
Basic Paxos

Content borrowed from Ousterhout’s slides on Paxos

Basic Paxos: General Setup

Failure model: fail-stop / fail-recover
Crash and restart, messages reordered, dropped,
and duplicated, network partitions
Can’t TCP solve some issues?
What can’t Paxos tolerate?

Safety:
Only one single value must be chosen
A server learns that a value has been chosen only
if it really has been

Availability (as long as majority of servers up
and communicate w/ each other):

Some value is eventually chosen
Servers eventually learn about a chosen value

1

Basic Paxos: General Setup

Proposers:
Active: propose values to be chosen

Acceptors:
Passive: respond to proposals

To whom do the clients talk?
Proposers – they propose values on behalf of the
clients

2

Problems?
Acceptor fails
Can’t choose or learn

Naïve Approach

Single acceptor?

3

Proposers

Acceptor

add mul sub div

add
Solve by having multiple acceptors
Usually a small odd number (3, 5, or 7)
Chosen = accepted at a majority
Choose/learn as long as a majority is up

time

s1

s2

s3

s4

s5

Accept only first received proposal
If simultaneous proposals, no value might be chosen

Acceptors must sometimes accept multiple (different)
values

Accept only first proposal?

accepted(blue)

accepted(blue)

accepted(green)

accepted(red)

accepted(red)

accept?(green)

accept?(blue)

accept?(red)

Multiple accepts safe?

5

Violates fundamental safety!
Once a value has been chosen, future proposals must
propose/choose that same value
Need two phases:

first, find any (potentially) chosen
then, ask for acceptance

time

s1

s2

s3

s4

s5
accepted(blue)

accepted(blue)

accepted(blue)

Blue Chosen
accept?(blue)

accept?(red) accepted(red)

accepted(red)

accepted(red)

Red Chosen

Rejecting old proposals

6

Violates fundamental safety!
s5 need not propose red (it doesn’t discover red)
s1’s proposal must be aborted (s3 must reject it)
Must order proposals, reject old ones

time

s1

s2

s3

s4

s5

accept?(red)

accept?(blue)

accepted(red)

accepted(red)

accepted(blue)

accepted(red)

accepted(blue)

accepted(blue)

Blue Chosen

Red Chosen

Ch
ec

k
–

fr
ee

 to
 g

o!

Ch
ec

k
–

fr
ee

 to
 g

o!

Proposal numbers

A server should always use a new/unique
proposal number
Larger proposal number denotes later
proposal
To break ties, use server id – general form:
round.serverId
Proposal numbers must be maintained on disk
to survive crashes

7

Basic Paxos phases

Phase 1: Prepare
Find out about any (potentially) chosen values
Block older proposals that have not yet completed

Phase 2: Accept
Ask acceptors to accept a specific value

8

Basic Paxos - Summary

3) Respond to Prepare(n):
- If n > minProposal then minProposal = n
- Return(acceptedProposal, acceptedValue)

acceptors: minProposal, acceptedProposal, and acceptedValue on disk
proposers: latest proposal number on disk

1) Choose new proposal number n

2) Broadcast Prepare(n) to all servers

4) When responses received from
majority:

- If any acceptedValues returned, replace value
with acceptedValue
for highest acceptedProposal

6) Respond to Accept(n, value):
If n ≥ minProposal then

acceptedProposal = minProposal = n
acceptedValue = value

Return(minProposal)

Acceptors

5) Broadcast Accept(n, value) to all
servers

6) When responses received from
majority:

Any rejections (result > n)? goto (1)
Otherwise, value is chosen

P
re

p
ar

e
A

cc
ep

t

Proposers

!! It is often tempting to come up with flawed optimizations !!

Example case 1

10

Three possibilities when later proposal prepares
Previous value already chosen:

New proposer will find it and use it

time

s1

s2

s3

s4

s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

“Accept proposal 4.5
with value X (from s5)”

X

Y

values

Prepare proposal 3.1 (from s1)

Example case 2

11

Previous value not chosen but later proposal sees
it:

New proposer will use existing value
Both proposers can succeed

time

s1

s2

s3

s4

s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 X

A 4.5 X

A 4.5 X

X

Y

values

Example case 3

12

Previous value not chosen and later proposal
doesn’t see it:

New proposer chooses its own value
Older proposal blocked

time

s1

s2

s3

s4

s5

P 4.5

A 3.1 XP 3.1

P 3.1

P 3.1

A 3.1 X

A 3.1 X

P 4.5

P 4.5

A 4.5 Y

A 4.5 Y

A 4.5 Y

X

Y

values

Liveness

13

Does basic Paxos guarantee liveness always?

time

s1

s2

s3

s4

s5

A 3.1 XP 3.1

P 3.5

A 3.5 Y

P 3.1

P 3.1

P 3.5

P 3.5

A 3.1 X

A 3.1 X

P 4.1

P 4.1

P 4.1

A 3.5 Y

A 3.5 Y

P 5.5

P 5.5

P 5.5 A 4.1 X

A 4.1 X

A 4.1 X

Solutions?
Proposers back-off with randomized delays
Only one proposer at a time (leader)

Q0

14

Proposal 5.1 with value X has
been accepted on 3 servers (in a
5-node cluster)

After this, is it possible that any
server could accept a different
value Y?

Q1

15

Proposal number: n

Proposal value: a

Proposal number: n

Proposal value: b

T
im

e

Could have crashed
any (unknown) point
in protocol: during
prepare, during accept,
or even after a
successful accept

Re-execute from
beginning with the
same proposal
number but
different value, b

Is this safe?

Q2

16

Respond to Accept(n, value):
If n ≥ minProposal then

acceptedProposal = n
minProposal = n
acceptedValue = value

Return(minProposal)

Respond to Prepare(n):
If n > minProposal then

minProposal = n
Return(acceptedProposal,
acceptedValue)

Respond to Accept(n, value):
If n ≥ minProposal then

acceptedProposal = n
acceptedValue = value

Return(minProposal)

Is this safe?

Respond to Prepare(n):
If n > minProposal then

minProposal = n
Return(acceptedProposal,
acceptedValue)

