
Replicated Data Management in Distributed Systems�Mustaque AhamadyMostafa H. AmmaryShun Yan CheungzyCollege of Computing,Georgia Institute of Technology,Atlanta, GA 30332zDepartment of Mathematics and Computer Science,Emory University,Atlanta, GA 30322AbstractReplication of data in a distributed system is a way to enhance the performanceof applications that access the data. A system where data is replicated can providebetter fault tolerance capabilities as well as improved response time. However, suchimprovement is achieved at the expense of having to manage replication by implementingreplica control protocols. Such protocols are required to insure that data consistency ismaintained in the face of system failures. In this article we describe the issues involvedin maintaining the consistency of a replicated database system. We next describe threebasic techniques for managing replicated data and discuss the relative merits of eachtechnique. This is followed by a survey of extensions to the basic approaches. Adiscussion of future directions in research on data replication concludes our presentation.�This work was supported in part by NSF grants NCR-8604850 and CCR-8806358, and by the UniversityResearch Committee of Emory University.

1 IntroductionDistributed computing systems have become common place in all types of organizations.Computers (or nodes) in such systems collectively have large amounts of computational andstorage resources. These resources can be exploited to build highly available systems. Forexample, by replicating a �le at nodes that have independent failure modes, a user can beallowed to access the data in the �le even when some of the nodes that store copies of the�le have failed. Although increased availability is a major bene�t of data replication, it alsoprovides the opportunity to share the load generated by user requests between the nodesthat have copies. An access to a �le requires reading of data from disk, processing andpossibly writing the data back to the disk (when it is modi�ed). If data is not replicated,all user requests that access a �le must wait at a single node for the data to be read orwritten. When the data is replicated, load generated by the requests can be shared bynodes having the copies and hence the response time for the requests can be improved.Data replication increases the probability that there is an operational (i.e., not failed)node that has a copy of the data when a request is made but it may not be su�cient tojust locate one such node and read or write the copy stored at that node. Such a copy maybe outdated because the node storing it may have failed when the data was last updated.Thus, it is necessary to use algorithms that implement rules for accessing the copies so thatcorrectness is ensured (See section 2). These rules may disallow access to data even whenits copies exist at operational nodes when it is not possible to determine if the copies at theoperational nodes are up-to-date.The algorithms that control access to replicated data are called replica control protocols.A replica refers to a single copy of the data in a system that employs replication. A largenumber of replica control protocols have been developed. In this paper, we present manyof these protocols, explain their workings, and relate them by showing that most of thereplica control protocols belong to a small number of protocol families. We also discussboth the performance enhancements made possible by the replica control protocols as wellas the costs that are incurred when they are used. The two main performance measures weare concerned with are data availability and response time. Data availability is de�ned asthe probability that there are enough functioning (or available) resources in the distributedsystem (nodes storing data and communication network) so that an arriving request can1

be satis�ed. The response time is de�ned as the time required for an access request tocomplete. Thus, response time not only depends on the failure characteristics of the systembut also on the load and the I/O, processing and communication capacities in the system.In section 2, we precisely de�ne the correctness requirements that must be met whendata is replicated. Section 3 introduces the concept of replica control. We have categorizedthe protocols into three basic types and their operation is described in detail in Sections4, 5 and 6. Section 7 presents a number of methods that are improvements of the basicprotocols described in earlier sections. We conclude the paper with a description of possiblefuture directions in Section 8.2 Correctness CriteriaIn a replicated data system, although there exist multiple copies of a data item that canbe accessed by users, it is desirable to maintain the view that there is logically a singlecopy of the data item. A replica control protocol is a synchronization layer imposed by adistributed system to hide the fact that data is replicated and to present to the users theillusion that there is only a single copy of the data. It provides for a set of rules to regulatereading and writing of the replicas, and to determine the actual value of the data. Thisallows replication of data to be transparent to users. Thus, users are not burdened withthe task of implementing procedures that control access to the replicas and can exploit thebene�ts of high availability and improved response time without being aware of the factthat the data is replicated. Since there are correctness requirements that must be satis�edby a set of data items even when there is a single copy of each item, the same correctnessrequirements must also be met when the data is replicated. Thus, correctness requirementsfor a replicated data system are de�ned using correctness requirements of data when it isnot replicated.Much of the work in replicated data systems has been done in the context of distributeddatabases. Access requests to data in a database are modeled as transactions. A transactionconsists of a number of related operations which read and possibly update the state of thedatabase. When a single transaction is executed by the system at a time, its executiontransforms the database from one consistent state into another consistent state. Thus,2

serial execution of a set of transactions (i.e. one at a time) by a database that is initiallyin a consistent state preserves the correctness of the database and leaves it in a consistentstate.Transactions can be executed concurrently to improve performance and system utiliza-tion. When transactions do not access common data items, they do not interfere with eachother and the e�ect of executing them concurrently is equivalent to a serial execution inan arbitrary order. However, when transactions read and write common data items, theymust synchronize access to the shared items. Otherwise, the database state may becomeinconsistent and the execution of the transactions may be incorrect.Consider for example the transactions T1 and T2 where T1 and T2 deposit $10 and $20,respectively, to an account with an initial balance of $x. The transactions �rst read thevalue of x, increase it by the proper amount and write the result back to x. Suppose initiallyx = $100, then the execution orders T1T2 and T2T1 will result in x = $130. Both executionorderings produce the same �nal result. However, in an uncontrolled concurrent executionof T1 and T2, the read and write operations can be interleaved in the following manner:T1 : R(x = $100), T2 : R(x = $100), T1 : W (x = $110) and T2 : W (x = $120). The �nalvalue of x is $120 which does not conform with the e�ect produced by any serial executionof T1 and T2. Data inconsistency may result from concurrent executions of transactionsthat use common data items.An accepted notion of correctness for concurrently executing transactions is serializabil-ity. An interleaved execution of transactions T1, T2, : : : , Tn is serializable if the e�ect ofthe execution is the same as some serial execution of the transactions. Thus, the executionof the transactions T1 and T2 given above is not serializable because the e�ect of the execu-tion is not the same as any possible serial execution of T1 and T2. Synchronization schemessuch as two-phase locking, timestamp ordering and optimistic concurrency control [BHG87],ensure that the e�ect of concurrent execution of transactions is equivalent to some serialorder, i.e., the execution is serializable. Serializability can be ensured by a synchronizationprotocol if it guarantees that if a data item is modi�ed by the operations of a transactionT , it should not be read or written by operations of other transactions until T completes.Since the goal of a replicated database system is to improve data availability and en-hance response time for transactions, such a system must also allow concurrent execution3

of transactions but the consistency of the data should not be compromised. In other words,the system must ensure single-copy serializability which means that transactions execute asif there is a single copy of the database and the transactions appear to execute in some serialorder. The replica control protocols that we discuss in the following sections all satisfy thiscorrectness requirement for replicated data.3 Replica Control ProtocolsIn order to understand the subtleties involved in designing a replica control protocol, con-sider the following naive protocol for accessing the replicated data item x in the systemshown in Figure 1: \Read from and write to the local replica"Transactions TC and TD executing concurrently at nodes C and D, respectively, each wishto read x, add one to the value read and write the result back. If the above protocol is used,
x

x

x

Replicated data

x

x

Network

Communication

E
D

C

B

A Figure 1: A distributed system with two replicas of x.the �nal value of x is only one larger than the original value at nodes C and D and it isnot changed at other nodes. The result would be the same even if TC and TD are executedserially (e.g., at di�erent times). The problem with this protocol is that it does not makethe replicas behave as a single copy and fails to maintain data consistency because anyfuture transaction will read an incorrect value.4

A simple extension of the above protocol is the following:\Read from local replica and write to all replicas"If all replicas are not available for updating (e.g., because of node failure), the transaction isaborted and restarted at a later time. This is the read one/write all replica control method.This method will obviously maintain the consistency of the data, but it has a seriousdrawback. Although the data is highly available for reading, the performance of writeoperations will degrade (compared to the previous naive protocol) because the likelihoodthat all replicas are available for updating is relatively low.In general, all replicas need not be updated by a write operation. Consider for examplethe following protocol:\Read and write operations access a majority of replicas"Since a write operation installs the new value in a majority of replicas and any two majoritygroups of replicas have at least one copy in common, a read majority group is guaranteed tohave a replica that contains the current value. However, all replicas in the read group maynot be up-to-date. In order to distinguish the current value of the data, a version number isadded for identi�cation. The version number is incremented each time the data is updatedso that the current value is always associated with the highest version number. The valuereturned by a read operation is the one that is associated with the highest version numberin the majority read group. Using this protocol a write operation does not need to updateall replicas and yet read operations can determine the last value written. Furthermore,read and write operations and two write operations on the same data item will not executeconcurrently because they must access a common replica. The node that manages thecommon replica enforces proper synchronization so that the replica is modi�ed by a singletransaction at a time. This protocol that requires operations to access a majority of replicasis a special case of the quorum consensus method which will be discussed in detail in Section5. Conceptually, the value of the replicated data item x is a function f of the values< x1; s1 >, < x2; s2 >, : : : , < xN ; sN >, where xi is the value stored at replica i and siis some supplementary information (e.g., version number) that may be stored along withxi, for i = 1; 2; : : : ; N . The replica control protocol used will determine the function f5

(see Figure 2). The values of some replicas may not be known because the nodes storingthem can fail. Also, some replicas may contain outdated values. In general, all values< x1; s1 >, < x2; s2 >, : : : , < xN ; sN > are not required for f to determine the value of x.For example, the function f for the read one/write all protocol is f(< x1; s1 >;< x2; s1 >; : : : ; < xN ; sN >) = xi, for any i = 1; 2; : : : ; N . Since all replicas are updated by a writeoperation, all replicas have the current value. In the read majority/write majority protocol,f(< x1; s1 >;< x2; s2 >; : : : ; < xN ; sN >) is the value of xi that is associated with thehighest version number found in a majority group of replicas. The function f returns anunde�ned value if there is an insu�cient number of replicas available.
<x , s >

<x , s >

<x , s >

Protocol
Control
Replica

x

.

.

f

1 1

2 2

N NFigure 2: Determining the value of x from replicas x1, x2, : : : , xN .In the subsequent sections we present a number of protocols found in the literature. We�rst present the basic protocols: primary copy, quorum consensus and available copies.4 Primary Copy MethodThe primary copy method was described in [Sto79] and it was used in the Ingres databasesystem for maintaining replicated data. The database is partitioned into data items calledfragments and data items can be replicated at di�erent nodes. The locations of all replicasare known and in addition, the nodes are arranged in a known order. Each node maintainsan up-list of nodes that it can communicate with. This list may not accurately reect theactual state of the system because of message delays. The replica maintained by the nodethat is lowest in ordering in the up-list is by de�nition the primary copy of the data item.6

A transaction usually accesses a subset of all data items. When a data item is written, awrite request is sent to the node that holds the primary copy. The changes are subsequentlypropagated to the other replicas (see Figure 3). A read request can also be sent to theprimary copy, but it can be performed more e�ciently on a local copy if certain conditionsare met.
Primary copy

Propagate
W

R/W R R R

3S2S1SPFigure 3: The primary copy methodIn the primary copy method, a transaction can read from its local replica only if itaccesses a single data item. This is because a transaction that accesses multiple items can�nd that the replicas stored locally do not conform with the current value, i.e., the stateis inconsistent. This will happen when multiple items are updated by a transaction andthe changes have not yet been propagated to all replicas. Consider for example an accountdatabase of a bank that is partitioned in data items with one hundred accounts per item.Accounts numbers 101 and 202 are stored in data items x and y respectively (see Figure4). The primary copies of x and y are stored on nodes A and B respectively, and copies ofboth data items are also stored at node C. A transaction executing at node C transfers $10from account 101 to account 202, and makes the changes to the primary copy of x and y atnodes A and B. The changes are then propagated to the other replicas. Due to di�erencein propagation delay, the changes made to x and y do not arrive at node C at the sametime. Suppose the change for y is incorporated �rst, then the replicas of x and y at node Cwill reect an inconsistent database state ($10 has been deposited in account 202 withouthaving been taken out of account 101).When a node fails, it will not respond to request messages sent to it and an operational7

Propagate

Propagate

y

Write(x,y)

yx (updated)

BA C

*x (not updated)

Figure 4: Propagation delay in the primary copy methodnode can detect its failure through a timeout mechanism. A node that fails to receive areply from node x will remove x from its up-list. If node x was maintaining the primarycopy, the next node in the up-list becomes the new maintainer.Link failures can cause network partitioning. The nodes that are in the same partitionas node i that maintains the primary copy will continue to recognize it as the one holdingthe primary copy, but nodes that are separated from i will think that i has failed and choosea di�erent primary copy node. There are now multiple primary copies and each one acceptsdi�erent update requests. The content of the database will become inconsistent as updateoperations in di�erent partitions will not be aware of each other's execution. To avoid thissituation, the primary copy is allowed to exist only if a majority of all replicas of the itemare accessible within the partition. Since there can only be at most one partition with amajority of replicas, this guarantees that two or more primary copies do not exist at thesame time. If the network cannot partition, the primary copy scheme can allow read andwrite operation to access the data if at least one replica is available.4.1 Performance IssuesThe primary copy method was designed with the idea that the database was fragmented insuch a way that most accesses made to the data originate from users at the node havingthe primary copy. Thus, local read and write requests can be satis�ed by the primary copywithout having to involve remote nodes in their processing. Although the changes must be8

propagated to the other replicas, the local transaction can �nish as soon as the changes aremade to the primary copy.The primary copy becomes a bottleneck in a large system because read requests fromtransactions at nodes that do not store a replica and all write requests are sent to it.Although read requests can be processed in parallel by nodes with replicas, the processingof write requests is done by a single node.5 Quorum ConsensusIn quorum consensus protocols, an operation can be allowed to proceed to completion ifit can get permission from a group of nodes. A minimal group of nodes that can allowan operation to proceed is called a quorum group and the collection of all such groups iscalled a quorum set. An operation (e.g., read or write) can only proceed if it can obtainpermission from nodes that have all members of a quorum group. The system requirementsdetermine which groups are in the quorum set. For instance, operations requiring mutualexclusive access can be executed when permission is obtained from a group consisting of amajority of nodes.The concept of quorum consensus is simple and lends itself to a wide range of applica-tions. In the maintenance of replicated data, quorum sets are used to determine if operationsfor accessing the replicas can be executed. Generally, the type of operations allowed areread and write, and consequently two quorum sets are de�ned, R and W , for read andwrite operations respectively. Read operations can be executed concurrently with otherread operations but write operations must be performed in a mutually exclusive manner.Quorum sets are used not only to synchronize conicting operations, but also to presentthe single copy view to the users of the replicated data system. Due to this, the followingconditions must be satis�ed:� The quorum groups that allow read and write operations to execute must have at leastone common node that has a replica and such a node should not allow the replicato be accessed by concurrent operations that are conicting. This ensures that readoperations will return the value installed by the last write operation and any write9

operation concurrent with the read operations is properly synchronized.� The quorum groups that allow write operations must have a common member. Thiswill ensure write operations are not executed concurrently.
DCBA

W = {{A,B,D}, {A,C,D}, {B,C,D}}

R = {{A,B}, {A,C}, {B,C}, {D}}

x=4x=4x=4x=4
v#=1v#=1v#=1v#=1

WriteRead

Quorum sets

Figure 5: Example of a read and write quorum set pairFigure 5 shows a pair of read and write quorum sets R and W that are used to regulatereading and writing of the replicated data item x. Initially the version number and valueare v# = 1 and x = 4, respectively, at all replicas. Notice in Figure 5 that any group in Rand any group in W , and any two groups in W intersect. If a read and a write operationuse read and write quorum group fA,Bg and fB,C,Dg respectively (see Figure 5), node Bwill detect the conict and will allow only one of them to proceed. If the write operation is
DCBA

x=5x=5x=5
v#=2v#=2v#=2

Read

v#=1
x=4

Figure 6: Reading in quorum consensus protocolallowed to proceed before the read operation and it updates the value x = 5 at the replicas10

in its quorum group fB,C,Dg, then a subsequent read operation can detect the updateusing the version number. For instance, the read operation in Figure 6 that uses fA,Bg asthe quorum group will �nd that the replica at node B has the highest version number andwill return the value associated with that version number as the value of x.5.1 VotingIn general, a quorum set is speci�ed by listing its quorum groups. However, the number ofgroups in a quorum set can be exponential. For instance, the number of majority groupsformed with N nodes is 0@ NlN+12 m 1A. The order of this binomial expression is exponentialin N . An simple way to represent a quorum set is the use of weighted voting [Gif79]. In thismethod, each node i is assigned a positive integral number of votes vi, for i = 1; 2; : : : ; N ,and a quorum q is de�ned. A group of nodes G is a quorum group if the nodes in Gcollectively have at least q votes and removing any node from G results in a group with lessthan q votes. Quorum sets that can be de�ned by the use of a vote and quorum assignmentare called vote assignable. Consider for example the vote assignment to four nodes wherenodes A, B, C andD receive vote 1, 1, 1 and 2, respectively. We denote this vote assignmentby the vector v = (1; 1; 1; 2). Let the quorum assignment q be 2 and consider the groupfA,Bg. The number of votes assigned to nodes in the group is q (q = 2) and removal ofeither A or B will result in a group with less than q votes. Hence, fA,Bg is a quorum groupof q votes. The collection of all quorum groups of q votes is ffA,Bg, fA,Cg, fB,Cg, fDggwhich is the quorum set de�ned by the vote and quorum assignment (v; q). Let r and wbe the read and write quorums, respectively. The read and write quorum groups R and Win Figure 5 can be de�ned using vote assignment v and the read and write quorums r = 2and w = 4, respectively. In fact, a pair of vote and quorum assignment (v; q) uniquelyde�nes a quorum set, but the same quorum set can be de�ned by many vote and quorumcombinations. For instance, the quorum set ffA,Bg, fA,Cg, fB,Cg, fDgg can also bede�ned using v0 = (2; 2; 2; 3) and q0 = 3.The synchronization requirements that each read and write quorum group and twodi�erent write quorum groups must have non-empty intersections are satis�ed if:� The sum of r and w is greater than L, where L =PNi=1 vi.11

� 2w is greater than L.The �rst condition will guarantee that a read quorum group will intersect with any writequorum group because the total votes in two non-intersecting groups are at most L wherer + w > L. Similarly, the second condition guarantees non-empty intersection of two writegroups.Voting is highly exible and can be adapted for many types of systems. Consider asystem with three replicas of data item x using voting based replica control protocol and allreplicas are assigned one vote each. In systems where most operations are read, the quorumassignment used should be (r = 1, w = 3), i.e., read one/write all. In contrast, systems thatrequire high write availability should use (r = 2, w = 2), the read majority/write majoritysetting. Thus read and write quorums can be chosen so that high data availability can beprovided for both types of operations.Weighted voting is not as powerful as the general quorum consensus method. In [GB85],it was demonstrated that there exist quorum sets that cannot be de�ned using voting. Forinstance, it is shown in [GB85] that the quorum set Q = ffA,Bg, fA,C,Dg, fA,C,Eg,fA,D,Fg, fA,E,Fg, fB,C,Fg, fB,D,Egg cannot be de�ned by any vote assignment.5.2 Multi-Dimensional VotingThe multi-dimensional voting (MD-voting) technique, presented in [AAC91], can be usedto represent all quorum sets. In MD-voting, the vote value vi assigned to a node andthe quorum are vectors of non-negative integers. The number of dimensions is denoted byk and the votes assigned in the various dimensions are independent of each other. Thequorum assignment qk is a k-dimensional vector (q1; q2; : : : ; qk) where qj is the quorumrequirement in dimension j, for j = 1; 2; : : : ; k. The vote vectors are added per dimensionand compared to the quorum in the corresponding dimension. In addition, a number `,1 � ` � k, is de�ned which is the number of dimensions of vote assignments for whichthe quorum must be satis�ed. We denote MD-voting with quorum requirement in ` of kdimensions as MD(`; k)-voting and the term SD-voting (single dimensional voting) refers tothe standard weighted voting method described in [Gif79]. In fact, MD(1,1)-voting is thesame as SD-voting. 12

An MD(`; k) vote and quorum assignment de�nes a unique quorum set in a similarmanner as standard voting. A group of nodes G is a quorum group in MD(`; k)-voting if thetotal votes of the nodes in G collectively satisfy quorum requirements in at least ` dimensionsand removing any node from G results in a group that satis�es quorum requirements instrictly less than ` dimensions. The same quorum set can be de�ned by di�erent vote andquorum assignment with possibly di�erent k and `. The non-vote assignable quorum setQ given previously can can be de�ned by MD(1,4)-voting using the MD vote and quorumassignments given in Figure 7.vA = 0BBBB@ 2022 1CCCCA vB = 0BBBB@ 3100 1CCCCA vC = 0BBBB@ 0102 1CCCCA vD = 0BBBB@ 1011 1CCCCA vE = 0BBBB@ 1011 1CCCCA vF = 0BBBB@ 0120 1CCCCA and q = 0BBBB@ 5355 1CCCCAFigure 7: An MD(1,4)-vote and quorum assignment for Q = ffA,Bg, fA,C,Dg, fA,C,Eg,fA,D,Fg, fA,E,Fg, fB,C,Fg, fB,D,Egg.5.3 Performance IssuesThe main drawback of quorum consensus schemes is the relatively high overhead incurredin the execution of the read operations. Reading requires participation of nodes in a readquorum group which usually consists of more than one node. In contrast, reading using theprimary copy method requires access only to one replica. This is also the case in the availablecopies method that will be discussed in the next section. Using quorum consensus, read andwrite operations can only succeed when a su�ciently large number of replicas are available.In contrast, the primary copies method may be able to operate as long as one replica isavailable for updating. To achieve the same level of data availability, the system must usea higher degree of replication in quorum consensus methods. A major bene�t of quorumconsensus based schemes is that arbitrary communication link failures including those thatpartition the network require no special attention. In case of network partitioning, writeoperations can be processed by at most one partition. In contrast, the primary copy schemerelies on the majority quorum consensus method for determining if a primary copy can be13

established.The system behavior depends on the pair of read and write quorum sets used. Forinstance, a system using the read one/write all quorum will have good performance for readoperations but write operations will incur high cost and experience low data availability. Atthe other end of the spectrum, using the read majority/write majority quorum will providehigh data availability for both types of operations but also incur a high cost of reading.The optimum read and write quorum setting depends on the mix of transactions and theperformance measure in question. It was found in [AA89] that when the read one/write allquorum is used, data availability will decrease after a certain level of replication. This is dueto the fact that write operations must update all replicas and the likelihood of the successfulcompletion of a write operation decreases when the number of replicas is increased. This isnot the case with the read majority/write majority quorum because data availability alwaysincreases for both read and write operations when the degree of replication is increased.Determining the best read and write quorum set pair or vote and quorum assignmentfor a given performance measure is di�cult due to the complex relation between systembehavior and the quorum sets. However, when the quorum sets are �xed, the performancecan be easily determined through analytical methods or simulation techniques. The bestquorum set pair can be found through a search in the complete set of all quorum sets. In[GB85], an enumeration method is presented that generates a subset of the quorum setsused for synchronizing operations that require mutual exclusion. Each group of the quorumset must intersect with every group in the set to guarantee mutual exclusion and such setsare called coteries. In [CAA89], an enumeration algorithm was presented to obtain all readand write quorum sets that are de�ned by SD-voting.6 Available Copies6.1 The Basic MethodThe easiest way to handle node failures is to ignore them. In the basic available copiesmethod, updates are applied to replicas at nodes that are operational and a read operationcan use any available replica. It was shown in [BHG87] that this basic method does not14

guarantee data consistency. Consider a system that replicates the value of x at node Aand B, and y at nodes C and D. A transaction T1 �rst reads x and then writes y and atransaction T2 �rst reads y and then writes x. Figure 8 shows a sequence of events thatwill cause data inconsistency. Transaction T1 and T2 read x at node A and y at node D,respectively. After the read operations are completed the nodes A and D fail. Then T1 andT2 proceed to update all available copies of y and x, respectively. Since nodes A and Dhave failed, T1 and T2 will only update the copies at nodes B and C. Neither transaction isaware of the read operation of the other and the execution will lead to data inconsistency.The result is not a one-copy serializable execution.
failedfailed

A

x

2:

1:

yyx

DCBA

x

T : R(x)1 T : R(y)2

x

B C D

x y y

A B C D

x y y

3:

1T : W(y) T : W(x)2Figure 8: An incorrect execution using a naive read one/write all available copies protocolThis problem is caused by the failures of nodes A and D where transactions T1 andT2 have read the values of x and y, respectively. If nodes A and D had not failed, bothtransactions T1 and T2 would not be able to update y and x, respectively (read locks areplaced on behalf of the transactions when they read data at a node). Due to node failures,transactions T1 and T2 can no longer synchronize themselves because their read locks arelost.The correct available copies scheme [BHG87] operates as follows. Read operations canbe directed to any node holding the latest value of the data and write operations will15

only succeed if at least one replica records the update. A transaction can only terminatesuccessfully when it is able to execute the following validation process which consists of twosteps:1. missing writes validation: the transaction makes sure that all replicas that did notreceive its updates are still unavailable.2. access validation: the transaction makes sure that all replicas that it read from andwrote to are still available.6.2 The Directory-Oriented Available Copies MethodThe simple available copies scheme does not allow dynamic assignment of replicas to nodesand requires that transactions attempt to update replicas at all nodes (even when somenodes have failed). The directory-oriented available copies method [BHG87] uses directoryinformation to direct operations to only replicas on nodes that are believed to be operational.This scheme can also be used to dynamically add and remove replicas.For each data item x, there is a directory listing d(x) of the nodes that have replicas.The directory d(x) can itself be replicated and stored at di�erent nodes. The directory forx at node U , dU(x), also contains a list of directory copies for x that node U believes areavailable. Directories are updated by two special transactions:� Include(xA), for creating a new replica of x at node A, and� Exclude(xA), for destroying the replica at A.To process a read operation of x, the system �rst reads a copy of the directory, saydU(x) and uses the information to �nd an available copy. A write operation must updateall replicas that are listed in the directory entry. Due to node failures, some copies may notbe available for updating and the transaction is aborted. The system then runs an Excludetransaction to update the directories and the transaction is restarted.
16

6.3 Performance IssuesAn attractive feature of the available copies method is the fact that read operations onlyneed to access one copy of the data. Also, the available copies method provides very highdata availability. Both read and write operations can be performed as long as there is oneoperational node with a replica. However, the available copies scheme is not tolerant tonetwork partition failures. When the network can partition, the available copies methodpresented above will fail to preserve data consistency. For example, when the system inFigure 8 is separated in the way given in Figure 9, transactions that read and write x andy in the two partitions will not be able to synchronize with each other. To handle networkpartitions the available copies method must be extended to ensure that write operationscan be executed only in one partition.
x

A B C D

x y yFigure 9: A partitioned network.7 Extensions and Hybrid SchemesThe basic replica control protocols reviewed in the previous sections can be extended withadditional provisions to further enhance the data availability provided by them or to improveother performance measures. Similarly, two of the basic schemes can be combined to exploitthe advantages of both. In particular, the weighted voting method has proven to be veryrobust and versatile, and many dynamic voting methods have been derived [Her87, ET86,JM90]. The voting method is also used to augment the available copies scheme to achievethe capability to tolerate network failures. In this section, we review selected protocols.
17

7.1 Dynamic Quorum AdjustmentDynamic methods can enhance performance by adjusting the rules of a replica controlprotocol according to the current state of the system. In systems where read operations arepredominant, the dynamic quorum adjustment method [Her87] can improve performanceby allowing the system to operate with a read quorum set consisting of groups with asmall number of nodes. The corresponding write quorum set will have large groups andwrite operations can complete only when a large number of nodes are operational. Due tofailures, a transaction may not be able �nd a write quorum and the protocol can switch toanother, more favorable, pair of read and write quorum sets. The new write quorum set willhave smaller groups but the groups in the corresponding read quorum set are larger. Thistechnique is called quorum ination. A complementary technique called quorum deation,is used to reduce the size of read quorum groups when nodes recover. Hence, the size ofread and write quorum groups increases and decreases, respectively, when the number offailures increases.Let (R1 = ffAg, fBg, fCgg, W1 = ffA,B,Cgg) and (R2 = ffA;Bg, fA;Cg, fB;Cgg,W2 = ffA;Bg, fA;Cg, fB;Cgg) be two pairs of read and write quorum sets. Noticethat a group in W2 is a subset of a group in W1. Thus, a group of nodes that constitutea write quorum group in W1 is also a write quorum group in W2 and therefore W2 is amore favorable quorum set for writing. Correspondingly, the read quorum set R2 will beless favorable for reading because it will contain larger quorum groups than R1. If one ofthe nodes fails (making the data unavailable for writing using W1), the quorum inationtechnique, which increases the size of read quorum groups while decreasing the size of writegroups, is used to switch the system from the quorum set (R1;W1) to (R2;W2) in case of afailure.In the dynamic quorum adjustment method, the system can operate at a number oflevels and each level has associated read and write quorum sets (in the above example, twolevels are shown). Transactions are also assigned a level number and the ones operating atthe same level synchronize with each other using the read and write quorum sets de�nedfor the level. Transactions operating at di�erent levels are synchronized by additionalread/write rules that ensure lower level transactions are completed before higher level ones.A transaction restarts by choosing a higher level number.18

7.2 Virtual PartitionThe dynamic scheme presented in [ET86] allows a node to make use of its view about thestate of the system (information about operational nodes) and adjust the replica controlprotocol accordingly. The view maintained by each node i is a set that contains nodes withwhich i can communicate. The view need not accurately reect connectivity of the nodes.Each view is associated with a unique view identi�er and two nodes are in the same viewif they have the same view identi�er. Provisions are made to allow nodes to change theirviews according to changes in the system.Each replica of a data item x is assigned one vote and read and write accessibilitythresholds r[x] and w[x] are de�ned. The data item x is read and write accessible by nodesin a view only if r[x] and w[x] votes, respectively, are available at nodes in the same view.The accessibility thresholds r[x] and w[x] satisfy the following relations:r[x] + w[x] > N [x]2w[x] > N [x]where N [x] is the total number of replicas of x in the system. These requirements aresimilar to those used in the basic quorum consensus protocol to ensure intersection of aread and a write quorum group, and two write quorum groups. However, r[x] and w[x] arenot the read and write quorums.When a view v is established, the nodes in the view determine if the data is read andwrite accessible. In the case that the data is accessible, a read and a write quorum rv[x]and wv[x] are chosen which may be di�erent from r[x] and [w[x]. The quorums rv[x] andwv[x] must satisfy the following constraints:rv[x] + wv[x] > N [x]wv[x] � w[x]These constraints ensure that a write quorum group in a view v intersects with:� All read quorum groups in the same view, thus read operations will be able to deter-mine the current value. 19

� All write quorum groups intersect with each other, thus write operations cannot exe-cute concurrently in two di�erent views.
v

r[x] = 3, w[x] = 3

BA

x x x xx

DC

View v:

E

r [x] = 1, w [x] = 5vFigure 10: Virtual partition scheme: no failures operation.For example, consider a �ve node system using r[x] = 3 and w[x] = 3. Figure 10 showsthe system in the no failures state where all nodes have the same view v, and the read andwrite quorums are rv[x] = 1 and wv[x] = 5 to provide high performance for read operations.Alternately, the system can also use the quorum assignments (rv[x] = 2, wv[x] = 4) or(rv[x] = 3, wv[x] = 3) in view v. Suppose nodes D and E are separated from the othernodes as shown in Figure 11, the nodes A, B and C will change their views to v0. Thedata is read and write accessible in the fA,B,Cg partition and in this case, the only readand write quorum assignment allowed are rv0 [x] = 3 and wv0 [x] = 3. Thus, in a failurestate, the system has fewer choices for quorum settings. The use of quorum assignment inconjunction with accessibility thresholds allows the system to use a favorable pair of readand write quorum sets when it is in a no failure state to improve performance. In failurestates, the system can switch to use other, less favorable, quorum assignments and the dataremains available.
r [x] = 3, w [x] = 3v’

r[x] = 3, w[x] = 3

x inaccessible

BA

x x x xx

DC

View v’:

E

v’Figure 11: Virtual partition scheme: failure operation.20

7.3 Dynamic votingThe basic dynamic voting method [JM90] assigns one vote to each replica and maintains inaddition to a version number, the update node cardinality U which is number of replicasupdated by the last transaction that updated the data item. The version number is usedto determine both the current value and the update node cardinality. Reading and writinguse the majority quorum with respect to the current update cardinality, and an updateis performed on replicas at all operational nodes. The operation of the dynamic votingmethod is best illustrated by an example. Consider the system in Figure 12 where the dataitem x is replicated at �ve nodes. Initially, all nodes contain the same information. Theversion number v#, update node cardinality U and the value of x are equal to 1, 5 and 4,respectively.
EDCBA

v#=1
U=5
x=4

v#=1
U=5
x=4

v#=1
U=5
x=4

v#=1
U=5
x=4

v#=1

x=4
U=5Figure 12: Dynamic voting: no failures operation.A transaction T1 that wants to access the data item x �rst determines that the lastupdate operation has written to 5 replicas and that the current version number is 1. If T1can obtain permission from 3 (a majority of 5) nodes with replicas that contain the currentversion number 1, it is allowed to proceed. Otherwise, T1 must wait or abort.Assume nodes D and E fail and a transaction T2 wants to increment x by one. T2 willalso determine from information at nodes A, B and C that U = 5 and v# = 1. Since thegroup fA,B,Cg is a majority group with respect to the current update cardinality U , T2can access the data x = 4, add one to x and update the replicas at node A, B and C. Theresulting state is given in Figure 13 and notice that the update node cardinality recordedis 3.Suppose node A also fails and another transaction T3 wants to increment x by one. T3now determines that v# = 2, U = 3 and x = 5. Since the current update node cardinalityU = 3, the group of operational nodes fB, Cg is a valid majority quorum. Notice thatfB, Cg is not a majority group in the initial state where the update node cardinality is 5.21

x=5
U=3
v#=2

x=5
U=3
v#=2

x=5
U=3
v#=2

EDCBA

v#=1
U=5
x=4

v#=1
U=5
x=4Figure 13: Dynamic voting: failure operation.Transaction T3 can also be allowed to access x and record the updates at nodes B and C.The update node cardinality is now equal to 2 and the resulting state is given in Figure 14.

x=6
U=2
v#=3

x=6
U=2
v#=3

x=5
U=3
v#=2

EDCBA

v#=1
U=5
x=4

v#=1
U=5
x=4Figure 14: Dynamic voting: failure operation, continued.The dynamic voting method can thus allow the system to adapt its quorum requirementto changes in the system state. Notice that in Figure 14, a minority of the replicas containthe most recent value. It is thus possible that a majority of the replicas are operationaland none of which are holding the current value. For example, if nodes B and C fail, andnode A, D and E recover simultaneously, we will have the state given in Figure 15 where amajority of the nodes with replicas are operational but none of which has the current valueof x. The dynamic voting protocol will disallow access to out of date value. A transactionT4 that wants to access x will that v# = 2 and U = 3, but only one node (namely A) hasthe most recent value. Nodes D and E which have out of date version numbers cannot beincluded in the quorum. T4 will not be able to obtain a valid quorum and must wait orabort.

x=6
U=2
v#=3

x=6
U=2
v#=3

x=5
U=3
v#=2

EDCBA

v#=1
U=5
x=4

v#=1
U=5
x=4Figure 15: Dynamic voting: failure operation, continued.The hybrid dynamic voting [JM90] method operates in a similar manner as the basic22

dynamic voting scheme. It uses the basic dynamic voting method when the update nodecardinality is at least three nodes. When less than three nodes with replicas are operational,the hybrid scheme will use the static majority voting as the replica control method. It wasshown in [JM90] that the hybrid scheme provides better data availability than the basicdynamic voting protocol.7.4 Voting with witnessesThe replicas in the basic weighted voting scheme store a version number and the value ofthe data item. The voting with witnesses method [Pâr86] replaces some of the replicas bywitnesses, which are copies that only contain the version number but no data. The witnessesare assigned votes and will cast them when they receive voting requests from transactions.They provide the transactions with their version numbers which are used to identify thecurrent value of the data item. Although the witnesses do not maintain data, they cantestify about the validity of the value provided by some other replica. Due to the fact thatwitnesses do not contain the data item itself, the read and write operations on witnessesare implemented as follows:� When a witness is a member of a read quorum, it provides the requester with itsversion number. It cannot provide the value of the data item.� In the case that a witness is a member a write quorum, it records the version numberprovided in the write request. The value of the data is ignored.Consider a system in Figure 16 with two full replicas of x and one witness where initiallyall version numbers are one and x = 4. The state of a full replica and a witness can berepresented by the tuple (version number, value) and (version number, �), respectively.The state of the system in Figure 16 can be represented by the triplet of tuples ((1,4), (1,4),(1, �)) where the �rst, second and third tuples represent the state of the item stored atnodes A, B and C, respectively. A replica and witness are assigned one vote each and thereplica control method used is read majority/write majority. Thus, a majority can be twofull replicas, or one full replica and one witness.If a transaction T updates x = 5 using the replica at node B and the witness at node Cas the write quorum group, the state of the system becomes ((1,4), (2,5), (2, �)). Notice23

2:

1:

Witness

T: Write(x = 5)

x = 4
v# = 1

x = 4
v# = 1 v# = 1

x = empty

A B C

x = 4
v# = 1

x = empty

A B C

v# = 2
x = 5

v# = 2Figure 16: Voting with witnesses using two full replicas and one witness.that the value is not stored at C but its version number reects the fact that the replicaat node A does not contain the current value. When a read operation uses nodes A and Cas quorum group, the version number returned by the witness will testify that the value atnode A is out of date. It is thus possible for a read operation to obtain permission from aread quorum group and not �nd the current value of the data. An analysis in [Pâr86] showedthat the data availability in a system with two full replicas and one witness is slightly lowerthan a system with three full replicas. The voting with witnesses scheme can e�ectivelyraise the data availability without having to replicate the data item.7.5 Voting with GhostsA system that uses the voting with ghosts method [vRT87] is assumed to consist of a numberof network segments and the nodes located in the same segment cannot be separated fromone another. A network segment can fail and the nodes in that segment will not be ableto communicate. This model can be used to represent the operation of Ethernet segmentsinterconnected through gateways where gateway failures can partition the network butnodes on the same segment can communicate as long as the segment is operational.The voting with ghosts protocol uses weighted voting as its basic replica control schemeand extends it with the notion of ghosts to increase the availability of write operations. Aghost is a process without any storage space and its task is to testify to the fact that anode with a replica has failed. The ghost for a failed node holding a replica is started on24

the same segment of the network where the failed node is located. Hence, when a ghostresponds to a request, a transaction can safely assume that the network is not partitionedand the node with the replica has failed.Like a witness in [Pâr86], a ghost is assigned votes and it is equal to the number thatwas given to the replica at the failed node. Unlike a witness, a ghost does not participatein a read quorum. This di�erence is caused by the fact that a ghost does not maintain anyinformation on the data item while a witness can know the latest version number. A ghostcan be a member of a write quorum group and like a witness, it will ignore the value in thewrite operation. Furthermore, the version number in the write operation will be ignored aswell. The ghost will only return its vote in response to a write request.
gateway

failed

ghost processxxx Figure 17: Voting with ghosts.Consider a system with N replicas of a data item x where all replicas are assigned onevote each. Assume the read quorum is one, then the corresponding write quorum must beN and a failure of any node with a replica will make the system unavailable for writingusing the basic voting scheme. In voting with ghosts, the failure of a node with a replicawill trigger the creation of a ghost process and it will reply on behalf of the failed node.The ghost will not respond to read requests so that a read operation will only be processedby a node holding a replica of x. When a write request is sent to all node with replicas, theghost will respond on behalf of the failed node and the transaction will be able to obtain awrite quorum and complete the write operation. Note that all available replicas are part ofa write quorum and will be updated. When a node recovers from failure, it must obtain thelatest value of the data before it can participate in a read quorum. Thus, a subsequent readoperation will obtain the current value. In fact, the voting with ghosts protocol using theread one/write all quorum assignment, and the basic available copies method operate in asimilar manner when the network cannot partition. Both methods will read from one replicaand update all available replicas. But the voting with ghosts method is not restricted to25

the use of the read one/write all assignment and can use an arbitrary vote and/or quorumassignment.7.6 RegenerationThe regeneration scheme [PNP88] attempts to maintain exactly N available replicas at alltimes. The scheme was implemented in the Eden distributed system at the University ofWashington. When a node storing a replica fails, the system will try to boost the availabilityof the data by regenerating a new replica on another operational node. Directories thatstore the location of the replicas are modi�ed accordingly to direct transactions to read andwrite the newly generated copies. The replicas stored at failed nodes will not be accessiblethrough directories and e�ectively become garbage when the nodes recover from failures. Agarbage collection subsystem is used to reclaim the space occupied by such replicas.The basic regeneration scheme is read one/write N . Read operations will succeed aslong as there is at least one available replica. Write operations only succeed if N replicascan be written. When there are fewer than N replicas available for update, the system willregenerate a number of replicas to supplement to a total of N replicas. Write operationswill fail if the system cannot regenerate replicas (due to shortage of disk space). The basicregeneration method is similar to the directory-oriented available copies method but usesa policy to include additional replicas when the system detects that fewer than N replicasare available.An extension to the basic regeneration scheme is to use the available copies scheme whenthe system has exhausted the disk space for regenerating replicas. As long as the system hasspace available, write operations will update exactly N replicas. In the event that no morespace is available, write operations will only update the available copies. Read operationswill access one replica in either cases.8 Future DirectionsHigh speed networking and the falling costs of hardware will make it possible to shareresources in distributed systems that span hundreds or thousands of nodes. Although the26

reliability of the nodes and network components may be high in these systems, the need fordata replication will still exist to ensure that data can be found locally or close to the nodeswhere requests for it are made so network latency costs can be avoided. Many of the replicacontrol protocols presented in this paper have not been evaluated for such environmentsand it may be that they do not perform well. The following are some of the issues thatmust be addressed in the design and evaluation of replica control protocols suitable for largedistributed systems.� The major goal of many of the replica control protocols has been to maximize theavailability of data. However, when nodes are highly reliable, a very high level of dataavailability can be achieved with a small degree of replication [AA89]. Clearly, thesmall number of nodes that store replicas can become bottlenecks in a large distributedsystem. Thus, a high degree of replication may be desirable to ensure that a replicacan be found close to the node where a request arrives and also the load generated bythe requests is shared between a large number of nodes. More work needs to be doneto develop replica control protocols that exploit the load sharing bene�ts of replicateddata.� The communication and processing overhead of replica control protocols is high be-cause they ensure single-copy serializability. Although this type of correctness may benecessary in some applications, there exist many application domains where a weakercorrectness condition is acceptable. An example of such a domain may be �le systemswhere users can tolerate occasional inconsistencies to get high data availability at lowcost. It is necessary to develop precise characterizations of weaker consistency of dataand exploit the weakening in developing e�cient replica control protocols.� There is strong evidence that the network environment has a considerable impact onthe e�ective use of replication. An understanding of the interaction of replication andthe networking environment remains to be achieved. For example, a replica controlprotocol based on voting can use broadcast or multicast communication to reach thenodes that have been assigned votes. Such protocols may not be suitable in networkswhere broadcast or multicast communication is expensive or not feasible. It may bepossible to attain better performance by using a replica control protocol that exploitsthe mechanisms of the underlying network. It may also be that replication can be27

used to overcome the e�ect of poor quality communication links.� The performance of a large number of protocols has been studied either analytically orusing simulation studies. Unfortunately, there are few actual implementations of theseprotocols in real systems. It is necessary to build these protocols and experimentallyevaluate their performance for realistic application domains. Perhaps the lack ofexperimental research is the reason for the limited impact that data replication hashad in the design and implementation of distributed systems.Data replication in distributed systems is still an active research area and many of theabove issues should be resolved in the coming years. The results of this research and theresults that exist today hold the promise for exploiting the potential of distributed systemsin building highly available and powerful systems.

28

References[AA89] M. Ahamad and M.H. Ammar. Performance characterization of quorum-consensus algorithms for replicated data. IEEE Transactions on Software En-gineering, 15(4):492{496, 1989.[AAC91] M. Ahamad, M. H. Ammar, and S. Y. Cheung. Multi-dimensional voting. ACMTransactions on Computer Systems, 9(4):399{431, Nov 1991.[BHG87] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control andRecovery in Database Systems. Addison-Wesley, 1987.[CAA89] S. Y. Cheung, M. Ahamad, and M. H. Ammar. Optimizing vote and quorum as-signments for reading and writing replicated data. IEEE Transactions on Knowl-egde and Data Engineering, 1(3):387{397, September 1989.[ET86] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicateddatabases. In Proceedings of the Symposium on Principles of Database Systems(PODS), pages 240{351. ACM, 1986.[GB85] H. Garcia{Molina and D. Barbara. How to assign votes in a distributed system.Journal of ACM, 32(4):841{860, 1985.[Gif79] H. Gi�ord. Weighted voting for replicated data. In Proceedings of 7th Symposiumon Operating Systems, pages 150{162. ACM, 1979.[Her87] M. Herlihy. Dynamic quorum adjustment for partitioned data. ACM Transactionson Database Systems, 12(2):170{194, June 1987.[JM90] S. Jajodia and D. Mutchler. Dynamic voting algorithms for maintaining theconsistency of a replicated database. ACM Transactions on Database Systems,15(2):230{280, 1990.[Pâr86] J.-F. Pâris. Voting with witnesses: A consistency scheme for replicated �les. InProceedings of the 6th International Conference on Distributed Computing Sys-tems, pages 606{612. IEEE, 1986.[PNP88] C. Pu, J. D. Noe, and A. Proudfoot. Regeneration of replicated objects: A tech-nique and its Eden implementation. IEEE Transactions on Software Engineering,SE-14(7):936{945, July 1988.[Sto79] M. Stonebreaker. Concurrency control and consistency of multiple copies of datain distributed ingres. IEEE Transactions on Software Engineering, SE-5(3):188{194, May 1979.[vRT87] R. van Renesse and A.S. Tanenbaum. Voting with ghosts. In Proceedings of 7thSymposium on Distributed Computing Systems, pages 456{461. IEEE, 1987.29

Additional ReadingThe following list cites other important works in the area of data replication.Proceedings of the Workshop on Management of Replicated Data. Editors: L.-F. Cabreraand J.-F. Pâris. IEEE Computer Society Press, 1990.Consistency in Partitioned Networks. S. B. Davidson, H. Garcia-Molina and D. Skeen. InACM Computing Survey, pages 341{370, 1985.Low Cost Management of Replicated Data in Fault-Tolerant Distributed Systems. T. A.Joseph and K. P. Birman. In ACM Transactions on Computer Systems, pages 54{70, 1986.A Quorum-Consensus Replication method for Abstract Data Types. M. Herlihy. In ACMTransactions on Computer Systems, pages 32{53, 1986.An Algorithm for Concurrency Control and Recovery in Replicated Distributed DatabasesP.A. Bernstein and N. Goodman. In ACM Transactions on Database Systems, pages 596{615, 1984.Achieving Robustness in Distributed Database Systems. D.L. Eager and K.C. Sevcik. InACM Transactions on Database Systems, page 354{381, 1983.An E�cient Solution to the Distributed Mutual Exclusion Problem. D. Agrawal and A.El-Abbadi. In the Proceedings of Principles of Distributed Computing, pages 193{200,1989,Reducing Storage for Quorum Consensus Algorithms. D. Agrawal and A. El Abbadi. InProceedings of Very Large Databases Conference, pages 419{430, 1988.The Grid Protocol: A High Performance Scheme for Maintaining Replicated Data. S. Y.Cheung, M. H. Ammar and M. Ahamad. In the Proceedings of 6th International Conferenceon Data Engineering, pages 438{445, 1990.Performance Analysis of a Hierarchical Quorum Consensus Algorithm for Replicated Ob-jects. A. Kumar. In the Proceedings of 10th International Conference on DistributedComputing Systems, pages 378{385, 1990. 30

The Reliability of Voting Mechanisms. D. Barbara and H. Garcia{Molina. In IEEE Trans-actions on Computers, pages 1197{1208, 1987.Protocols for Dynamic Vote Reassignment. D. Barbara and H. Garcia{Molina and A.Spauster. In Proceedings of Principles of Distributed Computing, pages 195{205, 1986.A Scheme for Maintaining Consistency and Availability of Replicated Files in a PartitionedDistributed System. J. Tang and N. Natarajan. Proceedings of the 5th International Con-ference on Data Engineering, pages 530{537, 1989.Vote Asignments in Weighted Voting Mechanisms. Z. Tong and R. Y. Kain. In the Pro-ceedings of the 7th Symposium on Reliable Distributed Systems, pages 138{143, 1988.How to Make Your Votes Count. J.-F. Pâris and F. D. Berman. In the technical reportUH-CS-99-16 of the Department of Computer Science, University of Houston, Texas, 1988.Voting as the Optimal Static Pessimistic Scheme for Managing Replicated Data. M. Obradovicand P. Berman. In the Proceedings of 9th International Symposium on Reliable DistributedSystems, pages 126{134, 1990.On the Optimality of Voting. by S. Y. Cheung, M. H. Ammar and M. Ahamad. In thetechnical report GIT-ICS-90/30 of Georgia Institute of Technology, Atlanta, 1990.The Performance of Available Copy Protocols for the Management of Replicated Data. J.-F.Pâris and D. D. E. Long. In Performance Evaluation, volume 11, pages 9{30, 1990.The Reliability of Regeneration-Based Replica Control Protocols. D. D. E. Long, J. L. Carrolland K. Steward. In the Proceedings of the 9th Symposium on Distributed ComputingSystem, pages 465{473, 1989.
31

