
How to Select a Replication Protocol According to Scalability,
Availability and Communication Overhead

R. Jiménez-Peris, M. Patiño-Martı́nez�

School of Computer Science
Technical University of Madrid (UPM)

Madrid, Spain
frjimenez, mpatinog@fi.upm.es

G. Alonso
Department of Computer Science

Swiss Federal Institute of Technology (ETHZ)
Zürich, Switzerland
alonso@inf.ethz.ch

B. Kemme
School of Computer Science

McGill University
Montreal, Canada

kemme@cs.mcgill.ca

Abstract

Data replication is playing an increasingly important role in
the design of parallel information systems. In particular, the
widespread use of cluster architectures in high-performance
computing has created many opportunities for applying data
replication techniques in new areas. For instance, as part
of work related to cluster computing in bioinformatics, we
have been confronted with the problem of having to chose
an optimal replication strategy in terms of scalability, avail-
ability, and communication overhead. Thus, we have eval-
uated several representative replication protocols in order
to better understand their behavior in practice. The re-
sults obtained are surprising in that they challenge many
of the assumptions behind existing protocols. Our evalu-
ation indicates that the conventional read-one/write-all ap-
proach is the best choice for a large range of applications
requiring data replication. We believe this is an important
result for anybody developing code for computing clusters
as the read-one/write-all strategy is much simpler to imple-
ment and more flexible than quorum-based approaches. In
this paper we show that, in addition, it is also the best choice
using a number of other selection criteria.
Keywords: data replication, quorums, transactions.

1 Introduction

Data replication is playing an increasingly important role
in the design of distributed information systems. In par-
ticular, the widespread use of cluster architectures in high-
performance computing [6] has created many opportuni-
ties for replicated databases. In applications that can be
easily parallelized (web servers, data mining, computa-
tional genomics) it is conceivable to use a series of repli-
cated databases as the means to share up-to-date informa-
tion among all the sites in a cluster. The database takes care
of complex tasks such as indexing, recoverability, or con-
currency control thereby making the application easier to
develop and maintain.

�This work has been partially funded by the Spanish Research Council
(CICYT), contract number TIC98-1032-C03-01.

Data replication, however, must be used carefully when
performance is concerned. The most relevant strategy for
cluster computing is eager, update everywhere replication
(e.g., full consistency and updates can be generated any-
where in the system). Unfortunately, this strategy can be
tremendously inefficient [9]. There are ways to get around
the inefficiencies, at least for systems up to a given size
[11, 14], but there are still many aspects of the problem
that have not been studied in detail. More specifically, one
could think of using quorum based strategies to achieve con-
sistency across the cluster while still minimizing the over-
all cost in terms of performance penalties, communication
overhead, and overall availability.

As part of work related to cluster computing in bioin-
formatics [3], we have been confronted with exactly this
problem. We have a number of large-scale parallel compu-
tations that need to share data dynamically. The best so-
lution is clearly to use a replicated database (for a number
of reasons that are beyond the scope of this paper but that
include the volume of data, the need to index it and the abil-
ity to perform complex queries). Our intuition told us that
we should be able to improve the system by using quorums
but it was not clear which one would provide the best re-
sults. Although there are several studies of the availability
and load distribution of quorum systems [13, 12, 4, 15, 2]
we could not find in the literature any indication of what
type of quorum could be most suitable for our purposes.
Thus, we evaluated several protocols in order to better un-
derstand the problem. Unlike previous work, our analysis
is based on realistic environments. For instance, compar-
isons among quorum properties have been typically made
on an asymptotic basis. However, asymptotic analysis for
eager data replication is not very useful since this kind of
replication does not scale beyond a few tens of sites. For
the analysis to be meaningful, it is necessary to take into
account constant and multiplicative factors that are usually
discarded in an asymptotic analysis. Additionally, we take
into account common database optimization strategies that
substantially change the behavior of the protocols. These
optimizations introduce asymmetries in the processing of
transactions. Such asymmetries have not been taken into
account by previous studies, which wrongly assume that
transactions require the same computing resources at all



sites where they are executed. The study of the influence
of this asymmetry is one of the main contributions of this
paper.

The results of our analyses are surprising in that they
challenge the notion that quorums improve performance,
availability, or communication overhead. The results in-
dicate that the conventional read-one/write-all approach is
clearly the best choice for a large range of applications re-
quiring data replication. This is an important result since the
read-one/write-all strategy is much simpler to implement
and much more flexible than quorum based approaches.
Thus, scientists and application developers using replicated
databases in clusters can take advantage of a simpler design
while still having the guarantee that they are getting the best
possible behavior out of the replication protocol.

In what follows we analyze a number of replication pro-
tocols from the point of view of scalability (Section 4),
availability (Section 5), and communication overhead (Sec-
tion 6). For obvious reasons, we do not analyze all existing
protocols but a representative subset. We consider realistic
scenarios and study the effect of typical optimization strate-
gies used in databases. For each protocol, we indicate the
application for which they are best suited and then com-
pare all of them from the point of view of cluster computing
(Section 7).

2 System Model

A replicated database consists of a group of sites n =

fN1; N2; :::; Nng which communicate by exchanging mes-
sages. Sites are fail-stop, and site failures can be detected.
We consider a crash-recovery model where sites can recover
and re-join the system after synchronizing their state with
the one of the running replicas. The database is fully repli-
cated, and thus, each site contains a copy of the database.
We assume that all sites are homogeneous and each site is
able to execute t transactions per second (tps).

Clients interact with the database by issuing transac-
tions. Transactions are executed atomically, i.e., a trans-
action either commits or aborts. Transactions are partially
ordered sets of read (r) and write (w) operations. Trans-
actions are executed atomically, i.e., a transaction either
commits are aborts at all participating sites. If a transac-
tion contains write operations, a 2-phase-commit protocol
at the end of the transaction is executed among all sites.
For replicated databases, the correctness criterion is one-
copy-serializability [5]. In this criterion, each copy must
appear as a single logical copy and the execution of con-
current transactions must be equivalent to a serial execution
over all the physical copies.

A client submits a transaction to one of the sites in the
system, and this site coordinates its actions with the rest
of the system. A transaction is called local at the site it
is submitted to, and remote at the other sites. We assume
that all sites receive the same amount of local transactions.
We consider in the study two kinds of transactions: queries,

which contain only read operations, and update transac-
tions, which contain both read and write operations.

3 Replication Protocols

Several protocols have been proposed for database replica-
tion. These protocols mainly differ in the number of sites
contacted to perform a read or write operation. In this sec-
tion we describe the four protocols we will analyze.

3.1 Read-one Write-all

Under the read-one write-all (ROWA) algorithm [5], a trans-
action just reads a copy of the data (the local one to mini-
mize the communication cost), while write operations must
be performed at all sites. Read-only transactions (queries)
can be executed locally, while update transactions are exe-
cuted at all sites in the system. Writes can be propagated
immediately or they can be deferred until the transaction
commits.

A naive version of ROWA would require all replicas to
be available [5] to perform a write operation. A varia-
tion of this technique known as read-one write-all-available
(ROWAA) [5] improves the availability of the database.
From now on we will consider the later protocol.

3.2 Quorums

Quorums [18, 8] were originally proposed to cope with
communication failures, ensuring that in case of partitions
at most only one partition will run, thereby preventing in-
consistencies. An additional claimed advantage of quorums
has been that the cost of running a transaction is reduced
with respect to ROWAA as writes are only performed in a
quorum instead of in all the sites.

A quorum system is defined as a set of subsets of sites, or
quorums, with pair-wise non-empty intersections. The non-
empty intersection property is crucial in that it allows any
quorum to take decisions on behalf of the whole system,
and still guarantee overall consistency. In particular, read
(rq) and write (wq) quorums must be such that read and
write operations or two write operations on the same data
item overlap. That is, any read quorum must overlap with
any write quorum, and write quorums must overlap among
them.

We are aware that many different variations of these pro-
tocols have been proposed in the literature. However, our
goal can be accomplished by examining a small number of
canonical protocols. Thus, for simplicity and reasons of
space, in what follows we will consider only these proto-
cols and ignore any existing variations of them. For the
purposes of our study, existing variations have similar char-
acteristics to the protocols we study (i.e., they only intro-
duce small constant factors). In the cases were there are
significant changes in behavior, this is briefly discussed in
the corresponding section.



Majority

In the majority quorum (also known as quorum consensus)
algorithm [18] read and write quorums must fulfill the fol-
lowing constrains: 2 � wq > n and rq + wq > n, being
n the number of sites. The minimum quorums satisfying
these constraints are: 2 �wq = n+ 1 and rq +wq = n+ 1

and therefore, wq = b n
2
c + 1 and rq = dn

2
e. Thus, a write

quorum can be formed by any majority, and read quorums
by half of the system sites, if n is even, or by a majority if
n is odd.

Tree

In [1] a new kind of quorum protocol is proposed to reduce
the size of write quorums while keeping a singleton read
quorum (in a non-failure scenario) as in the ROWAA proto-
col. This is achieved by imposing a logical tree structure on
the sites. This tree must be a complete tree of an odd degree.
Write operations are performed on a quorum formed by the
root, a majority of its children, a majority of the children of
each of these children, and so forth. Hence, two concurrent
writes have at least one element in common at each level of
the tree. For instance, in a tree of degree 3 and three levels
(Fig. 1), a write operation could access the set of copies f1,
2, 4, 6, 7, 11, 12g.

1

3 4

9 10 11 12 13

2

5 6 7 8

Figure 1: Tree of degree and height 3

Reads are performed on the root. If the root is not avail-
able, the read should be performed on a majority of its chil-
dren. For each unavailable site needed for the majority, a
read on a majority of its children should be performed, and
so forth. For instance, in the tree of Fig. 1 a read could
access f1g. If 1 is unavailable, it could access f2, 3g and if
1, 3, and 4 are unavailable, it could access f2, 9, 10g. Since
write operations access a majority of sites at each level, read
and write operations will overlap at least in one site.

Grid

A different kind of quorum, grid quorum, is proposed in
[7]. This quorum assumes that the sites are organized in a
grid of r rows and c columns. A read quorum consists of
accessing an element of each column of the grid. A write
quorum requires applying the updates in one column and
locking an element from each of the remaining columns (a
read quorum). Given the grid in Fig. 2, examples of read
quorums are: f5,2,7,12g, f9,10,3,4g, or f1,6,11,4g. Ex-

1 2 3 4

5 6 7 8

9 10 11 12

Figure 2: 3� 4 Grid

amples of write quorums are: f1,5,9,2,7,4g, f2,6,10,5,7,4g,
f3,7,11,9,6,4g.

Read operations overlap with writes, since read quorums
contain one element from each column. That is, they con-
tain one element from the column used for a write operation.
Two write operations also overlap. Since a write quorum
locks one element in each column, no other write can be
concurrently performed in any column.

4 Scalability

4.1 Scalability with symmetric load

In a first approximation, we will assume that all operations
have the same cost, regardless of whether they are local or
remote operations. We will refer to this type of systems as
symmetric.

Let L be the transactional load arriving at the entire sys-
tem. Let Lw = w � L be the load created by updates, with
w being the proportion of update operations in the load. Let
Lr = (1�w) �L be the load created by read operations. As-
sume that write operations are performed in wq sites (write
quorum) and read operations in rq sites (read quorum). Let
Pw =

wq

n
be the probability for a site to participate in a

write quorum. Let Pr =
rq

n
be the probability for a site to

participate in a read quorum. With this, the load, t, at a site
is given by the expression:

t = Pw � Lw + Pr � Lr (1)

which in terms of L can we rewritten as:

t = L � (w � Pw + (1� w) � Pr) (2)

The scalability of a system is given by the total process-
ing capacity of the entire system divided by the processing
capacity of one site. In our case the total load is L and the
load at each site is t. With this, we can study the scalability
in terms of the scale out factor, so = L

t
:

so =
L

t
=

1

w � Pw + (1� w) � Pr (3)

4.2 Scalability with asymmetries in the sys-
tem

Expression 3 assumes a symmetric system. However, dis-
tributed databases are rarely symmetric. The most common



asymmetry is due to a load optimization strategy used to
minimize redundant work. A local operation is executed by
parsing the corresponding SQL statement and executing it
in its entirety. The effects of the execution might be very
small compared with the amount of data perused. For in-
stance, it might be necessary to scan through a long table
(i.e., read all tuples) to update just one tuple in that table.
Doing this at all sites is quite inefficient. Instead, the local
site can send to all other sites the key to the tuple that needs
to be updated along with the new value. Remote sites only
need to apply the update without having to read any data.
This strategy is used, for instance, in Postgres-R [11].

In theory, this strategy can be applied to both read and
write SQL statements. In practice, however, it is of lim-
ited use for read operations. Read operations are denoted
as such because they do not introduce new information in
the database but this does not mean that they do not intro-
duce new data. A join, for instance, results in a temporary
new relation (could also be permanent if materialized views
are used). The creation of such temporary structures is gov-
erned by relational algebra, which operates on relations, not
on tuples (tuples are accessed by manipulating the relation
according to predicates that select the desired tuples). It is
easy to rewrite an update SQL statement so that it updates
only the tuples corresponding to a set of keys. It is much
more difficult, and probably quite inefficient, to do the same
for read SQL statements other than selection. Hence, in here
we will distinguish only between local and remote writes.
Read operations will be considered symmetric. With this,
the probability for a site to participate in a write operation
can be divided into two parts:

Pw = P
O

w
+ P

R

w

where P
O

w
is the probability of being the originator of

a write transaction and P
R

w
is the probability of participat-

ing in a remote transaction (i.e., a transaction originated by
other sites). Moreover, we assume that the cost of perform-
ing an update locally is 1 while the cost of performing a re-
mote update is given by a variable factor wo (0 < wo � 1,
whenwo = 1 the system is symmetric for write operations).
With this:

so =
L

t
=

1

w � PO
w
+ w � wo � PR

w
+ (1� w) � Pr (4)

4.3 Quorum probabilities

The probabilities of being in read or write quorums for each
different protocol are summarized in the following table:

Pr P
O

w
P
R

w

ROWAA 1
n

1
n

n�1
n

Majority 1
2

1
n

1
2

Tree(3) 1
n

1
n

2�(2blog3nc�1)
n

� 2�n0:63
n

Tree(d) 1
n

1
n

� d+1
d�1 � n

logd
d+1
2 �1

n

Grid 1p
n

1
n

2 �
p
n�1
n

We assume that the originator of a transaction submits it
to a quorum of sites to which it belongs. In the case of Pr,
the probabilities are given by the size of the read quorum
divided by the number of sites in the system. In the case
of PR

w
, it is the size of a write quorum minus one divided

by the number of sites since, since by definition a site in a
remote quorum cannot be the originator. For P O

w
, it is the

probability of being the originator of a write quorum, that
is, the size of the quorum divided by the number of sites of
the system.

For simplicity we assume that the number of sites are
as follows: an even number for Majority, a perfect square
for Grid, and the size of a complete d-ary tree for Tree.
This simplification considers optimal quorum sizes for all
protocols. Except for the tree quorum, the calculations are
straightforward. The tree quorum is a special case in that it
does not provide any obvious mechanism to automatically
distribute the load. All other protocols ensure that all sites
do about the same amount of work without any special ar-
rangement. For Tree quorum, if we assume there is a single
tree structure for the database, then the scalability is 1. Ob-
viously, if the entire load goes through the root, the system
will only scale as much as the root. If we assume all sites
have the same capacity, then the scale out factor is simply 1
for all values of n, w, and wo. To avoid this limitation, we
will assume that the database can be divided in n partitions,
each one assigned to one site. We will further assume that
each site/partition is assigned a different tree where that site
acts as the root of the tree of the partition. The traffic will
be divided among the partitions so that transactions are ex-
ecuted only within one partition (otherwise, serializability
cannot be guaranteed).

An additional shortcoming of the tree quorum is that the
quorum size grows when failures occur. For the sake of
simplicity, in our scalability analysis we will only consider
the quorum size during normal operation (i.e., without fail-
ures). We provide a general expression for trees of degree
d (row Tree(d) in the table) and resolve the expression for
ternary trees (row Tree(3) in the table).

For analysis purposes, we will work with a d-ary tree
(with d = 2 � m � 1;m > 1, hence d is odd and larger
than 3) of height h and a total number of sites of n. Thus,

h = blogdnc + 1 and n =

blogmncP

i=0

d
i (assuming the root

is at level 0, its children at level 1, . . . ). Read quorums are
unitary and thus:

P
tree

r
=

1

n



A write quorum is a tree of degree d+1
2

, superimposed
on the original tree of degree d and with the same height.
The size of tree corresponding to the write quorum is given
by:

For d = 3:

blog3ncX
i=0

2
i
= 2

1+blog3nc
�1 � 2 �2

log2n

log23 � 2 �n
1

log23 � 2 �n
0:63

For d > 3:

blogdncX
i=0

 
d+ 1

2

!i

=
(d+ 1) � d+1

2

blogdnc
� 2

d� 1

�

(d+ 1) � nlogd
d+1
2 � 2

d� 1

4.4 Protocol comparison: scalability

Given the quorum probabilities, expressions 3 and 4 can be
calculated for each of the protocols. The results are summa-
rized in table 1.

Fig. 3 shows the scale out factor for the different proto-
cols in a symmetric system as a function of n and w. Fig. 4
shows the same type of graphs for asymmetric systems with
wo = 0:15.

In a symmetric system, the protocols greatly depend on
w, i.e., they are very sensitive to the proportion of write op-
erations in the overall load. Majority quorum has a much
smaller dependency but at the cost of very limited scala-
bility. This is easy to explain given how Majority quorum
distribute the load: each operation, whether read or write,
requires half the sites. Thus, the system behaves as it would
have twice the capacity of a single node. Tree and Grid
quorums also depend on w, but both have the advantage of
being directly proportional to n. For a square grid, the de-
pendency is on n0:5 while for a 3-ary tree the dependency is
on n

0:37. Thus, in principle, Tree and Grid quorums should
scale better than ROWAA and Majority. Fig. 3, however,
gives a much more precise picture. For high update rates all
protocols exhibit very poor scalability. As the proportion of
read operations increases, ROWAA and Tree quorum are a
much better choice, with Tree quorum being slightly better.
Thus, Majority and Grid quorums seem to be an advantage
only in applications with a large proportion of write oper-
ations: more than 50 % when compared with ROWAA and
more than 70 % when compared with Tree quorum.

The comparison between the protocols is, unfortunately,
not that straightforward. As pointed out above, except the
tree, all protocols have a built-in load distribution mecha-
nism. If all the nodes receive the same number of trans-
actions the load will also be evenly distributed across the
system. This is very easy to implement (e.g., by allocating
transactions to sites in a round-robin fashion). In Tree quo-
rum this is not the case. The assumption we have made is

that access to the data partitions is evenly distributed, which
is a different thing all together. The slightest deviation from
an even distribution in data access will have an immediate
impact on the scalability because of the bottleneck effect
caused by the root of the data partition more frequently ac-
cessed. Since all databases have hot-spots, Tree quorum is
rather difficult to use in practice as it would require very so-
phisticated dynamic data partitions. Additionally, and like
with Grid quorum, the possible configurations are severely
restricted. One cannot add an arbitrary number of nodes
to a system since n is dictated by the data structure used
(e.g., we cannot always construct a grid or a tree for any
value of n). The range of viable values for n is very re-
stricted in Tree quorums (e.g., n = 1; 4; 13; ::: for ternary
trees). For Grid quorums, optimal grids are only obtained
with square grids and, hence, n must be a perfect square
(n = 4; 9; 16; :::). Any deviation from a square grid leads
to worse scalability (plus worse availability and larger com-
munication overhead).

Fig. 3 demonstrates that scalability quickly degrades as
the proportion of write operations in the system increases.
A way to minimize this dependency is to use asymmetric
systems. As Fig. 4 shows, introducing asymmetries for
write operations does not change the nature of the scala-
bility for each protocol but it does help to minimize the
degradation caused by w. Interestingly, reducing the cost
of remote writes makes Majority and Grid less attractive
as the regions where they are better than ROWAA and Tree
quorum are even smaller than before (w must be higher).

Thus, the results for scalability can be summarized as
follows:

High scalability can only be achieved with a low rate of
update operations regardless of the protocol used.

For most values of w, ROWAA and Tree offer signifi-
cantly better scalability than Majority and Grid.

If the cost of remote writes decreases, Majority and Grid
are only interesting in terms of scalability for write only
applications (w � 1).

5 Availability

In this section we analyze and compare the availability of
the different protocols. We assume that failures are inde-
pendent and that the probability of a site being up is p. We
will assume that p > 0:5 since it has been shown that for
p < 0:5 the best option is not to use replication [15]. The
overall availability of the system will be referred to as av
and we will distinguish between the availability for read op-
erations avR and the availability for write operations avW .
Thus:

av = w � avW + (1� w) � avR (5)



so so (n� 1) so(wo) so(wo) (n� 1)
ROWAA n

1+w�(n�1) � 1
w

n

1+w�wo�(n�1) � 1
w�wo

Majority 2�n
2�w+n � 2

2�n
2�w+n�(1+w�(wo�1)) � 2

1+w�(1�wo)

Tree(3) n

1+2�w�(2blog3nc�1) � n
0:37

2�w
n

1+w�wo�(2�2blog3nc�1) � n
0:37

2�w�wo

Tree(d) n

1+w� d+1
d�1 �(2�

d+1
2

blogdnc�1)
� (d�1)�n1�logd

d+1
2

w�(d+1)
n

1+w�wo� d+1
d�1 �(

d+1
2

blogdnc�2)
� n

1�logd
d+1
2

w�wo�d+1
d�1

Grid n

(w+1)�
p
n�w �

p
n

w+1
n

w�(1�2�wo)�(1�
p
n)+

p
n

�
p
n

1�w�(1�2�wo)

Table 1: Scalability of different quorums

0 0,1 0 ,2 0,3 0 ,4 0,5 0,6 0,7 0 ,8 0,9 1

1

4

7

10

13

1 6

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1 5

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

(a) ROWAA (b) Majority

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

(c) Tree(3) (d) Grid

Figure 3: Scale-out for different values of w and n

ROWAA

Using the ROWAA protocol the system is available for both
write and read as long as one site is available. That is, it
tolerates up to n � 1 failures. The probability that all sites
fail is: (1�p)

n. Therefore, the availability ROWAA is given
by:

av = avR + avW = 1� (1� p)
n

Majority
In a majority quorum protocol, the system can progress as
long as there is a majority of available sites. For simplicity
in the notation, we assume an odd number of sites, n =

2k + 1 (that is, both write and read quorums require k + 1

sites and we do not need to distinguish between the two
types of quorums). From here, the availability is given by:
av = Probability(k+1 copies up)+Probability(k + 2 copies up)

+ : : :+ Probability(n copies up) =

k+1X
i=1

 
n

k + i

!
p
k+i

(1� p)
k+1�i



0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

(a) ROWAA (b) Majority

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1

4

7

10

13

16

19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
so

w

n

19-20

18-19

17-18

16-17

15-16

14-15

13-14

12-13

11-12

10-11

9-10

8-9

7-8

6-7

5-6

4-5

3-4

2-3

1-2

0-1

(c) Tree(3) (d) Grid

Figure 4: Scale-out for different values of w and n for wo = 0:15

Tree
We assume a tree of degree d, where d is odd and d > 3,
i.e., d+1

2
builds a majority of children. The read availability,

avrh , of a tree of height h and degree d is characterized by
the following recurrence relations [1]:

avrh+1 = Probability(root is up)+Probability(root is down)

�Probability(a majority of subtrees is read available)

That is:
avrh+1 =

p+ (1� p) �

d+1
2
�1X

i=0

 
d

d+1
2

+ i

!
� av

d+1
2

+i
rh (1� avrh)

d+1
2
�1�i

avr0 = p

The corresponding recurrence relations for write quo-
rums are:

avwh+1 = Probability(root is up)

�Probability(a majority of subtrees is write available)

That is:

avwh+1 = p �

d+1
2
�1X

i=0

 
d

d+1
2

+ i

!
� av

d+1
2

+i

h (1� avh)
d+1
2
�1�i

avw0 = p

Grid

The availability of a grid does not only depend on the num-
ber of elements in the grid, but also on the grid configura-
tion, that is, the number of rows and columns. Following
[7] the write availability of a grid of size r � c is:

avW = (1� (1� p)
r
)
c
� (1� p

r
� (1� p)

r
)
c

Similarly, the read availability of a grid of size r � c is:

avR = (1 � (1� p)
r
)
c

If, as before, we assume a square grid (r = c =
p
n), the

overall availability using equation 5 is given by:

av = (1� (1� p)
p
n
)
p
n
�w � (1� p

p
n
� (1� p)

p
n
)
p
n



1,0E-13

1,0E-12

1,0E-11

1,0E-10

1,0E-09

1,0E-08

1,0E-07

1,0E-06

1,0E-05

1,0E-04

1,0E-03

1,0E-02

1,0E-01

1,0E+00

1 2 3 4 5 6 7 8 9 10 11 12 13

n

ROWAA

Majority

Grid

Tree

Figure 5: Unavailability for all protocols (p = 0:9)

5.1 Protocol comparison: availability

For comparison purposes, we will work with the unavail-
ability of the system. The unavailability is calculated as
1 � av and represented in logarithmic scale. Thus, an un-
availability of 10�i corresponds to an availability of i nines
(e.g., two nines is 0.99). Fig. 5 compares the different pro-
tocols in terms of availability. To make it a fair comparison,
we will only consider optimal configurations for each proto-
col. For Majority quorum we consider only configurations
with an odd number of sites; for Tree quorum we consider
complete ternary trees of heights 1 to 3 (i.e., with 1, 4, and
13 sites); for Grid quorum we consider configurations cor-
responding to square grids.

As Fig. 5 shows, ROWAA has, by far, the best availabil-
ity. Each additional site added to the system increases its
availability by one nine. In comparison, Majority quorum
requires 4 additional sites to increase the availability by one
nine. In both protocols, the availability is independent of w
and directly proportional to n. For Grid quorum, the results
are quite different. Grids of size 4, 9, and 16 are perfect
squares and the availability slightly increases as n grows.
The increase for square grids is, nonetheless, much smaller
than for ROWAA or Majority quorum. Tree quorum shows
the worst availability of all protocols. In fact, the availabil-
ity remains close to 0:9 and does not improve as more sites
are added to the system.

We are aware that there are alternative versions of the
tree and grid protocols that improve the overall availabil-
ity (e.g., [17] shows a variation of grid with an improved
availability). However, all quorum based protocols have an
upper bound in terms of availability. This upper bound is
defined by the probability of a quorum being available. As-
suming a quorum size of qs:

av � 1� (1� p)
qs (6)

The effects of his upper bound have been previously
studied [15] and the results are consistent with our analy-
ses. In practice, this upper bound implies that, of all proto-
cols based on quorums (majority, grid, and tree), majority

is the most available quorum for p > 0:5. Tree and grid are
worse than majority as they have smaller quorums. In gen-
eral, the availability of Tree quorum is worse than that of
the Grid quorum, but the potential availability of Tree quo-
rum is better than the one for Grid quorum. This peculiarity
has to do with the asymmetries in the tree protocol [17].

These results indicate that the best option from the avail-
ability point of view is ROWAA. It could be argued, how-
ever, than ROWAA does not tolerate network partitions
while the other protocols do. However, ROWAA can be
made to tolerate network partitions fairly easily without af-
fecting its behavior by using a primary component approach
where only the primary component is allowed to progress.
That is, a partition is only allowed to progress if it contains
at least a quorum. In fact using a primary-component ap-
proach the primary component can be defined by using any
quorum system. With this in mind, the results for availabil-
ity can be summarized as follows:

ROWAA and Majority quorums are the only protocols
that provide a relevant increase in availability as more sites
are added to the system. ROWAA offers linear increases (in
a logarithmic scale) in availability as more sites are added,
while Majority quorum requires 4 additional sites to match
the increase in availability reached when one site is added
to ROWAA.

The availability of Tree and Grid quorums decreases as
the proportion of writes in the load increases (i.e., as w in-
creases). The availability of ROWAA and Majority quorum
is independent of w.

Tree and Grid quorums are highly sensitive to the config-
uration and provide very bad availabilities for certain values
of n. This produces a non-monotonic availability, and thus,
the addition of new sites can sometimes result in a reduced
availability.

6 Communication overhead

Replication requires the participating sites to coordinate
their activities by exchanging messages. In practice, this
can have a significant impact on the overall behavior of the
protocol. On the one side, CPU cycles are lost in dealing
with the messages (flattening, sending, receiving, and un-
flattening) [10]. On the other side, the network bandwidth
might be exceeded, resulting in additional delays. The mes-
sage overhead affects not only the scalability but also the
availability [16]. In this section we study the message over-
head of the different protocols.

6.1 Message cost

To get an accurate picture of the communication overhead,
one needs to take into consideration the transactional con-
text in which data replication occurs. Thus, we follow a
slightly different model from the one used in previous stud-
ies where issues like 2PC and system asymmetries have not
been taken into account. For the purposes of our study,



we consider only the best possible implementation (the one
with the least number of messages).

We will assume that all write operations are executed lo-
cally on a shadow copy. Thus, updates are sent to the repli-
cas only at the end of the transaction in one single message.
If a transaction contains write operations, the participating
sites have to agree on the outcome of the transaction using
a 2PC protocol. Sending the write operations can be com-
bined with the vote request message of the 2PC protocol.
The participating sites must respond with a vote message.
In the last phase the originator sends a commit or abort mes-
sage to all sites in the write quorum. In contrast to write op-
erations, read operations cannot be delayed until the end of
the transactions or executed on a local shadow copy. Hence,
for each read operation of a transaction, the originator of
the transaction must send a read request to each member
of the read quorum and each participating site must return
a reply message containing the read value and its version.
For ROWAA and Tree quorum, we will assume the read is
performed locally and no messages are needed for read op-
erations.

In addition, to calculate the message overhead per op-
eration, we have to take into consideration the number of
write operations per transaction. Since the message over-
head caused by write operations is constant per transac-
tion, the message overhead per individual write operation
decreases with increasing number of write operations per
transaction. If transactions only have on average one write
operation, then each write operation in the system causes
three message rounds. If transactions have on average ten
write operations, then the overhead per write operation is
only a tenth. Note, that the number of write operations per
transaction is not determined byw. A small w indicates that
there are generally few write operations in the system. For
instance, the workload can have many queries (read-only
transactions) and few update transactions. Each of these
few update transactions, however, can have many write op-
erations.

With this, assuming that a transaction contains on aver-
age ow write operations, the number of message per opera-
tion is

msg = w � 3 � (wq � 1)

ow

+ (1� w) � 2 � (rq � 1)

for point-to-point messages. If a multicast primitive is avail-
able, the number of messages exchanged changes slightly.
For all updates, one message is needed for the vote request,
wq�1 messages are needed to get the vote message of each
participant, and one more message is required to commit or
abort the transaction. For each read operation, one needs
a message to request the read, and rq � 1 messages to get
the responses from the participants. With this, the average
number of message per operation becomes

msg = w � wq + 1

ow

+ (1� w) � rq

6.2 Protocol comparison: message overhead

Table 2 shows the average number of messages per opera-
tion needed for each of the protocols, using point-to-point
communication and when multicast is available. As in the
rest of the paper, we provide formulas for the optimal quo-
rum sizes of each protocol.

In read intensive environments ROWAA and the Tree pro-
tocol behave the best, while Majority has the worst behav-
ior. Even a multicast environment does not help much. The
grid protocol behaves slightly better than Majority but not
by a large margin. For high update rates, ROWAA has the
worst behavior in point-to-point networks. However, once
multicast is available, the overhead caused by ROWAA sig-
nificantly decreases and there are no significant differences
between the different protocols. We can summarize as fol-
lows:

The message overhead is proportional to n for all pro-
tocols, although the dependency is much smaller for Tree
and Grid quorums than for ROWAA and Majority quorum.
The message overhead is significantly reduced if multicast
facilities are available.

For read intensive operations, the best option is ROWAA

independently of whether multicast facilities are available
or not. The worst option is Majority quorum.

For write intensive applications Tree and Grid quorums
create the least message overhead. However, if multicast
facilities are available, there is no significant difference be-
tween the protocols.

7 Discussion and Conclusions

With the results presented so far, we can now give a quite
comprehensive evaluation of the protocols from a practical
point of view. Note, however, that we have a very concrete
application and hardware configuration. This configuration,
cluster computing, is becoming increasingly pervasive and,
therefore, we believe the following summary is relevant for
software and application designers working on clusters.

Scalability: ROWAA and Tree quorum are the correct
choices for read intensive environments. For very write
intensive environments (close to write only applications),
Grid and Majority quorum offer better scalability.

Availability: ROWAA provides the best possible avail-
ability: the availability increases linearly with each addi-
tional replica added to the system. Moreover, the availabil-
ity does not depend on the type of workload (read intensive
or write intensive). Majority also provides reasonable avail-
ability. Grid and Tree quorums are poor choices from the
point of view of availability.

Message overhead: Many clusters are built nowadays in
a star configuration with a switch at the center. As a re-
sult, multicast is the normal mode of operation. With this
in mind, ROWAA and the Tree quorum have the best behav-
ior in terms of message overhead. Majority quorum has the
worst overhead.



protocol point to point (a) multicast (b)
ROWAA 3�w

ow
� (n� 1)

w

ow
� (n+ 1)

majority 3�w
ow

� n�1
2

+ (1� w) � (n� 1)
w

ow
� n+3

2
+ (1� w) � n+1

2

grid 3�w
ow

� (2 � pn� 2) + 2 � (1� w) � (pn� 1)
w

ow
� 2 � pn+ (1� w) � pn

tree(3) 3�w
ow

� (21+blog3nc � 2)
w

ow
� 21+blog3nc

Table 2: Communication overhead

Configuration: ROWAA and Majority do not impose any
restriction in the number of nodes and require very little in
terms of structuring the system. Grid and the Tree quorum,
are extremely restrictive. Grid quorum is not as limiting but
deviations from square grids results in significantly worse
behavior. Tree quorum can be used in very few configura-
tion and requires a significant effort to structure the system.

Realistic loads: Typical workloads are neither extremely
read intensive nor extremely write intensive. In most cases,
there is a tendency to have more reads than writes (with
a 70/20 or even 80/20 ratio in most cases). Thus, most
applications greatly benefit from local reads. This makes
ROWAA and Tree quorum better choices for systems that
must support a wide range of loads.

Load balancing: A key aspect in the performance of a
cluster is load balancing. In this ROWAA and Majority quo-
rum excel. Grid quorum is also adequate but it is very de-
pedent on the configuration chosen (particularly if it is not
a square). Tree quorum is almost not an option from this
point of view. Although it would be theoretically possible
to balance the load using Tree quorum, in practice it almost
impossible and would require to change the system config-
uration every time the load changes.

The conclusion we draw from these results is that
ROWAA is the best choice for a wide range of applications
over clusters. It offers good scalability (within the limita-
tions of replication protocols), very good availability, and
given the networks used in most clusters, a reduced commu-
nication overhead. It also has the significant advantage of
being very simple to implement. For very peculiar loads and
configurations, it is possible that some variation of quorum
does better than ROWAA. The analyses provided in the pa-
per clearly identify these situations and can serve as a guide
to system designers for the few cases in which ROWAA is
not adequate.

References

[1] D. Agrawal and A. E. Abbadi. The Tree Quorum Protocol:
An Efficient Approach for Managing Replicated Data. In
Proc. Of the 16th VLDB Conf., Brisbane, Australia, 1990.

[2] M. Ahamad and M. H. Ammar. Performance Characteriza-
tion of Quorum-Consensus Algorithms for Replicated Data.
IEEE TSE, 15(4):492–496, Apr. 1989.

[3] G. Alonso, W. Bausch, C. Pautasso, M. Hallett, and
A. Kahn. Dependable Computing in Virtual Laboratories:

Logging and Recovery of Long Lived Computations. In
IEEE Int. Conf. in Data Engineering, 2001.

[4] T. Anderson, Y. Breitbart, H. F. Korth, and A. Wool. Repli-
cation, Consistency, and Practicality: Are These Mutually
Exclusive? In ACM SIGMOD Conference, 1998.

[5] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison
Wesley, Reading, MA, 1987.

[6] R. Buyaa(Ed.). High Performance Cluster Computing: Ar-
chitectures and Systems. Prentice-Hall, 1999.

[7] S. Y. Cheung, M. Ahamad, and M. H. Ammar. The grid pro-
tocol: a high performance scheme for maintaining replicated
data. In Proc. of ICDE’90, pages 438–445, 1990.

[8] D. K. Gifford. Weighted Voting for Replicated Data. 7th
ACM Symp. on Operating Systems, pages 150–162, 1979.

[9] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The Dangers
of Replication and a Solution. In Proc. of the SIGMOD,
pages 173–182, Montreal, 1996.

[10] R. Guerraoui, P. Felber, B. Garbinato, and K. R. Mazouni.
System support for object groups. In ACM OOPSLA’98,
Oct. 1998.

[11] B. Kemme and G. Alonso. Don’t be lazy, be consistent:
Postgres-R, A new way to implement Database Replication.
In Proc. of VLDB’01, 2000.

[12] M. Naor and A. Wool. The Load, Capacity, and Avail-
ability of Quorum Systems. SIAM Journal of Computing,
27(2):423–447, Apr. 1998.

[13] M. Nicola and M. Jarke. Performance Modeling of Dis-
tributed and Replicated Databases. IEEE Trans. on Knowl-
edge and Data Engineering, 12(4):645–672, July 2000.

[14] M. Patiño Martı́nez, R. Jiménez Peris, B. Kemme, and
G. Alonso. Scalable Replication in Database Clusters. In
In Proc. of Int. Conf. on Distributed Computing, DISC’00,
LNCS-1914. Toledo, Spain, pages 315–329, 2000.

[15] D. Peleg and A. Wool. The Availability of Quorum Systems.
Information and Computation, 123(2):210–223, 1995.

[16] D. Saha, S. Rangarajan, and S. K. Tripathi. An analysis of
the average message overhead in replica control protocols.
IEEE Trans. on Paral. and Dist. Syst., 7(10), 1996.

[17] O. Theel and H. Pagnia. Optimal Replica Control Proto-
cols Exhibit Symmetric Operation Availabilities. In Proc. of
Symp. on Fault-Tolerant Computing (FTCS), 1998.

[18] R. H. Thomas. A Majority Consensus Approach to Concur-
rency Control for Multiple Copy Databases. ACM Transac-
tions on Database Systems, 4(9):180–209, June 1979.


