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Abstract
We have developed a new storage system called the 
Jumbo Store (JS) based on encoding directory tree 
snapshots as graphs called HDAGs whose nodes are 
small variable-length chunks of data and whose edges 
are hash pointers.  We store or transmit each node only 
once and encode using landmark-based chunking plus 
some new tricks. This leads to very efficient 
incremental upload and storage of successive 
snapshots: we report compression factors over 16x for 
real data; a comparison shows that our incremental 
upload sends only 1/5 as much data as Rsync.
To demonstrate the utility of the Jumbo Store, we have 
integrated it into HP Labs’ prototype Utility Rendering 
Service (URS), which accepts rendering data in the 
form of directory tree snapshots from small teams of 
animators, renders one or more requested frames using 
a processor farm, and then makes the rendered frames 
available for download. Efficient incremental upload is 
crucial to the URS’s usability and responsiveness 
because of the teams’ slow Internet connections. We 
report on the JS’s performance during a major field test 
of the URS where the URS was offered to 11 groups of 
animators for 10 months during an animation showcase 
to create high-quality short animations.

1 Introduction
Utility Computing describes the notion that computing 
resources can be offered over the Internet on a 
commodity basis by large providers, and purchased on-
demand as required, rather like gas, electricity, or 
water. The widespread belief is that computation 
services can be offered to end users at lower cost 
because of the economies of scale of the provider, and 
because end users pay only for the resources used at 
any moment in time.
Utility services are utility computing systems that offer 
the functionality of one or more software applications 
rather than raw processing or storage resources.

Possible utility services include finite element analysis,
data mining, geological modeling, protein folding, and 
animation rendering. An important class of utility 
service, which we call batch services, primarily 
processes batch jobs where each job involves 
performing a well-defined set of computations on 
supplied data then returning the results of the 
computations. The data for a job may be large and 
complicated, consisting of many files carefully 
arranged in a file hierarchy—the animation models for 
rendering a movie short can require gigabytes of data 
and thousands of files.
Providing batch services to individual consumers or 
small and medium businesses under these 
circumstances is difficult because the slow Internet 
connections typical of these users make moving large 
amounts of data to the servers very time-consuming: 
uploading the animation models for a movie short over 
a typical ADSL line with 256 Kbits/s maximum upload 
bandwidth can take over 17 hours. (Downloading of 
results is usually less problematic because these 
connections offer much greater download bandwidths.)
We believe this problem can be solved in practice for 
many batch services if incremental uploading can be 
used since new jobs often use data only slightly 
different from previous jobs. For example, movie 
development, like computer program development, 
involves testing a series of successive animation 
models, each building on the previous one. To spare 
users the difficult and error-prone process of selecting 
which files need to be uploaded, the incremental 
uploading process needs to be automatic.
We have developed a new storage system, the Jumbo 
Store (JS), that stores Hash-Based Directed Acyclic 
Graphs (HDAGs). Unlike normal graphs, HDAG nodes 
refer to other nodes by their hash rather than by their 
location in memory. HDAGs are a generalization of 
Merkle trees  [20] where each node is stored only once 
but may have multiple parents. Filesystem snapshots 
are stored on a Jumbo Store server by encoding them 



as a giant HDAG wherein each directory and file is 
represented by a node and each file’s contents is 
encoded as a series of variable-size chunk nodes
produced by landmark-based chunking (cf. LBFS 
 [21]). Because each node is stored only once, stored 
snapshots are automatically highly compressed as 
redundancy both within and across snapshots is 
eliminated.
The Jumbo Store provides a very efficient form of 
incremental upload: the HDAG of the new snapshot is 
generated on the client and only the nodes the server 
does not already have are sent; the presence of nodes 
on the server is determined by querying by node hash. 
By taking advantage of the properties of HDAGs, we 
can do substantially less than one query per node. We 
show that the JS incremental upload facility is 
substantially faster than its obvious alternative, Rsync 
 [26], for movie animation models.
As well as being fast, the upload protocol requires no 
client state and is fault tolerant: errors are detected and 
corrected, and a restarted upload following a client 
crash will not start from scratch, but make use of the 
portions of the directory tree that have already been 
transmitted. The protocol also provides very strong 
guarantees of correctness and completeness when it 
finishes.
To demonstrate the utility of the Jumbo Store, we have 
integrated it into a prototype Utility Rendering Service 
(URS)  [17] developed by HP Labs, which performs the 
complex calculations required to create a 3D animated 
movie. The URS is a batch service which accepts 
rendering data in the form of directory tree snapshots
from small teams of animators, renders one or more 
requested frames using a processor farm, and then 
makes the rendered frames available for download.
The URS research team involved over 30 people, 
including developers and quality assurance specialists. 
It is designed for use by real users and so has to be user 
friendly and easy to integrate into the customer 
computing infrastructure, with a high level of security, 
quality of service, and availability. To provide 
performance and security isolation, one instance of the 
URS is run for each animator team. Each URS instance 
uses one JS server to store that team's uploaded
animation model snapshots. Each service instance may 
have multiple snapshots, allowing animator teams to 
have multiple jobs running or scheduled at the same 
time. Because of JS’s storage compression, we can 
allow a large number of snapshots inexpensively.
To test the URS, it was deployed for each of 11 small 
teams of animators as part of an animation showcase
called SE3D (“seed”)  [27], which ran for a period of 10
months. The URS gave the animators access to a large 
pool of computing resources, allowing them to create 

high quality animated movie shorts. The system was 
highly instrumented and the participants were 
interviewed before and afterwards. We report 
extensively in the second half of this paper on the JS’s 
excellent performance during SE3D. As far as we 
know, this trial is the only substantial test of 
incremental upload for utility services.
The remainder of this paper is organized as follows: in 
the next section we describe the design and 
implementation of the Jumbo Store. In Section  3, we 
briefly describe the URS and how it uses the JS. In 
Section  4, we describe the results of the SE3D trial. In 
Section  5, we compare JS to Rsync using data from 
SE3D. In Section  6, we discuss the SE3D and Rsync 
comparison results. Finally, in the remaining sections 
we discuss related work (Section  7), future work 
(Section  8), and our conclusions (Section  9).

2 The Jumbo Store
The Jumbo Store (JS) is our new storage system, which 
stores named HDAGs—immutable data structures for 
representing hierarchical data—called versions. The JS 
is accessed via special JS clients.  Although HDAGs 
can hold almost any kind of hierarchical data, we 
currently only provide a client that encodes snapshots 
of directory trees as HDAGs. This client allows 
uploading new snapshots of the machine it is running 
on, downloading existing snapshots to that machine, as 
well as other operations like listing and deleting 
versions. Figure 1 below shows the typical 
configuration used for incremental upload. A version 
can be created from the (recursive) contents of any 
client machine directory or from part of an existing 
version; in either case, files can be filtered out by 
pathname. 

Server Machine

JS Server

Client Machine

JS
client

source 
directory

tree

stored versions

JS Protocol

Figure 1: Incremental upload configuration

2.1 Hash-based directed acyclic graphs 
An HDAG is a special kind of directed acyclic graph 
(DAG) whose nodes refer to other nodes by their hash 
rather than their location in memory. More precisely, 
an HDAG is a set of HDAG nodes where each HDAG 
node is the serialization of a data structure with two 
fields: the pointer field, which is a possibly empty
array of hash pointers, and the data field, which is an 
application-defined byte array. A hash pointer is the 
cryptographic hash (e.g., MD5 or SHA1) of the 
corresponding child. Pictorially, we represent a hash 



pointer as a black dot that is connected to a solid bar
above the node that is hashed. For example, a file can 
be represented using a two level HDAG:

File Contents

File meta-data

The leaf node’s data field contains the contents of the 
file and the root node's data field contains the file’s
meta-data. Using this representation, two files with the 
same data contents but different metadata (e.g.,
different names) will have different metadata nodes but 
share the same contents node: because nodes are 
referred to by hash, there can be only one node with a 
given list of children and data.
Continuing our example, we can extend our 
representation to arbitrary directory structures by 
representing each directory as a node whose data field
contains that directory’s metadata and whose children 
are the nodes representing the directory’s members.
Figure 2 below shows an example where the metadata 
nodes for ordinary files have been suppressed to save 
space; each grey box is a contents node.

root hash

my docs

projects personal

hobbies

Figure 2: An HDAG representation of a 
directory tree

HDAGs are a generalization of Merkle trees  [20]. They 
are in general not trees, but rather DAGs since one 
child can have multiple parents. Also unlike Merkle 
trees, their non-leaf nodes can contain data.  Notice 
that even though a directory structure (modulo links) is 
a tree, its HDAG representations are often DAGs, since 
there are often files whose contents are duplicated in 
whole or in part (see chunking in Section  2.3). The 
duplicated files or chunks will result in two or more 
HDAG nodes pointing to the same shared node.

2.2 Properties of HDAGs
We say that an HDAG is rooted if and only if there is 
one node in that HDAG that is the ancestor of all the 
other nodes in the HDAG; we call such a node the 
HDAG's root node and its hash in turn the HDAG's 
root hash. An HDAG is complete if and only if every 
one of its nodes’ children also belongs to that HDAG;
that is, there are no ‘dangling’ pointers. Figure 2 above 
is an example of a rooted, complete HDAG.
HDAGs have a number of useful properties.
Automatically acyclic: Since creating an HDAG with 
a cycle in the parent-child relation amounts to solving 
equations of the form

H(H(x;d2);d1) = x
where H is the underlying cryptographic hash function, 
which we conjecture to be cryptographically hard, we
think it is safe to assume that any set of HDAG nodes 
is cycle free. All of the HDAGs we generate are 
acyclic barring a hash collision and it seems extremely 
unlikely that a random error would corrupt one of our 
HDAG nodes, resulting in a cycle.
Unique root hash: given two rooted, complete 
(acyclic) HDAG's H1 and H2, they are the same if and 
only if their root hashes are the same. This is a 
generalization of the ‘comparison by hash’ technique 
with the same theoretical limitations  [16]; in particular,
this property relies on the assumption that finding 
collisions of the cryptographic hash function is 
effectively impossible.  More precisely, it stems from
the fact that a root hash is effectively a hash of the 
entire HDAG because it covers its direct children's 
hashes which in turn cover their children's hashes and 
so on. By induction, it is easy to prove that if H1 and 
H2 differ yet have the same root hash, there must exist 
at least two different nodes with the same hash.
Automatic self assembly: Because all the pointers in 
an HDAG are hashes, given an unordered set of HDAG 
nodes we can recreate the parent-child relationship 
between the nodes without any extra information. To 
do this, we first de-serialize the nodes to get access to 
the hash pointers. We then compute the hash of every 
node. Now we can match children with parents based 
on the equality of the hash pointer in the parent with 
the hash of the child.
Automatic structure sharing: Not just single nodes 
are automatically shared within and between HDAGs; 
sub- DAGs representing shared structure are as well.
Consider Figure 3 below; it shows two snapshots of the 
same directory tree taken on adjacent days. Only one 
file (labeled old/new file) changed between the 
snapshots. Every node is shared between the two 
snapshot representations except the modified file’s 
content node, its metadata node (not shown), and the 



nodes representing its ancestor directories. In general, 
changing one node of an HDAG changes all of that 
node’s ancestor nodes because changing it changes its 
hash, which changes one of the hash pointers of its 
parent, which changes its parent's hash, which changes 
one of the hash pointers of its grandparent, and so on. 

old root hash

my docs

projects personal

hobbies

new root hash

my docs

hobbies

old hobbies new hobbies

old my docs new my docs

old file
new file

Figure 3: Structure sharing between HDAGs

2.3 Snapshot representation
The snapshot representation described in Section  2.1
has the major drawback that if even one byte of a file is 
changed, the resulting file’s content node will be 
different and will need to be uploaded in its entirety. 
To avoid this problem, we break up files into, on 
average, 4 KB pieces via content-based chunking. 
Content-based chunking breaks a file into a sequence 
of chunks based on local landmarks in the file so a 
local modification to the file does not change the 
relative position of chunk boundaries outside the 
modification point [21,22]. This is basically equivalent
to breaking a text file into chunks at newlines but more 
general; editing one line leaves the others unchanged. 
If we used fixed size blocks instead of chunking, 
inserting or deleting in the middle of a file would shift 
all the block boundaries after the modification point, 
resulting in half of the file’s nodes being changed 
instead of only one or two.
We use the two-threshold, two-divisor (TTTD)
chunking algorithm  [13], which is an improved variant 
we have developed of the standard sliding window 
algorithm. It produces chunks whose size has smaller 
variance; this is important because the expected size of 
the node changed by a randomly-located local change 
is proportional to the average chunk size plus the 
variance divided by the average chunk size. (Larger 
chunks are more likely to be affected.)

2.3.1 The chunk list 
With chunking, we also need to represent the list of 
hashes of the chunks that make up a file.  We could do 
this by having the file metadata node have the file's 
chunks as its children.  However, the resulting 
metadata node can become quite large: since we 
currently use 17-byte long hashes (MD5 plus a one 
byte hash type), a 10 MB file with average chunk size 
of 4 KB has approximately 2,500 chunks so the list of 
chunk hashes alone would be 42 KB. Since the 
smallest shared unit can be one node, to maximize 
sharing it is essential to have a small average node size. 
With this representation, changing one byte of this file 
would require sending over 46 KB of data (1 chunk 
node and the metadata node).
We introduce the idea of chunking the chunk hash list 
itself to reduce the amount of chunk list data that needs 
to be uploaded when a large file is changed. We chunk 
a list of hashes similarly to file contents but always 
place the boundaries between hashes and determine 
landmarks by looking for hashes whose value = -1 mod 
k for a chosen value of k. We package up the resulting 
chunk hash list chunks as indirection nodes where each 
indirection node contains no data but has the 
corresponding chunk's hashes as its children:

Landmark Hashes

Indirection Nodes

We choose our chunk list chunking parameters so that 
indirection nodes will also be 4 KB on average in size; 
this corresponds to about 241 children. We use 
chunking rather than just dividing the list every n
hashes so that inserting or deleting hashes does not 
shift the boundaries downstream from the change 
point. Thus, even if ten chunks are removed from the 
beginning of the file, the indirection nodes 
corresponding to the middle and end of the file are not 
affected. 
This process replaces the original chunk list with a 
much smaller list of the hashes of the indirection 
nodes. The resulting list may still be too large so we 
repeat the process of adding a layer of indirection 
nodes until the resulting chunk list is smaller than a 
desired threshold, currently 2. Files containing no or 
only one chunk of data will have no indirection nodes.  
The final chunk list is used as the list of children for 
the file metadata node.
The result of this process is an HDAG at whose leaves 
are the chunks, and whose non-leaf nodes are the 
indirection nodes.  This HDAG, in turn, is pointed to 
by the file metadata node. Thus, we use the chunking 



scheme and the indirect nodes as a natural extension of 
the HDAG representation of directory structures (see 
Figure 2). 
Under this representation, a 10 MB file has 
approximately 2,500 data chunks, 11 first level 
indirection blocks, one second level indirection block, 
and one file metadata node. The overhead of making a 
small change in this file ignoring the metadata node's 
contents and ancestors is the size of one chunk (~4 KB) 
plus the size of one first level indirect node (~4 KB) 
plus the size of the second indirect block (~17 bytes), 
which sums up to roughly 8 KB, which is much better 
than the 46 KB a flat representation would have 
required.

2.4 Efficient incremental upload and storage
Efficient incremental upload for snapshots can be 
described as follows: there is a site, the source, where 
an up-to-date copy of a directory structure exists, and 
another site, the target, where one or more older
snapshots of the same directory structure exist. The 
connection between the two sites may be slow and 
unreliable. It is required to create a snapshot of the 
current contents of the source directory on the target, 
minimizing the transfer time and maximizing the 
reliability.
The properties of HDAGs make them ideal for use in 
implementing efficient and reliable transfers such as 
incremental upload: First, the automatic self-assembly 
property means that the HDAG nodes can be gathered 
from multiple sources (e.g., possibly stale caches), in 
any order. No matter where the nodes come from, there 
is only one way to put them together to get an HDAG.
Second, the unique root hash property lets us check 
when a transfer has successfully and correctly 
completed: if the target has a complete, rooted acyclic 
HDAG whose root hash is the same as that of the 
source HDAG then we have a strong guarantee that the
HDAG at the target is identical to the HDAG at the 
source. Any extra received nodes not part of this 
HDAG (e.g., nodes corrupted in transit) may be 
discarded. If the HDAG is incomplete, it is easy to 
determine the hashes of missing nodes.
Third, the automatic structure sharing property ensures 
that many nodes will be shared between the source and 
target.  Such nodes need not be transmitted if they can 
be determined to already be present on the target.  This 
can be done by querying the existence of each source 
node at the target by hash (this uses much less space 
than sending the node itself). Fourth, by taking 
advantage of the unique root property, it is possible to 
query the existence of an entire sub-DAG with root 
hash h by sending a single hash, h: if the target replies 
that it has a complete sub-HDAG with root hash h, 

then it must have the same sub-DAG the source has; 
this ‘compare by root’ technique can be much more 
efficient than querying about individual nodes when a 
lot of structure is shared. 
Combining these ideas, we get the following algorithm: 
The incremental upload algorithm runs on the client 
system. Let H be the complete HDAG representing the 
source directory structure. The client agent traverses H
in some order and for each node N encountered, 
queries the remote server whether it has the complete 
DAG whose root is N. N is transmitted only if the 
answer is negative. If the answer is positive, then the 
children of N need not be traversed. The remote server 
replies with the hashes of the nodes it receives, 
allowing retransmission if needed. Once the client has 
finished traversing H, it tells the remote server to 
finalize the version using the HDAG with root hash 
H’s root hash.
There is a great deal of flexibility in the order in which 
the nodes of H are generated and traversed. In 
particular, we do not require that the whole of H be in 
memory at the same time. Moreover, there can be 
multiple threads working on different parts of H
concurrently. Currently, to bound the client's RAM 
usage even though files may be arbitrarily large, we 
use compare by root only for DAGs representing files
whose root hashes we already know from a previous 
upload; for all other nodes, we query existence 
individually. By default, we maintain a small cache on 
the client of previously uploaded normal files mapping 
their pathname plus modification time when last 
uploaded to the root hash of the DAG that represented 
them. If these files have the same modification time as 
the last time they were uploaded, we can avoid 
regenerating their representative DAGs if compare by 
root succeeds.
2.4.1 Efficiency and reliability
Our current algorithm is efficient: each untouched file 
requires one query for compare by root, each other 
node (e.g., directories and the nodes in changed files) 
requires one query for compare by hash, and each new 
node additionally must be transmitted. Because queries 
contain only a single hash, which is 240 times smaller 
than the average 4 KB node size we use, we effectively 
send only the parts of the HDAG that have been 
modified since the previous snapshot. By careful 
design of our snapshot representation (see Section  2.3),
we have ensured that small local changes to the source 
directory structure change as few HDAG nodes as 
possible.
To minimize the latency of the query-response, 
queries and nodes are sent in one thread while the 
responses are processed asynchronously in another 
thread; we also batch messages to reduce overhead.



HDAG nodes are computed in parallel with 
querying/sending. Computing HDAGs is relatively 
fast: a 3.2 GHz Xeon Windows PC can scan, compute 
HDAG nodes, and count how many unique HDAG 
nodes there are in an in-cache (i.e., no disk I/O) 
filesystem tree that contains 64 directories, 423 files, 
and 220 MB of data at over 18 MB/s. Accordingly, in 
our experience HDAG computation time is normally 
dominated by transmit time (slow links) or client disk 
scan/read time (fast links).
Because the JS stores each node only once, these same 
properties allow us to store multiple successive 
snapshots of the same directory tree in very little space; 
in effect, storing another snapshot requires as much 
space as would be required to incrementally upload 
that snapshot.
What happens if something goes wrong during the
upload process? If some nodes get corrupted in transit, 
then we will detect that by comparing the returned
hashes, and the nodes will be re-sent. What if the
upload process is interrupted for some reason? Let us
say that 70% of the way through the transfer the client 
crashes. All we have to do is to start the upload process 
again from the beginning (no client state need be kept). 
Since we still have all the HDAG nodes that have 
already been transferred on the server, very quickly the 
client will reach the same point in the process where 
the previous transfer was interrupted, and continue 
from there. The only time lost is the time to scan the 
source directory and construct the HDAG again, which 
is a fraction of the transfer time. Because of the 
strength of the cryptographic hash we use and unique 
root hash property, we can be very sure if the transfer 
succeeds that no errors have been made.

2.5 Implementation
The JS server, about 13,000 lines of C++, runs on a 
single Windows or Linux machine and supports 
multiple concurrent client TCP connections. The basic 
JS client is a command-line program, about 15,000 
lines of pure Java, which can run on any operating 
system that supports Java 1.4. 
The Jumbo Store, unlike other content-addressable 
stores [5,24,29], is an HDAG-aware store. That is, in 
addition to operations to store and retrieve the basic 
unit of storage (the node for JS) by hash, the JS server
supports operations on entire HDAGs. For example, it 
supports ‘compare by root’ queries (“do you have a 
complete HDAG with root hash h?"), "how big is the 
HDAG with root hash h?", and the deletion of entire 
HDAGs (really versions). The JS server does not 
interpret nodes’ data fields and knows nothing of 
snapshots. The protocol the JS speaks has no 
connection-specific state and all messages are 

idempotent, allowing easy retransmission in case of 
lost messages or connections. 
JS data is stored in a series of large data files on disk; 
an in-memory hash table indexes the nodes stored in 
the data files by their MD5 hash. A separate file for 
each version contains only that version’s root hashes—
partial versions may have multiple roots. To support 
deletion, the index also maintains a reference count for 
each node where each version root is considered a root 
for the purposes of reference counting.  Occasionally a 
background process compacts data files by copying
only the nodes with a nonzero reference count to a new 
file.  This simple reference counting garbage collection 
scheme works well because HDAGs are acyclic.
Due to space limitations, we will not discuss 
downloading snapshots or the other operations the JS 
client supports further except to note that we use a 
sophisticated tree pre-fetching algorithm to avoid 
pipeline stalls during downloading.

3 The Utility Rendering Service 
The Utility Rendering Service (URS) is a batch utility 
service that performs the calculations required to 
render a 3D animated movie. It gives animators access 
to a large pool of resources to perform the rendering, 
and allows them to purchase rendering resources when 
needed. Animation is an interesting domain in which to 
test technologies for Utility Services because of the 
natural cycles in demand for resources inherent in a 
typical movie production cycle. 
The URS does not fundamentally change the way in 
which an animator works; they still use the tools they 
are familiar with. However, it does offer the potential 
for a more efficient and interactive style of work 
because animators have access to a more powerful set 
of resources than they could otherwise economically 
afford, allowing the visual quality settings to be turned 
up, and allowing the animator to be more experimental 
because the turnaround time for scenes is reduced.
The Utility Services model is particularly attractive for 
small animation organizations, because it allows them 
to acquire computing resources at short notice when 
needed, allowing individuals and small teams to 
dynamically form and take on projects that would 
otherwise not be possible if only in-house computing 
resources were used. Because of space limitations, we 
will concentrate here on only the aspects of the URS
that are relevant to the use of the JS.

3.1 User model
Animators use a commercial content creation 
application called Maya®  [3] to create the digital 
models that define their 3D animated movie, including 
the shape and movement of characters, backgrounds, 



and objects, and associated textures, lighting, and 
camera definitions. Maya uses over a dozen file 
formats including a variety of image formats (e.g., JPG 
and TIFF) and several proprietary formats; most of 
these are binary formats, although a few are ASCII 
(e.g., the MEL scripting language).
To interact with the URS, animators use a Java 
application called the URS Client, running on one or 
more of their computers. The URS Client allows users 
to upload input data, submit rendering jobs, monitor 
the progress of jobs, download rendered frames, and 
manage the data stored on the server. 
We imagine a dynamic, competitive market for Utility 
Services, where customers may only subscribe to a 
service on demand and for limited periods, based on 
factors such as price and functionality. Accordingly,
the barrier for successful subscription to, and use of, a 
service needs to be low. Towards this end, the URS 
client is written in pure Java for operating system 
portability, automatically works through firewalls, is 
easy to download, and is self updating. 
The URS separates the tasks of uploading animation 
models, rendering models into frames, and 
downloading frames for viewing, allowing them to be
performed independently and, in many cases, in 
parallel. Uploading input data (a directory tree 
specified by the user containing a consistent set of files 
that can be rendered) results in a new snapshot of the 
input data stored at a URS server; these snapshots are 
referred to as "versions" by the URS system. Versions 
remain until explicitly deleted by a user but are subject 
to an overall space quota. Note that the root of the 
input data directory tree can be changed each time a 
new version is created, so, unlike a source-code 
versioning system like CVS, the structure of the files 
and directories may change radically from one version 
to the next.
To render frames, an animator submits a new job 
request against a specific version, specifying the name 
of a scene file within that version and the frame 
numbers to compute. A job can be submitted against a 
version any time after its uploading has been initiated.  
Allowing multiple jobs per version and rendering 
multiple versions at the same time greatly increases 
flexibility. For example, an animator may wish to 
interactively make several changes to a character 
model and experiment with which looks best, and have 
the rendering service compute each possibility 
simultaneously.
Newly rendered frames are downloaded in the 
background by default as they become available.  
Alternatively, animators may explicitly request when 
and which frames should be downloaded.

3.2 Architecture 
The overall architecture and data flow of a URS
instance is shown in Figure 4 below. A server-side 
subsystem of URS, the Asset Store, manages the 
transfer and storage of the input and output data. The 
Asset Store consists of two processes (Asset Manager 
and Jumbo Store) and three internal storage areas, each 
with an associated storage quota that users must keep 
within.
The Version File Store stores the data managed by the 
JS server process; it contains in compressed form the 
available URS versions and possibly a partial version 
in the process of being uploaded. The Output Content 
Store stores the rendered frames generated by 
processing nodes. 
The remaining storage area is the Version Cache (VC), 
which stores a subset of the versions held in the Jumbo 
Store in their fully expanded form, ready for use by the 
processing nodes. The VC is needed because the JS 
currently only supports uncompressing an entire 
snapshot at a time, a time-consuming operation, and 
there is not enough room to keep every version in 
expanded form. 
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Figure 4: URS architecture and data flow

The lifecycle and state of input data versions is 
managed by the Asset Manager. Versions have a well-
defined lifecycle, representing the stages of creation, 
transfer, archival to Jumbo Store, restore to VC, 
deletion from VC, and removal. Important changes to 
the Asset Manager state are held persistently in a 
database so that state can be fully recovered on service 
instance restart even after failure. Incomplete 
asynchronous operations on input data versions, such 
as upload, extraction, or deletion, are either cancelled 
or completed as appropriate. To keep the design 



simple, only one upload is permitted at a time per 
service instance.

3.3 Client-server communication
Communication between all components running in the 
URS Client and those in the URS is implemented over 
a single Secure Socket Layer (SSL) encrypted socket 
connection made from the client. This gives automatic 
client firewall traversal, the ability to easily terminate
in a single operation on the server all interactions with 
a specific user, and, similarly, the ability to reestablish 
communication in the event of temporary connection 
failure with a single operation. However, the 
disadvantage is that all data, control, and event 
protocols must be multiplexed down a single channel. 
All client-server communication, for data, control, and 
events, is implemented over a simple object passing 
and addressing abstraction called the Message Object 
Broker (MOB), which is layered above the SSL socket. 
The MOB allows serialized Java objects to be 
exchanged across the socket to named recipients on the 
remote side, and offers a variety of call semantics such 
as request-reply, buffered writes, and direct object 
passing. It also implements a simple keep-alive 
mechanism, shared by all protocols using the MOB to 
detect connection failures. The pure Java 
implementation strategy, and the use of serialized Java 
objects, did not prove to be a problem for acceptable 
performance of bulk data transport.

4 SE3D Results

4.1 Setting
The URS was offered to 11 small teams of animators 
during an animation showcase, called SE3D, to create 
high-quality short animations. The SE3D animation 
showcase was a unique experiment, conducted over a 
period of 10 months, giving new, creative talent from 
the animation industry access to a set of research 
technologies for Utility Services, together with a large 
pool of computer resources. The trial involved up to 
120 dual 3 GHz Xeon processor servers, each with 4
GB RAM, and a total of 4 TB of storage. The URS 
server-side components, including the Jumbo Store
servers, were deployed in a data centre in the US, while 
the animators were all located in the UK. Thus all data 
transfers had to traverse the public Internet over a 
transatlantic link. 
There was considerable variation between teams in 
working methods, kinds of Internet connections, 
number of animators using the URS, how often and 
how many times they uploaded, how many client 
machines they used, how big their movie source was, 
and the like.  Table 1 below summarizes each team's 
use of the URS upload facility; to preserve privacy we 

have assigned teams service instance numbers in order 
of increasing movie source size.  Here, ‘uploads’ is the 
total number of uploads attempted by that instance and 
‘logged’ is the number of those uploads for which we 
have correctly logged information—because JS was 
added to the URS after SE3D started and because some 
early bugs caused bad logging, we do not have useful 
information for some early transfers; in particular, we 
have no trustworthy data for instance 0 so it is omitted 
from the rest of this paper.  The remaining two 
columns give the average version size (i.e., movie 
source size) and average number of files involved in 
the correctly logged uploads for that service.  Note that 
size here refers to the size of the version on the client, 
not the amount actually transferred to or stored at the 
Jumbo Store.

service
instance uploads logged

average 
size
(MB)

average 
# files

0 43 0
1 124 17 92.0 24.7
2 87 68 109.8 21.2
3 287 286 143.7 5025.5
4 217 122 342.7 145.0
5 379 263 351.4 76.4
6 32 29 352.3 91.4
7 229 209 360.1 99.8
8 55 42 1873.6 225.6
9 125 109 2498.5 773.6

10 202 169 3046.3 4709.3
avg 161.8 119.5 917.0 1119.3
all 1780 1314 859.3 1929.0

Table 1: Use of the upload facility

All but one service exploited the Jumbo Store's ability 
to hold multiple versions in order to render multiple 
versions at the same time. Although most services 
rendered a maximum of three or four versions 
simultaneously, two services rendered 7 and 10
respectively versions at the same time.

4.2 Reliability and robustness
Transferring gigabytes of data via TCP without higher 
level end-to-end checking and retransmission is 
problematic: given TCP's 16-bit checksum and 
assuming a 1% packet error rate and 1500 byte packets, 
we expect an undetected data corruption error to occur 
once every 9.2 GB of data. Indeed, the authors were 
unable to check out a 12 GB Subversion repository 
over the transatlantic cable due to repeated network 
errors and Subversion's inability to restart incomplete



transfers where they left off. By contrast, our first 
attempt to copy the same data via JS worked perfectly.
When used independently, Jumbo Stores verify each 
received chunk using cryptographic checksums, 
requesting retransmission as needed, to handle 
transmission errors. They also reconnect transparently 
should a TCP connection be broken due to an error or a 
timeout.  Accordingly, neither kind of error requires 
restarting an upload.
As incorporated into the URS, Jumbo Store traffic is 
sent over SSL using a supplied MOB connection.  
Because of SSL’s cryptographic checksums, any data 
corruption results in a broken connection.  
Unfortunately, while the URS can automatically 
reestablish a new connection, it cannot do so in a 
manner transparent to the MOB's clients, which 
include the JS. It can, however, automatically restart at 
the beginning an upload aborted due to a broken 
connection. Because the JS upload protocol does not 
resend data already on the Jumbo Store, we quickly 
scan forward to the furthest point the upload previously 
reached.
During SE3D, there were 262 restarts, the vast majority 
of which (251) were for service instance 5, whose 
Internet connection appears to have been unreliable at 
times—1 transfer restarted 58 times before the user 
stopped it.  Inspecting the logs shows that 91.7% of the 
uploads succeeded, 7.8% of the uploads were aborted 
by users before they completed, and 0.4% of the
uploads failed due to URS problems unrelated to the 
JS.  At most 12% of the user aborts can be attributed to 
frequent restarts.  The remaining aborts are presumably 
due to users realizing they had made a mistake or 
wishing to upload instead an even newer version. If we 
count the later as successes, then the overall URS 
upload success rate exceeds 98.6%.
The only version data loss we suffered occurred early 
on due to a bug in the JS server's garbage collector.  
The bug was quickly fixed and we were able to recover 
much of the data from the URS Version Cache.

4.3 Compression
For the purposes of this and Section  4.4, we analyze 
only the 1092 uploads (83% of the correctly logged JS 
uploads) that succeeded, did not restart, and 
immediately follow a successful upload.  This is 
necessary to ensure meaningful statistics; e.g., an
aborted upload may have partially uploaded a snapshot, 
making the next upload seem artificially efficient.
Table 2 below shows average compression ratios (i.e., 
compressed size/uncompressed size) of various kinds 
for each of the instances (1-10), all the instances 
treated as a single service (all), and the average service 
instance average compression ratio (avg, the average of 

the individual instance numbers).  The all numbers 
differ from the avg numbers because they more heavily 
weigh instances with large numbers of 
uploads/versions.  We will quote both numbers as avg
# (all #).

service 
instance upload

within 
version

across 
versions both

1 20% 39% 37% 16%
2 9.3% 48% 16% 10%
3 6.7% 69% 9.7% 6.8%
4 1.4% 41% 3.7% 1.7%
5 2.1% 30% 5.6% 2.1%
6 19% 81% 21% 17%
7 1.6% 34% 4.1% 2.0%
8 1.6% 75% 9.1% 7.2%
9 0.52% 28% 15% 3.8%

10 1.1% 36% 1.5% 1.0%
avg 6.3% 48% 12.3% 6.8%
all 3.5% 44% 7.3% 4.0%

Table 2: Various compression ratios

The upload column shows the average upload ratio of 
the actual number of data and metadata bytes uploaded 
over the total number of data bytes in the snapshot 
being uploaded. Thus, a conservative approximation 
of our upload compression ratio is 6.3% (3.5%);
equivalently, our upload compression factor (1/ratio) is 
16x (29x). While analyzing the logs, we discovered a 
performance bug: a second write of a block while its 
first write was still in progress could result in that 
block being transmitted twice.  We conservatively
estimate that had this bug been fixed beforehand, our
upload compression would have instead been 5.5% 
(3.2%) or 18x (31x).
The ‘within version’ column shows the average version 
storage compression ratio under the restriction that no 
sharing is permitted between versions; the restriction is 
equivalent to requiring each version to be stored on a 
separate Jumbo Store by itself.  These numbers—48% 
(44%) or 2.1x (2.3x)—are surprisingly good and 
indicate that movie sources are fairly redundant.
The ‘across versions’ column attempts to measure the 
degree of storage compression due to sharing between 
versions (of the same service instance) rather than 
within versions.  It shows the average ratio of the 
additional storage required to store a new version on a 
Jumbo Store containing all surviving previous versions 
over the amount of storage required to store that 
version separately. Between version compression 
gives us 12.3% (7.3%) or 8.1x (14x).  Note that the 
degree of storage compression possible due to sharing 



between versions depends on user deletion behavior: if 
users delete all versions before each upload, for 
example, we will get no storage compression due to 
sharing between versions.
The ‘both’ column shows the average actual version 
storage compression ratio we achieved, including the 
savings from sharing within versions and across 
versions (of the same service instance).  We achieved a 
storage compression ratio of 6.8% (4.0%) or 15x (25x).  
These numbers mean that 10 successive versions (one 
full and nine incrementals) can be stored by a JS in the 
space required to store one uncompressed version.  

The astute reader will have noticed that our storage 
compression ratio is slightly worse than our upload
compression ratio; this is because our URS upload
code keeps a copy of the last (partial) upload in a 
staging area on the server; this reduces the amount of 
data that must be transferred, but does not count as 
previously stored data for the purpose of determining 
how much new data has been added to the store.

4.4 Speed
The median time from an animator requesting a version 
be uploaded to all of that version's bits being known to 
be present on the Jumbo Store (upload) is shown for 
each service instance in Figure 5 below; the average 
median time to upload a version (avg) was 4.4 minutes
and the median time for all uploads (all) was 1.8 
minutes. 
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Figure 5: Median upload and extraction 
times

Also shown is the median time from the request until 
the new version is available in the URS’s Version 
Cache (upload+extract), which is required before 
rendering can start. Extracting a version involves 
downloading that version from the Jumbo Store to the
Version Cache located on the same machine.  Because 
the Version Cache copy is uncompressed, extraction 
time is necessarily proportional to the uncompressed 
size of the version rather than the much smaller amount 

of data actually sent/stored in the Jumbo Store.  
Requiring extraction is suboptimal; in the future we 
may be able to eliminate it and the Version Cache 
altogether in favor of rendering directly from the 
Jumbo Store data via a filesystem abstraction.  
Extraction took 2.5 (2.0) minutes, yielding an overall 
transfer time of 6.9 (3.8) minutes.
To put this in perspective, downloading a single frame 
(~900 KB) took 10 seconds on average. Although an 
average of 250 frames were downloaded per version 
(~50 minutes of total download time), most of these 
would have been downloaded either in the background 
while working or overnight—a small sampling of 
frames usually suffices to find errors/verify changes.
Rendering a frame took a few minutes to several hours 
depending on the complexity of the frame (e.g., fur 
slows things down).  Frames can be rendered in 
parallel, however.
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Figure 6: Distribution of upload

We quote median rather than mean values in this 
subsection because the underlying distributions are 
highly skewed toward smaller values; Figures 6 and 7 
provide information about the distribution of upload 
for each service instance using box plots.  Each box 
ranges from the 25th percentile value to the 75th 
percentile value and is divided into two parts by a line 
at the median (50th percentile) for value.  Lines extend 
vertically from each box to the minimum and maximal 
values of the given distribution.  The high tails of the 
upload distributions drop off roughly inversely to time.
Upload times are affected by the actual amount of 
bandwidth available and the amount of data that needs 
to be uploaded.  Actual bandwidth, which we were 
unable to measure, depends on the speed of the 
animator's connection and the amount of congestion 
experienced from other programs on the same 
computer, neighbors in the case of shared connections 
(e.g., cable modems), and other users of the 
transatlantic cable.  Except for two of the instances, 
most of the variance in upload times for an instance is 



due to variance in the amount of data that needed to be 
uploaded; Figure 8 shows the distribution of the sent 
user data size for each instance. The average median 
amount was 3.8 MB and the median amount for all 
uploads was 0.80 MB.
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Figure 8: Distribution of amount of user data
sent

Although we do not know what the actual raw 
maximum bandwidth available for any given upload
was, we can estimate the effective bandwidth (total 
size of user data sent/time required) for each instance;
Table 3 below shows the results of applying linear 
regression to each instance’s sent user data size, upload 
time pairs excluding a few outlier points whose 
residual's were more than three standard deviations 
from the norm.  For example, we predict service 1 
sending 5 MB of file data would take 25 + 
5*1024*8/187 = 244 seconds.  Fit was good (high R2) 
for all service instances except 5 and 7; recall that
service 5 had numerous connection problems.
These bandwidth calculations do not include control 
messages, queries, metadata, or TCP overhead.  
Overhead includes both setup/finishing steps and work 
proportional to the size of the version being uploaded 

rather than the amount of data being transferred (e.g.,
queries).
 
service
instance

bandwidth 
(Kbits/s)

overhead 
(s) R2

1 187 25 0.998
2 155 18 0.989
3 198 81 0.989
4 706 29 0.981
5 638 59 0.307
6 200 166 0.983
7 184 66 0.601
8 165 103 0.954
9 101 129 0.999

10 192 176 0.929

Table 3: Estimated effective bandwidth for 
each service instance

4.5 User feedback
Extensive interviews were conducted with the teams of 
animators before and after SE3D.  We report here 
mostly the parts relevant to the use of the Jumbo Store
in the URS.  The interview subjects agreed 
unanimously that the URS was easy to setup and 
install; 33% thought it met expectations while 56% 
thought it was simpler and easier than expected.  More 
telling, almost all subjects said they would be 
interested in it for commercial use. The faster 
rendering speed and the ability to be operated remotely 
of the URS led several of the animators to change their 
working practices; one animator was in The Hague for 
nearly 6 weeks and continued working by using his 
laptop in Internet cafés.
Animators are not technical people.  They are very 
visual/tangible thinkers; this led to some difficulties 
with the programmer-influenced user model and 
interfaces.  We discovered after SE3D was over that 
there was a fair amount of confusion on how uploads 
worked and what versions were. Some animators 
mistakenly thought upload time was proportional to the 
amount of data in their upload directory; this caused 
some of those to take care to “upload” only the fraction 
of the movie source relevant to a given rendering step 
by copying the relevant files from their actual source 
directory.
There was also confusion about the meaning of 
“version”.  In the mind of the animators, a version is a 
snapshot of a set of files defining a project that have 
reached some key milestone in the project.  They were 
thus puzzled when a minor change produced a new 
version. The animators’ normal work practice was to 
keep each revision of a given scene file by using 



related filenames (e.g., clouds.1, clouds.2, etc.); some 
insisted on this practice even though they thought 
(erroneously) that it was hurting their upload 
performance.

5 Comparison with Rsync
The best alternative to the Jumbo Store we know of for 
uploading files across a low bandwidth connection is 
Rsync  [26], an open source utility that provides fast 
incremental file transfer. Accordingly, we compared 
uploading a subset of the SE3D data across the 
transatlantic cable using the Jumbo Store
(independently, with no SSL) and using Rsync.  
The data used was a subset of the versions uploaded by 
the animators; more precisely, the data is from a copy
made during a maintenance window late in SE3D’s life 
of the Jumbo Stores' data files. It is thus lacking any 
versions uploaded after or deleted before that point.
Although this is the most representative data we have, 
it is likely less compressible than the actual sequence 
of versions uploaded during SE3D because it is 
missing intermediate versions. The data used contains 
441 versions distributed as follows:

service
instance versions

service
instance versions

1 90 6 15
2 41 7 84
3 12 8 6
4 76 9 2
5 99 10 16

Note that we have very few versions for service
instances 8 and 9.
The uploading was done from a 1.8 GHz Pentium 4 PC
with 1 GB of RAM running Suse Linux 9.1 in Palo 
Alto, California to an 800 MHz Pentium III PC with 
512 MB of RAM running Red Hat 9 Linux in Bristol, 
England.  Both PCs are inside the HP corporate 
firewall, but the connection between them runs through 
the public Internet and over the transatlantic cable.
Previous experiments indicate that the transatlantic 
cable is the bottleneck for this connection, with a peak 
bandwidth of slightly less than 2.7 Megabits per 
second (2800 Kb/s).
Our experimental procedure was as follows: for each 
service instance, we first emptied the destination 
directory (for Rsync) or store (for JS).  We then 
uploaded each version belonging to that instance in 
turn in the order they were originally uploaded.  Every 
upload for a given service instance other than its first 
thus had the potential to be an “incremental” upload.  
We used tcpdump and tcptrace to record the elapsed 
wall time and number of unique bytes sent (i.e., the 
total bytes of data sent excluding retransmitted bytes 

and any bytes sent doing window probing) and 
received of each upload. Due to time constraints (a full 
run through of all the data for a single method takes 
weeks), we were only able to repeat this procedure 
once per upload method.
Figure 9 below compares the number of unique bytes 
transmitted (i.e., sent or received) by Rsync, by our 
original Jumbo Store with the block retransmission bug 
fixed (JS), and by an improved version of the Jumbo 
Store (JS+), which we describe shortly. For ease of 
comparison, we present normalized numbers where 
Rsync's performance is designated as 1.0. In addition 
to per service instance numbers, we also show numbers 
for combining all the uploads (all, with emptying when 
switching instances) and the median of the instance 
numbers (med). Overall, JS transmitted 52% (med 
53%) or 1/1.92 (med 1/1.89) of the bytes that Rsync 
did.
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Figure 9: Total bytes transmitted for each 
method

We invoked Rsync with the “-compress” option, which 
is recommended for low bandwidth connections and 
has the effect of gzipping data before it is transmitted.  
This compression is on top of Rsync's delta 
compression, which attempts to send only the portions 
of files that differ.  Our experiments indicate that
failing to use -compress results in Rsync sending 190% 
more bytes overall (all) on this data set.
Inspired by this result, we created an improved version 
of Jumbo Store (JS+) that gzip's each set of chunks to 
be sent during transmission; by default, each set of sent 
chunks has 50 ~4 KB chunks for a total size of ~200 
KB uncompressed. This change substantially increased 
performance: JS+ transmits 1/2.5 (med 1/2.6) the bytes 
that JS does and only 21% (med 21%) or 1/4.7 (med 
1/4.8) of the bytes that Rsync did.
If we consider only the “full” uploads, JS+ transmits 
only 39% (med 55%) of the bytes that Rsync does.  
Considering only the "incremental" uploads instead, 
JS+ transmits only 15% (med 12%) or 1/6.7 (med 
1/8.3) of the bytes that Rsync does.
Figure 10 below compares JS+’s performance to 
Rsync's using both bytes transmitted and time elapsed; 



as with Figure 9, we have normalized so that Rsync's 
performance is 1.0. Measuring by time, JS+ is only 
3.4x (med 3.1x) faster than Rsync. We estimate using 
linear regression that overall (all) actual bandwidth 
(unique bytes transmitted/elapsed time) was 2.44 Mb/s 
for JS+ and 2.49 Mb/s for Rsync with overheads of 6.8 
seconds for JS+ and 3.0 seconds for Rsync.
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Figure 10: Normalized JS+ performance vs. 
Rsync

6 Discussion of results
The level of compression and reliability achieved by a 
system is heavily dependent on the actual data to be 
compressed and the setting it is deployed in: it is easy 
to achieve 100% reliability in a controlled lab setting
or good compression by using synthetic data created 
from the same distribution your compression algorithm 
was designed to compress. SE3D represents the gold 
standard in test data: large amounts of real data 
collected over a long time from real users using the 
system for its intended purpose. Because the services 
were isolated from each other for security and 
performance reasons, SE3D can be viewed as a series 
of 10 natural experiments. The large variance in 
outcomes between experiments—the upload 
compression ratio varied by a factor of 38 and the 
storage compression ratio by a factor of 16, for 
example—indicates that animators differ greatly in the 
characteristics that affect our system and Rsync's 
performance.  We expect our system to work as well or 
better for longer movies (the SE3D animators created 
~5 minute shorts) because movies are built from short
scenes and because there is more opportunity for reuse 
of characters, sets, and the like. The performance of
Jumbo Store on other domains is currently unclear; we
are conducting experiments to address this.
The reliability of the Jumbo Store itself once we fixed 
some initial bugs was perfect: all upload problems 
were due to the URS, either directly or indirectly (i.e., 
the need for restarts due to MOB limitations), or 
nonworking Internet connections beyond our control.
Clearly, the animators could have benefited from a 
better explanation of how the upload process works: 

the error-prone process of managing separate upload 
and working directories used by some of them could 
have been avoided. Likewise, future versions of the 
URS should provide more workflow support and make 
a distinction between “major” (meaningful to 
animators) and “minor” (aka, JS) versions.
Aside from reliability, the most important metric for an 
upload system is average upload time. We estimate that 
our original system is 24 times faster than one that does 
no compression: without compression and at the 
observed effective bandwidths, the average service
median upload would have taken 2.8 hours. The 
possible productivity improvements from switching 
from several hours per upload to several minutes 
should not be underestimated. Had we deployed 
instead our improved version of Jumbo Store (JS+), we 
estimate it would have speeded things up 1.5 times to
35 times faster than no compression and an average 
median upload time of 2.3 minutes (4.8 minutes with 
extraction). The variance in the amount of data that 
needs to be uploaded and hence the upload times is not 
too surprising if we consider the animation process 
similar to that of program development: the changes 
between program runs are mostly small, but 
occasionally the programmer makes a major change 
that cannot be tested incrementally.
The Jumbo Store—especially the improved version—
clearly outperforms Rsync for the SE3D-derived
benchmark. Primarily this is because JS+ sends only 
1/5 the amount of data that Rsync does. We attribute
much of this reduction to the JS’s ability to exploit 
sharing across files with different names, both within 
versions and across versions. Because Rsync computes 
pair-wise delta's between files with the same path 
names, it cannot exploit this sharing. Although we did 
not investigate the causes of this sharing, it is clear that 
one cause is some animators’ use of numbered file 
versions (e.g., “foo.1”, “foo.2”, etc.): because each new 
file version has a new name, Rsync sees no sharing. 
When Rsync is used to upload data to Linux, hard links 
can be used to store multiple snapshots in a 
compressed manner  [25]: if a file is unchanged from 
the last snapshot, Rsync can simply create a hard link 
to the last snapshot's copy instead of creating a new 
copy. This provides limited compression as even a one 
byte change prevents any sharing and there is no 
compression within files or between files with different 
names. The low degree of compression does mean that 
no extra extraction step would be needed if used with 
the URS.

7 Related work
Content-addressable stores (CASs) [5,10,11,15,19,24,
29] allow stored items to be retrieved by their hash. 
Flat CAS systems treat the items that they store as 



undifferentiated blobs: the interpretation of each item 
is entirely up to the store's clients. The Jumbo Store is 
a non-flat CAS system: while it does not interpret 
nodes’ data fields, it is HDAG-aware and does 
interpret nodes’ children pointers. This allows it to 
support important operations like ‘compare by root’ 
and version deletion that otherwise would require 
clients to perform thousands to millions of more basic 
operations, which is especially problematic over low 
bandwidth connections.
Venti  [23], a versioned file store, and CFS  [9], a read-
only distributed file store, use HDAG-like structures at 
the application level but rely on a flat CAS for storing 
their data. SUNDR  [19] and ROFS  [15] use an HDAG
encoding of directory structures to ensure the integrity 
of the contents on untrusted servers. They take 
advantage of the unique root hash property by signing 
just the root hash with the private key of a legitimate 
authority. Any client with access to the public key of 
that authority can then verify the integrity of the 
contents. An intruder without access to the authority's 
private key cannot modify the contents without being 
detected, since modifying the contents will change the 
root hash. These systems [9,15,19,23] do not use 
chunking or take advantage of the properties of 
HDAGs for facilitating directory synchronization. 
While SUNDR offers multiple versions, it does not 
seem to support the deletion of versions once a short 
time period has elapsed. 
THEX (Tree Hash Exchange Format)  [7] specifies a 
way to create a Merkle tree from a byte sequence, 
encode the resulting tree and encapsulate it in an XML 
file. Its main purpose is to allow verification of 
fragments of the byte sequence from different sources 
while trusting only one source to provide the root hash 
of the tree. It is meant to be used in conjunction with 
BitTorrent-like protocols to improve the detection and 
retransmission of corrupted blocks before the whole 
byte sequence is retrieved. Unlike our approach, THEX 
encodes the whole Merkle tree for a byte sequence in 
one message, so there is no sharing of intermediate 
nodes. As a result, compared to a flat representation of 
the block chunks, it actually increases the 
communication overhead for the file. THEX does not 
have any mechanism for encoding directory nodes. 
Duchamp  [12] describes a toolkit for synchronizing 
directory structures accessed as NFS mounts. A hash 
tree encoding of the structure of a directory tree, 
similar to our HDAGs, is used for facilitating the 
rapid synchronization of the ‘master’ and ‘slave’
directories. While Duchamp’s toolkit supports the 
break up of large files into smaller pieces, it does not 
use chunking or indirect nodes for efficient file 
synchronization, and it does not support multiple 

versions. BitTorrent  [4] uses fixed-sized blocks and 
compare by hash to transfer files.
Unlike these systems (Venti, CFS, SUNDR, ROFS, 
THEX, Duchamp, and BitTorrent), many recent 
systems including LBFS  [21], CASPER  [30], Pastiche 
 [8], and TAPER  [18] use chunking and compare by 
hash to optimize communication and/or storage 
requirements when multiple versions of a file exist. In 
the case of LBFS, this is done to speed up the transfer 
of files where the target may have already seen earlier 
versions of the files (or at least fragments of them). All 
of these systems use a flat sequence of hashes to 
represent a file and thus would benefit from the use of 
indirection nodes and HDAGs. They would also 
benefit from upgrading to our TTTD chunking 
algorithm.  
TAPER  [18] uses hash tree encodings of directory 
structures to facilitate directory synchronization. The 
hash trees used by TAPER are somewhat different 
from the HDAGs described in this paper. They do not 
encode the file and directory metadata, and as a result 
cannot directly be used for verifying the integrity of the 
directory structure on the target. The hash of 
intermediate directories is determined by an in-order 
traversal of all the children of the corresponding node, 
concatenating all the children's hashes as well as 
traversal direction information (e.g., H(“up”)), and 
taking the hash of the concatenation. This is a more 
computationally expensive procedure than that used by 
our encoding, with no apparent advantage. While 
TAPER uses chunking for file synchronization, it does 
not treat the resulting chunks as children of the file 
nodes in the hash tree. It uses a separate LBFS-like 
algorithm for file synchronization, and does not use 
indirect nodes to share sequences of long files. As a 
result, the whole hash sequence needs to be transmitted 
even if only one chunk has changed. TAPER does not 
support versioning. 
Comparison with LBFS: Compared with LBFS, our 
combination of compare by root and indirection nodes 
significantly increases the bandwidth efficiency of
transferring files. Where with LBFS the server has to 
be queried for every chunk, with our algorithm whole 
sub-trees of the directory structure can be skipped 
when an identical copy exists on the server. Moreover, 
because LBFS uses flat hash lists for its file 
representation, the whole file representation must be 
sent over the wire even if the modification to the file is 
small.
LBFS is a file-level protocol: it does not have any 
representation of the directory structure. As a result, 
directory data is neither compressed, nor verified, in its
protocol. Our protocol, by contrast, which uses a 
HDAG-based representation of directory structure, is 
efficient, robust, and fault tolerant at the directory 



level.  LBFS does not provide for the efficient storage 
of multiple versions of files or snapshots.
Note that distributed filesystems like LBFS are not 
suitable for the URS or many other synchronization 
applications because of their poor responsiveness (the 
trans-Atlantic cable has high latency), need for 
constant connectivity, and failure to respect the fact 
that the client's contents not the server’s are the ground 
truth. Providing a disconnected mode would help but 
negates the primary value of using a distributed file 
system for synchronization: sending changes as they 
are made rather than all at once at the end.  Supporting 
multiple operating systems is substantially more 
difficult with a distributed file system approach.
Comparison with Rsync: Even though Rsync is a 
directory tree synchronization protocol, it does the 
synchronization through pairwise file comparisons 
based on files’ pathnames. As a result, it completely 
misses intra-source sharing (when multiple files in the 
source's directory tree share significant content) and is 
completely stumped when directories or files are 
renamed or moved. Our representation and algorithm
are insensitive to such changes, and can naturally 
detect and exploit intra-source sharing when it exists. 
In terms of reliability and robustness, Rsync verifies 
data only at the sub-file level; it lacks any form of 
overall verification.
Comparison with Grid: Solutions exist in the Grid 
 [14] community to synchronize, manage, and process 
data [1,2,6,14,28,31]. These approaches target a 
different problem: high-performance computing 
applications with relatively static, huge data sets 
(possibly terabytes), and (multi-)gigabit-class 
connectivity. Typical use cases in this environment do 
not require support for simultaneous, overlapped 
processing of multiple versions of frequently-updated 
input content.

8 Future Work
There a number of ways the Jumbo Store and URS can 
be improved:
Lazy extraction: Currently before a processing node 
can start rendering, the entire relevant version must be 
extracted from the Jumbo Store to the Version Cache. 
This can lead to significant delay as well as 
unnecessary work if not all of that version's files are 
needed for the current rendering task.  A better solution 
would be to extract files only as needed directly from 
the Jumbo Store. Accordingly, we are working on a 
remote filesystem interface for JS so that clients (in 
this case the processing nodes) can directly mount 
read-only the filesystems contained in JS versions. It is 
not clear that this will entirely eliminate the cost of 
extraction as the lazy interface may be slower than 

directly accessing an uncompressed version due to 
poorer locality.
Trickle upload: The URS client currently sends 
changes only when the user explicitly requests an 
upload of a new version; consequently all the changes 
since the last upload must be transmitted before 
rendering can commence, leading to delays. A more 
responsive system would use trickle uploading where a
background task periodically scans the user’s data and 
optimistically sends any new data chunks to the Jumbo 
Store. When the user finally requests an upload, few 
chunks would likely remain to be sent, allowing 
rendering to start sooner. Sent chunks that were 
superseded by later changes would be freed later 
during garbage collection.
Larger multi-user stores: Our current Jumbo Store
server uses an in-memory chunk index, which limits its 
holding capacity to tens of gigabytes (compressed) 
assuming ~4 KB chunks. While more than adequate for 
a single SE3D service, other utility computing services 
may have larger jobs or wish to share a single JS
instance between many services. To handle this, we are 
developing a new JS server that uses a disk based index 
and has support for access control and allocating 
resources among users.

9 Conclusion
In this paper we described an HDAG-aware content 
addressable store, the Jumbo Store. An HDAG is an 
immutable data structure for representing hierarchical 
data where hash pointers are used to connect the nodes. 
We built an incremental upload mechanism for 
directory snapshots that takes advantage of the unique 
root hash, automatic self assembly, and automatic 
structure sharing properties of HDAGs and the store’s 
HDAG support, to efficiently and reliably upload large 
directory snapshots over slow and unreliable public 
internet connections.  The store has built in facilities 
for the creation, retrieval and deletion of versions, 
which are named HDAGs. We used these facilities to 
build a system for efficiently storing many versions of 
a directory tree.
The ability to transmit large quantities of data over the 
slow Internet connections typical of many 
organizations, to be processed by Utility Services, is 
often perceived as a barrier for widespread adoption of 
the utility model. The JS was successfully used within 
a Utility Rendering Service, used to create 3D 
animated movies, and demonstrated that interactive, 
data-intensive services can work well even over low-
bandwidth connections. The speed of upload offered by 
the storage system encouraged users of the service to 
work in an experimental fashion to try new ideas 
containing variations of data content. The 
synchronization and storage performance of the JS



with the real-world data produced by small teams of 
animators has been analyzed and compares favorably 
with other competing approaches, both in the URS 
environment and under controlled experimental 
conditions.
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