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Motivation

• Lots of (semi-)structured data at Google 
– URLs: 

• Contents, crawl metadata, links, anchors, pagerank, … 
– Per-user data: 

• User preference settings, recent queries/search results, … 
– Geographic locations: 

• Physical entities (shops, restaurants, etc.), roads, satellite 
image data, user annotations, … 

• Scale is large 
– billions of URLs, many versions/page (~20K/version) 
– Hundreds of millions of users, thousands of q/sec 
– 100TB+ of satellite image data
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Why not just use commercial DB?

• Scale is too large for most commercial databases 
!

• Even if it weren’t, cost would be very high 
– Building internally means system can be applied across many 

projects for low incremental cost 
!

• Low-level storage optimizations help performance 
significantly 
– Much harder to do when running on top of a database layer 
!

Also fun and challenging to build large-scale systems :)
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Goals
• Want asynchronous processes to be continuously 

updating different pieces of data 
– Want access to most current data at any time 
!

• Need to support: 
– Very high read/write rates (millions of ops per second) 
– Efficient scans over all or interesting subsets of data 
– Efficient joins of large one-to-one and one-to-many datasets  
!

• Often want to examine data changes over time 
– E.g. Contents of a web page over multiple crawls
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BigTable
• Distributed multi-level map 

– With an interesting data model 
• Fault-tolerant, persistent 
• Scalable 

– Thousands of servers 
– Terabytes of in-memory data 
– Petabyte of disk-based data 
– Millions of reads/writes per second, efficient scans 

• Self-managing 
– Servers can be added/removed dynamically 
– Servers adjust to load imbalance
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Status
• Design/initial implementation started beginning of 2004 
• Currently ~100 BigTable cells 
• Production use or active development for many projects: 

– Google Print 
– My Search History 
– Orkut 
– Crawling/indexing pipeline 
– Google Maps/Google Earth 
– Blogger 
– … 

• Largest bigtable cell manages ~200TB of data spread 
over several thousand machines (larger cells planned)
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Background: Building Blocks

Building blocks: 
• Google File System (GFS): Raw storage 
• Scheduler: schedules jobs onto machines 
• Lock service: distributed lock manager 

– also can reliably hold tiny files (100s of bytes) w/ high availability 
• MapReduce: simplified large-scale data processing 

!
BigTable uses of building blocks: 
• GFS: stores persistent state  
• Scheduler: schedules jobs involved in BigTable serving 
• Lock service: master election, location bootstrapping 
• MapReduce: often used to read/write BigTable data
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…

• Master manages metadata 
• Data transfers happen directly between clients/chunkservers 
• Files broken into chunks (typically 64 MB) 
• Chunks triplicated across three machines for safety 
• See SOSP’03 paper at http://labs.google.com/papers/gfs.html

Google File System (GFS)
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MapReduce: Easy-to-use Cycles

Many Google problems: "Process lots of data to produce other data"  
• Many kinds of inputs:  

– Document records, log files, sorted on-disk data structures, etc. 
• Want to use easily hundreds or thousands of CPUs 
!

• MapReduce: framework that provides (for certain classes of problems): 
– Automatic & efficient parallelization/distribution 
– Fault-tolerance, I/O scheduling, status/monitoring 
– User writes Map and Reduce functions 

• Heavily used: ~3000 jobs, 1000s of machine days each day 
!

See: “MapReduce: Simplified Data Processing on Large Clusters”, OSDI’04 
!
BigTable can be input and/or output for MapReduce computations
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Typical Cluster
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BigTable Overview

• Data Model 
• Implementation Structure 

– Tablets, compactions, locality groups, … 
• API 
• Details 

– Shared logs, compression, replication, … 
• Current/Future Work
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Basic Data Model
• Distributed multi-dimensional sparse map 

  (row, column, timestamp) → cell contents

“www.cnn.com”

“contents:”

Rows

Columns

Timestamps

t3
t11

t17“<html>…”

• Good match for most of our applications
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Rows

• Name is an arbitrary string 
– Access to data in a row is atomic 
– Row creation is implicit upon storing data 

• Rows ordered lexicographically 
– Rows close together lexicographically usually 

on one or a small number of machines
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Tablets

• Large tables broken into tablets at row 
boundaries 
– Tablet holds contiguous range of rows 

• Clients can often choose row keys to achieve locality 
– Aim for ~100MB to 200MB of data per tablet 

• Serving machine responsible for ~100 tablets 
– Fast recovery: 

• 100 machines each pick up 1 tablet from failed machine 
– Fine-grained load balancing: 

• Migrate tablets away from overloaded machine 
• Master makes load-balancing decisions



15

Tablets & Splitting

…
Tablets

“cnn.com”

“contents:”

“<html>…”

“language:”

 EN 

“cnn.com/sports.html”

“zuppa.com/menu.html”

…“yahoo.com/kids.html”

“yahoo.com/kids.html\0”

…

…
“website.com”

“aaa.com”
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System Structure

Lock service

Bigtable master

Bigtable tablet server Bigtable tablet serverBigtable tablet server

GFSCluster scheduling system

…

holds metadata, 
handles master-electionholds tablet data, logshandles failover, monitoring

performs metadata ops + 
load balancing

serves data serves dataserves data

Bigtable Cell
Bigtable client

Bigtable client 
library

Open()read/write

metadata ops
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Locating Tablets
• Since tablets move around from server to server, given a 

row, how do clients find the right machine? 
– Need to find tablet whose row range covers the target row 
!

• One approach: could use the BigTable master 
– Central server almost certainly would be bottleneck in large 

system 
!

• Instead: store special tables containing tablet location info 
in BigTable cell itself
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Locating Tablets (cont.)
• Our approach: 3-level hierarchical lookup scheme for tablets 

– Location is ip:port of relevant server 
– 1st level: bootstrapped from lock service, points to owner of META0 
– 2nd level: Uses META0 data to find owner of appropriate META1 tablet 
– 3rd level: META1 table holds locations of tablets of all other tables 

• META1 table itself can be split into multiple tablets

Pointer to 
META0 
location

META0 table

META1 table
Actual tablet 

in table T

• Aggressive prefetching+caching 
–Most ops go right to proper machine

Row per META1 
Table tablet

Row per non-META 
tablet (all tables)

Stored in  
lock service
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Tablet Representation

append-only log on GFS

SSTable 
on GFS

SSTable 
on GFS

SSTable 
on GFS 
(mmap)

write buffer in memory 
(random-access)

write

read

Tablet

SSTable: Immutable on-disk ordered map from string->string 
 string keys: <row, column, timestamp> triples
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Compactions
• Tablet state represented as set of immutable compacted 

SSTable files, plus tail of log (buffered in memory) 
!
• Minor compaction:  

– When in-memory state fills up, pick tablet with most data and 
write contents to SSTables stored in GFS 

• Separate file for each locality group for each tablet 

!
• Major compaction: 

– Periodically compact all SSTables for tablet into new base 
SSTable on GFS 

• Storage reclaimed from deletions at this point
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Columns

“www.cnn.com”

“contents:”

“<html>…” “CNN home page”

“anchor:cnnsi.com”

“CNN”

“anchor:stanford.edu”

• Columns have two-level name structure: 
• family:optional_qualifier 

• Column family 
– Unit of access control 
– Has associated type information 

• Qualifier gives unbounded columns 
– Additional level of indexing, if desired
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Timestamps

• Used to store different versions of data in a cell 
– New writes default to current time, but timestamps for 

writes can also be set explicitly by clients 
!

• Lookup options: 
– “Return most recent K values” 
– “Return all values in timestamp range (or all values)” 
!

• Column familes can be marked w/ attributes: 
– “Only retain most recent K values in a cell” 
– “Keep values until they are older than K seconds” 
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Locality Groups

• Column families can be assigned to a 
locality group 
– Used to organize underlying storage 

representation for performance 
• scans over one locality group are 

O(bytes_in_locality_group) , not O(bytes_in_table) 
– Data in a locality group can be explicitly 

memory-mapped
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Locality Groups

“www.cnn.com”

“contents:”

“<html>…”

…

…

Locality Groups
“language:”

 EN 

“pagerank:”

 0.65 
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API
• Metadata operations 

– Create/delete tables, column families, change metadata 
• Writes (atomic) 

– Set(): write cells in a row 
– DeleteCells(): delete cells in a row 
– DeleteRow(): delete all cells in a row 

• Reads 
– Scanner: read arbitrary cells in a bigtable 

• Each row read is atomic 
• Can restrict returned rows to a particular range 
• Can ask for just data from 1 row, all rows, etc. 
• Can ask for all columns, just certain column families, or specific 

columns
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Shared Logs
• Designed for 1M tablets, 1000s of tablet servers 

– 1M logs being simultaneously written performs badly 
• Solution: shared logs 

– Write log file per tablet server instead of per tablet 
• Updates for many tablets co-mingled in same file 

– Start new log chunks every so often (64 MB) 
• Problem: during recovery, server needs to read 

log data to apply mutations for a tablet 
– Lots of wasted I/O if lots of machines need to read 

data for many tablets from same log chunk
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Shared Log Recovery
Recovery: 
• Servers inform master of log chunks they need to read 
• Master aggregates and orchestrates sorting of needed 

chunks 
– Assigns log chunks to be sorted to different tablet servers 
– Servers sort chunks by tablet, writes sorted data to local disk 

• Other tablet servers ask master which servers have 
sorted chunks they need 

• Tablet servers issue direct RPCs to peer tablet servers to 
read sorted data for its tablets
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Compression
• Many opportunities for compression 

– Similar values in the same row/column at different timestamps 
– Similar values in different columns 
– Similar values across adjacent rows 
!

• Within each SSTable for a locality group, encode 
compressed blocks 
– Keep blocks small for random access (~64KB compressed data) 
– Exploit fact that many values very similar 
– Needs to be low CPU cost for encoding/decoding 
!

• Two building blocks: BMDiff, Zippy
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BMDiff
• Bentley, McIlroy DCC‘99: “Data Compression Using Long Common Strings” 
• Input: dictionary + source 
• Output: sequence of 

– COPY: <x> bytes from offset <y> 
– LITERAL: <literal text> 
!

• Store hash at every 32-byte aligned boundary in 
– Dictionary 
– Source processed so far 

• For every new source byte 
– Compute incremental hash of last 32 bytes 
– Lookup in hash table 
– On hit, expand match forwards & backwards and emit COPY 

• Encode: ~ 100 MB/s, Decode: ~1000 MB/s
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Zippy
• LZW-like: Store hash of last four bytes in 16K entry table 
• For every input byte: 

– Compute hash of last four bytes 
– Lookup in table 
– Emit COPY or LITERAL 
!

• Differences from BMDiff: 
– Much smaller compression window (local repetitions) 
– Hash table is not associative 
– Careful encoding of COPY/LITERAL tags and lengths 

• Sloppy but fast:
Algorithm % remaining Encoding Decoding
Gzip 13.4% 21 MB/s 118 MB/s
LZO 20.5% 135 MB/s 410 MB/s
Zippy 22.2% 172 MB/s 409 MB/s
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BigTable Compression
• Keys: 

– Sorted strings of (Row, Column, Timestamp): prefix compression 
• Values: 

– Group together values by “type” (e.g. column family name) 
– BMDiff across all values in one family 

• BMDiff output for values 1..N is dictionary for value N+1 
!

• Zippy as final pass over whole block 
– Catches more localized repetitions 
– Also catches cross-column-family repetition, compresses keys
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Compression Effectiveness
• Experiment: store contents for 2.1B page crawl in BigTable instance 

– Key: URL of pages, with host-name portion reversed 
• com.cnn.www/index.html:http 

– Groups pages from same site together 
• Good for compression (neighboring rows tend to have similar contents) 
• Good for clients: efficient to scan over all pages on a web site 
!

• One compression strategy: gzip each page: ~28% bytes remaining 
• BigTable: BMDiff + Zippy:

Type Count (B) Space (TB) Compressed % remaining
Web page contents 2.1 45.1 TB 4.2 TB 9.2%
Links 1.8 11.2 TB 1.6 TB 13.9%
Anchors 126.3 22.8 TB 2.9 TB 12.7%
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In Development/Future Plans

• More expressive data manipulation/access 
– Allow sending small scripts to perform read/modify/

write transactions so that they execute on server? 
• Multi-row (i.e. distributed) transaction support 
• General performance work for very large cells 
• BigTable as a service? 

– Interesting issues of resource fairness, performance 
isolation, prioritization, etc. across different clients
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Conclusions

• Data model applicable to broad range of clients 
– Actively deployed in many of Google’s services 

• System provides high performance storage 
system on a large scale 
– Self-managing 
– Thousands of servers 
– Millions of ops/second 
– Multiple GB/s reading/writing 
!

• More info about GFS, MapReduce, etc.:  
 http://labs.google.com/papers

http://labs.google.com/papers
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Backup slides
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Bigtable + Mapreduce

• Can use a Scanner as MapInput 
– Creates 1 map task per tablet 
– Locality optimization applied to co-locate map 

computation with tablet server for tablet 
• Can use a bigtable as ReduceOutput


