
Jumbo Store: Providing Efficient Incremental Upload and Versioning for a
Utility Rendering Service

Kave Eshghi, Mark Lillibridge, Lawrence Wilcock, Guillaume Belrose, and Rycharde Hawkes

HP Laboratories
{kave.eshghi,mark.lillibridge,lawrence.wilcock,guillaume.belrose,rycharde.hawkes}

@hp.com

Abstract
We have developed a new storage system called the
Jumbo Store (JS) based on encoding directory tree
snapshots as graphs called HDAGs whose nodes are
small variable-length chunks of data and whose edges
are hash pointers. We store or transmit each node only
once and encode using landmark-based chunking plus
some new tricks. This leads to very efficient
incremental upload and storage of successive
snapshots: we report compression factors over 16x for
real data; a comparison shows that our incremental
upload sends only 1/5 as much data as Rsync.
To demonstrate the utility of the Jumbo Store, we have
integrated it into HP Labs’ prototype Utility Rendering
Service (URS), which accepts rendering data in the
form of directory tree snapshots from small teams of
animators, renders one or more requested frames using
a processor farm, and then makes the rendered frames
available for download. Efficient incremental upload is
crucial to the URS’s usability and responsiveness
because of the teams’ slow Internet connections. We
report on the JS’s performance during a major field test
of the URS where the URS was offered to 11 groups of
animators for 10 months during an animation showcase
to create high-quality short animations.

1 Introduction
Utility Computing describes the notion that computing
resources can be offered over the Internet on a
commodity basis by large providers, and purchased on-
demand as required, rather like gas, electricity, or
water. The widespread belief is that computation
services can be offered to end users at lower cost
because of the economies of scale of the provider, and
because end users pay only for the resources used at
any moment in time.
Utility services are utility computing systems that offer
the functionality of one or more software applications
rather than raw processing or storage resources.

Possible utility services include finite element analysis,
data mining, geological modeling, protein folding, and
animation rendering. An important class of utility
service, which we call batch services, primarily
processes batch jobs where each job involves
performing a well-defined set of computations on
supplied data then returning the results of the
computations. The data for a job may be large and
complicated, consisting of many files carefully
arranged in a file hierarchy—the animation models for
rendering a movie short can require gigabytes of data
and thousands of files.
Providing batch services to individual consumers or
small and medium businesses under these
circumstances is difficult because the slow Internet
connections typical of these users make moving large
amounts of data to the servers very time-consuming:
uploading the animation models for a movie short over
a typical ADSL line with 256 Kbits/s maximum upload
bandwidth can take over 17 hours. (Downloading of
results is usually less problematic because these
connections offer much greater download bandwidths.)
We believe this problem can be solved in practice for
many batch services if incremental uploading can be
used since new jobs often use data only slightly
different from previous jobs. For example, movie
development, like computer program development,
involves testing a series of successive animation
models, each building on the previous one. To spare
users the difficult and error-prone process of selecting
which files need to be uploaded, the incremental
uploading process needs to be automatic.
We have developed a new storage system, the Jumbo
Store (JS), that stores Hash-Based Directed Acyclic
Graphs (HDAGs). Unlike normal graphs, HDAG nodes
refer to other nodes by their hash rather than by their
location in memory. HDAGs are a generalization of
Merkle trees [20] where each node is stored only once
but may have multiple parents. Filesystem snapshots
are stored on a Jumbo Store server by encoding them

as a giant HDAG wherein each directory and file is
represented by a node and each file’s contents is
encoded as a series of variable-size chunk nodes
produced by landmark-based chunking (cf. LBFS
 [21]). Because each node is stored only once, stored
snapshots are automatically highly compressed as
redundancy both within and across snapshots is
eliminated.
The Jumbo Store provides a very efficient form of
incremental upload: the HDAG of the new snapshot is
generated on the client and only the nodes the server
does not already have are sent; the presence of nodes
on the server is determined by querying by node hash.
By taking advantage of the properties of HDAGs, we
can do substantially less than one query per node. We
show that the JS incremental upload facility is
substantially faster than its obvious alternative, Rsync
 [26], for movie animation models.
As well as being fast, the upload protocol requires no
client state and is fault tolerant: errors are detected and
corrected, and a restarted upload following a client
crash will not start from scratch, but make use of the
portions of the directory tree that have already been
transmitted. The protocol also provides very strong
guarantees of correctness and completeness when it
finishes.
To demonstrate the utility of the Jumbo Store, we have
integrated it into a prototype Utility Rendering Service
(URS) [17] developed by HP Labs, which performs the
complex calculations required to create a 3D animated
movie. The URS is a batch service which accepts
rendering data in the form of directory tree snapshots
from small teams of animators, renders one or more
requested frames using a processor farm, and then
makes the rendered frames available for download.
The URS research team involved over 30 people,
including developers and quality assurance specialists.
It is designed for use by real users and so has to be user
friendly and easy to integrate into the customer
computing infrastructure, with a high level of security,
quality of service, and availability. To provide
performance and security isolation, one instance of the
URS is run for each animator team. Each URS instance
uses one JS server to store that team's uploaded
animation model snapshots. Each service instance may
have multiple snapshots, allowing animator teams to
have multiple jobs running or scheduled at the same
time. Because of JS’s storage compression, we can
allow a large number of snapshots inexpensively.
To test the URS, it was deployed for each of 11 small
teams of animators as part of an animation showcase
called SE3D (“seed”) [27], which ran for a period of 10
months. The URS gave the animators access to a large
pool of computing resources, allowing them to create

high quality animated movie shorts. The system was
highly instrumented and the participants were
interviewed before and afterwards. We report
extensively in the second half of this paper on the JS’s
excellent performance during SE3D. As far as we
know, this trial is the only substantial test of
incremental upload for utility services.
The remainder of this paper is organized as follows: in
the next section we describe the design and
implementation of the Jumbo Store. In Section 3, we
briefly describe the URS and how it uses the JS. In
Section 4, we describe the results of the SE3D trial. In
Section 5, we compare JS to Rsync using data from
SE3D. In Section 6, we discuss the SE3D and Rsync
comparison results. Finally, in the remaining sections
we discuss related work (Section 7), future work
(Section 8), and our conclusions (Section 9).

2 The Jumbo Store
The Jumbo Store (JS) is our new storage system, which
stores named HDAGs—immutable data structures for
representing hierarchical data—called versions. The JS
is accessed via special JS clients. Although HDAGs
can hold almost any kind of hierarchical data, we
currently only provide a client that encodes snapshots
of directory trees as HDAGs. This client allows
uploading new snapshots of the machine it is running
on, downloading existing snapshots to that machine, as
well as other operations like listing and deleting
versions. Figure 1 below shows the typical
configuration used for incremental upload. A version
can be created from the (recursive) contents of any
client machine directory or from part of an existing
version; in either case, files can be filtered out by
pathname.

Server Machine

JS Server

Client Machine

JS
client

source
directory

tree

stored versions

JS Protocol

Figure 1: Incremental upload configuration

2.1 Hash-based directed acyclic graphs
An HDAG is a special kind of directed acyclic graph
(DAG) whose nodes refer to other nodes by their hash
rather than their location in memory. More precisely,
an HDAG is a set of HDAG nodes where each HDAG
node is the serialization of a data structure with two
fields: the pointer field, which is a possibly empty
array of hash pointers, and the data field, which is an
application-defined byte array. A hash pointer is the
cryptographic hash (e.g., MD5 or SHA1) of the
corresponding child. Pictorially, we represent a hash

pointer as a black dot that is connected to a solid bar
above the node that is hashed. For example, a file can
be represented using a two level HDAG:

File Contents

File meta-data

The leaf node’s data field contains the contents of the
file and the root node's data field contains the file’s
meta-data. Using this representation, two files with the
same data contents but different metadata (e.g.,
different names) will have different metadata nodes but
share the same contents node: because nodes are
referred to by hash, there can be only one node with a
given list of children and data.
Continuing our example, we can extend our
representation to arbitrary directory structures by
representing each directory as a node whose data field
contains that directory’s metadata and whose children
are the nodes representing the directory’s members.
Figure 2 below shows an example where the metadata
nodes for ordinary files have been suppressed to save
space; each grey box is a contents node.

root hash

my docs

projects personal

hobbies

Figure 2: An HDAG representation of a
directory tree

HDAGs are a generalization of Merkle trees [20]. They
are in general not trees, but rather DAGs since one
child can have multiple parents. Also unlike Merkle
trees, their non-leaf nodes can contain data. Notice
that even though a directory structure (modulo links) is
a tree, its HDAG representations are often DAGs, since
there are often files whose contents are duplicated in
whole or in part (see chunking in Section 2.3). The
duplicated files or chunks will result in two or more
HDAG nodes pointing to the same shared node.

2.2 Properties of HDAGs
We say that an HDAG is rooted if and only if there is
one node in that HDAG that is the ancestor of all the
other nodes in the HDAG; we call such a node the
HDAG's root node and its hash in turn the HDAG's
root hash. An HDAG is complete if and only if every
one of its nodes’ children also belongs to that HDAG;
that is, there are no ‘dangling’ pointers. Figure 2 above
is an example of a rooted, complete HDAG.
HDAGs have a number of useful properties.
Automatically acyclic: Since creating an HDAG with
a cycle in the parent-child relation amounts to solving
equations of the form

H(H(x;d2);d1) = x
where H is the underlying cryptographic hash function,
which we conjecture to be cryptographically hard, we
think it is safe to assume that any set of HDAG nodes
is cycle free. All of the HDAGs we generate are
acyclic barring a hash collision and it seems extremely
unlikely that a random error would corrupt one of our
HDAG nodes, resulting in a cycle.
Unique root hash: given two rooted, complete
(acyclic) HDAG's H1 and H2, they are the same if and
only if their root hashes are the same. This is a
generalization of the ‘comparison by hash’ technique
with the same theoretical limitations [16]; in particular,
this property relies on the assumption that finding
collisions of the cryptographic hash function is
effectively impossible. More precisely, it stems from
the fact that a root hash is effectively a hash of the
entire HDAG because it covers its direct children's
hashes which in turn cover their children's hashes and
so on. By induction, it is easy to prove that if H1 and
H2 differ yet have the same root hash, there must exist
at least two different nodes with the same hash.
Automatic self assembly: Because all the pointers in
an HDAG are hashes, given an unordered set of HDAG
nodes we can recreate the parent-child relationship
between the nodes without any extra information. To
do this, we first de-serialize the nodes to get access to
the hash pointers. We then compute the hash of every
node. Now we can match children with parents based
on the equality of the hash pointer in the parent with
the hash of the child.
Automatic structure sharing: Not just single nodes
are automatically shared within and between HDAGs;
sub- DAGs representing shared structure are as well.
Consider Figure 3 below; it shows two snapshots of the
same directory tree taken on adjacent days. Only one
file (labeled old/new file) changed between the
snapshots. Every node is shared between the two
snapshot representations except the modified file’s
content node, its metadata node (not shown), and the

nodes representing its ancestor directories. In general,
changing one node of an HDAG changes all of that
node’s ancestor nodes because changing it changes its
hash, which changes one of the hash pointers of its
parent, which changes its parent's hash, which changes
one of the hash pointers of its grandparent, and so on.

old root hash

my docs

projects personal

hobbies

new root hash

my docs

hobbies

old hobbies new hobbies

old my docs new my docs

old file
new file

Figure 3: Structure sharing between HDAGs

2.3 Snapshot representation
The snapshot representation described in Section 2.1
has the major drawback that if even one byte of a file is
changed, the resulting file’s content node will be
different and will need to be uploaded in its entirety.
To avoid this problem, we break up files into, on
average, 4 KB pieces via content-based chunking.
Content-based chunking breaks a file into a sequence
of chunks based on local landmarks in the file so a
local modification to the file does not change the
relative position of chunk boundaries outside the
modification point [21,22]. This is basically equivalent
to breaking a text file into chunks at newlines but more
general; editing one line leaves the others unchanged.
If we used fixed size blocks instead of chunking,
inserting or deleting in the middle of a file would shift
all the block boundaries after the modification point,
resulting in half of the file’s nodes being changed
instead of only one or two.
We use the two-threshold, two-divisor (TTTD)
chunking algorithm [13], which is an improved variant
we have developed of the standard sliding window
algorithm. It produces chunks whose size has smaller
variance; this is important because the expected size of
the node changed by a randomly-located local change
is proportional to the average chunk size plus the
variance divided by the average chunk size. (Larger
chunks are more likely to be affected.)

2.3.1 The chunk list
With chunking, we also need to represent the list of
hashes of the chunks that make up a file. We could do
this by having the file metadata node have the file's
chunks as its children. However, the resulting
metadata node can become quite large: since we
currently use 17-byte long hashes (MD5 plus a one
byte hash type), a 10 MB file with average chunk size
of 4 KB has approximately 2,500 chunks so the list of
chunk hashes alone would be 42 KB. Since the
smallest shared unit can be one node, to maximize
sharing it is essential to have a small average node size.
With this representation, changing one byte of this file
would require sending over 46 KB of data (1 chunk
node and the metadata node).
We introduce the idea of chunking the chunk hash list
itself to reduce the amount of chunk list data that needs
to be uploaded when a large file is changed. We chunk
a list of hashes similarly to file contents but always
place the boundaries between hashes and determine
landmarks by looking for hashes whose value = -1 mod
k for a chosen value of k. We package up the resulting
chunk hash list chunks as indirection nodes where each
indirection node contains no data but has the
corresponding chunk's hashes as its children:

Landmark Hashes

Indirection Nodes

We choose our chunk list chunking parameters so that
indirection nodes will also be 4 KB on average in size;
this corresponds to about 241 children. We use
chunking rather than just dividing the list every n
hashes so that inserting or deleting hashes does not
shift the boundaries downstream from the change
point. Thus, even if ten chunks are removed from the
beginning of the file, the indirection nodes
corresponding to the middle and end of the file are not
affected.
This process replaces the original chunk list with a
much smaller list of the hashes of the indirection
nodes. The resulting list may still be too large so we
repeat the process of adding a layer of indirection
nodes until the resulting chunk list is smaller than a
desired threshold, currently 2. Files containing no or
only one chunk of data will have no indirection nodes.
The final chunk list is used as the list of children for
the file metadata node.
The result of this process is an HDAG at whose leaves
are the chunks, and whose non-leaf nodes are the
indirection nodes. This HDAG, in turn, is pointed to
by the file metadata node. Thus, we use the chunking

scheme and the indirect nodes as a natural extension of
the HDAG representation of directory structures (see
Figure 2).
Under this representation, a 10 MB file has
approximately 2,500 data chunks, 11 first level
indirection blocks, one second level indirection block,
and one file metadata node. The overhead of making a
small change in this file ignoring the metadata node's
contents and ancestors is the size of one chunk (~4 KB)
plus the size of one first level indirect node (~4 KB)
plus the size of the second indirect block (~17 bytes),
which sums up to roughly 8 KB, which is much better
than the 46 KB a flat representation would have
required.

2.4 Efficient incremental upload and storage
Efficient incremental upload for snapshots can be
described as follows: there is a site, the source, where
an up-to-date copy of a directory structure exists, and
another site, the target, where one or more older
snapshots of the same directory structure exist. The
connection between the two sites may be slow and
unreliable. It is required to create a snapshot of the
current contents of the source directory on the target,
minimizing the transfer time and maximizing the
reliability.
The properties of HDAGs make them ideal for use in
implementing efficient and reliable transfers such as
incremental upload: First, the automatic self-assembly
property means that the HDAG nodes can be gathered
from multiple sources (e.g., possibly stale caches), in
any order. No matter where the nodes come from, there
is only one way to put them together to get an HDAG.
Second, the unique root hash property lets us check
when a transfer has successfully and correctly
completed: if the target has a complete, rooted acyclic
HDAG whose root hash is the same as that of the
source HDAG then we have a strong guarantee that the
HDAG at the target is identical to the HDAG at the
source. Any extra received nodes not part of this
HDAG (e.g., nodes corrupted in transit) may be
discarded. If the HDAG is incomplete, it is easy to
determine the hashes of missing nodes.
Third, the automatic structure sharing property ensures
that many nodes will be shared between the source and
target. Such nodes need not be transmitted if they can
be determined to already be present on the target. This
can be done by querying the existence of each source
node at the target by hash (this uses much less space
than sending the node itself). Fourth, by taking
advantage of the unique root property, it is possible to
query the existence of an entire sub-DAG with root
hash h by sending a single hash, h: if the target replies
that it has a complete sub-HDAG with root hash h,

then it must have the same sub-DAG the source has;
this ‘compare by root’ technique can be much more
efficient than querying about individual nodes when a
lot of structure is shared.
Combining these ideas, we get the following algorithm:
The incremental upload algorithm runs on the client
system. Let H be the complete HDAG representing the
source directory structure. The client agent traverses H
in some order and for each node N encountered,
queries the remote server whether it has the complete
DAG whose root is N. N is transmitted only if the
answer is negative. If the answer is positive, then the
children of N need not be traversed. The remote server
replies with the hashes of the nodes it receives,
allowing retransmission if needed. Once the client has
finished traversing H, it tells the remote server to
finalize the version using the HDAG with root hash
H’s root hash.
There is a great deal of flexibility in the order in which
the nodes of H are generated and traversed. In
particular, we do not require that the whole of H be in
memory at the same time. Moreover, there can be
multiple threads working on different parts of H
concurrently. Currently, to bound the client's RAM
usage even though files may be arbitrarily large, we
use compare by root only for DAGs representing files
whose root hashes we already know from a previous
upload; for all other nodes, we query existence
individually. By default, we maintain a small cache on
the client of previously uploaded normal files mapping
their pathname plus modification time when last
uploaded to the root hash of the DAG that represented
them. If these files have the same modification time as
the last time they were uploaded, we can avoid
regenerating their representative DAGs if compare by
root succeeds.
2.4.1 Efficiency and reliability
Our current algorithm is efficient: each untouched file
requires one query for compare by root, each other
node (e.g., directories and the nodes in changed files)
requires one query for compare by hash, and each new
node additionally must be transmitted. Because queries
contain only a single hash, which is 240 times smaller
than the average 4 KB node size we use, we effectively
send only the parts of the HDAG that have been
modified since the previous snapshot. By careful
design of our snapshot representation (see Section 2.3),
we have ensured that small local changes to the source
directory structure change as few HDAG nodes as
possible.
To minimize the latency of the query-response,
queries and nodes are sent in one thread while the
responses are processed asynchronously in another
thread; we also batch messages to reduce overhead.

HDAG nodes are computed in parallel with
querying/sending. Computing HDAGs is relatively
fast: a 3.2 GHz Xeon Windows PC can scan, compute
HDAG nodes, and count how many unique HDAG
nodes there are in an in-cache (i.e., no disk I/O)
filesystem tree that contains 64 directories, 423 files,
and 220 MB of data at over 18 MB/s. Accordingly, in
our experience HDAG computation time is normally
dominated by transmit time (slow links) or client disk
scan/read time (fast links).
Because the JS stores each node only once, these same
properties allow us to store multiple successive
snapshots of the same directory tree in very little space;
in effect, storing another snapshot requires as much
space as would be required to incrementally upload
that snapshot.
What happens if something goes wrong during the
upload process? If some nodes get corrupted in transit,
then we will detect that by comparing the returned
hashes, and the nodes will be re-sent. What if the
upload process is interrupted for some reason? Let us
say that 70% of the way through the transfer the client
crashes. All we have to do is to start the upload process
again from the beginning (no client state need be kept).
Since we still have all the HDAG nodes that have
already been transferred on the server, very quickly the
client will reach the same point in the process where
the previous transfer was interrupted, and continue
from there. The only time lost is the time to scan the
source directory and construct the HDAG again, which
is a fraction of the transfer time. Because of the
strength of the cryptographic hash we use and unique
root hash property, we can be very sure if the transfer
succeeds that no errors have been made.

2.5 Implementation
The JS server, about 13,000 lines of C++, runs on a
single Windows or Linux machine and supports
multiple concurrent client TCP connections. The basic
JS client is a command-line program, about 15,000
lines of pure Java, which can run on any operating
system that supports Java 1.4.
The Jumbo Store, unlike other content-addressable
stores [5,24,29], is an HDAG-aware store. That is, in
addition to operations to store and retrieve the basic
unit of storage (the node for JS) by hash, the JS server
supports operations on entire HDAGs. For example, it
supports ‘compare by root’ queries (“do you have a
complete HDAG with root hash h?"), "how big is the
HDAG with root hash h?", and the deletion of entire
HDAGs (really versions). The JS server does not
interpret nodes’ data fields and knows nothing of
snapshots. The protocol the JS speaks has no
connection-specific state and all messages are

idempotent, allowing easy retransmission in case of
lost messages or connections.
JS data is stored in a series of large data files on disk;
an in-memory hash table indexes the nodes stored in
the data files by their MD5 hash. A separate file for
each version contains only that version’s root hashes—
partial versions may have multiple roots. To support
deletion, the index also maintains a reference count for
each node where each version root is considered a root
for the purposes of reference counting. Occasionally a
background process compacts data files by copying
only the nodes with a nonzero reference count to a new
file. This simple reference counting garbage collection
scheme works well because HDAGs are acyclic.
Due to space limitations, we will not discuss
downloading snapshots or the other operations the JS
client supports further except to note that we use a
sophisticated tree pre-fetching algorithm to avoid
pipeline stalls during downloading.

3 The Utility Rendering Service
The Utility Rendering Service (URS) is a batch utility
service that performs the calculations required to
render a 3D animated movie. It gives animators access
to a large pool of resources to perform the rendering,
and allows them to purchase rendering resources when
needed. Animation is an interesting domain in which to
test technologies for Utility Services because of the
natural cycles in demand for resources inherent in a
typical movie production cycle.
The URS does not fundamentally change the way in
which an animator works; they still use the tools they
are familiar with. However, it does offer the potential
for a more efficient and interactive style of work
because animators have access to a more powerful set
of resources than they could otherwise economically
afford, allowing the visual quality settings to be turned
up, and allowing the animator to be more experimental
because the turnaround time for scenes is reduced.
The Utility Services model is particularly attractive for
small animation organizations, because it allows them
to acquire computing resources at short notice when
needed, allowing individuals and small teams to
dynamically form and take on projects that would
otherwise not be possible if only in-house computing
resources were used. Because of space limitations, we
will concentrate here on only the aspects of the URS
that are relevant to the use of the JS.

3.1 User model
Animators use a commercial content creation
application called Maya® [3] to create the digital
models that define their 3D animated movie, including
the shape and movement of characters, backgrounds,

and objects, and associated textures, lighting, and
camera definitions. Maya uses over a dozen file
formats including a variety of image formats (e.g., JPG
and TIFF) and several proprietary formats; most of
these are binary formats, although a few are ASCII
(e.g., the MEL scripting language).
To interact with the URS, animators use a Java
application called the URS Client, running on one or
more of their computers. The URS Client allows users
to upload input data, submit rendering jobs, monitor
the progress of jobs, download rendered frames, and
manage the data stored on the server.
We imagine a dynamic, competitive market for Utility
Services, where customers may only subscribe to a
service on demand and for limited periods, based on
factors such as price and functionality. Accordingly,
the barrier for successful subscription to, and use of, a
service needs to be low. Towards this end, the URS
client is written in pure Java for operating system
portability, automatically works through firewalls, is
easy to download, and is self updating.
The URS separates the tasks of uploading animation
models, rendering models into frames, and
downloading frames for viewing, allowing them to be
performed independently and, in many cases, in
parallel. Uploading input data (a directory tree
specified by the user containing a consistent set of files
that can be rendered) results in a new snapshot of the
input data stored at a URS server; these snapshots are
referred to as "versions" by the URS system. Versions
remain until explicitly deleted by a user but are subject
to an overall space quota. Note that the root of the
input data directory tree can be changed each time a
new version is created, so, unlike a source-code
versioning system like CVS, the structure of the files
and directories may change radically from one version
to the next.
To render frames, an animator submits a new job
request against a specific version, specifying the name
of a scene file within that version and the frame
numbers to compute. A job can be submitted against a
version any time after its uploading has been initiated.
Allowing multiple jobs per version and rendering
multiple versions at the same time greatly increases
flexibility. For example, an animator may wish to
interactively make several changes to a character
model and experiment with which looks best, and have
the rendering service compute each possibility
simultaneously.
Newly rendered frames are downloaded in the
background by default as they become available.
Alternatively, animators may explicitly request when
and which frames should be downloaded.

3.2 Architecture
The overall architecture and data flow of a URS
instance is shown in Figure 4 below. A server-side
subsystem of URS, the Asset Store, manages the
transfer and storage of the input and output data. The
Asset Store consists of two processes (Asset Manager
and Jumbo Store) and three internal storage areas, each
with an associated storage quota that users must keep
within.
The Version File Store stores the data managed by the
JS server process; it contains in compressed form the
available URS versions and possibly a partial version
in the process of being uploaded. The Output Content
Store stores the rendered frames generated by
processing nodes.
The remaining storage area is the Version Cache (VC),
which stores a subset of the versions held in the Jumbo
Store in their fully expanded form, ready for use by the
processing nodes. The VC is needed because the JS
currently only supports uncompressing an entire
snapshot at a time, a time-consuming operation, and
there is not enough room to keep every version in
expanded form.

URS Instance
Service
Manager

Processing
Nodes

Jumbo Store
Server

URS Client

Job
Controller

Version
Cache

Output
Content
Store

Version
File Store

Client
Asset

Manager

Client Job
Controller

Asset Cache

Shared Storage

Local
storage

Asset
Manager

Input
Data

Jumbo Store
Transfer Client

Input data flow
Output data flow

Control & events

Key
Output Data

Transfer Client

Figure 4: URS architecture and data flow

The lifecycle and state of input data versions is
managed by the Asset Manager. Versions have a well-
defined lifecycle, representing the stages of creation,
transfer, archival to Jumbo Store, restore to VC,
deletion from VC, and removal. Important changes to
the Asset Manager state are held persistently in a
database so that state can be fully recovered on service
instance restart even after failure. Incomplete
asynchronous operations on input data versions, such
as upload, extraction, or deletion, are either cancelled
or completed as appropriate. To keep the design

simple, only one upload is permitted at a time per
service instance.

3.3 Client-server communication
Communication between all components running in the
URS Client and those in the URS is implemented over
a single Secure Socket Layer (SSL) encrypted socket
connection made from the client. This gives automatic
client firewall traversal, the ability to easily terminate
in a single operation on the server all interactions with
a specific user, and, similarly, the ability to reestablish
communication in the event of temporary connection
failure with a single operation. However, the
disadvantage is that all data, control, and event
protocols must be multiplexed down a single channel.
All client-server communication, for data, control, and
events, is implemented over a simple object passing
and addressing abstraction called the Message Object
Broker (MOB), which is layered above the SSL socket.
The MOB allows serialized Java objects to be
exchanged across the socket to named recipients on the
remote side, and offers a variety of call semantics such
as request-reply, buffered writes, and direct object
passing. It also implements a simple keep-alive
mechanism, shared by all protocols using the MOB to
detect connection failures. The pure Java
implementation strategy, and the use of serialized Java
objects, did not prove to be a problem for acceptable
performance of bulk data transport.

4 SE3D Results

4.1 Setting
The URS was offered to 11 small teams of animators
during an animation showcase, called SE3D, to create
high-quality short animations. The SE3D animation
showcase was a unique experiment, conducted over a
period of 10 months, giving new, creative talent from
the animation industry access to a set of research
technologies for Utility Services, together with a large
pool of computer resources. The trial involved up to
120 dual 3 GHz Xeon processor servers, each with 4
GB RAM, and a total of 4 TB of storage. The URS
server-side components, including the Jumbo Store
servers, were deployed in a data centre in the US, while
the animators were all located in the UK. Thus all data
transfers had to traverse the public Internet over a
transatlantic link.
There was considerable variation between teams in
working methods, kinds of Internet connections,
number of animators using the URS, how often and
how many times they uploaded, how many client
machines they used, how big their movie source was,
and the like. Table 1 below summarizes each team's
use of the URS upload facility; to preserve privacy we

have assigned teams service instance numbers in order
of increasing movie source size. Here, ‘uploads’ is the
total number of uploads attempted by that instance and
‘logged’ is the number of those uploads for which we
have correctly logged information—because JS was
added to the URS after SE3D started and because some
early bugs caused bad logging, we do not have useful
information for some early transfers; in particular, we
have no trustworthy data for instance 0 so it is omitted
from the rest of this paper. The remaining two
columns give the average version size (i.e., movie
source size) and average number of files involved in
the correctly logged uploads for that service. Note that
size here refers to the size of the version on the client,
not the amount actually transferred to or stored at the
Jumbo Store.

service
instance uploads logged

average
size
(MB)

average
files

0 43 0
1 124 17 92.0 24.7
2 87 68 109.8 21.2
3 287 286 143.7 5025.5
4 217 122 342.7 145.0
5 379 263 351.4 76.4
6 32 29 352.3 91.4
7 229 209 360.1 99.8
8 55 42 1873.6 225.6
9 125 109 2498.5 773.6

10 202 169 3046.3 4709.3
avg 161.8 119.5 917.0 1119.3
all 1780 1314 859.3 1929.0

Table 1: Use of the upload facility

All but one service exploited the Jumbo Store's ability
to hold multiple versions in order to render multiple
versions at the same time. Although most services
rendered a maximum of three or four versions
simultaneously, two services rendered 7 and 10
respectively versions at the same time.

4.2 Reliability and robustness
Transferring gigabytes of data via TCP without higher
level end-to-end checking and retransmission is
problematic: given TCP's 16-bit checksum and
assuming a 1% packet error rate and 1500 byte packets,
we expect an undetected data corruption error to occur
once every 9.2 GB of data. Indeed, the authors were
unable to check out a 12 GB Subversion repository
over the transatlantic cable due to repeated network
errors and Subversion's inability to restart incomplete

transfers where they left off. By contrast, our first
attempt to copy the same data via JS worked perfectly.
When used independently, Jumbo Stores verify each
received chunk using cryptographic checksums,
requesting retransmission as needed, to handle
transmission errors. They also reconnect transparently
should a TCP connection be broken due to an error or a
timeout. Accordingly, neither kind of error requires
restarting an upload.
As incorporated into the URS, Jumbo Store traffic is
sent over SSL using a supplied MOB connection.
Because of SSL’s cryptographic checksums, any data
corruption results in a broken connection.
Unfortunately, while the URS can automatically
reestablish a new connection, it cannot do so in a
manner transparent to the MOB's clients, which
include the JS. It can, however, automatically restart at
the beginning an upload aborted due to a broken
connection. Because the JS upload protocol does not
resend data already on the Jumbo Store, we quickly
scan forward to the furthest point the upload previously
reached.
During SE3D, there were 262 restarts, the vast majority
of which (251) were for service instance 5, whose
Internet connection appears to have been unreliable at
times—1 transfer restarted 58 times before the user
stopped it. Inspecting the logs shows that 91.7% of the
uploads succeeded, 7.8% of the uploads were aborted
by users before they completed, and 0.4% of the
uploads failed due to URS problems unrelated to the
JS. At most 12% of the user aborts can be attributed to
frequent restarts. The remaining aborts are presumably
due to users realizing they had made a mistake or
wishing to upload instead an even newer version. If we
count the later as successes, then the overall URS
upload success rate exceeds 98.6%.
The only version data loss we suffered occurred early
on due to a bug in the JS server's garbage collector.
The bug was quickly fixed and we were able to recover
much of the data from the URS Version Cache.

4.3 Compression
For the purposes of this and Section 4.4, we analyze
only the 1092 uploads (83% of the correctly logged JS
uploads) that succeeded, did not restart, and
immediately follow a successful upload. This is
necessary to ensure meaningful statistics; e.g., an
aborted upload may have partially uploaded a snapshot,
making the next upload seem artificially efficient.
Table 2 below shows average compression ratios (i.e.,
compressed size/uncompressed size) of various kinds
for each of the instances (1-10), all the instances
treated as a single service (all), and the average service
instance average compression ratio (avg, the average of

the individual instance numbers). The all numbers
differ from the avg numbers because they more heavily
weigh instances with large numbers of
uploads/versions. We will quote both numbers as avg
(all #).

service
instance upload

within
version

across
versions both

1 20% 39% 37% 16%
2 9.3% 48% 16% 10%
3 6.7% 69% 9.7% 6.8%
4 1.4% 41% 3.7% 1.7%
5 2.1% 30% 5.6% 2.1%
6 19% 81% 21% 17%
7 1.6% 34% 4.1% 2.0%
8 1.6% 75% 9.1% 7.2%
9 0.52% 28% 15% 3.8%

10 1.1% 36% 1.5% 1.0%
avg 6.3% 48% 12.3% 6.8%
all 3.5% 44% 7.3% 4.0%

Table 2: Various compression ratios

The upload column shows the average upload ratio of
the actual number of data and metadata bytes uploaded
over the total number of data bytes in the snapshot
being uploaded. Thus, a conservative approximation
of our upload compression ratio is 6.3% (3.5%);
equivalently, our upload compression factor (1/ratio) is
16x (29x). While analyzing the logs, we discovered a
performance bug: a second write of a block while its
first write was still in progress could result in that
block being transmitted twice. We conservatively
estimate that had this bug been fixed beforehand, our
upload compression would have instead been 5.5%
(3.2%) or 18x (31x).
The ‘within version’ column shows the average version
storage compression ratio under the restriction that no
sharing is permitted between versions; the restriction is
equivalent to requiring each version to be stored on a
separate Jumbo Store by itself. These numbers—48%
(44%) or 2.1x (2.3x)—are surprisingly good and
indicate that movie sources are fairly redundant.
The ‘across versions’ column attempts to measure the
degree of storage compression due to sharing between
versions (of the same service instance) rather than
within versions. It shows the average ratio of the
additional storage required to store a new version on a
Jumbo Store containing all surviving previous versions
over the amount of storage required to store that
version separately. Between version compression
gives us 12.3% (7.3%) or 8.1x (14x). Note that the
degree of storage compression possible due to sharing

between versions depends on user deletion behavior: if
users delete all versions before each upload, for
example, we will get no storage compression due to
sharing between versions.
The ‘both’ column shows the average actual version
storage compression ratio we achieved, including the
savings from sharing within versions and across
versions (of the same service instance). We achieved a
storage compression ratio of 6.8% (4.0%) or 15x (25x).
These numbers mean that 10 successive versions (one
full and nine incrementals) can be stored by a JS in the
space required to store one uncompressed version.

The astute reader will have noticed that our storage
compression ratio is slightly worse than our upload
compression ratio; this is because our URS upload
code keeps a copy of the last (partial) upload in a
staging area on the server; this reduces the amount of
data that must be transferred, but does not count as
previously stored data for the purpose of determining
how much new data has been added to the store.

4.4 Speed
The median time from an animator requesting a version
be uploaded to all of that version's bits being known to
be present on the Jumbo Store (upload) is shown for
each service instance in Figure 5 below; the average
median time to upload a version (avg) was 4.4 minutes
and the median time for all uploads (all) was 1.8
minutes.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 avg all
service instance

m
in

ut
es

extract
upload

Figure 5: Median upload and extraction
times

Also shown is the median time from the request until
the new version is available in the URS’s Version
Cache (upload+extract), which is required before
rendering can start. Extracting a version involves
downloading that version from the Jumbo Store to the
Version Cache located on the same machine. Because
the Version Cache copy is uncompressed, extraction
time is necessarily proportional to the uncompressed
size of the version rather than the much smaller amount

of data actually sent/stored in the Jumbo Store.
Requiring extraction is suboptimal; in the future we
may be able to eliminate it and the Version Cache
altogether in favor of rendering directly from the
Jumbo Store data via a filesystem abstraction.
Extraction took 2.5 (2.0) minutes, yielding an overall
transfer time of 6.9 (3.8) minutes.
To put this in perspective, downloading a single frame
(~900 KB) took 10 seconds on average. Although an
average of 250 frames were downloaded per version
(~50 minutes of total download time), most of these
would have been downloaded either in the background
while working or overnight—a small sampling of
frames usually suffices to find errors/verify changes.
Rendering a frame took a few minutes to several hours
depending on the complexity of the frame (e.g., fur
slows things down). Frames can be rendered in
parallel, however.

0
30
60
90

120
150
180
210
240
270
300
330

1 2 3 4 5 6 7 8 9 10 all

service instance

m
in

ut
es

Figure 6: Distribution of upload

We quote median rather than mean values in this
subsection because the underlying distributions are
highly skewed toward smaller values; Figures 6 and 7
provide information about the distribution of upload
for each service instance using box plots. Each box
ranges from the 25th percentile value to the 75th
percentile value and is divided into two parts by a line
at the median (50th percentile) for value. Lines extend
vertically from each box to the minimum and maximal
values of the given distribution. The high tails of the
upload distributions drop off roughly inversely to time.
Upload times are affected by the actual amount of
bandwidth available and the amount of data that needs
to be uploaded. Actual bandwidth, which we were
unable to measure, depends on the speed of the
animator's connection and the amount of congestion
experienced from other programs on the same
computer, neighbors in the case of shared connections
(e.g., cable modems), and other users of the
transatlantic cable. Except for two of the instances,
most of the variance in upload times for an instance is

due to variance in the amount of data that needed to be
uploaded; Figure 8 shows the distribution of the sent
user data size for each instance. The average median
amount was 3.8 MB and the median amount for all
uploads was 0.80 MB.

0
5

10
15
20
25
30
35
40
45
50
55
60

1 2 3 4 5 6 7 8 9 10 all

service instance

m
in

ut
es

Figure 7: Detail of bottom of Figure 6

0
25
50
75

100
125
150
175
200
225
250

1 2 3 4 5 6 7 8 9 10 all

service instance

m
eg

ab
yt

es

Figure 8: Distribution of amount of user data
sent

Although we do not know what the actual raw
maximum bandwidth available for any given upload
was, we can estimate the effective bandwidth (total
size of user data sent/time required) for each instance;
Table 3 below shows the results of applying linear
regression to each instance’s sent user data size, upload
time pairs excluding a few outlier points whose
residual's were more than three standard deviations
from the norm. For example, we predict service 1
sending 5 MB of file data would take 25 +
5*1024*8/187 = 244 seconds. Fit was good (high R2)
for all service instances except 5 and 7; recall that
service 5 had numerous connection problems.
These bandwidth calculations do not include control
messages, queries, metadata, or TCP overhead.
Overhead includes both setup/finishing steps and work
proportional to the size of the version being uploaded

rather than the amount of data being transferred (e.g.,
queries).

service
instance

bandwidth
(Kbits/s)

overhead
(s) R2

1 187 25 0.998
2 155 18 0.989
3 198 81 0.989
4 706 29 0.981
5 638 59 0.307
6 200 166 0.983
7 184 66 0.601
8 165 103 0.954
9 101 129 0.999

10 192 176 0.929

Table 3: Estimated effective bandwidth for
each service instance

4.5 User feedback
Extensive interviews were conducted with the teams of
animators before and after SE3D. We report here
mostly the parts relevant to the use of the Jumbo Store
in the URS. The interview subjects agreed
unanimously that the URS was easy to setup and
install; 33% thought it met expectations while 56%
thought it was simpler and easier than expected. More
telling, almost all subjects said they would be
interested in it for commercial use. The faster
rendering speed and the ability to be operated remotely
of the URS led several of the animators to change their
working practices; one animator was in The Hague for
nearly 6 weeks and continued working by using his
laptop in Internet cafés.
Animators are not technical people. They are very
visual/tangible thinkers; this led to some difficulties
with the programmer-influenced user model and
interfaces. We discovered after SE3D was over that
there was a fair amount of confusion on how uploads
worked and what versions were. Some animators
mistakenly thought upload time was proportional to the
amount of data in their upload directory; this caused
some of those to take care to “upload” only the fraction
of the movie source relevant to a given rendering step
by copying the relevant files from their actual source
directory.
There was also confusion about the meaning of
“version”. In the mind of the animators, a version is a
snapshot of a set of files defining a project that have
reached some key milestone in the project. They were
thus puzzled when a minor change produced a new
version. The animators’ normal work practice was to
keep each revision of a given scene file by using

related filenames (e.g., clouds.1, clouds.2, etc.); some
insisted on this practice even though they thought
(erroneously) that it was hurting their upload
performance.

5 Comparison with Rsync
The best alternative to the Jumbo Store we know of for
uploading files across a low bandwidth connection is
Rsync [26], an open source utility that provides fast
incremental file transfer. Accordingly, we compared
uploading a subset of the SE3D data across the
transatlantic cable using the Jumbo Store
(independently, with no SSL) and using Rsync.
The data used was a subset of the versions uploaded by
the animators; more precisely, the data is from a copy
made during a maintenance window late in SE3D’s life
of the Jumbo Stores' data files. It is thus lacking any
versions uploaded after or deleted before that point.
Although this is the most representative data we have,
it is likely less compressible than the actual sequence
of versions uploaded during SE3D because it is
missing intermediate versions. The data used contains
441 versions distributed as follows:

service
instance versions

service
instance versions

1 90 6 15
2 41 7 84
3 12 8 6
4 76 9 2
5 99 10 16

Note that we have very few versions for service
instances 8 and 9.
The uploading was done from a 1.8 GHz Pentium 4 PC
with 1 GB of RAM running Suse Linux 9.1 in Palo
Alto, California to an 800 MHz Pentium III PC with
512 MB of RAM running Red Hat 9 Linux in Bristol,
England. Both PCs are inside the HP corporate
firewall, but the connection between them runs through
the public Internet and over the transatlantic cable.
Previous experiments indicate that the transatlantic
cable is the bottleneck for this connection, with a peak
bandwidth of slightly less than 2.7 Megabits per
second (2800 Kb/s).
Our experimental procedure was as follows: for each
service instance, we first emptied the destination
directory (for Rsync) or store (for JS). We then
uploaded each version belonging to that instance in
turn in the order they were originally uploaded. Every
upload for a given service instance other than its first
thus had the potential to be an “incremental” upload.
We used tcpdump and tcptrace to record the elapsed
wall time and number of unique bytes sent (i.e., the
total bytes of data sent excluding retransmitted bytes

and any bytes sent doing window probing) and
received of each upload. Due to time constraints (a full
run through of all the data for a single method takes
weeks), we were only able to repeat this procedure
once per upload method.
Figure 9 below compares the number of unique bytes
transmitted (i.e., sent or received) by Rsync, by our
original Jumbo Store with the block retransmission bug
fixed (JS), and by an improved version of the Jumbo
Store (JS+), which we describe shortly. For ease of
comparison, we present normalized numbers where
Rsync's performance is designated as 1.0. In addition
to per service instance numbers, we also show numbers
for combining all the uploads (all, with emptying when
switching instances) and the median of the instance
numbers (med). Overall, JS transmitted 52% (med
53%) or 1/1.92 (med 1/1.89) of the bytes that Rsync
did.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5

1 2 3 4 5 6 7 8 9 10 MED ALL
service instance

Rsync
JS
JS+

Figure 9: Total bytes transmitted for each
method

We invoked Rsync with the “-compress” option, which
is recommended for low bandwidth connections and
has the effect of gzipping data before it is transmitted.
This compression is on top of Rsync's delta
compression, which attempts to send only the portions
of files that differ. Our experiments indicate that
failing to use -compress results in Rsync sending 190%
more bytes overall (all) on this data set.
Inspired by this result, we created an improved version
of Jumbo Store (JS+) that gzip's each set of chunks to
be sent during transmission; by default, each set of sent
chunks has 50 ~4 KB chunks for a total size of ~200
KB uncompressed. This change substantially increased
performance: JS+ transmits 1/2.5 (med 1/2.6) the bytes
that JS does and only 21% (med 21%) or 1/4.7 (med
1/4.8) of the bytes that Rsync did.
If we consider only the “full” uploads, JS+ transmits
only 39% (med 55%) of the bytes that Rsync does.
Considering only the "incremental" uploads instead,
JS+ transmits only 15% (med 12%) or 1/6.7 (med
1/8.3) of the bytes that Rsync does.
Figure 10 below compares JS+’s performance to
Rsync's using both bytes transmitted and time elapsed;

as with Figure 9, we have normalized so that Rsync's
performance is 1.0. Measuring by time, JS+ is only
3.4x (med 3.1x) faster than Rsync. We estimate using
linear regression that overall (all) actual bandwidth
(unique bytes transmitted/elapsed time) was 2.44 Mb/s
for JS+ and 2.49 Mb/s for Rsync with overheads of 6.8
seconds for JS+ and 3.0 seconds for Rsync.

0
0.1
0.2
0.3

0.4
0.5
0.6
0.7
0.8

0.9
1

1 2 3 4 5 6 7 8 9 10 MED ALL
service instance

JS+ bytes
JS+ time

Figure 10: Normalized JS+ performance vs.
Rsync

6 Discussion of results
The level of compression and reliability achieved by a
system is heavily dependent on the actual data to be
compressed and the setting it is deployed in: it is easy
to achieve 100% reliability in a controlled lab setting
or good compression by using synthetic data created
from the same distribution your compression algorithm
was designed to compress. SE3D represents the gold
standard in test data: large amounts of real data
collected over a long time from real users using the
system for its intended purpose. Because the services
were isolated from each other for security and
performance reasons, SE3D can be viewed as a series
of 10 natural experiments. The large variance in
outcomes between experiments—the upload
compression ratio varied by a factor of 38 and the
storage compression ratio by a factor of 16, for
example—indicates that animators differ greatly in the
characteristics that affect our system and Rsync's
performance. We expect our system to work as well or
better for longer movies (the SE3D animators created
~5 minute shorts) because movies are built from short
scenes and because there is more opportunity for reuse
of characters, sets, and the like. The performance of
Jumbo Store on other domains is currently unclear; we
are conducting experiments to address this.
The reliability of the Jumbo Store itself once we fixed
some initial bugs was perfect: all upload problems
were due to the URS, either directly or indirectly (i.e.,
the need for restarts due to MOB limitations), or
nonworking Internet connections beyond our control.
Clearly, the animators could have benefited from a
better explanation of how the upload process works:

the error-prone process of managing separate upload
and working directories used by some of them could
have been avoided. Likewise, future versions of the
URS should provide more workflow support and make
a distinction between “major” (meaningful to
animators) and “minor” (aka, JS) versions.
Aside from reliability, the most important metric for an
upload system is average upload time. We estimate that
our original system is 24 times faster than one that does
no compression: without compression and at the
observed effective bandwidths, the average service
median upload would have taken 2.8 hours. The
possible productivity improvements from switching
from several hours per upload to several minutes
should not be underestimated. Had we deployed
instead our improved version of Jumbo Store (JS+), we
estimate it would have speeded things up 1.5 times to
35 times faster than no compression and an average
median upload time of 2.3 minutes (4.8 minutes with
extraction). The variance in the amount of data that
needs to be uploaded and hence the upload times is not
too surprising if we consider the animation process
similar to that of program development: the changes
between program runs are mostly small, but
occasionally the programmer makes a major change
that cannot be tested incrementally.
The Jumbo Store—especially the improved version—
clearly outperforms Rsync for the SE3D-derived
benchmark. Primarily this is because JS+ sends only
1/5 the amount of data that Rsync does. We attribute
much of this reduction to the JS’s ability to exploit
sharing across files with different names, both within
versions and across versions. Because Rsync computes
pair-wise delta's between files with the same path
names, it cannot exploit this sharing. Although we did
not investigate the causes of this sharing, it is clear that
one cause is some animators’ use of numbered file
versions (e.g., “foo.1”, “foo.2”, etc.): because each new
file version has a new name, Rsync sees no sharing.
When Rsync is used to upload data to Linux, hard links
can be used to store multiple snapshots in a
compressed manner [25]: if a file is unchanged from
the last snapshot, Rsync can simply create a hard link
to the last snapshot's copy instead of creating a new
copy. This provides limited compression as even a one
byte change prevents any sharing and there is no
compression within files or between files with different
names. The low degree of compression does mean that
no extra extraction step would be needed if used with
the URS.

7 Related work
Content-addressable stores (CASs) [5,10,11,15,19,24,
29] allow stored items to be retrieved by their hash.
Flat CAS systems treat the items that they store as

undifferentiated blobs: the interpretation of each item
is entirely up to the store's clients. The Jumbo Store is
a non-flat CAS system: while it does not interpret
nodes’ data fields, it is HDAG-aware and does
interpret nodes’ children pointers. This allows it to
support important operations like ‘compare by root’
and version deletion that otherwise would require
clients to perform thousands to millions of more basic
operations, which is especially problematic over low
bandwidth connections.
Venti [23], a versioned file store, and CFS [9], a read-
only distributed file store, use HDAG-like structures at
the application level but rely on a flat CAS for storing
their data. SUNDR [19] and ROFS [15] use an HDAG
encoding of directory structures to ensure the integrity
of the contents on untrusted servers. They take
advantage of the unique root hash property by signing
just the root hash with the private key of a legitimate
authority. Any client with access to the public key of
that authority can then verify the integrity of the
contents. An intruder without access to the authority's
private key cannot modify the contents without being
detected, since modifying the contents will change the
root hash. These systems [9,15,19,23] do not use
chunking or take advantage of the properties of
HDAGs for facilitating directory synchronization.
While SUNDR offers multiple versions, it does not
seem to support the deletion of versions once a short
time period has elapsed.
THEX (Tree Hash Exchange Format) [7] specifies a
way to create a Merkle tree from a byte sequence,
encode the resulting tree and encapsulate it in an XML
file. Its main purpose is to allow verification of
fragments of the byte sequence from different sources
while trusting only one source to provide the root hash
of the tree. It is meant to be used in conjunction with
BitTorrent-like protocols to improve the detection and
retransmission of corrupted blocks before the whole
byte sequence is retrieved. Unlike our approach, THEX
encodes the whole Merkle tree for a byte sequence in
one message, so there is no sharing of intermediate
nodes. As a result, compared to a flat representation of
the block chunks, it actually increases the
communication overhead for the file. THEX does not
have any mechanism for encoding directory nodes.
Duchamp [12] describes a toolkit for synchronizing
directory structures accessed as NFS mounts. A hash
tree encoding of the structure of a directory tree,
similar to our HDAGs, is used for facilitating the
rapid synchronization of the ‘master’ and ‘slave’
directories. While Duchamp’s toolkit supports the
break up of large files into smaller pieces, it does not
use chunking or indirect nodes for efficient file
synchronization, and it does not support multiple

versions. BitTorrent [4] uses fixed-sized blocks and
compare by hash to transfer files.
Unlike these systems (Venti, CFS, SUNDR, ROFS,
THEX, Duchamp, and BitTorrent), many recent
systems including LBFS [21], CASPER [30], Pastiche
 [8], and TAPER [18] use chunking and compare by
hash to optimize communication and/or storage
requirements when multiple versions of a file exist. In
the case of LBFS, this is done to speed up the transfer
of files where the target may have already seen earlier
versions of the files (or at least fragments of them). All
of these systems use a flat sequence of hashes to
represent a file and thus would benefit from the use of
indirection nodes and HDAGs. They would also
benefit from upgrading to our TTTD chunking
algorithm.
TAPER [18] uses hash tree encodings of directory
structures to facilitate directory synchronization. The
hash trees used by TAPER are somewhat different
from the HDAGs described in this paper. They do not
encode the file and directory metadata, and as a result
cannot directly be used for verifying the integrity of the
directory structure on the target. The hash of
intermediate directories is determined by an in-order
traversal of all the children of the corresponding node,
concatenating all the children's hashes as well as
traversal direction information (e.g., H(“up”)), and
taking the hash of the concatenation. This is a more
computationally expensive procedure than that used by
our encoding, with no apparent advantage. While
TAPER uses chunking for file synchronization, it does
not treat the resulting chunks as children of the file
nodes in the hash tree. It uses a separate LBFS-like
algorithm for file synchronization, and does not use
indirect nodes to share sequences of long files. As a
result, the whole hash sequence needs to be transmitted
even if only one chunk has changed. TAPER does not
support versioning.
Comparison with LBFS: Compared with LBFS, our
combination of compare by root and indirection nodes
significantly increases the bandwidth efficiency of
transferring files. Where with LBFS the server has to
be queried for every chunk, with our algorithm whole
sub-trees of the directory structure can be skipped
when an identical copy exists on the server. Moreover,
because LBFS uses flat hash lists for its file
representation, the whole file representation must be
sent over the wire even if the modification to the file is
small.
LBFS is a file-level protocol: it does not have any
representation of the directory structure. As a result,
directory data is neither compressed, nor verified, in its
protocol. Our protocol, by contrast, which uses a
HDAG-based representation of directory structure, is
efficient, robust, and fault tolerant at the directory

level. LBFS does not provide for the efficient storage
of multiple versions of files or snapshots.
Note that distributed filesystems like LBFS are not
suitable for the URS or many other synchronization
applications because of their poor responsiveness (the
trans-Atlantic cable has high latency), need for
constant connectivity, and failure to respect the fact
that the client's contents not the server’s are the ground
truth. Providing a disconnected mode would help but
negates the primary value of using a distributed file
system for synchronization: sending changes as they
are made rather than all at once at the end. Supporting
multiple operating systems is substantially more
difficult with a distributed file system approach.
Comparison with Rsync: Even though Rsync is a
directory tree synchronization protocol, it does the
synchronization through pairwise file comparisons
based on files’ pathnames. As a result, it completely
misses intra-source sharing (when multiple files in the
source's directory tree share significant content) and is
completely stumped when directories or files are
renamed or moved. Our representation and algorithm
are insensitive to such changes, and can naturally
detect and exploit intra-source sharing when it exists.
In terms of reliability and robustness, Rsync verifies
data only at the sub-file level; it lacks any form of
overall verification.
Comparison with Grid: Solutions exist in the Grid
 [14] community to synchronize, manage, and process
data [1,2,6,14,28,31]. These approaches target a
different problem: high-performance computing
applications with relatively static, huge data sets
(possibly terabytes), and (multi-)gigabit-class
connectivity. Typical use cases in this environment do
not require support for simultaneous, overlapped
processing of multiple versions of frequently-updated
input content.

8 Future Work
There a number of ways the Jumbo Store and URS can
be improved:
Lazy extraction: Currently before a processing node
can start rendering, the entire relevant version must be
extracted from the Jumbo Store to the Version Cache.
This can lead to significant delay as well as
unnecessary work if not all of that version's files are
needed for the current rendering task. A better solution
would be to extract files only as needed directly from
the Jumbo Store. Accordingly, we are working on a
remote filesystem interface for JS so that clients (in
this case the processing nodes) can directly mount
read-only the filesystems contained in JS versions. It is
not clear that this will entirely eliminate the cost of
extraction as the lazy interface may be slower than

directly accessing an uncompressed version due to
poorer locality.
Trickle upload: The URS client currently sends
changes only when the user explicitly requests an
upload of a new version; consequently all the changes
since the last upload must be transmitted before
rendering can commence, leading to delays. A more
responsive system would use trickle uploading where a
background task periodically scans the user’s data and
optimistically sends any new data chunks to the Jumbo
Store. When the user finally requests an upload, few
chunks would likely remain to be sent, allowing
rendering to start sooner. Sent chunks that were
superseded by later changes would be freed later
during garbage collection.
Larger multi-user stores: Our current Jumbo Store
server uses an in-memory chunk index, which limits its
holding capacity to tens of gigabytes (compressed)
assuming ~4 KB chunks. While more than adequate for
a single SE3D service, other utility computing services
may have larger jobs or wish to share a single JS
instance between many services. To handle this, we are
developing a new JS server that uses a disk based index
and has support for access control and allocating
resources among users.

9 Conclusion
In this paper we described an HDAG-aware content
addressable store, the Jumbo Store. An HDAG is an
immutable data structure for representing hierarchical
data where hash pointers are used to connect the nodes.
We built an incremental upload mechanism for
directory snapshots that takes advantage of the unique
root hash, automatic self assembly, and automatic
structure sharing properties of HDAGs and the store’s
HDAG support, to efficiently and reliably upload large
directory snapshots over slow and unreliable public
internet connections. The store has built in facilities
for the creation, retrieval and deletion of versions,
which are named HDAGs. We used these facilities to
build a system for efficiently storing many versions of
a directory tree.
The ability to transmit large quantities of data over the
slow Internet connections typical of many
organizations, to be processed by Utility Services, is
often perceived as a barrier for widespread adoption of
the utility model. The JS was successfully used within
a Utility Rendering Service, used to create 3D
animated movies, and demonstrated that interactive,
data-intensive services can work well even over low-
bandwidth connections. The speed of upload offered by
the storage system encouraged users of the service to
work in an experimental fashion to try new ideas
containing variations of data content. The
synchronization and storage performance of the JS

with the real-world data produced by small teams of
animators has been analyzed and compares favorably
with other competing approaches, both in the URS
environment and under controlled experimental
conditions.

References
[1] W. Allcock et al. Secure, Efficient Data Transport and

Replica Management for High-Performance Data-
Intensive Computing. In Proceedings of 2001 IEEE
Mass Storage Conference, 2001.

[2] W. Allcock, J. Bester, J. Bresnahan, S. Meder, P.
Plaszczak, and S. Tuecke. GridFTP: Protocol extensions
to FTP for the grid. GWD-R (Recommendation), April
2002. Revised: Apr 2003, http://www-
isd.fnal.gov/gridftp-wg/draft/GridFTPRev3.htm.

[3] Autodesk Maya. http://www.autodesk.com/alias. Maya
is a registered trademark of Autodesk, Inc.

[4] BitTorrent: http://www.bittorrent.org/protocol.html
[5] W. J. Bolosky, S. Corbin, D. Goebel, and J. R.

Douceur. Single Instance Storage in Windows 2000. In
Proceedings of the 4th USENIX Windows Systems
Symposium, pp. 13-24. Seattle, WA (August 2000).

[6] D. Bosio, et al. Next-Generation EU DataGrid Data
Management Services. Computing in High Energy
Physics (CHEP 2003), La Jolla, California, March 24–
28, 2003.

[7] J. Chapweske. Tree Hash Exchange Format (THEX)
http://www.open-content.net/specs/draft-jchapweske-
thex-02.html

[8] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
Making Backup Cheap and Easy. In Proceedings of
OSDI: Symposium on Operating Systems Design and
Implementation (2002).

[9] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I.
Stoica. Wide-Area Cooperative Storage with CFS. In
Proceedings of the 18th ACM Symposium on Operating
Systems Principles (SOSP '01). Banff, Canada, Oct
2001.

[10] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming Space from Duplicate Files in
a Serverless Distributed File System. In Proceedings of
22nd International Conference on Distributed
Computing Systems (ICDCS 2002) (July 2002).

[11] P. Druschel and A. Rowstron. A. PAST: A Large-
Scale, Persistent Peer-to-Peer Storage Utility. In
Proceedings of HotOS VIII, pp. 75–80.

[12] D. Duchamp. A Toolkit Approach to Partially
Connected Operation. In Proc. of the USENIX Winter
Conference, pp. 305-318, Anaheim, California, Jan.
1997.

[13] K. Eshghi and H. K. Tang. A Framework for
Analyzing and Improving Content-Based Chunking
Algorithms. HP Labs Technical Report HPL-2005-
30R1, http://www.hpl.hp.com/techreports/2005/HPL-
2005-30R1.html

[14] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke.
Grid Computing: Making the Global Infrastructure a
Reality. The Physiology of the Grid, Wiley, 2003, pp.
217–249.

[15] K. Fu, M. Frans Kaashoek, and D. Mazières. Fast and
secure distributed read-only file system.
In Proc. of the USENIX Symposium on Operating
Systems Design and Implementation, pp. 181-196, Oct
2000.

[16] Val Henson. An Analysis of Compare-by-hash. In
Proceedings of the Ninth Workshop on Hot Topics in
Operating Systems (HotOS IX), Lihue, Hawaii, May
2003, pp. 13-18.

[17] HP Utility Rendering Service:
http://www.hpl.hp.com/SE3D/whitepaper-urs.pdf.

[18] N. Jain, M. Dahlin, and R. Tewari. TAPER: Tiered
Approach for Eliminating Redundancy in Replica
Synchronization. In Proc. of the 4th Usenix Conference
on File and Storage Technologies (FAST), Dec 2005.

[19] Jinyuan Li, Maxwell Krohn, David Mazieres, and
Dennis Shasha. Secure untrusted data repository
(SUNDR). In Proceedings of the 6th Symposium on
Operating Systems Design and Implementation, San
Francisco, CA, pp. 91–106.

[20] R. Merkle. Secrecy, authentication, and public key
systems, Ph.D. dissertation, Dept. of Electrical
Engineering, Stanford Univ., 1979.

[21] A. Muthitacharoen, B. Chen, and D. Mazieres. A Low-
Bandwidth Network File System. In Proc. of the 18th
ACM Symposium on Operating Systems Principles.
Chateau Lake Louise, Banff, Canada (October 2001).

[22] C. Policroniades and I. Pratt. Alternatives for Detecting
Redundancy in Storage Systems Data. In Proceedings
of the General Track, 2004 USENIX Annual Technical
Conference.

[23] S. Quinlan and S. Dorward. Venti: A New Approach to
Archival Storage. In Proceedings of the FAST 2002
Conference on File and Storage Technologies (2002).

[24] A. Rowstron and P. Drushel. Pastry: Scalable,
Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems. In Proceedings of the
IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware). Heidelberg, Germany
(November 2001).

[25] M. Rubel. Easy Automated Snapshot-Style Backups
with Rsync.
http://www.mikerubel.org/computers/rsync_snapshots/

[26] Rsync: http://samba.anu.edu.au/rsync/
[27] SE3D: http://www.hpl.hp.com/se3d
[28] H. Stockinger et al. File and Object Replication in Data

Grids. In Proceedings of 10th IEEE Intl. Symp. on High
Performance Distributed Computing. 2001.

[29] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.
Balakrishnan. Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications. Proceedings of the
ACM SIGCOMM 2001. San Diego, CA (August 2001).

[30] Niraj Tolia, Michael Kozuch et al. Opportunistic Use
of Content Addressable Storage for Distributed File
Systems. In Proc. of the General Track, USENIX 2003
Annual Technical Conference, pp. 127-140.

[31] W. Watson III, Y. Chen, J. Chen, and W. Akers.
Storage Manager and File Transfer Web Services, Grid
Computing–Making the Global Infrastructure a
Reality. Wiley, pp. 789-801.

