
Design Challenges of Virtual Networks: Fast,
General-Purpose Communication
Alan M. Mainwaring

Computer Science Division
University of California at Berkeley

Berkeley, CA 94720-l 776

Abstract
Virtual networks provide applications with the illusion of
having their own dedicated, high-performance networks, al-
though network interfaces posses limited, shared resources.
We present the design of a large-scale virtual network system
and examine the integration of communication programming
interface, system resource management, and network inter-
face operation. Our implementation on a cluster of 100
workstations quantifies the impact of virtualization on small
message latencies and throughputs, shows full hardware per-
formance is delivered to dedicated applications and time-
shared workloads, and shows robust performance under de-
manding workloads that overcommit interface resources.

Keywords
virtual networks, high-performance clusters, direct network
access, application programming interfaces, system resource
management, protocol architecture and implementation

1. Introduction
Whereas large-scale parallel machines were once construct-
ed of highly-specialized nodes and run as single-user or
space-shared systems, they are now almost universally built
from general-purpose microprocessors with a complete oper-
ating system on, or spread across, every node. As their gen-
erality evolves, they are deployed not only for compute-
bound physical simulations, but for an increasingly rich set
of data intensive services and shared environments. Nonethe-
less, the primary distinguishing characteristic of parallel sys-
tems, as opposed to other collections of computers on a
network, is their support for fast user-level communication.
This capability is what allows intense sharing of resources
and transfer of information within parallel applications. This
paper investigates the inherent design challenges in provid-
ing high-performance communication to a broad range of ap-
plications in a general-purpose environment.

This work was supported in part by the Defense Advanced Research
Projects Agency (F30602-95-C-0014), the National Science Foundation
(CDA 9401156), Sun Microsystems, and California MICRO.

Permission to make digital or hard copies of ail or part of this work for
Personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
TO copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP’99 5199 Atlanta, GA, USA
0 1999 ACM l-581 13.100s3/99/0004...$5.00

David E. Culler
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720-l 776

The tension between performance and generality presents an
especially interesting challenge for high-performance clus-
ters, since, on the one hand, they offer tremendous generality
by using complete computers as building blocks and, on the
other, seek to deliver the performance of fast, scalable sys-
tem-area networks [1, 181. The implementation of the high-
speed communication substrate should not constrain the
overall usage model of the parallel system. For several years
it has been well-demonstrated that communication perfor-
mance could be delivered by mapping network hardware di-
rectly into the address space of the user application [4,6, 17,
25, 27, 29, 30, 32, 331. However, providing this capability to
only a single or a few prearranged parallel programs at a
time severely limits how the overall system can be used.
While there are times when nodes will be devoted to a single
program, high-speed communication ought to be available to
all components, including file systems, schedulers, debug-
gers, performance analyzers, parallel clients and servers, and
traditional client/server applications.

Practically, the way to obtain performance and generality is
virtualization. The operating system can provide the illusion
of direct access to resources, but actually bind virtual re-
sources to physical ones on demand. Much as physical mem-
ory hosts the most active pages of virtual address spaces, the
physical network resources can be focused on the most ac-
tive loci of communication. Virtualization facilitates the
sharing and presentation of physical resources to consumers,
with the operating .system able to manage protection and
scheduling while remaining off critical performance paths.
When done well, it provides the performance of direct appli-
cation-to-resource bindings when usage approximates the
stand-alone case, effective sharing of resources when they
are not overcommitted, and graceful degradation under
heavy loads. When done poorly, it may either fail to deliver a
large fraction of the hardware capability to any one applica-
tion, or may degrade severely under load. Traditional proto-
col stacks suffer the former, because of the run-time
intermediate interpretation and management that occur on
every operation, even when a single user program operates
well within the capability of the underlying network.

This work makes three contributions: (1) it describes the de-
sign, implementation, and evaluation of a complete, large-
scale virtual network system in daily use for more than a
year on a cluster 100 workstations serving a diverse user

119

community, (2) it isolates network virtualization techniques
that deliver full hardware performance to dedicated applica-
tions and robust performance under workloads that over-
commit communication resources, and (3) shows how these
techniques can be integrated within existing programming
interface, operating system, and network interface (NI)
frameworks.

In what follows we present the design of our virtual network
system in a layered fashion and examine how the integration
of network virtualization impacts each of the core architec-
tural components. Each section outlines the general princi-
ples and the critical issues in practice. After background is
established in Section 2, Section 3 addresses the program-
ming interface provisions to support general purpose use:
naming, protection, delivery models, and thread-based
events. Section 4 examines the key operating system support
in the context of Solaris, including integration with the vir-
tual memory system and the driver/NI protocols. Section 5
examines network interface support, including the service
and queuing disciplines, and the transport protocols. Section
6 discusses system performance in three regimes using mi-
crobenchmarks, parallel applications, and macrobench-
marks that examine robustness. Finally, Section 7 discusses
lessons learned and related work.

2. Background
Approaches to network virtualization have been proposed in
the form of Abstract Device Channels [151, Remote Memo-
ry Mapped Regions and reflective memory channels [5, 171,
Remote Queues [2], and Active Messages [26], and several
prototype cluster systems have been developed [4, 6, 271.
Indeed, the results have been promising enough that a major
industrial consortium recently released the Virtual Interface
Architecture [8] to serve as a point of consolidation for this
work. The evidence to date has focused primarily on small
prototypes, point-to-point benchmarks and single applica-
tion studies that demonstrate the benefit of mapping net-
work hardware into an application’s address space.
However, these tests may stress little of the network virtual-
ization, such as the mechanisms for the virtual-to-physical
binding, policies for placement; replacement and schedul-
ing, and the coordination across nodes. Thus, effectiveness
of network virtualization at scale remains a largely open
question.

The cluster used in this study consists of 100 167-Mhz Sun
UltraSPARC-1 workstations running Solaris 2.6 with 128
MB of memory. The machines are connected by a Myrinet
[l] network with 25 switches and 185 links in a fat-tree like
topology. The switches have an average cut-through latency
of -300 ns and have 1.2 Gb/s bi-directional ports. Network
paths are shallow, with -7 bytes of buffering per-hop, and
while link-by-link flow control and back pressure contribute
to low overall transmission error rates, network congestion

rapidly spreads through the network. Hosts have a single
LAW 4.3 network interfaces that contains a 37.5-Mhz gen-
eral-purpose embedded processor with 1MB of on-board
memory, independent network send/receive DMA engines,
and a single DMA engine for SBUS transfers. Although it
contains a general-purpose microprocessor, the NI imple-
ments a controller amenable to implementation in hardware.

1 Virtual Network Drivers 1
VN

Intelligent Network Interface

(4

GLUnix Condor

Sockets NFS

Legacy Apps

SunRPC
TCP/IP Protocol Stack

Kernel-level Active Messages

(b)
Figure 1. (a) user-level software and (b) system software oper-
ational with Virtual Networks and Active Messages.

Figure 1 shows the system architecture that we have con-
structed on top of virtual networks and Active Messages.
This system is general-purpose, and has been operational
for more than one year, supporting a diverse user communi-
ty. The system provides the active subset of applications
with direct, high-performance network access. At user-level,
the communication programming interface supports tradi-
tional parallel libraries, such as a port of the public-domain
MPICH message passing library and the Split-C language
originally developed for the CM-5. It also supports high-
performance parallel I/O subsystems 1121, and Java-based
remote-method invocations. By supporting a subset of the
interface within Solaris, standard sockets, network files sys-
tems, and remote-procedure calls packages, can leverage the
performance of the network.

The virtualization that delivers performance and generality
in this setting raises questions at all layers of the system,
e.g., the nature of programming interface abstractions and
operations that support both parallel and distributed applica-
tions, the realization of operating system mechanisms and
policies that manage application bindings to the network
hardware, and the network interface protocols and schedul-
ing disciplines that support efficient protected network
multi-programming. In developing this system, we found
that many of the critical design issues arose from dealing
with the requirements of full-scale use and were not re-
vealed by simple benchmarks. Novel uses of the program-

120

ming interface and their compositions revealed unforeseen
behaviors and interactions between layers of software with-
in and across the nodes.

3. Programming Interface Concepts
In order to investigate techniques for supporting fast and
general-purpose communication, it was necessary to define
a communications programming interface that would enable
a wide-range of applications.

Message passing with MPI was a standard for parallel pro-
grams, but it is oriented toward a single program with a
fixed process count and imposes relatively high overhead.
Sockets was the standard for client-server applications, but
point-to-point connections present scalability concerns for
parallel programs, and also impose large overheads. Shared
memory was widely used as the mechanism for ad hoc shar-
ing between multiple threads within a program, but it pre-
sented many open questions as a communication
mechanism for a distributed environment. Active Messages
were well established as a low-level programming interface
on which these various popular API’s have been built, with
implementations on several massively parallel processors
[7, 21, 28, 29, 311 and clusters [22, 231. However, the first
generation of interfaces were specialized for single parallel
program and thus were not general-purpose.

Three fundamental components of the Active Message in-
terface needed enhancement: the naming and protection
model, the delivery and error model, and the integration of
communication events with multi-threaded programming
environments. Like its predecessors, the interface for virtual
networks [26] casts communication as split-phase remote
procedure calls and provides primitives for higher-level pro-
tocols and applications. However, it introduces a new ab-
straction, endpoints, which virtualize the connection to the
physical network, so that many processes on a node can
each have multiple endpoints. Endpoints are objects that
hold message queues and associated state that resides be-
neath the interface. The programming interface is defined in
terms of endpoints. Addressability and access rights are es-
tablished among a collection of endpoints, forming a virtual
network. Programming within a virtual network is then
nearly identical to traditional Active Message environments.
This section presents the issues raised by general-purpose
use and their solutions in terms of the three components.

3.1 Naming and Protection
The interface must provide a logical communication
namespace and a protection model that allows applications
to control message delivery into their endpoints. We wanted
the naming and protection model to allow a wide range of
network technologies, e.g., it should enable either send-side
or receive-side address translation and protection checks.
The protection model should be sufficient to catch program-

ming mistakes, protocols errors, and potential hardware er-
rors from which applications should be insulated. Whereas
strong end-to-end security and authentication measures
should be implemented in the applications where necessary,
since handlers can decide what to do with the messages that
are received.

Endpoint names are opaque, i.e., they have no predefined in-
ternal structure, so that many of the communication naming
schemes in current use can be employed, e.g., (IP address:
port number), and the names can be obtained by any rendez-
vous mechanism. Applications use endpoint relative naming
for actual communication operations. An endpoint object
contains a simple translation table, which allows programs
to construct a logical communication namespace of small
integers by associating endpoint names and protection keys.
A communication operation specifies the source endpoint
and a translation table index for the destination endpoint.
(Clearly, traditional virtual node number addressing in par-
allel programs is easily realized with this approach.) The
protected portion of the communication subsystem, i.e., the
NI, stamps each outgoing message with the key and routes it
to the destination; the receiving interface verifies the key
and deposits the data. The key must match the destination
endpoint key for delivery. On a connection oriented net-
work, such as ATM, routing and verification may be imple-
mented using virtual circuits. A virtual network consists of a
collection of endpoints that refer to one another, and is con-
structed by configuring the individual endpoints, rather than
through some specific group membership interface.

3.2 Delivery and Error Model
The delivery and error model must balance the needs of tra-
ditional parallel programs, which expect perfectly reliable
message delivery in an otherwise fail-stop model, with the
needs of client/server applications and cluster services that
can tolerate errors and adapt to changes, We cannot assume
a perfectly reliable interconnect, even though transmission
errors on emerging networks are rare, because we want the
communication system to support hot-swap of links and
switches for incremental scaling and to adapt to changes in
the physical topology transparently. Thus, the substrate
should mask transient transport and reconfiguration errors,
yet provide a clean way for error-aware programs to handle
serious conditions, such as a remote node crashes.

The interface specifies exactly once delivery of messages,
barring unrecoverable transport conditions, and that unde-
liverable messages are returned to their sender, where they
invoke an ‘undeliverable message’ handler. This enables ap-
plications to control how errors are handled, e.g., abort or
re-issue, without having to take pessimistic actions in the
common case, such as setting time-outs and logging mes-
sage contents. This “return to sender” model allows the un-

121

derlying, machine-specific detection and retry mechanisms
to be projected upward essentially for free.

3.3 Communications Events and Threads
The interface must integrate communication events with
multi-threaded applications. Many applications, such as
servers, require event driven communication which allows
them to sleep until messages arrive, whereas polling is more
efficient in parallel applications that communicate intensely.
Both modes should be supported and applications should
control the mode and which endpoint state transitions gener-
ate events. Rather than define a new event model and associ-
ated concurrency controls, the interface assumes POSIX
threads with mutex locks and synchronization mechanisms.

Endpoints have event masks that sensitize a synchronization
variable to endpoint state transitions, such as message arriv-
al. Threads can set and wait on these events. Applications
can mark endpoints as shared or exclusive, so that opera-
tions on shared endpoints invoke code which performs the
necessary synchronization while operations on exclusive
endpoints avoid those overheads. Choosing to project events
to applications using standard thread synchronization en-
ables implementations within operating system where per se
process signals absent. The interface provides applications
with the flexibility to determine the relationships between
threads and endpoints. For example, one thread may operate
upon multiple endpoints and many threads may concurrent-
ly access a single endpoint.

4. OS Resource Management
The operating system challenge in virtual networks is man-
aging the collection of endpoints so that when processes
communicate they obtain the full efficiency of the network
resources, and otherwise these resources are fully available
to other processes.

The approach in conventional network stacks is to multi-
plex/demultiplex all traffic within the kernel. Virtual net-
works assume a capable network interface that can
multiplex traffic for a limited set of endpoints, without oper-
ating system intervention. Several systems have demonstrat-
ed fixed-degree multiplexing through a NI, e.g., [6, 301. Our
approach manages the resident set dynamically, with active
endpoints bound on demand to the NI in response to local or
to remote references. The solution is compatible with con-
temporary operating systems, and supported without
source-level modifications to Solaris. The key is the device
abstraction between the operating system and the NI.

4.1 Management Model
Endpoint management is cast as a virtual memory problem
and tackled with extensions of standard virtual memory
mechanisms. Binding endpoints on-demand to hardware re-
sources is analogous to binding pages to memory frames.

Non-resident endpoints reside in application memory, but
are not directly accessible by the NI. When an application
writes a message into a non-resident endpoint, the system
traps the reference and makes the endpoint resident, i.e.,
binds it to communication resources. What is unique is that
the arrival of a message for a non-resident endpoint can also
cause it to made resident. Making an endpoint resident may
require evicting an endpoint to make room, and an endpoint
replacement policy selects which one.

In general, a NIrequires addressability for message buffers,
message descriptors, and the like. In our system, the NI con-
tains a small amount on-board memory, through which all
transfers are staged; data can be moved between the host
and NI memory or between NI memory and the network,
but not directly between host and network. To allow the NI
to process small packets as quickly as possible, resident
endpoints reside physically in the NI. The interface reserves
64KB of its on-board memory for eight endpoint frames.
(Newer interface hardware supports up to 96 endpoint
frames). In addition, address translations are established for
bulk data transfers associated with the endpoint. This orga-
nization provides the NI with single-cycle random-access to
all resident endpoints. Because they remain mapped into ap-
plication address spaces, applications also have fine-grained
access to them with programmed I/O. Non-resident end-
points are like any other cacheable memory page in the pro-
cess address space. The operating system is involved in
residency transitions, but none of the common-case commu-
nication operations.

4.2 Integration with Virtual Memory System
This management model is realized by extending the Solaris
virtual memory system with a new endpoint module. Solaris
is representative of modern operating systems, in which the
application virtual address spaces consists of a collection of
segments [16]. Each segment has an associated driver that
maintains the address translations for virtual memory pages
and manages their physical backing store. Segments export
methods for allocating, mapping, duplicating, locking, and
handling access faults. Integration with the virtual memory
system at the segment layer provides precise control over all
facets of memory management and much richer functional-
ity than what is exposed to device drivers.

Endpoints are memory mapped objects, represented by ad-
dress space segments, and managed by the endpoint seg-
ment driver. The functionality provided by segment drivers
for managing virtual memory, apply to endpoint manage-
ment as well. For example, segment creation is equivalent to
allocating an endpoint and initializing its messages queues.
Process termination automatically invokes segment driver
methods to free segments, and with endpoint segments this
may cause the driver to synchronize de-allocation with the
network interface before proceeding. Most importantly, the

122

segment driver handles page faults which permits the on-de-
mand re-binding of endpoints.

Figure 2. shows the four-state protocol controlling endpoint
virtual address translations and backing store. Endpoints re-
side in uncacheable endpoint frames on the network inter-
face (on-nit), cacheable main memory (on-host), or in the
system swap area (on-disk). Endpoints in interface memory
have read-write (r/w) translations, endpoints in host memo-
ry can have either read-write or read-only (r/o) translations,
and endpoints migrated to disk are marked as invalid (n/a).

An endpoint initially resides in the on-host r/o state. Writes
by applications (or references by the network interface) gen-
erate endpoint page faults which transition it to the on-host
r/w state and schedules its re-mapping to an NI endpoint
frame. This allows applications to read and to write end-
points without necessarily consuming NI endpoint frames,
while providing the system with a triggering event to initiate
re-mapping. Eventually, the kernel makes the non-empty
endpoint resident so communication can occur. When all
frames are occupied, the system replaces a resident endpoint
at random and returns the endpoint to the on-host r/o state.
Page reclamation mechanisms may move non-resident end-
points to secondary storage should they be the least recently
used pages during periods of acute memory deficits. The
‘vm pageout’ transitions refers to these reclamations.

make-resident

Figure 2. Operating system endpoint segment management
protocol as implemented in the Solaris VM system.

The non-resident, read-write state deserves special atten-
tion. It was not in our original design but it is extremely im-
portant for robust performance under conditions of high re-
mapping load. Normally, pagefaults are handled synchro-
nously, while the faulting thread remains suspended. This
state de-couples process scheduling from the binding of
endpoints to the NI, and allows the application thread to
continue execution immediately after a write fault. The ini-
tial page fault schedules the re-mapping operation with the
system and makes the endpoint writable. The segment driver

uses background kernel thread to activates non-empty end-
points, asynchronously to their initial fault handling. The
thread periodically services re-mapping requests in the
background, and unmaps the endpoint, moves its backing
store to the NI, and updates its virtual address translations.

The activation of a non-resident endpoint in response to
message arrival is also unusual, as there is no user process
instruction that generates the fault, so the segment driver
must simulate its effect. Again, multi-threaded operating
systems provides a simple solution. The endpoint segment
driver spawns a kernel thread which performs proxy opera-
tions on behalf of the NI. When requested to make an end-
point resident, it generates a software-initiate pagefault
which activates the same underlying driver mechanisms.

4.3 Driver/NI Protocol
The segment driver operates concurrently with the network
interface, and these two agents must coordinate their opera-
tions on shared endpoints and data structures. Both the oper-
ating system and NI make asynchronous requests to initiate
operations in the other, and receive responses in return, This
raises three fundamental issues: the means through which
the operating system and NI communicate, the protocol that
defines the possible operations and synchronizes their inter-
actions, and how each agent performs operations on behalf
of the other. Here we address the protocol and driver opera-
tions; NI operations for the driver are in Section 5.3.

The segment driver and the NI are peer agents that commu-
nicate using a simplified Active Messages interface through
a dedicated system endpoint. Unlike user-level endpoints,
the system endpoint is permanently resident. A small num-
ber of message handlers, in the driver and in the NI, define
the protocol through which they interact. For example, the
driver may request that the NI allocate an endpoint, load an
endpoint from the host into an endpoint frame, or unload an
endpoint to host memory. In each case, it invokes a message
handler in the NI to perform part of the operation. The inter-
face may request that the driver, for example, make an end-
point resident, notify a thread of a communication event, or
manipulate DMA mappings to application memory regions.
A variant of logical clocks [20] is used so that each agent
can resolve the ordering of events initiated by the other, e.g.,
when the driver attempts to free an endpoint as the interface
concurrently requests that it be made resident.

5. Network Interface
The fundamental challenge in the NI support for virtualiza-
tion is balancing the demands of individual application per-
formance with the need for fair sharing of critical hardware
resources. Multiple independent flows are bound to the net-
work interface, instead of muxed into a single flow by the
operating system, and the interface obtains three core re-
sponsibilities: the efficient implementation of packet trans-

123

mission mechanics and protocols, fairly servicing multiple
resident endpoints while retaining per-endpoint perfor-
mance, and integrating driver requests with the device’s on-
going communication and protocol operations.

5.1 Primitives and ‘I’ransport Protocols
The mechanics of packet transmission requires driving the
packet interface to send data over network links, as well as
providing end-to-end transmission sequencing, flow control,
error detection and handling. The interface systematically
processes queues of message descriptors for resident end-
points, multiplexes packets onto the link while applying
simple flow control protocols for reliable delivery, and de-
multiplexes arriving messages into destination endpoints.

The details of an earlier version of these protocols were pre-
viously published [lo] and are only summarized here. User-
level credits prevent a single endpoint from overrunning the
receive queues of a dedicated destination endpoint. In addi-
tion, the network interface uses a lightweight stop-and-wait
flow control protocol over multiple logical channels with
positive acknowledgment. A randomized exponential back-
off algorithm control packet time-outs and retransmissions.
Flow control channels are self-synchronizing and automati-
cally re-initialize sequencing state should either end enter a
designated uninitialized state, e.g., when a node reboots.
The interface places 32-bit time stamp in the link header of
each packet and receiving interfaces reflects them in their
acknowledgments (see Section 5.3).

Positive acknowledgments indicate messages were written
into their destination endpoint, while negative acknowledg-
ments encode why messages could not be delivered. The
prolonged absence of acknowledgments indicates an unre-
coverable transport condition, e.g., disconnection or inter-
face failure, which triggers the return of messages to their
senders. Other errors, such as sending to a non-existent end-
point, do so as well. Multiple logical channels between all
interfaces mask transmission and acknowledgment laten-
ties, and take advantage of multi-path routing. when avail-
able. Because flow control channels are shared physical
resources, no message can occupy one for a prolonged peri-
od of time. After a bounded number of consecutive retrans-
missions, the NI carefully unbinds messages from channels
enabling their re-use; subsequent retransmissions reacquire
and rebind them. Careful engineering is required to accom-
plish these functions in a small number of instructions.

5.2 Service and Queueing Discipline
Because the NI services multiple resident endpoints, its ser-
vice and queueing discipline can balance minimizing laten-
cy and maximizing throughput for individual endpoints
while maintaining fairness and responsiveness across them.
The service discipline determines the order in which end-
points are serviced while the queueing discipline determines

the order in which descriptors within an endpoint are pro-
cessed. Traditional protocol stacks, e.g., TCP/IP, present NIs
with a unified stream of packets from a mix of processes and
protocols and incoming packets are received into a single
shared queue that requires further higher level processing
before delivery to applications. Thus, the service and queue-
ing discipline is determined primarily by process schedul-
ing. Architectures that provide direct user-level messaging
collapse such intermediate layers of interpretation, and the
NI schedules multiple traffic flows onto the network.

The NI uses a weighted round-robin scheduler for servicing
resident endpoints, and processes endpoint descriptors in a
first-come first-serve manner. The algorithm cycles through
resident endpoints and loiters on those with packets await-
ing transmission (or retransmission). While packets remain
to send, the interface processes at most 64 (the number of
descriptors for sending messages) messages for at most 4 ms
(the approximate transmission time for 64 messages of the
maximum transmission unit size) before servicing other
endpoints. In effect, the NI maintains a state machine per
endpoint. The. discipline allows the interface to cache end-
point-specific state and optimize the latency and throughput
for an individual endpoint, while, at the same time, prevents
endpoints sending large messages from receiving unfair pro-
portion of attention. The in-order transmission of packets,
and the sometimes out-of-order reception of their acknowl-
edgments requires departing from the first-in first-out
queueing policy for retransmission. Retransmission requires
fine-grain random-access to message descriptors in end-
points. It would be costly if they were maintained in host
memory.

5.3 Driver Operations
The NI interleaves the servicing of the driver endpoint
among all others. While the driver/NI protocol defines a set
of atomic operations in the driver, the network interface
overlaps the processing of driver requests with user messag-
es. The fundamental complication arises when the driver at-
tempts to unload or invalidate an endpoint which has
unacknowledged messages in flight. The mechanics of send-
ing packets and protocol messages create references to
physical endpoints, which must be eliminated before reus-
ing that state. In essence, the network interface implements
a lockup-free cache of the most active endpoints in the sys-
tem, and while the interface must take special care while the
driver modifies a particular entry, the processing of messag-
es of all other entries continues at full speed.

Putting an endpoint with unacknowledged messages into a
quiescent state adds transient states to the dispatch loop
driving the interface operation. These states prevent new
messages from being sent from endpoints to be modified by
the driver, while periodically retransmitting unacknowl-
edged packets until acknowledgments are received. Once

124

quiescent, the driver may safely operate upon the endpoint.
Because the retransmission protocol may introduce multiple
copies of messages in the network, the interface must ac-
count for all such copies and their acknowledgments before
responding to driver requests. For simplicity, the system
statically binds flow control channels to physical network
routes, and this imposes a first-in first-out ordering of mes-
sages across each logical channel. Receiving an acknowl-
edgment for the most recent retransmission is then sufficient
to account for all copies.

6. Performance
Previous sections have described a family of interrelated de-
sign choices for an effective virtual network system and the
general rationale behind them. This section presents empiri-
cal measurements to evaluate its performance in three re-
gimes and reflects upon the design choices made. It begins
with microbenchmarks that reveal how virtualization effects
point-to-point overheads, latencies, and bandwidths. It uses
dedicated and time-shared parallel applications to evaluate
typical workloads that operate well within the capabilities of
the network. The remainder of the section examines its scal-
ability and robustness under a demanding set of workloads
that systematically overcommit physical network resources,
and stress the virtualization mechanisms and policies.

6.1 Stand-alone Microbenchmarks

1”

12

3 10
00
2 8
e
.$ 6 z:

4

LogP parameters
Figure 3. LogP performance characterizations. AM denotes AC.
tive Messages for virtual networks. GAM refers to a single-endpoint
interface with none of the necessary enhanacements of Section 3.

The LogP microbenchmark results in Figure 3. characterize
performance for both virtual networks and a first-generation
Active Message interface for stand-alone parallel programs,
using a technique described in [9]. In the LogP model, the
send and receive overheads, 0, and 0, account for the host
processor time spent writing and reading a message to the
NI, respectively. The latency, L, accumulates the remaining

end-to-end time. Each message incurs a total overhead of 0,
+ 0, and experiences a one-way time 0, + 0, + L. The gap,
g, is the time per (16-byte) message through the rate-limit-
ing communications stage between two endpoints. Messag-
es can be sent every g time units in steady state.

Virtualization and the increased demands placed upon the
network interface increase the round-trip time by 23% and
the gap by a factor of 2.21, while the total per-packet over-
head remains the same. The larger gap is due primarily to
the transport protocol and acknowledgment processing.
Other aspects of virtualization, such as error checking and
defensive firmware practices, contribute only 1.1 u~ec to L
and g. Sensitivity studies 1321 show that increases in gap
are, in general, less detrimental than increases in overheads,
because such increases only effect applications which send
long, frequent bursts of small messages. Whereas the larger
send overhead reflects the cost of writing bigger message
descriptors to the NI, the smaller receive overhead shows
the benefit of reading entire descriptors across the SBUS us-
ing a single SPARC VIS block load instruction.

6 sbus: read dma

Of” I I I

0 2000 4000 6000 8000
Transfer Size (bytes)

Figure 4. Transfer bandwidths. Microbenchmarks showing de-
livered bandwidth for 128 byte to 8192 byte messages, with maxi-
mum hardware transfer rates across the SBUS for comparison.

Figure 4. shows that virtualization has no appreciable per-
formance impact for point-to-point bulk data transfers. The
system delivers 43.9 MB/s with 8 KB messages with an NI,2
of 540 bytes. The first-generation interface delivered only
38 MB/s for the same size message. The round-trip latencies
for n-byte messages, n z 128 , take time = 0.1112(n) +
61.02 usec (R2 = 0.99). The SBUS exhibits asymmetric di-
rect memory access transfer rates whether reading or writ-
ing host memory from the NI. Thus, the delivered
performance approaches 93% of the 46.8 MB/s hardware
limit for 8KB DMA transfers (SBUS write dma) when writ-
ing to host memory. Although the NI pipelines its process-
ing of message descriptors to compensate for the store-and-
forward delay when staging transfers through its memory,
the transfer time across the SBUS dominates the added
packet and protocol processing arising from virtualization.

125

35 ideal -
BT +-

0 5 10 15 20 25 30 35 40
Processors

Origin2000

8

25

g 20

i+ 15

.
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Processom Processoa

Figure 5. NPB speed-ups through 32 processors on the IBM SP-2, Berkeley NOW and SGI Origin 2000. Shows speedups for the NAS
Parallel Benchmarks 2.2 (Class A) on the IBM SP-2, Berkeley NOW, and SCI Origin 2000, from 1 to 36 nodes with constant problem size
scaling.

6.2 Dedicated Parallel Applications
The performance of individual parallel applications using
the system in a stand-alone MPP fashion has been shown on
several benchmarks. This section illustrates that the commu-
nication layer continues to deliver full hardware perfor-
mance to parallel applications that use the system in a stand-
alone way.

Using the public-domain Scalapack library, the optimized
BLAS routines from the Sun Performance Library, and our
port of the standard MPICH on Active Messages, our lOO-
node cluster sustained 10.14 GF on the massively-parallel
linpack benchmarks, making it the first cluster on the Top-

-500 list [14], ranking #315 on June 19th, 1997.

We have also evaluated the performance and scalability of
the NAS Parallel Benchmarks (~2). As shown in Figure 5,
for Class A, the scalability is significantly better than the
SP-2. All but two of the benchmarks demonstrate linear
speed-ups through 32 processors. They are not embarrass-
ingly parallel, but improved cache performance compen-
sates for increased communication, which is even more
pronounced on the Origin. The all-to-all communication
within the FT and IS benchmarks was limited by the bisec-
tion bandwidth. Comparing with the newer, faster SGI Ori-
gin 2000, the execution times of all benchmarks on our
cluster are at most a factor of two larger. Instrumentation re-
veals that not only is the relative time spent performing
communications lower on the cluster, but in some instances
the absolute time spent performing communication is lower.

6.3 Multiple Parallel Applications
To demonstrate support for more general workloads, we
consider multiple parallel programs, each with one or more
virtual networks that timeshare a partition within the cluster.
This workload shows virtual networks adapting to process
scheduling and not constrained in its usage model.

In general, parallel applications that communicate frequent-
ly must be co-scheduled to some degree because there are

strong dependencies between the processes. A variety of
mechanisms exist for co-scheduling parallel applications,
either in the operating system or run-time libraries. Some
systems require co-scheduling for system correctness be-
cause the communication substrate can support direct, pro-
tected access for only one process at a time [191. Our system
does not require this; it uses implicit co-scheduling which
coordinates the scheduling of processes within parallel ap-
plications using conventional local schedulers. Regardless,
however the scheduling system selects processes to run, the
virtual network subsystem adapts the resident set to the ac-
tive endpoints.

Previously published results in [12] shows that the execu-
tion time of multiple, time-shared Split-C applications (as
well as synthetic benchmarks) on 16-nodes is within 15% of
the time to run them in sequence. The time spent in commu-
nication remains nearly constant, which indicates that when
applications communicate, they receive full network perfor-
mance. In the presence of application load imbalance, time-
sharing improved the throughput of some workloads up to
20%.

6.4 Virtualization at Scale and Load
We conclude this section with an examination of synthetic
workloads that stress network virtualization mechanisms
and reveal their robustness under severe loads. These work-
loads build upon a simple client/server model, with one
server, and one or more client processes. The flexibility of
virtual networks and the Active Message interface motivate
measuring a few different workload configurations. First, to
limit interactions with process scheduling and resource
management external to the communication layer, the server
and each of the client processes run on distinct, dedicated
nodes, Second, we consider two natural designs, one where
each client has an endpoint that communicates with one
shared server endpoint, so only one virtual network is used,
and another where each client communicates with its own
unique server endpoint, so there are as many virtual network

126

as clients. With multiple virtual networks, we consider two
natural server threading models, one where a single thread
handles requests from all client (ST), and another where
there is a server thread for each endpoint (MT). Each server
thread waits for messages to arrive from its client, processes
requests until none remain, and waits again. Finally, we con-
sider two configurations of the server’s network interface,
one with only 8 endpoint frames, and the second with the
default 96 frames. As the number of clients increases, the
number of server endpoints increases, too. More than 8 cli-
ents cause the 8-frame configuration to overcommit its
physical endpoint resources and to begin re-mapping them
on-the-fly. (None occurs with the 96-frames).

In general, we might model client/server communication as
alternating between computation and burst communication
phases, but here we want to examine system behavior under
increasingly demanding loads that overcommit NI resources
and activate the underlying virtualization mechanisms. The
workload is somewhat like a page thrash test. Each client
sends a continuous stream of requests to its endpoints in the
server, and we increase the number of clients. Each graph
shows the throughput for five possible configurations over a
20 second interval in the steady state.

100000 n 1
OneVN

5 1000
3
z 2 100
0
r:
E 10

‘I (4 3 I+ m Y.2 4 2 ;? s GJ s 2 5;
Nnmher of Clients

90000 ,
z 80000
g .!z 70000
z 60000
8 50000
$ 40000
22
&

30000
g 20000
St” 10000

0’
3 c- 2 o\ 3 z 2? q 3 2 G 3

Number of Clients

Figure 6. Small message performance under contention.

Figure 6. shows throughput for small messages across dif-
ferent configurations. 6a shows per-client throughput on a
semi-log scale, and 6b shows the aggregate server through-
put. In the OneVN configuration, each client obtains its pro-
portional share of the server’s maximum throughput of 78K
msgs1.s. With ST, clients continue to receive their propor-
tional share, but two factors may contribute to the aggregate
performance degradation. With 8 server frames, the server
may stall when endpoint re-mapping occurs, and with 96
frames, the costs of polling resident but non-cacheable end-
points in interface memory outweigh that of polling non-
resident but cacheable endpoints in host memory. In the MT
configuration, performance is resilient to the number of
server frames. Theads with empty endpoints remain asleep
until messages arrive. Threads blocked waiting for their
endpoints to become resident don’t prevent threads with
non-empty, resident endpoints from running.

Figure 7 shows throughput for 8KB bulk messages. 7a
shows per-client throughput, and 7b shows the aggregate
server throughput. In the OneVN configuration, each client
obtains approximately its proportional share of the server’s
maximum throughput, in this case of -42.8 MB/s. The ST
configuration shows sensitivity to the number of server
frames. With only 8 frames, server performance drops with
9 clients and then degrades slowly. With 96 frames, no re-
mappings occur and ST performance surpasses OneVN for
the reasons explained below. In the MT configuration, per-
formance is similar to the ST configuration and remains sen-
sitive to the number of server frames. The local scheduler
does interact with the endpoint scheduling in the operating
system, and the service and queueing discipline on the NI.
Threads for client endpoints with pending messages can be
run while threads suspended during re-mapping operations
or awaiting the arrival of requests will not block them.

6.4. I Discussion
These results demonstrate the ability to overcommit NI re-
sources (by more than 8: I), while providing robust through-
put for resident endpoints and fair service for all endpoints
over time. Under these workloads, the operating system sus-
tains approximately 200-300 endpoint re-mappings per sec-
ond, but still delivers .50%-75% of its performance. Over
short intervals, those clients with resident server endpoints
successfully deliver messages. Messages for non-resident
endpoints are negatively acknowledged and retransmitted
later, while the server interface requests the driver re-map
the endpoint. Similarly, round-trip latencies experienced by
client requests are strongly bimodal. Those requests deliv-
ered to resident endpoints are processed quickly, while oth-
ers experience re-mapping and retransmission delays.

Without the support for event-driven operation, the multi-
threaded server would not be implementable. Without re-
sorting to preemptively scheduled threads bound to light-

127

weight processes, a single user-level thread would either
poll forever (wasting cpu cycles), or use time-outs or other
clumsy notification mechanisms to wake its up periodically.

(A)- I- $1 2 g ;; % % 3 2 5;
Number of Clients

50
-
s

45
2 40

‘?’ 35

s 2 30

i 20 25

8 15
pJ 10

3 I

*- 54 I

Figure 7. Bulk transfer performance under contention.

Originally, the endpoint management protocol in Section
4.2 did not include the on-host r/w state (transitions to it
went directly to the on-nit r/w state). Single threaded serv-
ers fell off sharply as soon as endpoint re-mapping began
with the 9th client. Only a few percent of the hardware per-
formance was delivered. This was because the server thread
blocked for the full-duration of the upload each time it
wrote replies into a non-resident endpoint. However, the
multi-threaded server did perform well, because it allowed
multiple threads to block awaiting re-mappings, while those
threads with resident endpoints could always be run and
could process incoming requests from their clients.

The single virtual network configuration shows the impact
of receive queue overruns, and subsequent retransmissions.
Figure 6(b) shows the drop from 75K to 60K msgs/s, from 2
to 3 clients, which occurs when this lightweight mechanism
no longer prevents receive queue overruns, and the link pro-
tocols begins retransmitting them. Credit-based flow control
in the user-level library allows each endpoint to have 32 out-
standing Active Message requests because each endpoint’s

request receive queue is 32 entries deep. Similarly, Figure
7(b) shows the ST and MT configurations with 96 frames
outperforming the OneVN configuration for the same rea-
son: with one-to-one “connections,” overruns do not occur
and retransmissions only result from the destination end-
point not being resident.

7. Related Work
Despite important differences, many similarities exist in
contemporary user-level network systems. Most provide
processes with direct network access, typically by mapping
device hardware into virtual address spaces. The systems
optimize the transfer of control, data, and status information
between user-level applications and the NI. The operating
system is always off the critical path.

Several prototypes have explored the integration of high-
speed network adaptors into commodity operating systems.
These small-scale systems provided varying degrees of pro-
tected multiprogramming. The Osiris project at the Univer-
sity of Arizona created Application Device Channels [15]
that provided a small number of memory mappings to an
ATM adaptor, using flfbufs to manage sharing of message
buffers between the device and higher-level protocols. The
U-Net [30] system illustrated user-level networking with
ATM and Myrinet adaptors (and also emulated it using Fast
Ethernet). It demonstrated limited-degree virtualization, and
rather than addressing protocol issues with the NI, each ap-
plication provides all of its protocol support at user-level.

In addition to Active Messages, several high-performance
communication systems have been realized on both clusters
and MPP’s. Remote queues [2] provide an interface to mes-
sage queues with direct control over their servicing. The Illi-
nois Fast Message system [24, 251 is similar to remote
queues and Active Messages, and has been implemented
successfully on clusters and massively parallel processors.
With recent extensions, it, too, supports limited-degree vir-
tualization for parallel programs. Although it assume a per-
fectly reliable interconnect, this allows careful use of pre-
allocated storage and user-level credits to avoid receiver
overruns. (Support for thread-based events is pending.)

The remote memory-mapped regions as used in the Memory
Channel system [171 establishes import-export relationships
between virtual memory regions in different applications.
The SHRIMP project designed Virtual Memory-Mapped
Communication [5] where reflective memory channels are
established such that writes into an imported segment even-
tually appear in the exported one. It implemented memory-
based message passing across its logical channels, as well as
RPC [3] and data stream abstractions [131. Almost all state
resides in host memory, leaving the NI and OS to coordinate
the management of device TLB’s. The Hamlyn [4] system
implemented sender-based communication.

128

The Virtual Interface Architecture [8] combines elements of
these systems. It provides direct user-level network access
to multiple applications, supports several different reliability
models, and both memory-based and message-based trans-
port primitives. The reference architecture takes a conserva-
tive position on memory management, requiring explicit
memory registration and pinning before communicating. It
specifies a rather complicated model for operating upon de-
scriptors in host memory, as well as several weaker reliabili-
ty models. Although it uses connections, collections of VI’s
may share a completion queue which provides a central lo-
cation for polling. A parallel program on n nodes requires rz2
total VI’s for complete connectivity, rather than a single
endpoint. Resource provisioning is also done on a connec-
tion bases rather than pooling resources across a set.

8. Conclusions
We have demonstrated the feasibility of network virtualiza-
tion at scale within the existing frameworks of programming
interfaces, operating systems, and network interfaces. Our
implementation delivers the full hardware performance to
parallel applications that run in a stand-alone fashion, and
adapts to process scheduling with time-shared workloads.
Moreover, it continues to deliver a large fraction of the net-
work performance even with demanding workloads that
overcommit the NI resources. The fast, user-level communi-
cation that we take for granted in parallel systems can be-
come available to all components.

Because virtual networks require dealing with the interac-
tions between layers of the system, and across nodes in the
network, their implementations are challenging. When done
carefully, the necessary extensions are localized in scope
and reasonable in their demands on processing and storage.
The extensions to Active Messages focused on three specific
areas, and left its original request/response paradigm intact.
The enhancements to Solaris found existing virtual memory
management and kernel thread facilities entirely adequate.

Although the NI protocols are non-trivial, we believe that
their complexity remains in line with high-performance im-
plementations in hardware. Our implementation was suc-
cessful even with the significant processing and storage
constraints of the LANai. Additional processing power
would improve latency and gap, and recover some of the
costs of virtualization. It would also enable more sophisti-
cated algorithms, e.g., round-trip times estimation for
scheduling retransmissions, or piggybacking acknowledg-
ments to reduce network occupancy.

We are currently working on applying these techniques for
network virtualization to an implementation of the Virtual
Interface Architecture in order to address a number of limi-
tations from which it currently suffers. The challenges fac-
ing large-scale implementations, such as managing a large

logical space of VI’s given finite interface resources, and the
stronger reliable delivery modes given less-than-perfect net-
works, have analogous solutions to those described herein.

Acknowledgments
The authors thank Bob Felderman at Myricom for his time
and support, and Bill Nesheim and Madhu Talluri at Sun
Microsystems for their guidance with Solaris. We also thank
Eric Anderson, Phillip Buonadonna, Brent Chun, Andrea
Arpaci-Dusseau and Remzi Arpaci-Dusseau for their timely
discussions and suggestions on drafts of this paper, and the
anonymous reviewers for their comments and feedback.

9. References
[II

PI

[31

[41

is1

[61

r71

PI

191

[lOI

N. Boden, D. Cohen, R. Felderman, A.Kulawik. C.
Seitz, J. Seizovic, and W. Su. Myrinet: A Gigabit per
Second Local Area Network. In IEEE Micro Maga-
zine, February 1995.
E. A. Brewer, F. T. Chong, Lok T. Liu, S. D. Sharma,
and J. D. Kubiatowicz. Remote Queues. Exposing
Network Queues for Atomicity and Optimization. In
Proceedings of the 7th Symposium on Parallel Algo-
rithms, and Architectures, pages 42-53, Santa Bar-
bara, CA, July 1995.
A. Bilas and E. W. Felten. Fast RPC on the SHRIMP
Virtual Memory Mapped Network Interface. Depart-
ment of Computer Science, Princeton University
Technical Report TR-512-96, February 1996.
G. Buzzard, D. Jacobson, M. Mackey, S. Marovich,
and J. Wilkes. An implementation of the Hamlyn
sender managed interface architecture. In Proceedings
of the 2nd Symposium on Operating System Design
and Implementation, pages 245-259, Seattle, WA,
October 1996.
M. A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E. W.
Felten, and J. Sandberg. Virtual Memory Mapped
Network Interface for the SHRIMP Multicomputer. In
Proceedings of the 21 rst International Symposium on
Computer Architecture, pages 142-153, April 1994.
A. Basu, M. Welsh, and T. von Eicken. Incorporating
Memory Management into User-Level Network Inter-
faces. In Proceedings of Hot Interconnects r! Stan-
ford, CA, August 1997.
C. Chang, G. Czajkowski, C. Hawblitzel, and T. von
Eicken, “Low-Latency Communication on the IBM
RISC System/6000 SP,” Department of Computer Sci-
ence, Cornell University, September 1996.
Compaq Computer Corporation, Intel Corporation,
and Microsoft Corporation. Virtual Interface Archi-
tecture Specification Version 1 .O. On-line at http://
wwwviarch.org, December, 1997.
D. Culler, L. Liu, R. Martin, and C. Yoshikawa. LogP
Performance Assessment of Fast Network Interfaces.
In IEEE Micro Magazine, February 1995.
B. Chun, A. Mainwaring, and D. Culler. Virtual Net-

129

IllI

[121

[I31

[I41

[151

[I61

[I71

[If31

H91

WI

D11

WI

work Transport Protocols for Myrinet. In IEEE Micro
Magazine, January 1998.
R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D.
Culler, J. Hellerstain, D. Patterson, K. Yelick. Cluster
I/O with River: Making the Fast Case Common.
IOPADS ‘99. May, 1999, Atlanta, Georgia.
A. C. Arpaci-Dusseau, D. E. Culler, A. M. Mainwar-
ing. Scheduling with Implicit Information in Distrib-
uted Systems. In 1998 SIGMETRICS Conference on
the Measurement and Modeling of Computer Systems,
Madison, Wisconsin, June 24-26, 1998.
S. Damianakis, C. Dubnicki, and E. W. Felten. Stream
Sockets on SHRIMP Department of Computer Sci-
ence, Princeton University Technical Report TR-5 13-
96, October 1996.
J. J. Dongarra, H. W. Meuer, and E. Strohmaier.
TOP500 Supercomputer Sites. Technical Report UT
CS-97-365, University of Tennessee, June 1997.

P. Druschel, L. Peterson, and B. Davie. Experiences
with a High-speed Network Adaptor: A Software Per-
spective. In Proceedings of ACM SIGCOMM ‘94
Symposium, August, 1994.
B. Goodheart and J. Cox. The Magic Garden
Explained: The Internals of UNIX System V Release
4: An Open Systems Design. New York : Prentice
Hall, 1994.
R. B. Gillett. Memory Channel Network for PCI.
IEEE Micro, 16:12-18, February 1996.
R. Horst. TNet: A Reliable System Area Network.
IEEE Micro, February 1995, vol.15 (no.l):37-45.
C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C.
R. Feynman, M. N. Ganmukhi, J. V. Hill, W. D. Hillis,
B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C.
Wong, S. W.Yang, and R. Zak. The Network Archi-
tecture of the Connection Machine CM-5. In Sympo-
sium on Parallel and Distributed Algorithms, pages
272-285, San Diego, California, 1992.
L. Lamport. Time, Clocks, and Ordering of Events in
a Distributed System. Communications of the ACM,
21(7):558-565, July 1978.
L. T. Liu. An Evaluation of the Intel Paragon Commu-
nication Architecture. Master’s report, University of
California at Berkeley, Computer Science Depart-
ment, Berkeley, CA, July 1995.
S. Lumetta, A. Mainwaring, D. Culler. Multi-Protocol

~231

~241

~51

WI

~271

WI

~91

301

311

[321

Active Messages on a Cluster of SMP’s. In Proceed-
ings of SC’97, November 1997.

R. P. Martin. HPAM. An Active Message Layer for a
Network of Workstations. In Proceedings of Hot
Interconnects II, Stanford, CA, August 1994.
S. Pakin, V. Karacheti, and A. Chien. Fast Messages
(FM): Efficient, Portable Communication for Work-
station Clusters and Massively-Parallel Processors. In
IEEE Parallel and Distributed Technology, 1997.
S. Pakin, M. Lauria, and A. Chien. High Performance
Messaging on Workstations. Illinois Fast Messages
(FM) for Myrinet. In Proceedings of Supercomputing
‘95, San Diego, CA, 1995.
A. Mainwaring and D. Culler. Active Message Appli-
cation Programming Interface and Communication
Subsystem Organization. Technical Report CSD-96-
9 18, University of California at Berkeley, October
1996.
H.Tezuka, A. Hori, Y. Ishikawa and M. Sato. PM: A
Operating System Coordinated High Performance
Communication Library. In High-Performance Com-
puting and Networking ‘97, April 1997
L. Tucker and A. Mainwaring. CMMD: Active Mes-
sages on the CM-5. Parallel Computing. 20 (1994)
48 l-496.
K. E. Schauser and C. J. Scheiman. Experience with
Active Messages on the Meiko CS-2. In Proceedings
of the 9th International Parallel Processing Sympo-
sium, Santa Barbara, CA, April 1995.
T. von Eicken, A. Basu, V Buch, and W. Vogels. U-
Net: A User-level Network Interface for Parallel and
Distributed Computing. In Proceedings of the 15th
ACM Symposium on Operating System Principles,
December 1995.
T. von Eicken, D. E. Culler, S. C.Goldstein, and K. E.
Schauser. Active Messages. a Mechanism for Inte-
grated Communication and Computation. In Proceed-
ings of the 19th International Symposium on
Computer Architecture, pages 256-266, Gold Coast,
Australia, May 1992.
R. Martin, A. Vahdat, D. Culler, T. Anderson. Effects
of Communication Latency, Overhead, and Band-
width in a Cluster Architecture. In Proceedings of the
International Symposium on Computer Architecture,
Denver, CO. June 1997.

130

