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1 IntroductionNetwork servers based on clusters of commodity work-stations or PCs connected by high-speed LANs combinecutting-edge performance and low cost. A cluster-basednetwork server consists of a front-end, responsible for re-quest distribution, and a number of back-end nodes, re-sponsible for request processing. The use of a front-endmakes the distributed nature of the server transparentto the clients. In most current cluster servers the front-end distributes requests to back-end nodes without re-gard to the type of service or the content requested.That is, all back-end nodes are considered equally capa-ble of serving a given request and the only factor guidingthe request distribution is the current load of the back-end nodes.With content-based request distribution, the front-end takes into account both the service/content re-quested and the current load on the back-end nodeswhen deciding which back-end node should serve a givenrequest. The potential advantages of content-based re-quest distribution are: (1) increased performance dueto improved hit rates in the back-end's main memorycaches, (2) increased secondary storage scalability dueto the ability to partition the server's database over thedi�erent back-end nodes, and (3) the ability to employback-end nodes that are specialized for certain types ofrequests (e.g., audio and video).The locality-aware request distribution (LARD) strat-egy presented in this paper is a form of content-basedrequest distribution, focusing on obtaining the �rst ofthe advantages cited above, namely improved cache hitrates in the back-ends. Secondary storage scalabilityand special-purpose back-end nodes are not discussedany further in this paper.Figure 1 illustrates the principle of LARD in a simpleserver with two back-ends and three targets1 (A,B,C) inthe incoming request stream. The front-end directs allrequests for A to back-end 1, and all requests for B andC to back-end 2. By doing so, there is an increased like-lihood that the request �nds the requested target in thecache at the back-end. In contrast, with a round-robindistribution of incoming requests, requests of all three1In the following discussion, the term target is being usedto refer to a speci�c object requested from a server. For anHTTP server, for instance, a target is speci�ed by a URL andany applicable arguments to the HTTP GET command.1



BC

A

Back−end nodes

B BFront−end node

BA A A C B C A A C

A A A

C C

A A

CFigure 1: Locality-Aware Request Distributiontargets will arrive at both back-ends. This increases thelikelihood of a cache miss, if the sum of the sizes of thethree targets, or, more generally, if the size of the work-ing set exceeds the size of the main memory cache at anindividual back-end node.Of course, by naively distributing incoming requestsin a content-based manner as suggested in Figure 1, theload between di�erent back-ends might become unbal-anced, resulting in worse performance. The �rst ma-jor challenge in building a LARD cluster is therefore todesign a practical and e�cient strategy that simultane-ously achieves load balancing and high cache hit rateson the back-ends. The second challenge stems from theneed for a protocol that allows the front-end to hand o�an established client connection to a back-end node, ina manner that is transparent to clients and is e�cientenough not to render the front-end a bottleneck. Thisrequirement results from the front-end's need to inspectthe target content of a request prior to assigning therequest to a back-end node. This paper demonstratesthat these challenges can be met, and that LARD pro-duces substantially higher throughput than the state-of-the-art approaches where request distribution is solelybased on load balancing, for workloads whose workingset exceeds the size of the individual node caches.Increasing a server's cache e�ectiveness is an impor-tant step towards meeting the demands placed on cur-rent and future network servers. Being able to cache theworking set is critical to achieving high throughput, asa state-of-the-art disk device can deliver no more than120 block requests/sec, while high-end network serverswill be expected to serve thousands of document re-quests per second. Moreover, typical working set sizesof web servers can be expected to grow over time, fortwo reasons. First, the amount of content made avail-able by a single organization is typically growing overtime. Second, there is a trend towards centralizationof web servers within organizations. Issues such as costand ease of administration, availability, security, andhigh-capacity backbone network access cause organiza-tions to move towards large, centralized network serversthat handle all of the organization's web presence. Suchservers have to handle the combined working sets of allthe servers they supersede.With round-robin distribution, a cluster does notscale well to larger working sets, as each node's mainmemory cache has to �t the entire working set. WithLARD, the e�ective cache size approaches the sum ofthe node cache sizes. Thus, adding nodes to a clustercan accommodate both increased tra�c (due to addi-tional CPU power) and larger working sets (due to theincreased e�ective cache size).This paper presents the following contributions:1. a practical and e�cient LARD strategy that achieveshigh cache hit rates and good load balancing,

2. a trace-driven simulation that demonstrates the per-formance potential of locality-aware request distribu-tion,3. an e�cient TCP hando� protocol, that enablescontent-based request distribution by providing client-transparent connection hando� for TCP-based networkservices, and4. a performance evaluation of a prototype LARDserver cluster, incorporating the TCP hando� protocoland the LARD strategy.The outline of the rest of this paper is as follows:In Section 2 we develop our strategy for locality-awarerequest distribution. In Section 3 we describe the modelused to simulate the performance of LARD in compari-son to other request distribution strategies. In Section 4we present the results of the simulation. In Section 5we move on to the practical implementation of LARD,particularly the TCP hando� protocol. We describe theexperimental environment in which our LARD serveris implemented and its measured performance in Sec-tion 6. We describe related work in Section 7 and weconclude in Section 8.2 Strategies for Request Distribution2.1 AssumptionsThe following assumptions hold for all request distribu-tion strategies considered in this paper:� The front-end is responsible for handing o� new con-nections and passing incoming data from the client tothe back-end nodes. As a result, it must keep track ofopen and closed connections, and it can use this infor-mation in making load balancing decisions. The front-end is not involved in handling outgoing data, which issent directly from the back-ends to the clients.� The front-end limits the number of outstanding re-quests at the back-ends. This approach allows the front-end more exibility in responding to changing load onthe back-ends, since waiting requests can be directed toback-ends as capacity becomes available. In contrast,if we queued requests only on the back-end nodes, aslow node could cause many requests to be delayed eventhough other nodes might have free capacity.� Any back-end node is capable of serving any target,although in certain request distribution strategies, thefront-end may direct a request only to a subset of theback-ends.2.2 Aiming for Balanced LoadIn state-of-the-art cluster servers, the front-end usesweighted round-robin request distribution [7, 14]. The2



incoming requests are distributed in round-robin fash-ion, weighted by some measure of the load on the di�er-ent back-ends. For instance, the CPU and disk utiliza-tion, or the number of open connections in each back-end may be used as an estimate of the load.This strategy produces good load balancing amongthe back-ends. However, since it does not consider thetype of service or requested document in choosing aback-end node, each back-end node is equally likely toreceive a given type of request. Therefore, each back-end node receives an approximately identical workingset of requests, and caches an approximately identicalset of documents. If this working set exceeds the size ofmain memory available for caching documents, frequentcache misses will occur.2.3 Aiming for LocalityIn order to improve locality in the back-end's cache,a simple front-end strategy consists of partitioning thename space of the database in some way, and assign-ing request for all targets in a particular partition to aparticular back-end. For instance, a hash function canbe used to perform the partitioning. We will call thisstrategy locality-based [LB].A good hashing function partitions both the namespace and the working set more or less evenly among theback-ends. If this is the case, the cache in each back-endshould achieve a much higher hit rate, since it is onlytrying to cache its subset of the working set, rather thanthe entire working set, as with load balancing basedapproaches. What is a good partitioning for localitymay, however, easily prove a poor choice of partitioningfor load balancing. For example, if a small set of targetsin the working set account for a large fraction of theincoming requests, the back-ends serving those targetswill be far more loaded than others.2.4 Basic Locality-Aware Request DistributionThe goal of LARD is to combine good load balancingand high locality. We develop our strategy in two steps.The basic strategy, described in this subsection, alwaysassigns a single back-end node to serve a given target,thus making the idealized assumption that a single tar-get cannot by itself exceed the capacity of one node.This restriction is removed in the next subsection, wherewe present the complete strategy.Figure 2 presents pseudo-code for the basic LARD.The front-end maintains a one-to-one mapping of tar-gets to back-end nodes in the server array. When the�rst request arrives for a given target, it is assigned aback-end node by choosing a lightly loaded back-endnode. Subsequent requests are directed to a target's as-signed back-end node, unless that node is overloaded.In the latter case, the target is assigned a new back-endnode from the current set of lightly loaded nodes.A node's load is measured as the number of activeconnections, i.e., connections that have been handed o�to the node, have not yet completed, and are show-ing request activity. Observe that an overloaded nodewill fall behind and the resulting queuing of requestswill cause its number of active connections to increase,while the number of active connections at an under-loaded node will tend to zero. Monitoring the relative

while (true)fetch next request r;if server[r.target] = null thenn, server[r.target]  fleast loaded nodeg;elsen  server[r.target];if (n.load > Thigh && 9 node with load < Tlow) jjn.load � 2 � Thigh thenn, server[r.target]  fleast loaded nodeg;send r to n;Figure 2: The Basic LARD Strategynumber of active connections allows the front-end to es-timate the amount of \outstanding work" and thus therelative load on a back-end without requiring explicitcommunication with the back-end node.The intuition for the basic LARD strategy is as fol-lows: The distribution of targets when they are �rst re-quested leads to a partitioning of the name space of thedatabase, and indirectly to a partitioning of the workingset, much in the same way as with the strategy purelyaiming for locality. It also derives similar locality gainsfrom doing so. Only when there is a signi�cant load im-balance do we diverge from this strategy and re-assigntargets. The de�nition of a \signi�cant load imbalance"tries to reconcile two competing goals. On one hand, wedo not want greatly diverging load values on di�erentback-ends. On the other hand, given the cache missesand disk activity resulting from re-assignment, we donot want to re-assign targets to smooth out only minoror temporary load imbalances. It su�ces to make surethat no node has idle resources while another back-endis dropping behind.We de�ne Tlow as the load (in number of active con-nections) below which a back-end is likely to have idleresources. We de�ne Thigh as the load above which anode is likely to cause substantial delay in serving re-quests. If a situation is detected where a node has aload larger than Thigh while another node has a loadless than Tlow , a target is moved from the high-load tothe low-load back-end. In addition, to limit the delayvariance among di�erent nodes, once a node reaches aload of 2Thigh, a target is moved to a less loaded node,even if no node has a load of less than Tlow .If the front-end did not limit the total number of ac-tive connections admitted into the cluster, the load onall nodes could rise to 2Thigh, and LARD would thenbehave like WRR. To prevent this, the front-end lim-its the sum total of connections handed to all back-endnodes to the value S = (n� 1) �Thigh + Tlow � 1, wheren is the number of back-end nodes. Setting S to thisvalue ensures that at most n� 2 nodes can have a load� Thigh while no node has load < Tlow. At the sametime, enough connections are admitted to ensure all nnodes can have a load above Tlow (i.e., be fully utilized)and still leave room for a limited amount of load imbal-ance between the nodes (to prevent unnecessary targetreassignments in the interest of locality).The two conditions for deciding when to move a tar-get attempt to ensure that the cost of moving is incurredonly when the load di�erence is substantial enough towarrant doing so. Whenever a target gets reassigned,our two tests combined with the de�nition of S ensurethat the load di�erence between the old and new tar-3



gets is at least Thigh � Tlow . To see this, note that thede�nition of S implies that there must always exist anode with a load < Thigh. The maximal load imbalancethat can arise is 2Thigh � Tlow .The appropriate setting for Tlow depends on thespeed of the back-end nodes. In practice, Tlow should bechosen high enough to avoid idle resources on back-endnodes, which could cause throughput loss. Given Tlow ,choosing Thigh involves a tradeo�. Thigh � Tlow shouldbe low enough to limit the delay variance among theback-ends to acceptable levels, but high enough to tol-erate limited load imbalance and short-term load uc-tuations without destroying locality.Simulations to test the sensitivity of our strategy tothese parameter settings show that the maximal delaydi�erence increases approximately linearly with Thigh�Tlow . The throughput increases mildly and eventuallyattens as Thigh�Tlow increases. Therefore, Thigh shouldbe set to the largest possible value that still satis�es thedesired bound on the delay di�erence between back-endnodes. Given a desired maximal delay di�erence of Dsecs and an average request service time of R secs, Thighshould be set to (Tlow + D=R)=2, subject to the obvi-ous constraint that Thigh > Tlow. The setting of Tlowcan be conservatively high with no adverse impact onthroughput and only a mild increase in the average de-lay. Furthermore, if desired, the setting of Tlow can beeasily automated by requesting explicit load informationfrom the back-end nodes during a \training phase". Inour simulations and in the prototype, we have found set-tings of Tlow = 25 and Thigh = 65 active connections togive good performance across all workloads we tested.2.5 LARD with ReplicationA potential problem with the basic LARD strategy isthat a given target is served by only a single node at anygiven time. However, if a single target causes a back-endto go into an overload situation, the desirable action isto assign several back-end nodes to serve that document,and to distribute requests for that target among theserving nodes. This leads us to the second version ofour strategy, which allows replication.Pseudo-code for this strategy is shown in Figure 3.It di�ers from the original one as follows: The front-endmaintains a mapping from targets to a set of nodes thatserve the target. Requests for a target are assigned tothe least loaded node in the target's server set. If a loadimbalance occurs, the front-end checks if the requesteddocument's server set has changed recently (within Kseconds). If so, it picks a lightly loaded node and addsthat node to the server set for the target. On the otherhand, if a request target has multiple servers and hasnot moved or had a server node added for some time(K seconds), the front-end removes one node from thetarget's server set. This ensures that the degree of repli-cation for a target does not remain unnecessarily highonce it is requested less often. In our experiments, weused values of K = 20 secs.2.6 DiscussionAs will be seen in Sections 4 and 6, the LARD strate-gies result in a good combination of load balancing andlocality. In addition, the strategies outlined above have

while (true)fetch next request r;if serverSet[r.target] = ; thenn, serverSet[r.target]  fleast loaded nodeg;elsen  fleast loaded node in serverSet[r.target]g;m  fmost loaded node in serverSet[r.target]g;if (n.load > Thigh && 9 node with load < Tlow) jjn.load � 2Thigh thenp  fleast loaded nodeg;add p to serverSet[r.target];n  p;if jserverSet[r.target]j > 1 &&time() - serverSet[r.target].lastMod > K thenremove m from serverSet[r.target];send r to nif serverSet[r.target] changed in this iteration thenserverSet[r.target].lastMod  time();Figure 3: LARD with Replicationseveral desirable features. First, they do not requireany extra communication between the front-end and theback-ends. Second, the front-end need not keep trackof any frequency of access information or try to modelthe contents of the caches of the back-ends. In particu-lar, the strategy is independent of the local replacementpolicy used by the back-ends. Third, the absence ofelaborate state in the front-end makes it rather straight-forward to recover from a back-end node failure. Thefront-end simply re-assigns targets assigned to the failedback-end as if they had not been assigned before. Forall these reasons, we argue that the proposed strategycan be implemented without undue complexity.In a simple implementation of the two strategies, thesize of the server or serverSet arrays, respectively, cangrow to the number of targets in the server's database.Despite the low storage overhead per target, this canbe of concern in servers with very large databases. Inthis case, the mappings can be maintained in an LRUcache, where assignments for targets that have not beenaccessed recently are discarded. Discarding mappingsfor such targets is of little consequence, as these targetshave most likely been evicted from the back-end nodes'caches anyway.3 SimulationTo study various request distribution policies for a rangeof cluster sizes under di�erent assumptions for CPUspeed, amount of memory, number of disks and otherparameters, we developed a con�gurable web server clus-ter simulator. We also implemented a prototype of aLARD-based cluster, which is described in Section 6.3.1 Simulation ModelThe simulation model is depicted in Figure 4. Eachback-end node consists of a CPU and locally-attacheddisk(s), with separate queues for each. In addition, eachnode maintains its own main memory cache of con-�gurable size and replacement policy. For simplicity,caching is performed on a whole-�le basis.Processing a request requires the following steps:4



active
queue

holding
queue

cpu

disk

front−end
wait queue

backend
nodes

done

cache misses

new
reqs

read finished

more time needed

magnified backend node

Figure 4: Cluster Simulation Modelconnection establishment, disk reads (if needed), targetdata transmission, and connection teardown. The as-sumption is that front-end and networks are fast enoughnot to limit the cluster's performance, thus fully expos-ing the throughput limits of the back-ends. Therefore,the front-end is assumed to have no overhead and allnetworks have in�nite capacity in the simulations.The individual processing steps for a given requestmust be performed in sequence, but the CPU and disktimes for di�ering requests can be overlapped. Also,large �le reads are blocked, such that the data transmis-sion immediately follows the disk read for each block.Multiple requests waiting on the same �le from diskcan be satis�ed with only one disk read, since all the re-quests can access the data once it is cached in memory.The costs for the basic request processing stepsused in our simulations were derived by performingmeasurements on a 300 Mhz Pentium II machine run-ning FreeBSD 2.2.5 and an aggressive experimental webserver. Connection establishment and teardown costsare set at 145�s of CPU time each, while transmit pro-cessing incurs 40�s per 512 bytes. Using these num-bers, an 8 KByte document can be served from themain memory cache at a rate of approximately 1075requests/sec.If disk access is required, reading a �le from disk hasa latency of 28 ms (2 seeks + rotational latency). Thedisk transfer time is 410�s per 4 KByte (resulting inapproximately 10 MBytes/sec peak transfer rate). For�les larger than 44 KBytes, an additional 14 ms (seekplus rotational latency) is charged for every 44 KBytesof �le length in excess of 44 KBytes. 44 KBytes wasmeasured as the average disk transfer size between seeksin our experimental server. Unless otherwise stated,each back-end node has one disk.The cache replacement policy we chose for all sim-ulations is Greedy-Dual-Size (GDS), as it appears tobe the best known policy for Web workloads [5]. Wehave also performed simulations with LRU, where �leswith a size of more than 500KB are never cached. Therelative performance of the various distribution strate-gies remained largely una�ected. However, the absolutethroughput results were up to 30% lower with LRU thanwith GDS.3.2 Simulation InputsThe input to the simulator is a stream of tokenized tar-get requests, where each token represents a unique tar-

get being served. Associated with each token is a targetsize in bytes. This tokenized stream can be syntheti-cally created, or it can be generated by processing logsfrom existing web servers.One of the traces we use was generated by combin-ing logs from multiple departmental web servers at RiceUniversity. This trace spans a two-month period. An-other trace comes from IBM Corporation's main webserver (www.ibm.com) and represents server logs for aperiod of 3.5 days starting at midnight, June 1, 1998.Figures 5 and 6 show the cumulative distributions ofrequest frequency and size for the Rice University traceand the IBM trace, respectively. Shown on the x-axisis the set of target �les in the trace, sorted in decreas-ing order of request frequency. The y-axis shows thecumulative fraction of requests and target sizes, nor-malized to the total number of requests and total dataset size, respectively. The data set for the Rice Univer-sity trace consist of 37703 targets covering 1418 MB ofspace, whereas the IBM trace consists of 38527 targetsand 1029 MB of space. While the data sets in bothtraces are of a comparable size, it is evident from thegraphs that the Rice trace has much less locality thanthe IBM trace. In the Rice trace, 560/705/927 MB ofmemory is needed to cover 97/98/99% of all requests,respectively, while only 51/80/182 MB are needed tocover the same fractions of requests in the IBM trace.This di�erence is likely to be caused in part by thedi�erent time spans that each trace covers. Also, theIBM trace is from a single high-tra�c server, where thecontent designers have likely spent e�ort to minimizethe sizes of high frequency documents in the interest ofperformance. The Rice trace, on the other hand, wasmerged from the logs of several departmental servers.As with all caching studies, interesting e�ects canonly be observed if the size of the working set exceedsthat of the cache. Since even our larger trace has a rel-atively small data set (and thus a small working set),and also to anticipate future trends in working set sizes,we chose to set the default node cache size in our simu-lations to 32 MB. Since in reality, the cache has to sharemain memory with OS kernel and server applications,this typically requires at least 64 MB of memory in anactual server node.3.3 Simulation OutputsThe simulator calculates overall throughput, hit rate,and underutilization time. Throughput is the number5
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Files by request frequency (normalized)Figure 6: IBM Traceof requests in the trace that were served per second bythe entire cluster, calculated as the number of requestsin the trace divided by the simulated time it took to�nish serving all the requests in the trace. The requestarrival rate was matched to the aggregate throughputof the server.The cache hit ratio is the number of requests thathit in a back-end node's main memory cache dividedby the number of requests in the trace. The idle timewas measured as the fraction of simulated time duringwhich a back-end node was underutilized, averaged overall back-end nodes.Node underutilization is de�ned as the time that anode's load is less than 40% of Tlow . This value wasdetermined by inspection of the simulator's disk andCPU activity statistics as a point below which a node'sdisk and CPU both had some idle time in virtually allcases. The overall throughput is the best summary met-ric, since it is a�ected by all factors. The cache hitrate gives an indication of how well locality is beingmaintained, and the node underutilization times indi-cate how well load balancing is maintained.4 Simulation ResultsWe simulate the four di�erent request distribution strate-gies presented in Section 2.1. weighted round-robin [WRR],2. locality-based [LB],3. basic LARD [LARD], and4. LARD with replication [LARD/R].In addition, observing the large amount of interest gen-erated by global memory systems (GMS) and coopera-tive caching to improve hit rates in cluster main mem-ory caches [8, 11, 17], we simulate a weighted round-robin strategy in the presence of a global memory sys-tem on the back-end nodes. We refer to this system asWRR/GMS. The GMS in WRR/GMS is loosely basedon the GMS described in Feeley et al. [11].We also simulate an idealized locality-based strategy,termed LB/GC, where the front-end keeps track of eachback-end's cache state to achieve the e�ect of a globalcache. On a cache hit, the front-end sends the requeststo the back-end that caches the target. On a miss, thefront-end sends the request to the back-end that cachesthe globally \oldest" target, thus causing eviction ofthat target.
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of LARD slightly for seven or more nodes, while achiev-ing lower cache miss ratio and lower idle time. WhileWRR/GMS achieves a substantial performance advan-tage over WRR, its throughput remains below 50% ofLARD and LARD/R's throughput for all cluster sizes.4.2 Other Workloads
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# nodes in clusterFigure 10: Throughput on IBM TraceFigure 10 shows the throughput results obtained forthe various strategies on the IBM trace (www.ibm.com).In this trace, the average �le size is smaller than in theRice trace, resulting in much larger throughput num-bers for all strategies. The higher locality of the IBMtrace demands a smaller e�ective cache size to cache theworking set. Thus, LARD and LARD/R achieve super-linear speedup only up to 4 nodes in this trace, resultingin a throughput that is slighly more than twice that ofWRR for 4 nodes and above.WRR/GMS achieves much better relative perfor-mance on this trace than on the Rice trace and comeswithin 15% of LARD/R's throughput at 16 nodes. How-ever, this result has to be seen in light of the very gen-erous assumptions made in the simulations about theperformance of the WRR/GMS system. It was assumedthat maintaining the global cache directory and imple-menting global cache replacement has no cost.The performance of LARD/R only slightly exceedsthat of LARD on the Rice trace and matches that ofLARD on the IBM trace. The reason is that neithertrace contains high-frequency targets that can bene�tfrom replication. The highest frequency �les in the Riceand IBM traces account for only 2% and 5%, respec-tively, of all requests in the traces. However, it is clearthat real workloads exist that contain targets with muchhigher request frequency (e.g. www.netscape.com). Toevaluate LARD and LARD/R on such workloads, wemodi�ed the Rice trace to include a small number ofarti�cal high-frequency targets and varied their requestrate between 5 and 75% of the total number of re-quests in the trace. With this workload, the throughputachieved with LARD/R exceeds that of LARD by 0-15%. The most signi�cant increase occurs when the sizeof the \hot" targets is larger than 20 KBytes and thecombined access frequency of all hot targets accountsfor 10-60% of the total number of requests.We also ran simulations on a trace from the IBM webserver hosting the Deep Blue/Kasparov Chess match in7
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LARD/R
LARDFigure 12: LARD vs CPUMay 1997. This trace is characterized by large numbersof requests to a small set of targets. The working setof this trace is very small and achieves a low miss ratiowith a main memory cache of a single node (32 MB).This trace presents a best-case scenario for WRR anda worst-case scenario for LARD, as there is nothing tobe gained from an aggregation of cache size, but thereis the potential to lose performance due to imperfectload balancing. Our results show that both LARD andLARD/R closely match the performance of WRR onthis trace. This is reassuring, as it demonstrates thatour strategy can match the performance of WRR evenunder conditions that are favorable to WRR.4.3 Sensitivity to CPU and Disk SpeedIn our next set of simulations, we explore the impact ofCPU speed on the relative performance of LARD versusthe state-of-the-art WRR. We performed simulations onthe Rice trace with the default CPU speed setting ex-plained in Section 3, and with twice, three and fourtimes the default speed setting. The [1x] speed settingrepresents a state-of-the-art inexpensive high-end PC(300 MHz Pentium II), and the higher speed settingsproject the speed of high-end PCs likely to be availablein the the next few years. As the CPU speed increaseswhile disk speed remains constant, higher cache hit ratesare necessary to remain CPU bound at a given clustersize, requiring larger per-node caches. We made thisadjustment by setting the node memory size to 1.5, 2,and 3 times the base amount (32 MB) for the [2x], [3x]and [4x] CPU speed settings, respectively.As CPU speeds are expected to improve at a muchfaster rate than disk speeds, one would expect that theimportance of caching and locality increases. Indeed,our simulations con�rm this. Figures 11 and 12, re-spectively, show the throughput results for WRR andLARD/R on the combined Rice University trace withdi�erent CPU speed assumptions. It is clear that WRRcannot bene�t from added CPU at all, since it is disk-bound on this trace. LARD and LARD/R, on the otherhand, can capitalize on the added CPU power, becausetheir cache aggregation makes the system increasinglyCPU bound as nodes are added to the system. In ad-dition, the results indicate the throughput advantage ofLARD/R over LARD increases with CPU speed, evenon a workload that presents little opportunity for repli-cation.

In our �nal set of simulations, we explore the impactof using multiple disks in each back-end node on the rel-ative performance of LARD/R versus WRR. Figures 13and 14, respectively, show the throughput results forWRR and LARD/R on the combined Rice Universitytrace with di�erent numbers of disks per back-end node.With LARD/R, a second disk per node yields a mildthroughput gain, but additional disks do not achieveany further bene�t. This can be expected, as the in-creased cache e�ectiveness of LARD/R causes a reduceddependence on disk speed.WRR, on the other hand, greatly bene�ts from mul-tiple disks as its throughput is mainly bound by theperformance of the disk subsystem. In fact, with fourdisks per node and 16 nodes, WRR comes within 15% ofLARD/R's throughput. However, the are several thingsto note about this result. First, the assumptions madein the simulations about the performance of multipledisks are generous. It is assumed that both seek anddisk transfer operations can be fully overlapped amongall disks. In practice, this would require that each diskis attached through a separate SCSI bus/controller.Second, it is assumed that the database is stripedacross the multiple disks in a manner that achieves goodload balancing among the disks with respect to the work-load (trace). In our simulations, the �les were dis-tributed across the disks in round-robin fashion basedon decreasing order of request frequency in the trace2.Finally, WRR has the same scalability problems withrespect to disks as it has with memory. To upgrade acluster with WRR, it is not su�cient to add nodes aswith LARD/R. Additional disks (and memory) have tobe added to all nodes to achieve higher performance.4.4 DelayWhile most of our simulations focus on the server'sthroughput limits, we also monitored request delay inour simulations for both the Rice University trace aswell as the IBM trace. On the Rice University trace,the average request delay for LARD/R is less than 25%that of WRR. With the IBM trace, LARD/R's averagedelay is one half that of WRR.2Note that replicating the entire database on each disk as anapproach to achieving disk load balancing would require specialOS support to avoid double bu�ering and caching of replicated�les and to assign requests to disks dynamically based on load.8
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# nodes in clusterFigure 14: LARD/R vs disks5 TCP Connection Hando�In this section, we briey discuss our TCP hando� pro-tocol and present some performance results with a pro-totype implementation. A full description of the proto-col is beyond the scope of this paper. The TCP hando�protocol is used to hand o� established client TCP [23]connections between the front-end and the back-end ofa cluster server that employs content-based request dis-tribution.A hando� protocol is necessary to enable content-based request distribution in a client-transparent man-ner. This is true for any service (like HTTP) thatrelies on a connection-oriented transport protocol likeTCP. The front-end must establish a connection withthe client to inspect the target content of a request priorto assigning the connection to a back-end node. Theestablished connection must then be handed to the cho-sen back-end node. State-of-the-art commercial clus-ter front-ends (e.g., [7, 14]) assign requests without re-gard to the requested content and can therefore forwardclient requests to a back-end node prior to establishinga connection with the client.Our hando� protocol is transparent to clients andalso to the server applications running on the back-endnodes. That is, no changes are needed on the client side,and server applications can run unmodi�ed on the back-end nodes. Figure 15 depicts the protocol stacks onthe clients, front-end, and back-ends, respectively. Thehando� protocol is layered on top of TCP and runs onthe front-end and back-end nodes. Once a connectionis handed o� to a back-end node, incoming tra�c onthat connection (principally acknowledgment packets)is forwarded by an e�cient forwarding module at thebottom of the front-end's protocol stack.The TCP implementation running on the front-endand back-ends needs a small amount of additional sup-port for hando�. In particular, the protocol moduleneeds to support an operation that allows the TCPhando� protocol to create a TCP connection at theback-end without going through the TCP three-wayhandshake. Likewise, an operation is required that re-trieves the state of an established connection and de-stroys the connection state without going through thenormal message handshake required to close a TCP con-nection.Figure 15 depicts a typical scenario: (1) a client con-nects to the front-end, (2) the dispatcher at the front-
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(4) (5)Figure 15: TCP connection hando�end accepts the connection and hands it o� to a back-end using the hando� protocol, (3) the back-end takesover the established connection received by the hand-o� protocols, (4) the server at the back-end accepts thecreated connection, and (5) the server at the back-endsends replies directly to the client. The dispatcher is asoftware module that implements the distribution pol-icy, e.g. LARD.Once a connection is handed o� to a back-end node,the front-end must forward packets from the client tothe appropriate back-end node. A single back-end nodethat fully utilizes a 100 Mb/s network sending data toclients will receive at least 4128 acknowledgments persecond (assuming an IP packet size of 1500 and delayedTCP ACKs). Therefore, it is crucial that this packetforwarding is fast.The forwarding module is designed to allow very fastforwarding of acknowledgment packets. The module op-erates directly above the network interface and executesin the context of the network interface interrupt han-dler. A simple hash table lookup is required to deter-mine whether a packet should be forwarded. If so, thepacket's header is updated and it is directly transmit-ted on the appropriate interface. Otherwise, the packettraverses the normal protocol stack.Results of performance measurements with an im-plementation of the hando� protocol are presented inSection 6.2.The design of our TCP hando� protocol includesprovisions for HTTP 1.1 persistent connections, whichallow a client to issue multiple requests. The protocolallows the front-end to either let one back-end serve allof the requests on a persistent connection, or to hand o�a connection multiple times, so that di�erent requests9



on the same connection can be served by di�erent back-ends. However, further research is needed to determinethe appropriate policy for handling persistent connec-tions in a cluster with LARD. We have not yet experi-mented with HTTP 1.1 connections as part of this work.6 Prototype Cluster PerformanceIn this section, we present performance results obtainedwith a prototype cluster that uses locality-aware requestdistribution. We describe the experimental setup usedin the experiments, and then present the results.6.1 Experimental EnvironmentOur testbed consists of 7 client machines connected toa cluster server. The con�guration is shown in Fig-ure 16. Tra�c from the clients ows to the front-end(1) and is forwarded to the back-ends (2). Data pack-ets transmitted from the back-ends to the clients bypassthe front-end (3).The front-end of the server cluster is a 300MHz In-tel Pentium II based PC with 128MB of memory. Thecluster back-end consists of six PCs of the same typeand con�guration as the front-end. All machines runFreeBSD 2.2.5. A loadable kernel module was added tothe OS of the front-end and back-end nodes that im-plements the TCP hando� protocol, and, in the caseof the front-end, the forwarding module. The clientsare 166MHz Intel Pentium Pro PCs, each with 64MB ofmemory.The clients and back-end nodes in the cluster areconnected using switched Fast Ethernet (100Mbps). Thefront-end is equipped with two network interfaces, onefor communication with the clients, one for commu-nication with the back-ends. Clients, front-end, andback-end are connected through a single 24-port switch.All network interfaces are Intel EtherExpress Pro/100Brunning in full-duplex mode.The Apache-1.2.4 [2] server was used on the back-endnodes. Our client software is an event-driven programthat simulates multiple HTTP clients. Each simulatedHTTP client makes HTTP requests as fast as the servercluster can handle them.
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6.2 Front-end Performance ResultsMeasurements were performed to evaluate the perfor-mance and overhead of the TCP hando� protocol andpacket forwarding in the front-end. Hando� latency isthe added latency a client experiences as a result ofTCP hando�. Hando� throughput is the maximal rateat which the front-end can accept, hando�, and closeconnections. Forwarding throughput refers to the max-imal aggregate rate of data transfers from all back-endnodes to clients. Since this data bypasses the front-end,this �gure is limited only by the front-end's ability toforward acknowledgments from the clients to the back-ends.The measured hando� latency is 194 �secs and themaximal hando� throughput is approximately 5000 con-nections per second. Note that the added hando� la-tency is insigni�cant, given the connection establish-ment delay over a wide-area network. The measuredACK forwarding overhead is 9 �secs, resulting in atheoretical maximal forwarding throughput of over 2.5Gbits/s. We have not been able to measure such highthroughput directly due to lack of network resources,but the measured remaining CPU idle time in the front-end at lower throughput is consistent with this �gure.Further measurements indicate that with the Rice Uni-versity trace as the workload, the hando� throughputand forwarding throughput are su�cient to support 10back-end nodes of the same CPU speed as the front-end.Moreover, the front-end can be relatively easily scaledto larger clusters either by upgrading to a faster CPU,or by employing an SMP machine. Connection estab-lishment, hando�, and forwarding are independent fordi�erent connections, and can be easily parallelized [24].The dispatcher, on the other hand, requires shared stateand thus synchronization among the CPUs. However,with a simple policy such as LARD/R, the time spentin the dispatcher amounts to only a small fraction of thehando� overhead (10-20%). Therefore, we fully expectthat the front-end performance can be scaled to largerclusters e�ectively using an inexpensive SMP platformequipped with multiple network interfaces.6.3 Cluster Performance ResultsA segment of the Rice University trace was used to drivethe prototype cluster. A single back-end node runningApache can deliver about 167 req/sec on this trace. Oncached, small �les (less than 8 KB), an Apache back-endcan complete about 800 req/sec.The Apache Web server relies on the �le cachingservices of the underlying operating system. FreeBSDuses a uni�ed bu�er cache, where cached �les are com-peting with user processes for physical memory pages.All page replacement is controlled by FreeBSD's page-out daemon, which implements a variant of the clockalgorithm [20]. The cache size is variable and dependson main memory pressure from user applications. Inour 128 MB back-ends, memory demands from kerneland Apache server processes leave about 100 MB of freememory. In practice, we observed �le cache sizes be-tween 70 and 97 MB.We measure the total HTTP throughput of theserver cluster with increasing numbers of back-endnodes and with the front-end implementing either WRR10
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# nodes in clusterFigure 17: HTTP Throughput (Apache)or LARD/R. The results are shown in Figure 17 andcon�rm the predictions of the simulator. The through-put achieved with LARD/R exceeds that of WRR bya factor of 2.5 for six nodes. Running LARD/R on acluster with six nodes at maximal throughput and anaggregate server bandwidth of over 280 Mb/s, the front-end CPU was 60% utilized. This is consistent with ourearlier projection that a single CPU front-end can sup-port 10 back-ends of equal CPU speed.7 Related WorkMuch current research addresses the scalability prob-lems posed by the Web. The work includes cooperativecaching proxies inside the network, push-based docu-ment distribution, and other innovative techniques [3,6, 10, 16, 19, 22]. Our proposal addresses the com-plementary issue of providing support for cost-e�ective,scalable network servers.Network servers based on clusters of workstationsare starting to be widely used [12]. Several productsare available or have been announced for use as front-end nodes in such cluster servers [7, 14]. To the best ofour knowledge, the request distribution strategies usedin the cluster front-ends are all variations of weightedround-robin, and do not take into account a request'starget content. An exception is the Dispatch productby Resonate, Inc., which supports content-based requestdistribution [21]. The product does not appear to useany dynamic distribution policies based on content andno attempt is made to achieve cache aggregation viacontent-based request distribution.Hunt et al. proposed a TCP option designed toenable content-based load distribution in a clusterserver [13]. The design has not been implemented andthe performance potential of content-based distributionhas not been evaluated as part of that work. Also, nopolicies for content-based load distribution were pro-posed. Our TCP hando� protocol design was informedby Hunt et al.'s design, but chooses the di�erent ap-proach of layering a separate hando� protocol on top ofTCP.Fox et al. [12] report on the cluster server technologyused in the Inktomi search engine. The work focuses onthe reliability and scalability aspects of the system andis complementary to our work. The request distributionpolicy used in their systems is based on weighted round-

robin.Loosely-coupled distributed servers are widely de-ployed on the Internet. Such servers use various tech-niques for load balancing including DNS round-robin [4],HTTP client re-direction [1], Smart clients [25], source-based forwarding [9] and hardware translation of net-work addresses [7]. Some of these schemes have prob-lems related to the quality of the load balance achievedand the increased request latency. A detailed discussionof these issues can be found in Goldszmidt and Hunt [14]and Damani et al. [9]. None of these schemes supportcontent-based request distribution.IBM's Lava project [18] uses the concept of a \hitserver". The hit server is a specially con�gured servernode responsible for serving cached content. Its spe-cialized OS and client-server protocols give it superiorperformance for handling HTTP requests of cached doc-uments, but limits it to private Intranets. Requestsfor uncached documents and dynamic content are dele-gated to a separate, conventional HTTP server node.Our work shares some of the same goals, but main-tains standard client-server protocols, maintains sup-port for dynamic content generation, and focuses oncluster servers.8 ConclusionWe present and evaluate a practical and e�cientlocality-aware request distribution (LARD) strategythat achieves high cache hit rates and good load balanc-ing in a cluster server. Trace-driven simulations showthat the performance of our strategy exceeds that ofthe state-of-the-art weighted round-robin (WRR) strat-egy substantially. On workloads with a working set thatdoes not �t in a single server node's main memory cache,the achieved throughput exceeds that of WRR by a fac-tor of two to four.Additional simulations show that the performanceadvantages of LARD over WRR increase with the dis-parity between CPU and disk speeds. Also, our resultsindicate that the performance of a hypothetical clusterwith WRR distribution and a global memory system(GMS) falls short of LARD under all workloads con-sidered, despite generous assumptions about the perfor-mance of a GMS system.We also propose and evaluate an e�cient TCP hand-o� protocol that enables LARD and other content-based request distribution strategies by providing client-transparent connection hando� for TCP-based networkservices, like HTTP. Performance results indicate thatin our prototype cluster environment and on our work-loads, a single CPU front-end can support 10 back-endnodes with equal CPU speed as the front-end. More-over, the design of the hando� protocols is expectedto yield scalable performance on SMP-based front-ends,thus supporting larger clusters.Finally, we present performance results from a pro-totype LARD server cluster that incorporates the TCPhando� protocol and the LARD strategy. The measuredresults con�rm the simulation results with respect to therelative performance of LARD and WRR.In this paper, we have focused on studying HTTPservers that serve static content. However, caching canalso be e�ective for dynamically generated content [15].11



Moreover, resources required for dynamic content gen-eration like server processes, executables, and primarydata �les are also cacheable. While further research isrequired, we expect that increased locality can bene�tdynamic content serving, and that therefore the advan-tages of LARD also apply to dynamic content.9 AcknowledgmentsThanks to Ed Costello, Cameron Ferstat, Alister Lewis-Bowen and Chet Murthy, for their help in obtaining theIBM server logs.References[1] D. Andresen et al. SWEB: Towards a ScalableWWW Server on MultiComputers. In Proccedingsof the 10th International Parallel Processing Sym-posium, Apr. 1996.[2] Apache. http://www.apache.org/.[3] G. Banga, F. Douglis, and M. Rabinovich. Opti-mistic Deltas for WWW Latency Reduction. InProceedings of the 1997 Usenix Technical Confer-ence, Jan. 1997.[4] T. Brisco. DNS Support for Load Balancing. RFC1794, Apr. 1995.[5] P. Cao and S. Irani. Cost-aware WWW proxycaching algorithms. In Proceedings of the USENIXSymposium on Internet Technologies and Systems(USITS), Monterey, CA, Dec. 1997.[6] A. Chankhunthod, P. B. Danzig, C. Neerdaels,M. F. Schwartz, and K. J. Worrell. A Hierarchi-cal Internet Object Cache. In Proceedings of the1996 Usenix Technical Conference, Jan. 1996.[7] Cisco Systems Inc. LocalDirector.http://www.cisco.com.[8] M. Dahlin, R. Yang, T. Anderson, and D. Pat-terson. Cooperative caching: Using remote clientmemory to improve �le system performance. InProc. Symp. on Operating Systems Design and Im-plementation, Monterey, CA, Nov. 1994.[9] O. P. Damani, P.-Y. E. Chung, Y. Huang, C. Kin-tala, and Y.-M. Wang. ONE-IP: Techniques forhosting a service on a cluster of machines. Com-puter Networks and ISDN Systems, 29:1019{1027,1997.[10] P. Danzig, R. Hall, and M. Schwartz. A case forcaching �le objects inside internetworks. In Pro-ceedings of the SIGCOMM '93 Conference, Sept.1993.[11] M. J. Feeley, W. E. Morgan, F. H. Pighin, A. R.Karlin, H. M. Levy, and C. A. Thekkath. Imple-menting global memory management in a worksta-tion cluster. In Proceedings of the Fifteenth ACMSymposium on Operating System Principles, Cop-per Mountain, CO, Dec. 1995.

[12] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer,and P. Gauthier. Cluster-based scalable networkservices. In Proceedings of the Sixteenth ACM Sym-posium on Operating System Principles, San Malo,France, Oct. 1997.[13] G. Hunt, E. Nahum, and J. Tracey. Enablingcontent-based load distribution for scalable ser-vices. Technical report, IBM T.J. Watson ResearchCenter, May 1997.[14] IBM Corporation. IBM interactive networkdispatcher.http://www.ics.raleigh.ibm.com/ics/isslearn.htm.[15] A. Iyengar and J. Challenger. Improving web serverperformance by caching dynamic data. In Proceed-ings of the USENIX Symposium on Internet Tech-nologies and Systems (USITS), Monterey, CA, Dec.1997.[16] T. M. Kroeger, D. D. Long, and J. C. Mogul.Exploring the bounds of Web latency reductionfrom caching and prefetching. In Proceedings ofthe USENIX Symposium on Internet Technologiesand Systems (USITS), Monterey, CA, Dec. 1997.[17] H. Levy, G. Voelker, A. Karlin, E. Anderson, andT. Kimbrel. Implementing Cooperative Prefetch-ing and Caching in a Globally-Managed MemorySystem. In Proceedings of the ACM SIGMETRICS'98 Conference, Madison, WI, June 1998.[18] J. Liedtke, V. Panteleenko, T. Jaeger, and N. Islam.High-performance caching with the Lava hit-server.In Proceedings of the USENIX 1998 Annual Tech-nical Conference, New Orleans, LA, June 1998.[19] G. R. Malan, F. Jahanian, and S. Subramanian.Salamander: A push-based distribution substratefor Internet applications. In Proceedings of theUSENIX Symposium on Internet Technologies andSystems (USITS), Monterey, CA, Dec. 1997.[20] M. K. McKusick, K. Bostic, M. J. Karels, andJ. S. Quarterman. The Design and Implementationof the 4.4BSD Operating System. Addison-WesleyPublishing Company, 1996.[21] Resonate Inc. Resonate dispatch.http://www.resonateinc.com.[22] M. Seltzer and J. Gwertzman. The Case for Geo-graphical Pushcaching. In Proceedings of the 1995Workshop on Hot Topics in Operating Systems,1995.[23] G. Wright and W. Stevens. TCP/IP IllustratedVolume 2. Addison-Wesley, Reading, MA, 1995.[24] D. J. Yates, E. M. Nahum, J. F. Kurose, andD. Towsley. Networking support for large scale mul-tiprocessor servers. In Proceedings of the ACM Sig-metrics Conference on Measurement and Modelingof Computer Systems, Philadelphia, Pennsylvania,May 1996.[25] B. Yoshikawa et al. Using Smart Clients to BuildScalable Services. In Proceedings of the 1997 UsenixTechnical Conference, Jan. 1997.12


