
1

BigTable: 
A System for Distributed Structured

Storage

Jeff Dean !
!

Joint work with:
Mike Burrows, Tushar Chandra, Fay Chang,

Mike Epstein, Andrew Fikes, Sanjay Ghemawat,
Robert Griesemer, Bob Gruber, Wilson Hsieh,
Josh Hyman, Alberto Lerner, Debby Wallach

2

Motivation

• Lots of (semi-)structured data at Google
– URLs:

• Contents, crawl metadata, links, anchors, pagerank, …
– Per-user data:

• User preference settings, recent queries/search results, …
– Geographic locations:

• Physical entities (shops, restaurants, etc.), roads, satellite
image data, user annotations, …

• Scale is large
– billions of URLs, many versions/page (~20K/version)
– Hundreds of millions of users, thousands of q/sec
– 100TB+ of satellite image data

3

Why not just use commercial DB?

• Scale is too large for most commercial databases
!

• Even if it weren’t, cost would be very high
– Building internally means system can be applied across many

projects for low incremental cost
!

• Low-level storage optimizations help performance
significantly
– Much harder to do when running on top of a database layer
!

Also fun and challenging to build large-scale systems :)

4

Goals
• Want asynchronous processes to be continuously

updating different pieces of data
– Want access to most current data at any time
!

• Need to support:
– Very high read/write rates (millions of ops per second)
– Efficient scans over all or interesting subsets of data
– Efficient joins of large one-to-one and one-to-many datasets
!

• Often want to examine data changes over time
– E.g. Contents of a web page over multiple crawls

5

BigTable
• Distributed multi-level map

– With an interesting data model
• Fault-tolerant, persistent
• Scalable

– Thousands of servers
– Terabytes of in-memory data
– Petabyte of disk-based data
– Millions of reads/writes per second, efficient scans

• Self-managing
– Servers can be added/removed dynamically
– Servers adjust to load imbalance

6

Status
• Design/initial implementation started beginning of 2004
• Currently ~100 BigTable cells
• Production use or active development for many projects:

– Google Print
– My Search History
– Orkut
– Crawling/indexing pipeline
– Google Maps/Google Earth
– Blogger
– …

• Largest bigtable cell manages ~200TB of data spread
over several thousand machines (larger cells planned)

7

Background: Building Blocks

Building blocks:
• Google File System (GFS): Raw storage
• Scheduler: schedules jobs onto machines
• Lock service: distributed lock manager

– also can reliably hold tiny files (100s of bytes) w/ high availability
• MapReduce: simplified large-scale data processing

!
BigTable uses of building blocks:
• GFS: stores persistent state
• Scheduler: schedules jobs involved in BigTable serving
• Lock service: master election, location bootstrapping
• MapReduce: often used to read/write BigTable data

Client

Client

Misc. servers

Client

R
ep

lic
as

Masters

GFS Master

GFS Master

C0 C1

C2C5

C
hu

nk
se

rv
er

 1 C0

C2

C5

C
hu

nk
se

rv
er

 NC1

C3C5

C
hu

nk
se

rv
er

 2

…

• Master manages metadata
• Data transfers happen directly between clients/chunkservers
• Files broken into chunks (typically 64 MB)
• Chunks triplicated across three machines for safety
• See SOSP’03 paper at http://labs.google.com/papers/gfs.html

Google File System (GFS)

9

MapReduce: Easy-to-use Cycles

Many Google problems: "Process lots of data to produce other data"
• Many kinds of inputs:

– Document records, log files, sorted on-disk data structures, etc.
• Want to use easily hundreds or thousands of CPUs
!

• MapReduce: framework that provides (for certain classes of problems):
– Automatic & efficient parallelization/distribution
– Fault-tolerance, I/O scheduling, status/monitoring
– User writes Map and Reduce functions

• Heavily used: ~3000 jobs, 1000s of machine days each day
!

See: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI’04
!
BigTable can be input and/or output for MapReduce computations

10

Typical Cluster

Lock service GFS masterCluster scheduling master

GFS
chunkserver

Scheduler
slave

Linux

Machine 1

User app2

User
app1 BigTable

server

…
User
app1

BigTable
server BigTable master

GFS
chunkserver

Scheduler
slave

Linux

Machine 2

GFS
chunkserver

Scheduler
slave

Linux

Machine N

11

BigTable Overview

• Data Model
• Implementation Structure

– Tablets, compactions, locality groups, …
• API
• Details

– Shared logs, compression, replication, …
• Current/Future Work

12

Basic Data Model
• Distributed multi-dimensional sparse map

 (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t3
t11

t17“<html>…”

• Good match for most of our applications

13

Rows

• Name is an arbitrary string
– Access to data in a row is atomic
– Row creation is implicit upon storing data

• Rows ordered lexicographically
– Rows close together lexicographically usually

on one or a small number of machines

14

Tablets

• Large tables broken into tablets at row
boundaries
– Tablet holds contiguous range of rows

• Clients can often choose row keys to achieve locality
– Aim for ~100MB to 200MB of data per tablet

• Serving machine responsible for ~100 tablets
– Fast recovery:

• 100 machines each pick up 1 tablet from failed machine
– Fine-grained load balancing:

• Migrate tablets away from overloaded machine
• Master makes load-balancing decisions

15

Tablets & Splitting

…
Tablets

“cnn.com”

“contents:”

“<html>…”

“language:”

 EN

“cnn.com/sports.html”

“zuppa.com/menu.html”

…“yahoo.com/kids.html”

“yahoo.com/kids.html\0”

…

…
“website.com”

“aaa.com”

16

System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

GFSCluster scheduling system

…

holds metadata,
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops +
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client
library

Open()read/write

metadata ops

17

Locating Tablets
• Since tablets move around from server to server, given a

row, how do clients find the right machine?
– Need to find tablet whose row range covers the target row
!

• One approach: could use the BigTable master
– Central server almost certainly would be bottleneck in large

system
!

• Instead: store special tables containing tablet location info
in BigTable cell itself

18

Locating Tablets (cont.)
• Our approach: 3-level hierarchical lookup scheme for tablets

– Location is ip:port of relevant server
– 1st level: bootstrapped from lock service, points to owner of META0
– 2nd level: Uses META0 data to find owner of appropriate META1 tablet
– 3rd level: META1 table holds locations of tablets of all other tables

• META1 table itself can be split into multiple tablets

Pointer to
META0
location

META0 table

META1 table
Actual tablet

in table T

• Aggressive prefetching+caching
–Most ops go right to proper machine

Row per META1
Table tablet

Row per non-META
tablet (all tables)

Stored in
lock service

19

Tablet Representation

append-only log on GFS

SSTable
on GFS

SSTable
on GFS

SSTable
on GFS
(mmap)

write buffer in memory
(random-access)

write

read

Tablet

SSTable: Immutable on-disk ordered map from string->string
 string keys: <row, column, timestamp> triples

20

Compactions
• Tablet state represented as set of immutable compacted

SSTable files, plus tail of log (buffered in memory)
!
• Minor compaction:

– When in-memory state fills up, pick tablet with most data and
write contents to SSTables stored in GFS

• Separate file for each locality group for each tablet

!
• Major compaction:

– Periodically compact all SSTables for tablet into new base
SSTable on GFS

• Storage reclaimed from deletions at this point

21

Columns

“www.cnn.com”

“contents:”

“<html>…” “CNN home page”

“anchor:cnnsi.com”

“CNN”

“anchor:stanford.edu”

• Columns have two-level name structure:
• family:optional_qualifier

• Column family
– Unit of access control
– Has associated type information

• Qualifier gives unbounded columns
– Additional level of indexing, if desired

22

Timestamps

• Used to store different versions of data in a cell
– New writes default to current time, but timestamps for

writes can also be set explicitly by clients
!

• Lookup options:
– “Return most recent K values”
– “Return all values in timestamp range (or all values)”
!

• Column familes can be marked w/ attributes:
– “Only retain most recent K values in a cell”
– “Keep values until they are older than K seconds”

23

Locality Groups

• Column families can be assigned to a
locality group
– Used to organize underlying storage

representation for performance
• scans over one locality group are

O(bytes_in_locality_group) , not O(bytes_in_table)
– Data in a locality group can be explicitly

memory-mapped

24

Locality Groups

“www.cnn.com”

“contents:”

“<html>…”

…

…

Locality Groups
“language:”

 EN

“pagerank:”

 0.65

25

API
• Metadata operations

– Create/delete tables, column families, change metadata
• Writes (atomic)

– Set(): write cells in a row
– DeleteCells(): delete cells in a row
– DeleteRow(): delete all cells in a row

• Reads
– Scanner: read arbitrary cells in a bigtable

• Each row read is atomic
• Can restrict returned rows to a particular range
• Can ask for just data from 1 row, all rows, etc.
• Can ask for all columns, just certain column families, or specific

columns

26

Shared Logs
• Designed for 1M tablets, 1000s of tablet servers

– 1M logs being simultaneously written performs badly
• Solution: shared logs

– Write log file per tablet server instead of per tablet
• Updates for many tablets co-mingled in same file

– Start new log chunks every so often (64 MB)
• Problem: during recovery, server needs to read

log data to apply mutations for a tablet
– Lots of wasted I/O if lots of machines need to read

data for many tablets from same log chunk

27

Shared Log Recovery
Recovery:
• Servers inform master of log chunks they need to read
• Master aggregates and orchestrates sorting of needed

chunks
– Assigns log chunks to be sorted to different tablet servers
– Servers sort chunks by tablet, writes sorted data to local disk

• Other tablet servers ask master which servers have
sorted chunks they need

• Tablet servers issue direct RPCs to peer tablet servers to
read sorted data for its tablets

28

Compression
• Many opportunities for compression

– Similar values in the same row/column at different timestamps
– Similar values in different columns
– Similar values across adjacent rows
!

• Within each SSTable for a locality group, encode
compressed blocks
– Keep blocks small for random access (~64KB compressed data)
– Exploit fact that many values very similar
– Needs to be low CPU cost for encoding/decoding
!

• Two building blocks: BMDiff, Zippy

29

BMDiff
• Bentley, McIlroy DCC‘99: “Data Compression Using Long Common Strings”
• Input: dictionary + source
• Output: sequence of

– COPY: <x> bytes from offset <y>
– LITERAL: <literal text>
!

• Store hash at every 32-byte aligned boundary in
– Dictionary
– Source processed so far

• For every new source byte
– Compute incremental hash of last 32 bytes
– Lookup in hash table
– On hit, expand match forwards & backwards and emit COPY

• Encode: ~ 100 MB/s, Decode: ~1000 MB/s

30

Zippy
• LZW-like: Store hash of last four bytes in 16K entry table
• For every input byte:

– Compute hash of last four bytes
– Lookup in table
– Emit COPY or LITERAL
!

• Differences from BMDiff:
– Much smaller compression window (local repetitions)
– Hash table is not associative
– Careful encoding of COPY/LITERAL tags and lengths

• Sloppy but fast:
Algorithm % remaining Encoding Decoding
Gzip 13.4% 21 MB/s 118 MB/s
LZO 20.5% 135 MB/s 410 MB/s
Zippy 22.2% 172 MB/s 409 MB/s

31

BigTable Compression
• Keys:

– Sorted strings of (Row, Column, Timestamp): prefix compression
• Values:

– Group together values by “type” (e.g. column family name)
– BMDiff across all values in one family

• BMDiff output for values 1..N is dictionary for value N+1
!

• Zippy as final pass over whole block
– Catches more localized repetitions
– Also catches cross-column-family repetition, compresses keys

32

Compression Effectiveness
• Experiment: store contents for 2.1B page crawl in BigTable instance

– Key: URL of pages, with host-name portion reversed
• com.cnn.www/index.html:http

– Groups pages from same site together
• Good for compression (neighboring rows tend to have similar contents)
• Good for clients: efficient to scan over all pages on a web site
!

• One compression strategy: gzip each page: ~28% bytes remaining
• BigTable: BMDiff + Zippy:

Type Count (B) Space (TB) Compressed % remaining
Web page contents 2.1 45.1 TB 4.2 TB 9.2%
Links 1.8 11.2 TB 1.6 TB 13.9%
Anchors 126.3 22.8 TB 2.9 TB 12.7%

33

In Development/Future Plans

• More expressive data manipulation/access
– Allow sending small scripts to perform read/modify/

write transactions so that they execute on server?
• Multi-row (i.e. distributed) transaction support
• General performance work for very large cells
• BigTable as a service?

– Interesting issues of resource fairness, performance
isolation, prioritization, etc. across different clients

34

Conclusions

• Data model applicable to broad range of clients
– Actively deployed in many of Google’s services

• System provides high performance storage
system on a large scale
– Self-managing
– Thousands of servers
– Millions of ops/second
– Multiple GB/s reading/writing
!

• More info about GFS, MapReduce, etc.:
 http://labs.google.com/papers

http://labs.google.com/papers

35

Backup slides

36

Bigtable + Mapreduce

• Can use a Scanner as MapInput
– Creates 1 map task per tablet
– Locality optimization applied to co-locate map

computation with tablet server for tablet
• Can use a bigtable as ReduceOutput

