulers may make conflicting
scheduling decisions.

We present Sparrow, a stateless distributed scheduler
that adapts the power of two choices load balancing tech-
nique [14] to the domain of parallel task scheduling.
The power of two choices technique proposes schedul-
ing each task by probing two random servers and placing
the task on the server with fewer queued tasks. We intro-
duce three techniques to make the power of two choices
effective in a cluster running parallel jobs:
Batch Sampling: The power of two choices performs
poorly for parallel jobs because job response time is sen-
sitive to tail task wait time (because a job cannot com-
plete until its last task finishes) and tail wait times remain
high with the power of two choices. Batch sampling
solves this problem by applying the recently developed
multiple choices approach [18] to the domain of parallel
job scheduling. Rather than sampling for each task indi-
vidually, batch sampling places them tasks in a job on
the least loaded ofd ·m randomly selected worker ma-
chines (ford > 1). We demonstrate analytically that, un-
like the power of two choices, batch sampling’s perfor-
mance does not degrade as a job’s parallelism increases.
Late Binding: The power of two choices suffers from
two remaining performance problems: first, server queue
length is a poor indicator of wait time, and second, due
to messaging delays, multiple schedulers sampling in
parallel may experience race conditions. Late binding
avoids these problems by delaying assignment of tasks
to worker machines until workers are ready to run the
task, and reduces median job response time by as much
as 45% compared to batch sampling alone.
Policies and Constraints: Sparrow uses multiple
queues on worker machines to enforce global policies,
and supports the per-job and per-task placement con-
straints needed by analytics frameworks. Neither pol-
icy enforcement nor constraint handling are addressed
in simpler theoretical models, but both play an impor-
tant role in real clusters [21].

We have deployed Sparrow on a 110-machine clus-
ter to evaluate its performance. When scheduling TPC-
H queries, Sparrow provides response times within 12%
of an ideal scheduler, schedules with median queueing
delay of less than 9ms, and recovers from scheduler fail-
ures in less than 120ms. Sparrow provides low response
times for jobs with short tasks, even in the presence
of tasks that take up to 3 orders of magnitude longer.
In spite of its decentralized design, Sparrow maintains

aggregate fair shares, and isolates users with different
priorities such that a misbehaving low priority user in-
creases response times for high priority jobs by at most
40%. Simulation results suggest that Sparrow will con-
tinue to perform well as cluster size increases to tens
of thousands of cores. Our results demonstrate that dis-
tributed scheduling using Sparrow presents a viable al-
ternative to centralized scheduling for low latency, par-
allel workloads.

2 Design Goals

This paper focuses on fine-grained task scheduling for
low-latency applications.

Low-latency workloads have more demanding
scheduling requirements than batch workloads do,
because batch workloads acquire resources for long pe-
riods of time and thus require infrequent task scheduling.
To support a workload composed of sub-second tasks,
a scheduler must provide millisecond-scale scheduling
delay and support millions of task scheduling decisions
per second. Additionally, because low-latency frame-
works may be used to power user-facing services, a
scheduler for low-latency workloads should be able to
tolerate scheduler failure.

Sparrow provides fine-grained task scheduling, which
is complementary to the functionality provided by clus-
ter resource managers. Sparrow does not launch new
processes for each task; instead, Sparrow assumes that
a long-running executor process is already running on
each worker machine for each framework, so that Spar-
row need only send a short task description (rather than
a large binary) when a task is launched. These execu-
tor processes may be launched within a static portion
of a cluster, or via a cluster resource manager (e.g.,
YARN [16], Mesos [8], Omega [20]) that allocates re-
sources to Sparrow along with other frameworks (e.g.,
traditional batch workloads).

Sparrow also makes approximations when scheduling
and trades off many of the complex features supported
by sophisticated, centralized schedulers in order to pro-
vide higher scheduling throughput and lower latency. In
particular, Sparrow does not allow certain types of place-
ment constraints (e.g., “my job should not be run on ma-
chines where User X’s jobs are running”), does not per-
form bin packing, and does not support gang scheduling.

Sparrow supports a small set of features in a way that
can be easily scaled, minimizes latency, and keeps the
design of the system simple. Many applications run low-
latency queries from multiple users, so Sparrow enforces
strict priorities or weighted fair shares when aggregate
demand exceeds capacity. Sparrow also supports basic

2

constraints over job placement, such as per-task con-
straints (e.g. each task needs to be co-resident with in-
put data) and per-job constraints (e.g., all tasks must be
placed on machines with GPUs). This feature set is simi-
lar to that of the Hadoop MapReduce scheduler [23] and
the Spark [26] scheduler.

3 Sample-Based Scheduling for
Parallel Jobs

A traditional task scheduler maintains a complete view
of which tasks are running on which worker machines,
and uses this view to assign incoming tasks to avail-
able workers. Sparrow takes a radically different ap-
proach: many schedulers operate in parallel, and sched-
ulers do not maintain any state about cluster load. To
schedule a job’s tasks, schedulers rely on instantaneous
load information acquired from worker machines. Spar-
row’s approach extends existing load balancing tech-
niques [14, 18] to the domain of parallel job scheduling
and introduces late binding to improve performance.

3.1 Terminology and job model

We consider a cluster composed ofworker machinesthat
execute tasks andschedulersthat assign tasks to worker
machines. A job consists ofm tasks that are each allo-
cated to a worker machine. Jobs can be handled by any
scheduler. Workers run tasks in a fixed number of slots;
we avoid more sophisticated bin packing because it adds
complexity to the design. If a worker machine is as-
signed more tasks than it can run concurrently, it queues
new tasks until existing tasks release enough resources
for the new task to be run. We usewait timeto describe
the time from when a task is submitted to the sched-
uler until when the task begins executing andservice
time to describe the time the task spends executing on
a worker machine.Job response timedescribes the time
from when the job is submitted to the scheduler until
the last task finishes executing. We usedelayto describe
the total delay within a job due to both scheduling and
queueing. We compute delay by taking the difference be-
tween the job response time using a given scheduling
technique, and job response time if all of the job’s tasks
had been scheduled with zero wait time (equivalent to
the longest service time across all tasks in the job).

In evaluating different scheduling approaches, we as-
sume that each job runs as a single wave of tasks. In
real clusters, jobs may run as multiple waves of tasks
when, for example,m is greater than the number of slots
assigned to the user; for multiwave jobs, the scheduler
can place some early tasks on machines with longer
queueing delay without affecting job response time.

We assume a single wave job model when we evalu-
ate scheduling techniques because single wave jobs are
most negatively affected by the approximations involved
in our distributed scheduling approach: even a single
delayed task affects the job’s response time. However,
Sparrow also handles multiwave jobs.

3.2 Per-task sampling

Sparrow’s design takes inspiration from the power of
two choices load balancing technique [14], which pro-
vides low expected task wait times using a stateless, ran-
domized approach. The power of two choices technique
proposes a simple improvement over purely random as-
signment of tasks to worker machines: place each task
on the least loaded of two randomly selected worker
machines. Assigning tasks in this manner improves ex-
pected wait time exponentially compared to using ran-
dom placement [14].1

We first consider a direct application of the power of
two choices technique to parallel job scheduling. The
scheduler randomly selects two worker machines for
each task and sends aprobe to each, where a probe is
a lightweight RPC. The worker machines each reply to
the probe with the number of currently queued tasks, and
the scheduler places the task on the worker machine with
the shortest queue. The scheduler repeats this process for
each task in the job, as illustrated in Figure 2(a). We refer
to this application of the power of two choices technique
asper-task sampling.

Per-task sampling improves performance compared to
random placement but still performs 2× or more worse
than an omniscient scheduler.2 Intuitively, the problem
with per-task sampling is that a job’s response time is
dictated by the longest wait time of any of the job’s tasks,
making averagejob response time much higher (and also
much more sensitive to tail performance) than average
taskresponse time. We simulated per-task sampling and
random placement in cluster composed of 10,000 4-core
machines with 1ms network round trip time. Jobs ar-
rive as a Poisson process and are each composed of 100
tasks. The duration of a job’s tasks is chosen from the
exponential distribution such that across jobs, task du-
rations are exponentially distributed with mean 100ms,
but within a particular job, all tasks are the same du-

1More precisely, expected task wait time using random placement
is 1/(1− ρ), whereρ represents load. Using the least loaded ofd
choices, wait time in an initially empty system over the firstT units

of time is upper bounded by∑∞
i=1 ρ

di−d
d−1 +o(1) [14].

2 The omniscient scheduler uses a greedy scheduling algorithm
based on complete information about which worker machines are busy.
For each incoming job, the scheduler places the job’s tasks on idle
workers, if any exist, and otherwise uses FIFO queueing.

3

Worker

Scheduler

Scheduler

Scheduler

Scheduler Job

Task 1

Task 2

Worker

Worker

Worker

Worker

Worker

…

(a) Per-task sampling selects queues of length 1 and 3.

2

Scheduler

Scheduler

Scheduler

Scheduler

4 probes

(d = 2)
Worker

Worker

Worker

Worker

Worker

Worker

…

Job

(b) Batch sampling selects queues of length 1 and 2.

Figure 2: Placing a parallel, two-task job. Batch sampling outperforms per-task sampling because tasks are
placed in the least loaded of the entirebatch of sampled queues.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

R
es

p
o
n
se

 T
im

e
(m

s)

Load

Random
Per-Task
Batch
Batch+Late Binding
Omniscient

Figure 3: Comparison of scheduling techniques in a
simulated cluster of 10,000 4-core machines running
100-task jobs.

ration.3 As shown in Figure 3, response time increases
with increasing load, because schedulers have less suc-
cess finding free machines on which to place tasks. At
80% load, per-task sampling improves performance by
over 3× compared to random placement, but still results
in response times equal to over 2.6× those offered by a
omniscient scheduler.

3.3 Batch sampling

Batch sampling improves on per-task sampling by shar-
ing information across all of the probes for a particular
job. Batch sampling is similar to a technique recently
proposed in the context of storage systems [18]. With
per-task sampling, one pair of probes may have gotten
unlucky and sampled two heavily loaded machines (e.g.,
Task 1 in Figure 2(a)), while another pair may have got-
ten lucky and sampled two lightly loaded machines (e.g,
Task 2 in Figure 2(a)); one of the two lightly loaded ma-
chines will go unused. Batch sampling aggregates load

3 We use this distribution because it puts the most stress on our
approximate, distributed scheduling technique. When tasks within a
job are of different duration, the shorter tasks can have longer wait
times without affecting job response time.

information from the probes sent for all of a job’s tasks,
and places the job’sm tasks on the least loaded of all the
worker machines probed. In the example shown in Fig-
ure 2, per-task sampling places tasks in queues of length
1 and 3; batch sampling reduces the maximum queue
length to 2 by using both workers that were probed by
Task 2 with per-task sampling.

To schedule using batch sampling, a scheduler ran-
domly selectsdm worker machines (ford ≥ 1). The
scheduler sends a probe to each of thedm workers; as
with per-task sampling, each worker replies with the
number of queued tasks. The scheduler places one of the
job’s m tasks on each of them least loaded workers. Un-
less otherwise specified, we used = 2; we justify this
choice ofd in §7.9.

As shown in Figure 3, batch sampling improves per-
formance compared to per-task sampling. At 80% load,
batch sampling provides response times 0.73× those
with per-task sampling. Nonetheless, response times
with batch sampling remain a factor of 1.92×worse than
those provided by an omniscient scheduler.

3.4 Problems with sample-based schedul-
ing

Sample-based techniques perform poorly at high load
due to two problems. First, schedulers place tasks based
on the queue length at worker nodes. However, queue
length provides only a coarse prediction of wait time.
Consider a case where the scheduler probes two work-
ers to place one task, one of which has two 50ms tasks
queued and the other of which has one 300ms task
queued. The scheduler will place the task in the queue
with only one task, even though that queue will result
in a 200ms longer wait time. While workers could re-
ply with an estimate of task duration rather than queue
length, accurately predicting task durations is notori-
ously difficult. Furthermore, almost all task duration es-
timates would need to be accurate for such a technique

4

to be effective, because each job includes many parallel
tasks,all of which must be placed on machines with low
wait time to ensure good performance.

Sampling also suffers from a race condition where
multiple schedulers concurrently place tasks on a worker
that appears lightly loaded [13]. Consider a case where
two different schedulers probe the same idle worker ma-
chine,w, at the same time. Sincew is idle, both sched-
ulers are likely to place a task onw; however, only one
of the two tasks placed on the worker will arrive in an
empty queue. The queued task might have been placed
in a different queue had the corresponding scheduler
known thatw was not going to be idle when the task
arrived.

3.5 Late binding

Sparrow introduceslate bindingto solve the aforemen-
tioned problems. With late binding, workers do not re-
ply immediately to probes and instead place a reserva-
tion for the task at the end of an internal work queue.
When this reservation reaches the front of the queue, the
worker sends an RPC to the scheduler that initiated the
probe requesting a task for the corresponding job. The
scheduler assigns the job’s tasks to the firstm workers
to reply, and replies to the remaining(d−1)m workers
with a no-op signaling that all of the job’s tasks have
been launched. In this manner, the scheduler guarantees
that the tasks will be placed on them probed workers
where they will be launched soonest. For exponentially-
distributed task durations at 80% load, late binding pro-
vides response times 0.55× those with batch sampling,
bringing response time to within 5% (4ms) of an omni-
scient scheduler (as shown in Figure 3).

The downside of late binding is that workers are
idle while they are sending an RPC to request a new
task from a scheduler. All current cluster schedulers
we are aware of make this tradeoff: schedulers wait to
assign tasks until a worker signals that it has enough
free resources to launch the task. In our target set-
ting, this tradeoff leads to a 2% efficiency loss com-
pared to queueing tasks at worker machines. The frac-
tion of time a worker spends idle while requesting tasks
is (d ·RTT)/(t + d ·RTT) (whered denotes the num-
ber of probes per task, RTT denotes the mean network
round trip time, andt denotes mean task service time). In
our deployment on EC2 with an un-optimized network
stack, mean network round trip time was 1 millisecond.
We expect that the shortest tasks will complete in 100ms
and that scheduler will use a probe ratio of no more than
2, leading to at most a 2% efficiency loss. For our tar-
get workload, this tradeoff is worthwhile, as illustrated
by the results shown in Figure 3, which incorporate net-
work delays. In environments where network latencies

and task runtimes are comparable, late binding will not
present a worthwhile tradeoff.

3.6 Proactive Cancellation

When a scheduler has launched all of the tasks for a par-
ticular job, it can handle remaining outstanding probes
in one of two ways: it can proactively send a cancel-
lation RPC to all workers with outstanding probes, or
it can wait for the workers to request a task and reply
to those requests with a message indicating that no un-
launched tasks remain. We use our simulation to model
the benefit of using proactive cancellation and find that
proactive cancellation reduces median response time by
6% at 95% cluster load. At a given loadρ , workers are
busy more thanρ of the time: they spendρ proportion of
time executing tasks, but they spend additional time re-
questing tasks from schedulers. Using cancellation with
1ms network RTT, a probe ratio of 2, and with tasks that
are an average of 100ms long reduces the time work-
ers spend busy by approximately 1%; because response
times approach infinity as load approaches 100%, the
1% reduction in time workers spend busy leads to a no-
ticeable reduction in response times. Cancellation leads
to additional RPCs if a worker receives a cancellation for
a reservation after it has already requested a task for that
reservation: at 95% load, cancellation leads to 2% ad-
ditional RPCs. We argue that the additional RPCs are a
worthwhile tradeoff for the improved performance, and
the full Sparrow implementation includes cancellation.
Cancellation helps more when the ratio of network de-
lay to task duration increases, so will become more im-
portant as task durations decrease, and less important as
network delay decreases.

4 Scheduling Policies and Con-
straints

Sparrow aims to support a small but useful set of poli-
cies within its decentralized framework. This section
describes support for two types of popular scheduler
policies: constraints over where individual tasks are
launched and inter-user isolation policies to govern the
relative performance of users when resources are con-
tended.

4.1 Handling placement constraints

Sparrow handles two types of constraints, per-job and
per-task constraints. Such constraints are commonly re-
quired in data-parallel frameworks, for instance, to run
tasks on a machine that holds the task’s input data
on disk or in memory. As mentioned in§2, Sparrow

5

does not support many types of constraints (e.g., inter-
job constraints) supported by some general-purpose re-
source managers.

Per-job constraints (e.g., all tasks should be run on
a worker with a GPU) are trivially handled at a Spar-
row scheduler. Sparrow randomly selects thedmcandi-
date workers from the subset of workers that satisfy the
constraint. Once thedm workers to probe are selected,
scheduling proceeds as described previously.

Sparrow also handles jobs with per-task constraints,
such as constraints that limit tasks to run on machines
where input data is located. Co-locating tasks with input
data typically reduces response time, because input data
does not need to be transferred over the network. For
jobs with per-task constraints, each task may have a dif-
ferent set of machines on which it can run, so Sparrow
cannot aggregate information over all of the probes in
the job using batch sampling. Instead, Sparrow uses per-
task sampling, where the scheduler selects the two ma-
chines to probe for each task from the set of machines
that the task is constrained to run on, along with late
binding.

Sparrow implements a small optimization over per-
task sampling for jobs with per-task constraints. Rather
than probing individually for each task, Sparrow shares
information across tasks when possible. For example,
consider a case where task 0 is constrained to run in
machines A, B, and C, and task 1 is constrained to run
on machines C, D, and E. Suppose the scheduler probed
machines A and B for task 0, which were heavily loaded,
and probed machines C and D for task 1, which were
both idle. In this case, Sparrow will place task 0 on ma-
chine C and task 1 on machine D, even though both ma-
chines were selected to be probed for task 1.

Although Sparrow cannot use batch sampling for jobs
with per-task constraints, our distributed approach still
provides near-optimal response times for these jobs, be-
cause even a centralized scheduler has only a small num-
ber of choices for where to place each task. Jobs with
per-task constraints can still use late binding, so the
scheduler is guaranteed to place each task on whichever
of the two probed machines where the task will run
sooner. Storage layers like HDFS typically replicate data
on three different machines, so tasks that read input data
will be constrained to run on one of three machines
where the input data is located. As a result, even an
ideal, omniscient scheduler would only have one addi-
tional choice for where to place each task.

4.2 Resource allocation policies

Cluster schedulers seek to allocate resources accord-
ing to a specific policy when aggregate demand for re-
sources exceeds capacity. Sparrow supports two types of

policies: strict priorities and weighted fair sharing. These
policies mirror those offered by other schedulers, includ-
ing the Hadoop Map Reduce scheduler [25].

Many cluster sharing policies reduce to using strict
priorities; Sparrow supports all such policies by main-
taining multiple queues on worker nodes. FIFO, earliest
deadline first, and shortest job first all reduce to assign-
ing a priority to each job, and running the highest pri-
ority jobs first. For example, with earliest deadline first,
jobs with earlier deadlines are assigned higher priority.
Cluster operators may also wish to directly assign pri-
orities; for example, to give production jobs high prior-
ity and ad-hoc jobs low priority. To support these poli-
cies, Sparrow maintains one queue for each priority at
each worker node. When resources become free, Spar-
row responds to the reservation from the highest prior-
ity non-empty queue. This mechanism trades simplicity
for accuracy: nodes need not use complex gossip proto-
cols to exchange information about jobs that are waiting
to be scheduled, but low priority jobs may run before
high priority jobs if a probe for a low priority job ar-
rives at a node where no high priority jobs happen to
be queued. We believe this is a worthwhile tradeoff: as
shown in§7.8, this distributed mechanism provides good
performance for high priority users. Sparrow does not
currently support preemption when a high priority task
arrives at a machine running a lower priority task; we
leave exploration of preemption to future work.

Sparrow can also enforce weighted fair shares. Each
worker maintains a separate queue for each user, and
performs weighted fair queuing [6] over those queues.
This mechanism provides cluster-wide fair shares in ex-
pectation: two users using the same worker will get
shares proportional to their weight, so by extension, two
users using the same set of machines will also be as-
signed shares proportional to their weight. We choose
this simple mechanism because more accurate mecha-
nisms (e.g., Pisces [22]) add considerable complexity;
as we demonstrate in§7.7, Sparrow’s simple mechanism
provides near-perfect fair shares.

5 Analysis

Before delving into our experimental evaluation, we ana-
lytically show that batch sampling achieves near-optimal
performance,regardless of the task duration distribu-
tion, given some simplifying assumptions. Section 3
demonstrated that Sparrow performs well, but only un-
der one particular workload; this section generalizes
those results to all workloads. We also demonstrate that
with per-task sampling, performance decreases expo-
nentially with the number of tasks in a job, making it
poorly suited for parallel workloads.

6

n Number of servers in the cluster
ρ Load (fraction non-idle workers)
m Tasks per job
d Probes per task
t Mean task service time

ρn/(mt) Mean request arrival rate

Table 1: Summary of notation.

Random Placement (1−ρ)m

Per-Task Sampling (1−ρd)m

Batch Sampling ∑d·m
i=m(1−ρ)iρd·m−i

(d·m
i

)

Table 2: Probability that a job will experience zero
wait time under three different scheduling tech-
niques.

To analyze the performance of batch and per-task
sampling, we examine the probability of placing all tasks
in a job on idle machines, or equivalently, providing zero
wait time. Quantifying how often our approach places
jobs on idle workers provides a bound on how Sparrow
performs compared to an optimal scheduler.

We make a few simplifying assumptions for the pur-
pose of this analysis. We assume zero network delay, an
infinitely large number of servers, and that each server
runs one task at a time. Our experimental evaluation
shows results in the absence of these assumptions.

Mathematical analysis corroborates the results in§3
demonstrating that per-task sampling performs poorly
for parallel jobs. The probability that a particular task is
placed on an idle machine is one minus the probability
that all probes hit busy machines: 1−ρd (whereρ rep-
resents cluster load andd represents the probe ratio; Ta-
ble 1 summarizes notation). The probability thatall tasks
in a job are assigned to idle machines is(1− ρd)m (as
shown in Table 2) because allm sets of probes must hit
at least one idle machine. This probability decreases ex-
ponentially with the number of tasks in a job, rendering
per-task sampling inappropriate for scheduling parallel
jobs. Figure 4 illustrates the probability that a job expe-
riences zero wait time for both 10 and 100-task jobs, and
demonstrates that the probability of experiencing zero
wait time for a 100-task job drops to< 2% at 20% load.

Batch sampling can place all of a job’s tasks on idle
machines at much higher loads than per-task sampling.
In expectation, batch sampling will be able to place all
m tasks in empty queues as long asd ≥ 1/(1−ρ). Cru-
cially, this expression does not depend on the number
of tasks in a job (m). Figure 4 illustrates this effect: for
both 10 and 100-task jobs, the probability of experienc-
ing zero wait time drops from 1 to 0 at 50% load.4

4With the larger, 100-task job, the drop happens more rapidlybe-
cause the job uses more total probes, which decreases the variance in
the proportion of probes that hit idle machines.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r(

ze
ro

 w
ai

t
ti

m
e)

Load

10 tasks/job

Random Per-Task

 0 0.2 0.4 0.6 0.8 1
Load

100 tasks/job

Batch

Figure 4: Probability that a job will experience zero
wait time in a single-core environment using random
placement, sampling 2 servers/task, and sampling2m
machines to place anm-task job.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
r(

ze
ro

 w
ai

t
ti

m
e)

Load

10 tasks/job

Random Per-Task

 0 0.2 0.4 0.6 0.8 1
Load

100 tasks/job

Batch

Figure 5: Probability that a job will experience zero
wait time in a system of 4-core servers.

Our analysis thus far has considered machines that can
run only one task at a time; however, today’s clusters
typically feature multi-core machines. Multicore ma-
chines significantly improve the performance of batch
sampling. Consider a model where each server can run
up to c tasks concurrently. Each probe implicitly de-
scribes load onc processing units rather than just one,
which increases the likelihood of finding an idle process-
ing unit on which to run each task. To analyze perfor-
mance in a multicore environment, we make two simpli-
fying assumptions: first, we assume that the probability
that a core is idle is independent of whether other cores
on the same machine are idle; and second, we assume
that the scheduler places at most 1 task on each machine,
even if multiple cores are idle (placing multiple tasks on
an idle machine exacerbates the “gold rush effect” where
many schedulers concurrently place tasks on an idle ma-
chine). Based on these assumptions, we can replaceρ in
Table 2 withρc to obtain the results shown in Figure 5.
These results improve dramatically on the single-core
results: for batch sampling with 4 cores per machine and
100 tasks per job, batch sampling achieves near perfect
performance (99.9% of jobs experience zero wait time)
at up to 79% load. This result demonstrates that, under
some simplifying assumptions, batch sampling performs
well regardless of the distribution of task durations.

7

Sparrow Node Monitor

App X

Executor

Worker

Sparrow Scheduler

Spark

Frontend

App X

Frontend

Sparrow Scheduler

Spark

Frontend …

Spark

Executor

Sparrow Node Monitor

Worker

Spark

Executor

Sparrow Node Monitor

App X

Executor

Worker

…

Figure 6: Frameworks that use Sparrow are decom-
posed into frontends, which generate tasks, and ex-
ecutors, which run tasks. Frameworks schedule jobs
by communicating with any one of a set of distributed
Sparrow schedulers. Sparrow node monitors run on
each worker machine and federate resource usage.

6 Implementation

We implemented Sparrow to evaluate its performance
on a cluster of 110 Amazon EC2 virtual machines. The
Sparrow code, including scripts to replicate our exper-
imental evaluation, is publicly available athttp://
github.com/radlab/sparrow.

6.1 System components

As shown in Figure 6, Sparrow schedules from a dis-
tributed set of schedulers that are each responsible for
assigning tasks to workers. Because Sparrow does not
require any communication between schedulers, arbi-
trarily many schedulers may operate concurrently, and
users or applications may use any available scheduler
to place jobs. Schedulers expose a service (illustrated in
Figure 7) that allows frameworks to submit job schedul-
ing requests using Thrift remote procedure calls [1].
Thrift can generate client bindings in many languages,
so applications that use Sparrow for scheduling are not
tied to a particular language. Each scheduling request in-
cludes a list of task specifications; the specification for a
task includes a task description and a list of constraints
governing where the task can be placed.

A Sparrow node monitor runs on each worker, and
federates resource usage on the worker by enqueu-
ing reservations and requesting task specifications from
schedulers when resources become available. Node
monitors run tasks in a fixed number ofslots; slots can
be configured based on the resources of the underlying
machine, such as CPU cores and memory.

Sparrow performs task scheduling for one or more
concurrently operating frameworks. As shown in Fig-
ure 6, frameworks are composed of long-livedfrontend
and executorprocesses, a model employed by many
systems (e.g., Mesos [8]). Frontends accept high level

Application

Frontend
Scheduler

Node

Monitor
Application

Executor
submitRequest()

enqueueReservation()

getTask()

launchTask()

reserve time

get task

time

queue time

Time

taskComplete()

service

time

taskComplete() taskComplete()

Figure 7: RPCs (parameters not shown) and timings
associated with launching a job. Sparrow’s external
interface is shown in bold text and internal RPCs are
shown in grey text.

queries or job specifications (e.g., a SQL query) from ex-
ogenous sources (e.g., a data analyst, web service, busi-
ness application, etc.) and compile them into parallel
tasks for execution on workers. Frontends are typically
distributed over multiple machines to provide high per-
formance and availability. Because Sparrow schedulers
are lightweight, in our deployment, we run a scheduler
on each machine where an application frontend is run-
ning to ensure minimum scheduling latency.

Executor processes are responsible for executing
tasks, and are long-lived to avoid startup overhead such
as shipping binaries or caching large datasets in memory.
Executor processes for multiple frameworks may run co-
resident on a single machine; the node monitor federates
resource usage between co-located frameworks. Spar-
row requires executors to accept alaunchTask()
RPC from a local node monitor, as shown in Figure 7;
Sparrow uses thelaunchTask() RPC to pass on the
task description (opaque to Sparrow) originally supplied
by the application frontend.

6.2 Spark on Sparrow

In order to test Sparrow using a realistic workload,
we ported Spark [26] to Sparrow by writing a Spark
scheduling plugin. This plugin is 280 lines of Scala
code, and can be found athttps://github.com/
kayousterhout/spark/tree/sparrow.

The execution of a Spark query begins at a Spark
frontend, which compiles a functional query definition
into multiple parallel stages. Each stage is submitted as
a Sparrow job, including a list of task descriptions and
any associated placement constraints. The first stage is
typically constrained to execute on machines that con-
tain input data, while the remaining stages (which read
data shuffled or broadcasted over the network) are un-
constrained. When one stage completes, Spark requests
scheduling of the tasks in the subsequent stage.

8

http://github.com/radlab/sparrow
http://github.com/radlab/sparrow
https://github.com/kayousterhout/spark/tree/sparrow
https://github.com/kayousterhout/spark/tree/sparrow

6.3 Fault tolerance

Because Sparrow schedulers do not have any logically
centralized state, the failure of one scheduler does not af-
fect the operation of other schedulers. Frameworks that
were using the failed scheduler need to detect the failure
and connect to a backup scheduler. Sparrow includes a
Java client that handles failover between Sparrow sched-
ulers. The client accepts a list of schedulers from the ap-
plication and connects to the first scheduler in the list.
The client sends a heartbeat message to the scheduler it
is using every 100ms to ensure that the scheduler is still
alive; if the scheduler has failed, the client connects to
the next scheduler in the list and triggers a callback at the
application. This approach allows frameworks to decide
how to handle tasks that were in-flight during the sched-
uler failure. Some frameworks may choose to ignore
failed tasks and proceed with a partial result; for Spark,
the handler instantly relaunches any phases that were in-
flight when the scheduler failed. Frameworks that elect
to re-launch tasks must ensure that tasks are idempotent,
because the task may have been partway through execu-
tion when the scheduler died. Sparrow does not attempt
to learn about in-progress jobs that were launched by the
failed scheduler, and instead relies on applications to re-
launch such jobs. Because Sparrow is designed for short
jobs, the simplicity benefit of this approach outweighs
the efficiency loss from needing to restart jobs that were
in the process of being scheduled by the failed scheduler.

While Sparrow’s design allows for scheduler failures,
Sparrow does not provide any safeguards against rogue
schedulers. A misbehaving scheduler could use a larger
probe ratio to improve performance, at the expensive of
other jobs. In trusted environments where schedulers are
run by a trusted entity (e.g., within a company), this
should not be a problem; in more adversarial environ-
ments, schedulers may need to be authenticated and rate-
limited to prevent misbehaving schedulers from wasting
resources.

Sparrow does not handle worker failures, as discussed
in §8, nor does it handle the case where the entire clus-
ter fails. Because Sparrow does not persist scheduling
state to disk, in the event that all machines in the clus-
ter fail (for example, due to a power loss event), all jobs
that were in progress will need to be restarted. As in the
case when a scheduler fails, the efficiency loss from this
approach is minimal because jobs are short.

7 Experimental Evaluation

We evaluate Sparrow using a cluster composed of 100
worker machines and 10 schedulers running on Ama-
zon EC2. Unless otherwise specified, we use a probe
ratio of 2. First, we use Sparrow to schedule tasks for

a TPC-H workload, which features heterogeneous an-
alytics queries. We provide fine-grained tracing of the
overhead that Sparrow incurs and quantify its perfor-
mance in comparison with an ideal scheduler. Second,
we demonstrate Sparrow’s ability to handle scheduler
failures. Third, we evaluate Sparrow’s ability to isolate
users from one another in accordance with cluster-wide
scheduling policies. Finally, we perform a sensitivity
analysis of key parameters in Sparrow’s design.

7.1 Performance on TPC-H workload

We measure Sparrow’s performance scheduling queries
from the TPC-H decision support benchmark. The TPC-
H benchmark is representative of ad-hoc queries on busi-
ness data, which are a common use case for low-latency
data parallel frameworks.

Each TPC-H query is executed using Shark [24],
a large scale data analytics platform built on top of
Spark [26]. Shark queries are compiled into multiple
Spark stages that each trigger a scheduling request using
Sparrow’ssubmitRequest()RPC. Tasks in the first
stage are constrained to run on one of three machines
holding the task’s input data, while tasks in remaining
stages are unconstrained. The response time of a query
is the sum of the response times of each stage. Because
Shark is resource-intensive, we use EC2 high-memory
quadruple extra large instances, which each have 8 cores
and 68.4GB of memory, and use 4 slots on each worker.
Ten different users launch random permutations of the
TPC-H queries to sustain an average cluster load of 80%
for a period of approximately 15 minutes. We report re-
sponse times from a 200 second period in the middle
of the experiment; during the 200 second period, Spar-
row schedules over 20k jobs that make up 6.2k TPC-H
queries. Each user runs queries on a distinct denormal-
ized copy of the TPC-H dataset; each copy of the data set
is approximately 2GB (scale factor 2) and is broken into
33 partitions that are each triply replicated in memory.

The TPC-H query workload has four qualities repre-
sentative of a real cluster workload. First, cluster utiliza-
tion fluctuates around the mean value of 80% depending
on whether the users are collectively in more resource-
intensive or less resource-intensive stages. Second, the
stages have different numbers of tasks: the first stage has
33 tasks, and subsequent stages have either 8 tasks (for
reduce-like stages that read shuffled data) or 1 task (for
aggregation stages). Third, the duration of each stage is
non-uniform, varying from a few tens of milliseconds to
several hundred. Finally, the queries have a mix of con-
strained and unconstrained scheduling requests: 6.2k re-
quests are constrained (the first stage in each query) and
the remaining 14k requests are unconstrained.

9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

q3 q4 q6 q12

R
es

p
o
n
se

 T
im

e
(m

s)

4217 (med.) 5396 (med.) 7881 (med.)

Random
Per-task sampling

Batch sampling

Batch + late binding
Ideal

Figure 8: Response times for TPC-H queries using
different placement stategies. Whiskers depict 5th
and 95th percentiles; boxes depict median, 25th, and
75th percentiles.

To evaluate Sparrow’s performance, we compare
Sparrow to an ideal scheduler that always places all tasks
with zero wait time, as described in§3.1. To compute the
ideal response time for a query, we compute the response
time for each stage if all of the tasks in the stage had been
placed with zero wait time, and then sum the ideal re-
sponse times for all stages in the query. Sparrow always
satisfies data locality constraints; because the ideal re-
sponse times are computed using the service times when
Sparrow executed the job, the ideal response time as-
sumes data locality for all tasks. The ideal response time
does not include the time needed to send tasks to worker
machines, nor does it include queueing that is inevitable
during utilization bursts, making it a conservative lower
bound on the response time attainable with a centralized
scheduler.

Figure 8 demonstrates that Sparrow outperforms al-
ternate techniques and provides response times within
12% of an ideal scheduler. Compared to randomly as-
signing tasks to workers, Sparrow (batch sampling with
late binding) reduces median query response time by 4–
8× and reduces 95th percentile response time by over
10×. Sparrow also reduces response time compared to
per-task sampling (a naı̈ve implementation based on the
power of two choices): batch sampling with late bind-
ing provides query response times an average of 0.8×
those provided by per-task sampling. Ninety-fifth per-
centile response times drop by almost a factor of two
with Sparrow, compared to per-task sampling. Late bind-
ing reduces median query response time by an average
of 14% compared to batch sampling alone. Sparrow also
provides good absolute performance: Sparrow provides
median response times just 12% higher than those pro-
vided by an ideal scheduler.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

C
u
m

u
la

ti
v
e

P
ro

b
ab

il
it

y

Milliseconds

Reserve time
Queue time

Get task time
Service time

Figure 9: Latency distribution for each phase in the
Sparrow scheduling algorithm.

 0

 20

 40

 60

 80

 100

 120

 140

D
el

ay
 (

m
s)

Constrained Stages Unconstrained Stages

535 219

Per-task
Sparrow

Figure 10: Delay using both Sparrow and per-task
sampling, for both constrained and unconstrained
Spark stages. Whiskers depict 5th and 95 percentiles;
boxes depict median, 25th, and 75th percentiles.

7.2 Deconstructing performance

To understand the components of the delay that Spar-
row adds relative to an ideal scheduler, we deconstruct
Sparrow scheduling latency in Figure 9. Each line cor-
responds to one of the phases of the Sparrow schedul-
ing algorithm depicted in Figure 7. The reserve time
and queue times are unique to Sparrow—a centralized
scheduler might be able to reduce these times to zero.
However, the get task time is unavoidable: no matter the
scheduling algorithm, the scheduler will need to ship the
task to the worker machine.

7.3 How do task constraints affect perfor-
mance?

Sparrow provides good absolute performance and im-
proves over per-task sampling for both constrained and
unconstrained tasks. Figure 10 depicts the delay for con-
strained and unconstrained stages in the TPC-H work-
load using both Sparrow and per-task sampling. Sparrow
schedules with a median of 7ms of delay for jobs with
unconstrained tasks and a median of 14ms of delay for
jobs with constrained tasks; because Sparrow cannot ag-
gregate information across the tasks in a job when tasks
are constrained, delay is longer. Nonetheless, even for

10

 0

 1000

 2000

 3000

 4000

 0 10 20 30 40 50 60
Time (s)

 0

 1000

 2000

 3000

 4000
Q

u
er

y
 r

es
p
o
n
se

 t
im

e
(m

s)
Failure

Node 1

Node 2

Figure 11: TPC-H response times for two frontends
submitting queries to a 100-node cluster. Node 1 suf-
fers from a scheduler failure at 20 seconds.

constrained tasks, Sparrow provides a performance im-
provement over per-task sampling due to its use of late
binding.

7.4 How do scheduler failures impact job
response time?

Sparrow provides automatic failover between schedulers
and can failover to a new scheduler in less than 120ms.
Figure 11 plots the response time for ongoing TPC-H
queries in an experiment parameterized as in§7.1, with
10 Shark frontends that submit queries. Each frontend
connects to a co-resident Sparrow scheduler but is ini-
tialized with a list of alternate schedulers to connect to in
case of failure. At timet=20, we terminate the Sparrow
scheduler on node 1. The plot depicts response times for
jobs launched from the Spark frontend on node 1, which
fails over to the scheduler on node 2. The plot also shows
response times for jobs launched from the Spark fron-
tend on node 2, which uses the scheduler on node 2 for
the entire duration of the experiment. When the Sparrow
scheduler on node 1 fails, it takes 100ms for the Spar-
row client to detect the failure, less than 5ms to for the
Sparrow client to connect to the scheduler on node 2,
and less than 15ms for Spark to relaunch all outstand-
ing tasks. Because of the speed at which failure recov-
ery occurs, only 2 queries have tasks in flight during the
failure; these queries suffer some overhead.

7.5 Synthetic workload

The remaining sections evaluate Sparrow using a syn-
thetic workload composed of jobs with constant dura-
tion tasks. In this workload, ideal job completion time
is always equal to task duration, which helps to isolate
the performance of Sparrow from application-layer vari-
ations in service time. As in previous experiments, these

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000

R
es

p
o
n
se

 T
im

e
(m

s)

Task Duration (ms)

Spark native scheduler
Sparrow

Ideal

Figure 12: Response time when scheduling 10-task
jobs in a 100 node cluster using both Sparrow and
Spark’s native scheduler. Utilization is fixed at 80%,
while task duration decreases.

experiments run on a cluster of 110 EC2 servers, with 10
schedulers and 100 workers.

7.6 How does Sparrow compare to Spark’s
native, centralized scheduler?

Even in the relatively small, 100-node cluster in which
we conducted our evaluation, Spark’s existing central-
ized scheduler cannot provide high enough throughput
to support sub-second tasks.5 We use a synthetic work-
load where each job is composed of 10 tasks that each
sleep for a specified period of time, and measure job re-
sponse time. Since all tasks in the job are the same du-
ration, ideal job response time (if all tasks are launched
immediately) is the duration of a single task. To stress
the schedulers, we use 8 slots on each machine (one per
core). Figure 12 depicts job response time as a function
of task duration. We fix cluster load at 80%, and vary
task submission rate to keep load constant as task du-
ration decreases. For tasks longer than 2 seconds, Spar-
row and Spark’s native scheduler both provide near-ideal
response times. However, when tasks are shorter than
1355ms, Spark’s native scheduler cannot keep up with
the rate at which tasks are completing so jobs experience
infinite queueing.

To ensure that Sparrow’s distributed scheduling is
necessary, we performed extensive profiling of the Spark
scheduler to understand how much we could increase
scheduling throughput with improved engineering. We
did not find any one bottleneck in the Spark sched-
uler; instead, messaging overhead, virtual function call
overhead, and context switching lead to a best-case
throughput (achievable when Spark is scheduling only
a single job) of approximately 1500 tasks per second.
Some of these factors could be mitigated, but at the ex-
pense of code readability and understandability. A clus-

5 For these experiments, we use Spark’s standalone mode, which
relies on a simple, centralized scheduler. Spark also allows for schedul-
ing using Mesos; Mesos is more heavyweight and provides worse per-
formance than standalone mode for short tasks.

11

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50

R
u
n
n
in

g
 T

as
k
s

Time (s)

User 0
User 1

Figure 13: Cluster share used by two users that are
each assigned equal shares of the cluster. User 0 sub-
mits at a rate to utilize the entire cluster for the entire
experiment while user 1 adjusts its submission rate
each 10 seconds. Sparrow assigns both users their
max-min fair share.

ter with tens of thousands of machines running sub-
second tasks may require millions of scheduling deci-
sions per second; supporting such an environment would
require 1000× higher scheduling throughput, which is
difficult to imagine even with a significant rearchitecting
of the scheduler. Clusters running low latency workloads
will need to shift from using centralized task schedulers
like Spark’s native scheduler to using more scalable dis-
tributed schedulers like Sparrow.

7.7 How well can Sparrow’s distributed
fairness enforcement maintain fair
shares?

Figure 13 demonstrates that Sparrow’s distributed fair-
ness mechanism enforces cluster-wide fair shares and
quickly adapts to changing user demand. Users 0 and
1 are both given equal shares in a cluster with 400 slots.
Unlike other experiments, we use 100 4-core EC2 ma-
chines; Sparrow’s distributed enforcement works better
as the number of cores increases, so to avoid over stating
performance, we evaluate it under the smallest number
of cores we would expect in a cluster today. User 0 sub-
mits at a rate to fully utilize the cluster for the entire
duration of the experiment. User 1 changes her demand
every 10 seconds: she submits at a rate to consume 0%,
25%, 50%, 25%, and finally 0% of the cluster’s available
slots. Under max-min fairness, each user is allocated her
fair share of the cluster unless the user’s demand is less
than her share, in which case the unused share is dis-
tributed evenly amongst the remaining users. Thus, user
1’s max-min share for each 10-second interval is 0 con-
currently running tasks, 100 tasks, 200 tasks, 100 tasks,
and finally 0 tasks; user 0’s max-min fair share is the re-
maining resources. Sparrow’s fairness mechanism lacks
any central authority with a complete view of how many
tasks each user is running, leading to imperfect fairness

HP LP HP response LP response
load load time in ms time in ms
0.25 0 106 (111) N/A
0.25 0.25 108 (114) 108 (115)
0.25 0.5 110 (148) 110 (449)
0.25 0.75 136 (170) 40.2k (46.2k)
0.25 1.75 141 (226) 255k (270k)

Table 3: Median and 95th percentile (shown in paren-
theses) response times for a high priority (HP) and
low priority (LP) user running jobs composed of 10
100ms tasks in a 100-node cluster. Sparrow success-
fully shields the high priority user from a low prior-
ity user. When aggregate load is 1 or more, response
time will grow to be unbounded for at least one user.

over short time intervals. Nonetheless, as shown in Fig-
ure 13, Sparrow quickly allocates enough resources to
User 1 when she begins submitting scheduling requests
(10 seconds into the experiment), and the cluster share
allocated by Sparrow exhibits only small fluctuations
from the correct fair share.

7.8 How much can low priority users hurt
response times for high priority users?

Table 3 demonstrates that Sparrow provides response
times within 40% of an ideal scheduler for a high priority
user in the presence of a misbehaving low priority user.
This experiment uses workers that each have 16 slots.
The high priority user submits jobs at a rate to fill 25%
of the cluster, while the low priority user increases her
submission rate to well beyond the capacity of the clus-
ter. Without any isolation mechanisms, when the aggre-
gate submission rate exceeds the cluster capacity, both
users would experience infinite queueing. As described
in §4.2, Sparrow node monitors run all queued high pri-
ority tasks before launching any low priority tasks, al-
lowing Sparrow to shield high priority users from mis-
behaving low priority users. While Sparrow prevents the
high priority user from experiencing infinite queueing
delay, the high priority user still experiences 40% worse
response times when sharing with a demanding low pri-
ority user than when running alone on the cluster. This is
because Sparrow does not use preemption: high priority
tasks may need to wait to be launched until low prior-
ity tasks complete. In the worst case, this wait time may
be as long as the longest running low-priority task. Ex-
ploring the impact of preemption is a subject of future
work.

12

 0

 50

 100

 150

 200

 250

 300

1 1.1 1.2 1.5 2 3

R
es

p
o
n
se

 T
im

e
(m

s)

Probe Ratio

9279 (95th)

574 (med.),
4169 (95th)

Ideal

678 (med.), 4212 (95th)

80% load 90% load

Figure 14: Effect of probe ratio on job response time
at two different cluster loads. Whiskers depict 5th
and 95th percentiles; boxes depict median, 25th, and
75th percentiles.

7.9 How sensitive is Sparrow to the probe
ratio?

Changing the probe ratio affects Sparrow’s performance
most at high cluster load. Figure 14 depicts response
time as a function of probe ratio in a 110-machine clus-
ter of 8-core machines running the synthetic workload
(each job has 10 100ms tasks). The figure demonstrates
that using a small amount of oversampling significantly
improves performance compared to placing tasks ran-
domly: oversampling by just 10% (probe ratio of 1.1)
reduces median response time by more than 2.5× com-
pared to random sampling (probe ratio of 1) at 90% load.
The figure also demonstrates a sweet spot in the probe
ratio: a low probe ratio negatively impacts performance
because schedulers do not oversample enough to find
lightly loaded machines, but additional oversampling
eventually hurts performance due to increased messag-
ing. This effect is most apparent at 90% load; at 80%
load, median response time with a probe ratio of 1.1 is
just 1.4× higher than median response time with a larger
probe ratio of 2. We use a probe ratio of 2 throughout
our evaluation to facilitate comparison with the power
of two choices and because non-integral probe ratios are
not possible with constrained tasks.

7.10 Handling task heterogeneity

Sparrow does not perform as well under extreme task
heterogeneity: if some workers are running long tasks,
Sparrow schedulers are less likely to find idle machines
on which to run tasks. Sparrow works well unless a large
fraction of tasks are longandthe long tasks are many or-
ders of magnitude longer than the short tasks. We ran
a series of experiments with two types of jobs: short
jobs, composed of 10 100ms tasks, and long jobs, com-
posed of 10 tasks of longer duration. Jobs are submitted

 0

 50

 100

 150

 200

 250

 300

10s 100sS
h
o
rt

 J
o
b
 R

es
p
.
T

im
e

(m
s)

Duration of Long Tasks

16 core, 50% long
4 cores, 10% long

4 cores, 50% long

666 62782466

Figure 15: Sparrow provides low median response
time for jobs composed of 10 100ms tasks, even when
those tasks are run alongside much longer jobs. Er-
ror bars depict 5th and 95th percentiles.

to sustain 80% cluster load. Figure 15 illustrates the re-
sponse time of short jobs when sharing the cluster with
long jobs. We vary the percentage of jobs that are long,
the duration of the long jobs, and the number of cores
on the machine, to illustrate where performance breaks
down. Sparrow provides response times for short tasks
within 11% of ideal (100ms) when running on 16-core
machines, even when 50% of tasks are 3 orders of mag-
nitude longer. When 50% of tasks are 3 orders of magni-
titude longer, over 99% of the execution time across all
jobs is spent executing long tasks; given this, Sparrow’s
performance is impressive. Short tasks see more signifi-
cant performance degredation in a 4-core environment.

7.11 Scaling to large clusters

We used simulation to evaluate Sparrow’s performance
in larger clusters. Figure 3 suggests that Sparrow will
continue to provide good performance in a 10,000 node
cluster; of course, the only way to conclusively evaluate
Sparrow’s performance at scale will be to deploy it on a
large cluster.

8 Limitations and Future Work

To handle the latency and throughput demands of low-
latency frameworks, our approach sacrifices features
available in general purpose resource managers. Some of
these limitations of our approach are fundamental, while
others are the focus of future work.

Scheduling policiesWhen a cluster becomes over-
subscribed, Sparrow supports aggregate fair-sharing or
priority-based scheduling. Sparrow’s distributed setting
lends itself toapproximatedpolicy enforcement in or-
der to minimize system complexity; exploring whether
Sparrow can provide more exact policy enforcement

13

without adding significant complexity is a focus of fu-
ture work. Adding pre-emption, for example, would be a
simple way to mitigate the effects of low-priority users’
jobs on higher priority users.

ConstraintsOur current design does not handleinter-
job constraints(e.g. “the tasks for job A must not run on
racks with tasks for job B”). Supporting inter-job con-
straints across frontends is difficult to do without signif-
icantly altering Sparrow’s design.

Gang scheduling Some applications require gang
scheduling, a feature not implemented by Sparrow. Gang
scheduling is typically implemented using bin-packing
algorithms that search for and reserve time slots in which
an entire job can run. Because Sparrow queues tasks on
several machines, it lacks a central point from which
to perform bin-packing. While Sparrow often places all
jobs on entirely idle machines, this is not guaranteed,
and deadlocks between multiple jobs that require gang
scheduling may occur. Sparrow is not alone: many clus-
ter schedulers do not support gang scheduling [8, 9, 16].

Query-level policiesSparrow’s performance could be
improved by adding query-level scheduling policies. A
user query (e.g., a SQL query executed using Shark)
may be composed of many stages that are each exe-
cuted using a separate Sparrow scheduling request; to
optimize query response time, Sparrow should sched-
ule queries in FIFO order. Currently, Sparrow’s algo-
rithm attempts to schedule jobs in FIFO order; adding
query-level scheduling policies should improve end-to-
end query performance.

Worker failures Handling worker failures is compli-
cated by Sparrow’s distributed design, because when a
worker fails, all schedulers with outstanding requests
at that worker must be informed. We envision handling
worker failures with a centralized state store that relies
on occasional heartbeats to maintain a list of currently
alive workers. The state store would periodically dissem-
inate the list of live workers to all schedulers. Since the
information stored in the state store would be soft state,
it could easily be recreated in the event of a state store
failure.

Dynamically adapting the probe ratio Sparrow
could potentially improve performance by dynamically
adapting the probe ratio based on cluster load; however,
such an approach sacrifices some of the simplicity of
Sparrow’s current design. Exploring whether dynami-
cally changing the probe ratio would significantly in-
crease performance is the subject of ongoing work.

9 Related Work

Scheduling in distributed systems has been extensively
studied in earlier work. Most existing cluster schedulers

rely on centralized architectures. Among logically de-
centralized schedulers, Sparrow is the first to sched-
ule all of a job’s tasks together, rather than scheduling
each task independently, which improves performance
for parallel jobs.

Dean’s work on reducing the latency tail in serving
systems [5] is most similar to ours. He proposes using
hedged requests where the client sends each request to
two workers and cancels remaining outstanding requests
when the first result is received. He also describes tied
requests, where clients send each request to two servers,
but the servers communicate directly about the status of
the request: when one server begins executing the re-
quest, it cancels the counterpart. Both mechanisms are
similar to Sparrow’s late binding, but target an envi-
ronment where each task needs to be scheduled inde-
pendently (for data locality), so information cannot be
shared across the tasks in a job.

Work on load sharing in distributed systems (e.g., [7])
also uses randomized techniques similar to Sparrow’s.
In load sharing systems, each processor both generates
and processes work; by default, work is processed where
it is generated. Processors re-distribute queued tasks if
the number of tasks queued at a processor exceeds some
threshold, using either receiver-initiated policies, where
lightly loaded processors request work from randomly
selected other processors, or sender-initiated policies,
where heavily loaded processors offload work to ran-
domly selected recipients. Sparrow represents a combi-
nation of sender-initiated and receiver-initiated policies:
schedulers (“senders”) initiate the assignment of tasks
to workers (“receivers”) by sending probes, but work-
ers finalize the assignment by responding to probes and
requesting tasks as resources become available.

Projects that explore load balancing tasks in multi-
processor shared-memory architectures (e.g., [19]) echo
many of the design tradeoffs underlying our approach,
such as the need to avoid centralized scheduling points.
They differ from our approach because they focus
on a single machine where the majority of the ef-
fort is spent determining when toreschedule processes
amongst cores to balance load.

Quincy [9] targets task-level scheduling in compute
clusters, similar to Sparrow. Quincy maps the schedul-
ing problem onto a graph in order to compute an optimal
schedule that balances data locality, fairness, and starva-
tion freedom. Quincy’s graph solver supports more so-
phisticated scheduling policies than Sparrow but takes
over a second to compute a scheduling assignment in
a 2500 node cluster, making it too slow for our target
workload.

In the realm of data analytics frameworks,
Dremel [12] achieves response times of seconds
with extremely high fanout. Dremel uses a hierarchical

14

scheduler design whereby each query is decomposed
into a serving tree; this approach exploits the inter-
nal structure of Dremel queries so is not generally
applicable.

Many schedulers aim to allocate resources at coarse
granularity, either because tasks tend to be long-running
or because the cluster supports many applications
that each acquire some amount of resources and per-
form their own task-level scheduling (e.g., Mesos [8],
YARN [16], Omega [20]). These schedulers sacrifice re-
quest granularity in order to enforce complex schedul-
ing policies; as a result, they provide insufficient latency
and/or throughput for scheduling sub-second tasks. High
performance computing schedulers fall into this cate-
gory: they optimize for large jobs with complex con-
straints, and target maximum throughput in the tens
to hundreds of scheduling decisions per second (e.g.,
SLURM [10]). Similarly, Condor supports complex fea-
tures including a rich constraint language, job check-
pointing, and gang scheduling using a heavy-weight
matchmaking process that results in maximum schedul-
ing throughput of 10 to 100 jobs per second [4].

In the theory literature, a substantial body of work
analyzes the performance of the power of two choices
load balancing technique, as summarized by Mitzen-
macher [15]. To the best of our knowledge, no exist-
ing work explores performance for parallel jobs. Many
existing analyses consider placing balls into bins, and
recent work [18] has generalized this to placing multi-
ple balls concurrently into multiple bins. This analysis
is not appropriate for a scheduling setting, because un-
like bins, worker machines process tasks to empty their
queue. Other work analyzes scheduling for single tasks;
parallel jobs are fundamentally different because a par-
allel job cannot complete until thelastof a large number
of tasks completes.

Straggler mitigation techniques (e.g., Dolly [2],
LATE [27], Mantri [3]) focus on variation in task ex-
ecution time (rather than task wait time) and are com-
plementary to Sparrow. For example, Mantri launches a
task on a second machine if the first version of the task
is progressing too slowly, a technique that could easily
be used by Sparrow’s distributed schedulers.

10 Conclusion

This paper presents Sparrow, a stateless decentralized
scheduler that provides near optimal performance using
two key techniques: batch sampling and late binding. We
use a TPC-H workload to demonstrate that Sparrow can
provide median response times within 12% of an ideal
scheduler and survives scheduler failures. Sparrow en-
forces popular scheduler policies, including fair sharing

and strict priorities. Experiments using a synthetic work-
load demonstrate that Sparrow is resilient to different
probe ratios and distributions of task durations. In light
of these results, we believe that distributed scheduling
using Sparrow presents a viable alternative to central-
ized schedulers for low latency parallel workloads.

11 Acknowledgments

We are indebted to Aurojit Panda for help with debug-
ging EC2 performance anomalies, Shivaram Venkatara-
man for insightful comments on several drafts of this pa-
per and for help with Spark integration, Sameer Agarwal
for help with running simulations, Satish Rao for help
with theoretical models of the system, and Peter Bailis,
Ali Ghodsi, Adam Oliner, Sylvia Ratnasamy, and Colin
Scott for helpful comments on earlier drafts of this paper.
We also thank our shepherd, John Wilkes, for helping to
shape the final version of the paper. Finally, we thank
the reviewers from HotCloud 2012, OSDI 2012, NSDI
2013, and SOSP 2013 for their helpful feedback.

This research is supported in part by a Hertz Founda-
tion Fellowship, the Department of Defense through the
National Defense Science & Engineering Graduate Fel-
lowship Program, NSF CISE Expeditions award CCF-
1139158, DARPA XData Award FA8750-12-2-0331, In-
tel via the Intel Science and Technology Center for
Cloud Computing (ISTC-CC), and gifts from Amazon
Web Services, Google, SAP, Cisco, Clearstory Data,
Cloudera, Ericsson, Facebook, FitWave, General Elec-
tric, Hortonworks, Huawei, Microsoft, NetApp, Oracle,
Samsung, Splunk, VMware, WANdisco and Yahoo!.

References

[1] Apache Thrift. http://thrift.apache.
org.

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and
I. Stoica. Why Let Resources Idle? Aggressive
Cloning of Jobs with Dolly. InHotCloud, 2012.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg,
I. Stoica, Y. Lu, B. Saha, and E. Harris. Reining in
the Outliers in Map-Reduce Clusters using Mantri.
In Proc. OSDI, 2010.

[4] D. Bradley, T. S. Clair, M. Farrellee, Z. Guo,
M. Livny, I. Sfiligoi, and T. Tannenbaum. An Up-
date on the Scalability Limits of the Condor Batch
System. Journal of Physics: Conference Series,
331(6), 2011.

15

http://thrift.apache.org
http://thrift.apache.org

[5] J. Dean and L. A. Barroso. The Tail at Scale.Com-
munications of the ACM, 56(2), February 2013.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis
and Simulation of a Fair Queueing Algorithm. In
Proc. SIGCOMM, 1989.

[7] D. L. Eager, E. D. Lazowska, and J. Zahor-
jan. Adaptive Load Sharing in Homogeneous Dis-
tributed Systems.IEEE Transactions on Software
Engineering, 1986.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-
ica. Mesos: A Platform For Fine-Grained Resource
Sharing in the Data Center. InProc. NSDI, 2011.

[9] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg. Quincy: Fair Schedul-
ing for Distributed Computing Clusters. InProc.
SOSP, 2009.

[10] M. A. Jette, A. B. Yoo, and M. Grondona.
SLURM: Simple Linux Utility for Resource Man-
agement. InProc. Job Scheduling Strategies for
Parallel Processing, Lecture Notes in Computer
Science, pages 44–60. Springer, 2003.

[11] M. Kornacker and J. Erickson. Cloudera Impala:
Real Time Queries in Apache Hadoop, For Real.
http://blog.cloudera.com/blog/
2012/10/cloudera-impala-real-
time-queries-in-apache-hadoop-
for-real/, October 2012.

[12] S. Melnik, A. Gubarev, J. J. Long, G. Romer,
S. Shivakumar, M. Tolton, and T. Vassilakis.
Dremel: Interactive Analysis of Web-Scale
Datasets.Proc. VLDB Endow., 2010.

[13] M. Mitzenmacher. How Useful is Old Informa-
tion? volume 11, pages 6–20, 2000.

[14] M. Mitzenmacher. The Power of Two Choices
in Randomized Load Balancing. IEEE Trans-
actions on Parallel and Distributed Computing,
12(10):1094–1104, 2001.

[15] M. Mitzenmacher. The Power of Two Random
Choices: A Survey of Techniques and Results. In
S. Rajasekaran, P. Pardalos, J. Reif, and J. Rolim,
editors,Handbook of Randomized Computing, vol-
ume 1, pages 255–312. Springer, 2001.

[16] A. C. Murthy. The Next Generation of Apache
MapReduce. http://developer.yahoo.
com/blogs/hadoop/next-generation-
apache-hadoop-mapreduce-3061.html,
February 2012.

[17] K. Ousterhout, A. Panda, J. Rosen, S. Venkatara-
man, R. Xin, S. Ratnasamy, S. Shenker, and I. Sto-
ica. The Case for Tiny Tasks in Compute Clusters.
In Proc. HotOS, 2013.

[18] G. Park. A Generalization of Multiple Choice
Balls-into-Bins. InProc. PODC, pages 297–298,
2011.

[19] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A
Simple Load Balancing Scheme for Task Alloca-
tion in Parallel Machines. InProc. SPAA, 1991.

[20] M. Schwarzkopf, A. Konwinski, M. Abd-El-
Malek, and J. Wilkes. Omega: flexible, scalable
schedulers for large compute clusters. InProc. Eu-
roSys, 2013.

[21] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Ri-
faat, and C. R. Das. Modeling and Synthesizing
Task Placement Constraints in Google Compute
Clusters. InProc. SOCC, 2011.

[22] D. Shue, M. J. Freedman, and A. Shaikh. Per-
formance Isolation and Fairness for Multi-Tenant
Cloud Storage. InProc. OSDI, 2012.

[23] T. White. Hadoop: The Definitive Guide. O’Reilly
Media, 2009.

[24] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, and I. Stoica. Shark: SQL and Rich
Analytics at Scale. InProc. SIGMOD, 2013.

[25] M. Zaharia, D. Borthakur, J. Sen Sarma,
K. Elmeleegy, S. Shenker, and I. Stoica. Delay
Scheduling: A Simple Technique For Achieving
Locality and Fairness in Cluster Scheduling. In
Proc. EuroSys, 2010.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave,
J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica. Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster
Computing. InProc. NSDI, 2012.

[27] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz,
and I. Stoica. Improving MapReduce Performance
in Heterogeneous Environments. InProc. OSDI,
2008.

16

http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries- in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries- in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries- in-apache-hadoop-for-real/
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries- in-apache-hadoop-for-real/
http://developer.yahoo.com/blogs/hadoop/next-generation-apache-hadoop-mapreduce-3061.html
http://developer.yahoo.com/blogs/hadoop/next-generation-apache-hadoop-mapreduce-3061.html
http://developer.yahoo.com/blogs/hadoop/next-generation-apache-hadoop-mapreduce-3061.html

	Introduction
	Design Goals
	Sample-Based Scheduling for Parallel Jobs
	Terminology and job model
	Per-task sampling
	Batch sampling
	Problems with sample-based scheduling
	Late binding
	Proactive Cancellation

	Scheduling Policies and Constraints
	Handling placement constraints
	Resource allocation policies

	Analysis
	Implementation
	System components
	Spark on Sparrow
	Fault tolerance

	Experimental Evaluation
	Performance on TPC-H workload
	Deconstructing performance
	How do task constraints affect performance?
	How do scheduler failures impact job response time?
	Synthetic workload
	How does Sparrow compare to Spark's native, centralized scheduler?
	How well can Sparrow's distributed fairness enforcement maintain fair shares?
	How much can low priority users hurt response times for high priority users?
	How sensitive is Sparrow to the probe ratio?
	Handling task heterogeneity
	Scaling to large clusters

	Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgments

