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We present the design, implementation, and evaluation of run-time adaptation within the River
dataflow programming environment. The goal of the River system is to provide adaptive mecha-
nisms that allow database query-processing applications to cope with performance variations that
are common in cluster platforms. We describe the system and its basic mechanisms, and carefully
evaluate those mechanisms and their effectiveness. In our analysis, we answer four previously
unanswered and important questions. Are the core run-time adaptive mechanisms effective, espe-
cially as compared to the ideal? What are the keys to making them work well? Can applications
easily use these primitives? And finally, are there situations in which run-time adaptation is not
sufficient? In performing our study, we utilize a three-pronged approach, comparing results from
idealized models of system behavior, targeted simulations, and a prototype implementation. As
well as providing insight on the positives and negatives of run-time adaptation both specifically
in River and in a broader context, we also comment on the interplay of modeling, simulation, and
implementation in system design.
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1. INTRODUCTION

One of the most successful application domains to be mapped to paral-
lel machines is the realm of database query-processing, which has resulted
not only in many successful research projects [Barclay et al. 1994; Boral
et al. 1990; DeWitt et al. 1986; Lorie et al. 1989] but also in commer-
cially viable products from industry [Baru et al. 1995; Tandem Performance
Group 1988; Teradata Corporation 1985]. Much of this success can be at-
tributed to the relational model; by describing data “with its natural structure
only” [Codd 1970], the relational model affords much flexibility in implemen-
tation, which, as DeWitt and Gray [1992] state, is “ideally suited to parallel
execution.”
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In the past, these parallel database systems were often tailored to run on spe-
cialized parallel hardware platforms. However, recent changes in networking
technology have transformed commodity clusters of workstations (sometimes
called networks of workstations, or NOWs) into a viable platform for tightly
coupled parallel applications. In particular, the advent of switch-based, low-
latency, high-throughput networks has enabled the deployment of new classes
of applications and services on modern clustered systems. Clusters have a num-
ber of built-in advantages over specialized parallel machines, including higher
performance and lower cost: higher performance because they incorporate the
most recent microprocessors and thus better track Moore’s law, and lower cost
due to the economies of scale of mass production [Anderson et al. 1995].

However, although clusters provide an excellent alternative to specialized
parallel machines, they also introduce a range of new problems for system
designers. Much of this difficulty arises from the complexity of modern com-
puter systems; the basic building blocks of clustered systems, including pro-
cessors, networks, disks, and associated software, are becoming increasingly
sophisticated. For example, current top-of-the-line microprocessors have tens
of millions of transistors [AMD 2000], and operating systems typically contain
millions of lines of code.

Increasing component complexity directly affects component behavior;
in particular, identical complex components will often not behave identi-
cally [Arpaci-Dusseau and Arpaci-Dusseau 2001]. For example, two otherwise
identical disks, made by the same manufacturer, receiving the same input
stream, will not necessarily deliver the same performance. This unexpected
dynamic performance heterogeneity can arise from a number of different factors,
including the fault-masking capabilities of modern SCSI disk drives: by remap-
ping bad blocks, bad sectors can be hidden from higher levels of the system,
but not without altering the performance of the drive. Disks are not the only
purveyor of such heterogeneity; similar behavior has been observed in CPUs
[Bressoud and Schneider 1995; Kushman 1998], networks [Arpaci-Dusseau
1999], memory systems [Raghavan and Hayes 1991], and even software sys-
tems [Chen and Bershad 1993; Gribble et al. 2000].

Performance heterogeneity becomes particularly difficult to overcome when
mixed with parallelism, due to the performance assumptions often made by
parallel algorithms. In particular, many previous systems have made the sim-
plifying assumption that all components of a system will operate at the same
rate at all times; such assumptions are common in parallel database systems,
which have traditionally used static data distribution schemes such as range-
partitions or hash-partitions to move data or assign work across nodes of the
system [DeWitt et al. 1986; Graefe 1990]. With such strong performance as-
sumptions, all global operations perform at the rate of the slowest member of
the group, thus decreasing the performance and robustness of the system.

Rather than attempting to prevent performance heterogeneity from occur-
ring, River is a parallel I/O programming environment that takes these varia-
tions, or “performance faults,” into account as an inherent design consideration
[Arpaci-Dusseau et al. 1999]. River provides a basic dataflow programming en-
vironment and I/O substrate for clusters, with the goal of enabling common-case
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robust performance in the face of arbitrary and unforeseen performance faults
in components. The primary focus of River is to provide the necessary sup-
port for parallel database query-processing primitives; however, we believe the
dataflow programming environment to be fairly general, and that a broader
class of applications could benefit from the River infrastructure.

The key to delivering robust system performance in River is run-time adap-
tation. River provides adaptive data-movement mechanisms that continually
gauge and react to the performance of components within the system, thus
avoiding performance assumptions by design. Specifically, River provides two
core adaptive mechanisms: a distributed queue (DQ) balances data flowing
across consumers of the system, and graduated declustering (GD) dynam-
ically adjusts the flow of data generated by producers. Both of these con-
structs are designed to take advantage of the performance characteristics of
modern high-speed networks, by moving data to the location where they are
best processed. River applications can utilize the DQ and GD in tandem to
deliver consistent high performance in spite of unanticipated performance
variations.

In this article, we present the design, implementation, and evaluation of
the second-generation River system, known as Ganges. We make some major
contributions in comparison with previous work. First, we describe the Ganges
prototype in some detail, which incorporates lessons learned from both the
implementation and evaluation of the first prototype, Euphrates.

Second and perhaps more importantly, we provide a detailed study of the
core River run-time adaptive mechanisms. Although initial results presented in
the IOPADS workshop were promising [Arpaci-Dusseau et al. 1999], they were
also limited. In particular, four important questions were left unanswered: How
well do the core run-time adaptive mechanisms of River operate, especially as
compared to the ideal? What are the keys to making them work well? Can appli-
cations readily apply the mechanisms to fashion robust applications? Finally,
what are the limitations of the mechanisms? Without answering these ques-
tions, little could be said about the generality or efficacy of the River approach,
or indeed the adequacy of run-time adaptation as a solution to the performance-
fault problem.

We answer these questions in this article via a three-pronged analysis. We
incorporate both modeling and simulation into our study, in addition to extend-
ing previous implementation work. With models, we are able to quantify ideal
performance and, thus, via comparison with the ideal, better understand how
well the core mechanisms truly operate. With simulations, we can study the
River distributed algorithms in depth, without worry or interference from the
many difficulties common in implementation work. With implementation, we
bring forth issues not likely to arise in all but the most accurate of simulations,
and validate our simulated performance expectations. Through this approach,
we enhance the Ganges prototype, improving the performance of River mech-
anisms by roughly a factor of three in some scenarios and by small factors in
almost all others. More important, we greatly enhance our understanding of
the software adaptation technology that is central to River, and thus feel more
confident that the core mechanisms of River are robust.
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Fig. 1. DQ performance, then and now: a comparison of the old DQ implementation versus the
new. The number of performance faults is increased along the x-axis, and the percentage of peak
performance is plotted along the y-axis. Results from the older version of the DQ are compared
against the new and improved algorithm.

An example of the improvement gained via our broader evaluation technique
is previewed in Figure 1. Therein, we plot the performance of two versions of
the distributed queue under performance faults, and compare both to our ideal
model. The line labeled “DQ (original)” plots data taken directly from the orig-
inal paper; as one can see, the performance of the Euphrates implementation
does not track the ideal, falling off sharply under a high number of perfor-
mance faults. With an ideal model in place (described in Section 4), it is easy
to see where improvement is necessary. The new line “DQ (new)” presents the
Ganges implementation of the DQ algorithm, which tracks the ideal almost
perfectly. The cause of the previous fall-off was the interplay of the DQ algo-
rithm and message-layer flow control, which we were able to study carefully via
simulation (see Section 6.1), resulting in a much-improved distributed queue
implementation.

We now summarize our major findings.

—How well do the core run-time adaptive mechanisms of River operate, espe-
cially as compared to the ideal? We find that in most cases, the refined dis-
tributed queue and graduated declustering algorithms operate quite well,
gracefully delivering nearly ideal performance under a number of perturba-
tion scenarios. We also quantify the limitations of GD due to limited repli-
cation in both best-case and worst-case situations; previous work only mea-
sured best-case scenarios.

—What are the keys to making them work well? We find that there are several
keys to the effective operation of River. First, in order for these run-time
adaptive primitives to function as desired, the behavior of the communication
layer and network hardware is critical; in particular, the DQ and GD must
have control over how flow control is implemented in the communication
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layer in order to perform well. Second, we find that the River mechanisms
require a high degree of parallelism at the application level; without excess
parallelism, the current River mechanisms cannot avoid performance faults
successfully. Fortunately, many data-intensive applications can achieve high
degrees of parallelism quite readily. Third, we find that local data-processing
decisions must be guided by global knowledge of progress; the main difficulty
in doing so lies in obtaining global information in a distributed and scalable
manner. Finally, in designing a River hardware platform, we recommend
that some amount of slack should be “engineered” into it, in order to enable
consistent high performance in spite of performance fluctuations.

—Can applications readily apply the mechanisms to fashion robust applica-
tions? This question is the most difficult to fully answer, but in implement-
ing a number of database query-processing operators on top of River, we find
that these programs can employ the distributed queue, graduated decluster-
ing, or both to create robust dataflow. However, we find that some applica-
tions are not as suitable to such transformations, for one of two fundamental
reasons: multiphase applications cannot automatically utilize GD in later
stages, as they must first pay the cost of data replication; also, a many-to-
one dataflow cannot easily be transformed into a robust counterpart with
a DQ.

—Finally, what are the limitations of the mechanisms? In our study, we de-
scribe certain cases where the localized run-time adaptation of River is not
sufficient. First, although the River adaptive mechanisms can tolerate local
performance faults in hardware and software, global performance fluctua-
tions in the network switches are difficult if not impossible to avoid; the
network backplane provides the primary avenue for adaptation, and must
work well for the system to behave robustly. Second, we find that in some
cases, run-time adaptation is too short-sighted and memoryless; we specu-
late that long-term adaptation is needed. Note that both of these problems
are general to run-time adaptive systems, and are not just specific to River.

The rest of this article is organized as follows. Section 2 highlights the River
system motivation and design, and Section 3 describes the Ganges implemen-
tation. In Section 4, we develop a model of expected ideal performance and
describe our experimental environment. Results are presented as answers to
each of the four questions outlined above, in Sections 5, 6, 7, and 8, respectively.
In Section 9 we discuss related work, and in Section 10, we conclude.

2. THE RIVER SYSTEM: MOTIVATION AND DESIGN

The goal of the River I/O programming environment is to enable the construc-
tion of applications that exhibit performance availability, that is, to provide
mechanisms that allow data-intensive applications to adapt at run-time to per-
formance fluctuations, and thereby make high performance consistently “avail-
able” to end-users. As stated above, our primary focus is upon database query-
processing primitives, although we believe that a broader class of applications
could be programmed within the River environment. In this section, we briefly
describe the design of the River system in more detail, including motivation for
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the system, and a description of its two core adaptive mechanisms. We conclude
the section with a discussion of technologies that the River design relies upon in
order to provide a flexible and robust programming substrate, and a discussion
of limitations of the environment.

2.1 Motivation

Much of the previous work in the field of distributed and parallel systems has
addressed the design of large-scale systems that can tolerate correctness faults
in individual components [Birman and Cooper 1991; Borg et al. 1989; Englert
et al. 1990; Liskov 1988; Schneider 1990]. The notion behind such work is that
distributed systems consist of multiple hardware and software components that
periodically fail; a system that works continuously on top of such unreliable
components must operate in spite of such failures. For example, RAID storage
can tolerate the failure of a disk and continue correct operation [Patterson et al.
1988a].

Less understood is the notion of how the system functions when one or more
components does not perform as expected. We refer to the unexpected low per-
formance of a component as a performance fault. Within clusters, disk drives
are often the main source of such performance variation, especially within the
scope of data-intensive applications. Some of the reasons why disks in a clus-
tered system exhibit static and dynamic performance faults within a single
disk and across disks include: the presence of multiple zones [Meter 1997],
SCSI bad-block remapping [Arpaci-Dusseau 1999] and thermal recalibra-
tions [Bolosky et al. 1996], sporadic performance before absolute failure
[Talagala and Patterson 1999], contention due to workload imbalance, and
structural heterogeneity due to incremental growth [Brewer 1997]. As we
have documented elsewhere [Arpaci-Dusseau and Arpaci-Dusseau 2001], many
other hardware and even software components can exhibit unexpected perfor-
mance variations; worse, the faults tend to occur only upon a subset of the
components of the system, and when they do occur, they tend to be long-lived.

Current systems that support data-intensive applications do not interact
well with performance faults; many of these systems are built using static
techniques for exploiting parallelism and allocating data. For example, stan-
dard striping algorithms for distributing data requests over a set of disks place
the same amount of data on each disk. As identified above, the problem with
static schemes is that they make rigid performance assumptions about the rel-
ative performance of different components—often that all perform identically.
As a result, when just a small number of components do not deliver peak per-
formance, the performance of the entire service will be reduced to that of the
few slow entities.

Performance availability states that the performance of the entire system
should track the aggregate performance of all components in the system, de-
grading gracefully under performance faults. We believe that systems must
provide the proper run-time adaptive primitives to support performance avail-
ability, and thus enable the delivery of excellent sustained performance in spite
of localized component performance failures.
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Fig. 2. NOW-Sort under perturbance: the best-case performance of NOW-Sort, versus its per-
formance under slight disk, CPU, and memory perturbations. All performance results are relative
to an 8-node run of NOW-Sort, which delivers data at a near-peak disk rate of 40 MB/s throughout
the run.

To better motivate the global performance problems induced by local per-
formance faults, we report the results of a simple experiment with NOW-
Sort [Arpaci-Dusseau et al. 1997], a high-performance parallel external sort
for clusters. In the experiment, the sort runs on eight machines, and in each
run, we perform a slight perturbation of the sort on just one of those machines.
The results from these perturbation experiments are shown in Figure 2. As we
can see from the graph, each of the perturbations on just a single machine has
a serious global performance effect. If a single file on a single machine has poor
layout (inner tracks versus outer), overall performance drops by 50%; when a
single disk is a “hot spot,” and has a competing data stream, performance drops
by a factor of three; CPU loads on any of the machines decrease performance
proportional to the amount of CPU they steal; when an excess memory load
causes a machine to begin thrashing, a factor of five in performance is lost.

Although it may be possible to build a system that avoids all of these situa-
tions by balancing load across the system perfectly at all times and meticulously
managing all resources of the system, we believe it is difficult to do so. As sys-
tem size and complexity increase, carefully managing such a system becomes
quite challenging if not impossible. Therefore, we approach the problem in a
different manner, by assuming the presence of such “performance faults,” and
providing a substrate that enables applications to operate well in spite of them.

2.2 The River Environment

River provides a generic dataflow programming environment for clusters of
workstations, quite similar in basic design to previous parallel database en-
vironments such as Gamma and Volcano [DeWitt et al. 1986; Graefe 1990].
Applications are constructed in a piecewise fashion from one or more modules.
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Fig. 3. Module API: a simple River module. The module Get()s messages from upstream, per-
forms some operation on them by calling a user-defined Filter(), and then (conditionally) Put()s
messages downstream.

Fig. 4. Flow API: a simple reader-to-writer flow. The user calls Place() to add a module node to
the dataflow graph, and Attach() to connect two modules. Finally, by calling Go(), the program
begins to run. In this example, the UFSRead module reads in collection ‘‘in.1’’; its output goes to
the input of the UFSWrite module, which writes it to disk under the name ‘‘out.1’’.

Each module has a logical thread of control and at least one input or output
channel. Inside a module, Get() can be called to obtain data from an upstream
source, and Put() can be called to pass data downstream. To begin execution of
an application, a control program constructs a flow, which connects the desired
modules from sources to sinks. Once instantiated, the computation begins and
continues until all data have been processed. Examples of a module and a flow
are given in Figures 3 and 4.

To enable applications to cope with performance faults and to still deliver con-
sistent high performance, River provides two distributed software constructs,
a distributed queue (DQ) and graduated declustering (GD). Both dynamically
adjust how data are transferred from a set of producer modules (e.g., processes
of a parallel application) to a set of consumer modules (e.g., a set of disks) at
run-time; the overall goal is to tolerate performance faults during such a trans-
fer in producers, consumers, or both. The two constructs in River each solve one
problem—the DQ can cope with performance-faulty consumers, and GD with
performance-faulty producers—and in tandem can be used in a flow to build
performance-robust applications.
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By design, River does not explicitly provide mechanisms to deal with absolute
failure. To handle absolute failure, applications must either be restarted or take
advantage of a checkpointing package [Barclay et al. 1994; Litzkow et al. 1997].
We now discuss the desired behavior of the distributed queue and graduated
declustering in more detail.

2.3 The Distributed Queue

When transferring data from a set of producers to a set of consumers, one or
more consumers might suffer from a performance fault. The proper reaction in
such a case is to move more data to other consumers, proportional to the relative
bandwidths between faster and slower ones. This functionality is provided by
the distributed queue, which application writers insert into a program dataflow
to tolerate consumer faults.

We wish to arrive at a design that provides a constraint-free transfer of
data between an arbitrary number of producers and consumers. Envision the
following scenario: a distributed queue is placed between P producers and C
consumers. The distributed queue should have the following behavior. Data
placed into the queue by one of the producers will be sent to exactly one of the
consumers. Note that no ordering of data is guaranteed, except point-to-point;
if a producer places A into a DQ before B, and if the same consumer receives
both A and B, it will receive A before B. Strictly speaking, this is more like a
bag than a queue.

In terms of performance, the ideal distributed queue will deliver the data
to consumers at rates proportional to their rates of consumption. Thus, if over
a fixed time interval, C0 consumes at rate R0, and C1 at rate R1, the ratio of
data received by C0 as compared to C1 should be R0/R1. Of course, the rates of
consumption at the consumers may change dramatically over time, subject to
performance faults. Therefore, we would also like the DQ to quickly adapt to
such changes.

Figure 5 presents the logical structure of control and dataflow in a DQ. A
producer has data to distribute among the set of consumers, and each consumer
has a queue of incoming data blocks from producers to process. Because a DQ
will likely consist of many producers and consumers, data are transferred in
parallel from the set of producers to the set of consumers that are part of the
queue.

The flow of a particular block, and thus the behavior of the system as a whole,
is determined by certain decisions, each of which potentially requires global in-
formation. First, each producer chooses which consumer should receive a given
data block. We show that this is the most important decision in a performance-
available distributed queue algorithm. Second, each consumer must choose in
which order to process the blocks it has received.

2.4 Graduated Declustering

The corollary problem occurs in a data transfer from producers to consumers
when a producer suffers from a performance fault. In this case, if there is no
alternate data source and the producers are the bottleneck for the transfer, then
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Fig. 5. DQ data and control: the basic data movement and control options of the distributed
queue. A producer that wishes to send a data block is faced with a decision: to which consumer
should data be sent? Once decided, the data block is sent to the consumer. Each consumer receives
blocks from many producers, and thus is faced with its own control option: in which order should
blocks be processed from different consumers? For each block received, the consumer sends a reply
to the producer, as required by any acknowledgment-based reliable communications protocol.

Fig. 6. GD data and control—the basic data movement and control options of graduated declus-
tering. A consumer requesting a block is faced with a decision: to which producer should this request
be sent? The request is then sent to the selected producer, who has requests from different con-
sumers. The producer then faces a decision: which queue should be serviced? Once serviced, data
are sent back to the requesting consumer.

the data transfer runs at the rate of the single slow producer. However, if the
data source is replicated, River applications can employ graduated declustering,
a data transfer mechanism that carefully divides available producer bandwidth
equally among consumers, and thus provides performance availability under
producer faults. GD is particularly useful for parallel reads of mirrored on-disk
data sets, although it can be applied to replicated in-memory data sets as well.

Figure 6 presents the logical structure of dataflow in graduated declustering.
Each consumer sends its request for a particular block to one of the replicated
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sources for that block. Each producer must then choose the order in which to
handle the consumer’s requests. In GD, both decisions are quite important with
respect to the overall behavior of the algorithm.

We now more formally describe the desired behavior of graduated decluster-
ing. First, we assume that each Di subset of the data set D is replicated at least
once. If there are N copies of each subset, we refer to that as N -way graduated
declustering. Furthermore, we assume that the N · P producers are in most
cases physically colocated across P entities; for example, N · P producers are
spread across a cluster of P machines. Thus we are not assuming any extra
machine resources other than the capacity for data set replication.

Assume that there are P machines on which producers are running. Thus,
on machine Mi, there are N producers, Pi, P(i+P−1)%P , . . . , P(i+P−N )%P , all but
the first of which are replicas. Assume that on P remote machines there are
P consumers, C0 through CP−1, and that each consumer Ci consumes only its
portion of the data set produced by Pi and its replicas. Note that this is quite
a bit different than the distributed queue, where data from any producer can
be sent to any consumer, and where the number of producers and consumers is
not necessarily equivalent.

Further assume that each producer i produces data at a rate of RPi . All
producers on the same machine share the same resource, and therefore the
sum of the RPi s on a particular machine equals the rate of that bottleneck
resource RBi . Thus the total bandwidth available across all machines is:

Bmax =
i=P−1∑

i=0

RBi . (1)

However, there will be some number of perturbations added to the system,
which will take away some of that bandwidth. Each perturbation or perfor-
mance fault on resource i uses RFi bandwidth. Assume that there are F faults
present in the system F0, F1, . . . , FF−1, where 0 ≤ F ≤ P . Thus the total
bandwidth available to the consumers is:

Bavail =
i=P−1∑

i=0

RBi −
i=F−1∑

i=0

RFi . (2)

The goal of graduated declustering is to take the available bandwidth and
divide it equally among the P consumers, such that RC0 = RC1 = · · · = RCP−1 =
Bavail/P . If this division is accomplished, then all the consumers will proceed
at the same rate, and all finish the data transfer at the same instant; thus the
performance faults in the system will have been tolerated as best as they could
have been. An example of how GD should allocate producer bandwidth to cope
with producer-side performance faults is shown in Figure 7.

This global redistribution is accomplished via local producer bandwidth ad-
justments. Thus the total bandwidth from a given resource Ri is RBi −RFi , and
this must be divided among all of the producers that share that resource, that
is, Pi and all replica producers that share Ri. The one piece of flexibility we
have is how we apportion the bandwidth from the producers.
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Fig. 7. GD dataflow example: how GD alleviates the problem of producer-side performance
faults. In the example, the disks are producers, data are mirrored, and only the dataflow is shown—
the control flow, in which consumers request particular data items from the producers and as
depicted in Figure 6, is omitted for the sake of clarity. Producer Px, y produces data sets x and y ,
and consumer Cx consumes data set x. Though P0,1 performs at half its expected rate (B/2, not B),
other producers compensate their bandwidth allocations, and all consumers receive a fair share of
available aggregate bandwidth ( 7

8 B).

2.5 Enabling Technologies

With both the DQ and GD, application writers are given the ability to construct
flexible dataflows, thus moving data or computation to where they are best
processed given the current state of the system. However, the River design
relies on a number of recent hardware and software technologies in order to
deliver the desired behavior to applications.

First, River is designed to take advantage of high-throughput system-area
networks such as Myrinet [Boden et al. 1995]. The advent of such networks
has altered clusters of computers from loosely coupled distributed systems
into tightly coupled parallel systems. Without a high-performance intercon-
nect, River would degenerate to a system where most processing is performed
locally, as moving data from one machine to another would be too costly to merit
consideration. In this scenario, although the River environment could still be
used to build applications in the dataflow model, the flexibility afforded by the
River mechanisms would go unutilized.

Second, River by design integrates quite cleanly on top of an Active Messages
(AM) substrate [von Eicken et al. 1995; Mainwaring and Culler 1996]. AM was
designed to export the raw power of such high-performance networks, and thus
is a natural match for River. Furthermore, many aspects of the River implemen-
tation, as discussed in Section 3, take direct advantage of the request/response
nature of the AM protocol.

Third, as the focus of River is primarily high-throughput database query-
processing applications, there are certain relationships between disk perfor-
mance and network performance upon which River relies. First, the network
should be able to move data at the rate of the local disk(s), thus enabling flex-
ible dataflow from source to sink across the cluster. Thus the throughput of
streaming data from a disk on one machine to a process on another machine
should be quite close or equal to the throughput of streaming data from a disk
to a process on the same machine. Note that River does not rely very heavily
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upon the low-latency aspects that modern networks afford; most of the appli-
cations we consider stream through large data sets and are throughput ori-
ented. Second, the bisection bandwidth of the network needs to equal the sum
of the disk bandwidth available in the cluster. We believe that both of these re-
quirements are not unreasonable, and they certainly hold in our environment;
however, as sequential disk bandwidth is improving quite rapidly [Grochowski
1999], network switches, links, and even I/O buses must be sure to keep pace
[Arpaci-Dusseau et al. 1998].

Finally, a natural question about River is whether the same benefits could
be realized on a more standard TCP/IP-based Ethernet network. In this type of
environment, there is often more complexity in both the software protocol stack
and within the hardware switches themselves, perhaps introducing additional
overheads into communication. As efficient global communication is the key
to River, these overheads may penalize a design that freely moves data about
the cluster. However, we believe that as long as the technology relationships
described in the paragraph above hold, some benefits of the River approach
could be realized.

2.6 The Limitations of the River Programming Environment

Although we strive to make River and its mechanisms as general as possible,
there are clearly a number of limitations in both our programming model and
flexible data-distribution mechanisms. River is best suited for parallel appli-
cations that are naturally programmed in a dataflow style. Database query-
processing primitives, such as selects, sorts, joins, and so forth, are natural
candidates, and are the primary focus of our application study in Section 7.
Furthermore, [Wolniewicz and Graefe 1993] have shown that many scientific
parallel operators also work well within the dataflow model. However, the data-
flow model may not be ideal for all clustered services; for example, when build-
ing an Internet service such as a search engine or Web proxy, a more specialized
environment may be more appropriate [Fox et al. 1997]. This type of applica-
tion differs from the traditional dataflow model in that many small requests
are processed concurrently, in contrast to our focus on a single parallel applica-
tion at a time. Even when building other cluster environments, however, we do
believe the concept of performance availability should be considered, as similar
performance problems are likely to be encountered [Birman et al. 1999].

The two primary mechanisms for performance robustness within River, the
distributed queue and graduated declustering, also have limited applicability.
In using the DQ, applications must have some flexibility in the manner and
order in which they process data. For database query-processing primitives,
this is true by design with the advent of the relational model, which decouples
the manner in which computation is performed from the specification of the
desired result [Codd 1970]. Furthermore, we believe that many other parallel
applications have this property, as has been shown in a large body of work on
flexible parallel programming environments and studies of existing scientific
codes [Poole 1994; Randall 1998; Chakrabarti et al. 1995]. Thus, for parallel
applications that can be readily programmed in the dataflow model, it may
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well be the case that they can be rewritten to utilize a DQ for performance
robustness.

Finally, with GD, one obvious limitation is that the data set served through
GD must be fully replicated. The cost of producing a replica may thus inhibit
the use of GD; indeed, we envision that applications will primarily use GD to
access frequently read on-disk data collections, that is, data that likely need to
have some form of redundancy for reliability anyhow. Mirroring on-disk data
is expensive in terms of space usage as well, although as disk costs decline,
the simplicity and performance advantages of mirroring increasingly work in
its favor. Although parity-based schemes could be used to save storage space,
such approaches are not amenable to a GD-like performance-robust technique,
as GD requires that an alternate data source be readily available to serve data
under a performance fault. When reading a block in a parity-based approach,
either the data block must be read, or the block regenerated by reading all of
the other blocks and the parity block of a stripe, which clearly is too costly to
consider. We also note that GD could be extended to function with a partial
data set replica (i.e., when some of the data records are replicated, but not all),
with some added complexity; in this case, performance robustness would fall
somewhere between a nonrobust mirrored system and GD with full replication.

3. THE GANGES IMPLEMENTATION

The Ganges implementation is a second-generation prototype of the River
dataflow system. In this section, we describe Ganges, focusing on the imple-
mentation of the distributed queue and graduated declustering. In Ganges, the
DQ and GD are both implemented as distributed algorithms, and thus provide
the desired functionality without any global coordination or centralized control.
These algorithms must be distributed in order to scale to large clusters and,
moreover, because any centralized approach would fundamentally not provide
performance availability, as a single slowdown in the central or “master” com-
ponent would lead to global performance problems.

Ganges is implemented upon on a cluster of Sun Ultra1 workstations, each
running Solaris 2.6. Each workstation consists of a 167 MHz UltraSPARC I
processor [Tremblay et al. 1995], 128 MB of memory, and two Seagate Hawk
2.1 GB 5400 RPM disks attached on a fast-narrow SCSI bus to the S-bus. One
disk is commonly used for the OS and swap space, whereas the other is used
by the system for data. Bandwidth from a Hawk ranges from 5.45 MB/s for the
outer tracks to 3.18 MB/s for the inner.

The workstations are connected via a high-speed Myrinet local-area net-
work [Boden et al. 1995]. Each workstation has a single Myrinet card, also on
the S-bus. These cards are capable of moving data into and out of the worksta-
tion at approximately 40 MB/s. The entire system is connected via a collection
of 8-port 640 MB/s Myrinet switches arranged in a 3-ary fat tree. All communi-
cation is performed with Active Messages (AM) [Mainwaring and Culler 1996],
which exposes most of the raw performance of Myrinet while integrating with
features such as threads, blocking on communication events, and multiple in-
dependent endpoints.
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3.1 The Distributed Queue

The most important aspect of the distributed queue implementation is the data
transfer protocol. There are many implementation possibilities here: should
producers push data at consumers, or should consumers pull data from pro-
ducers? How much information should be exchanged about the relative rates
of execution of consumers? The main concern in the construction of the data
transfer protocol is to make no performance assumptions: producers must not
rely on a priori performance characteristics of consumers.

We now describe the implementation of the DQ. There are two key ideas
that are combined to arrive at the algorithm: randomness, when picking among
equivalent consumers, and feedback, via flow control. The latter is the critical
element to attain the desired behavior under consumer perturbation.

When a producer has data to send to a consumer, it calls into the Put routine.
Internally, the DQ goes through the following steps. First, the producer checks
to see how many total outstanding messages it has in the network. If there are
“too many” outstanding, as determined by a threshold value, the producer waits
until at least one has returned. Once there are credits available, the producer
has to pick a particular consumer to which it will send the given data. It does
so by picking a random consumer, and then checking to see if there are already
too many outstanding messages to that consumer. If there are “too many” to
that consumer, the producer picks another consumer and repeats the check. If
not, the producer proceeds, and performs the third step of the algorithm, which
is to send those data to the chosen consumer.1

On the receive side, the implementation is straightforward. A consumer
waits for a message to arrive by using the event mechanism available from
the Active Message layer. When that message arrives, the DQ wakes up and
extracts the message from the network by polling. The message is packaged and
returned to the consumer. The DQ also sends a reply to the producer, indicat-
ing that it has received the message. When the producer receives this reply, it
updates the flow-control counters mentioned above. The only decision that has
to be made occurs when there are messages from more than a single producer.
In that case, the DQ will service producers in proportion to their current rate
of progress; those that are further behind will receive a higher proportion of
service. More details are presented on this in Section 6.3.

3.2 DQ: Discussion

The key to the DQ is that it avoids assumptions about the performance of any
one consumer via run-time adaptation. Each producer utilizes feedback from the
consumers to gauge to which consumer data should be sent. Specifically, when
a producer sends data to a consumer in the form of an Active Message request,
the protocol stipulates that the consumer reply to that message.2 The DQ uses

1The reason for two levels of credit management is simplicity. When there are no credits available,
the desired behavior of the producer is to wait for a message to return; thus we provide a simple
check for this condition.
2This reply message is also required in protocols that utilize acknowledgments to implement
reliable message transfers.
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the reply as a “signal” or a channel of implicit information [Arpaci-Dusseau
2001]; if the consumer handled the data request, the producer infers that the
remote consumer is making progress. Each producer monitors the incoming
replies to infer the current performance level of each consumer.

This algorithm also has the property of unifying the seemingly diverse
implementations of “push-based” and “pull-based” approaches often found in
message-passing layers [Karamcheti and Chien 1995]. When producers are the
bottleneck for the data transfer, all consumers respond quickly to data requests,
and the choice of destinations degenerates to a random choice from the entire
set of consumers: a “push-based” approach (a random choice has been shown to
be a good one in similar scenarios by Brewer and Kuszmaul [1994]). However,
when the consumers are the bottleneck, each producer has all of its messages
outstanding, one per consumer; thus, when a reply returns, it implicitly “pulls”
the next data request to the replying consumer. Therefore, depending on the rel-
ative performance rates of producers and consumers, the DQ will utilize either
a push-based or pull-based approach.

It would seem that the functionality that the distributed queue is provid-
ing is simply load balancing, which has been studied extensively in the litera-
ture [Adler et al. 1995; Blumofe et al. 1995; Johnson 1995; Wen 1996]. However,
there are many effective load-balancing algorithms that are not performance-
available; they make performance assumptions of one form or the other, and so
do not meet our demands. Thus load-balancing and performance availability
are not isomorphic.

For example, a centralized scheme could use a single machine as a ren-
dezvous point, perhaps best matching producers with consumers for each data
item. The performance assumption that this algorithm makes is that the cen-
tralized match-maker will not suffer from performance faults. If it does, the
performance of the entire system suffers.

More advanced load-balancing schemes have been proposed [Adler et al.
1995; Johnson 1995]. The algorithms therein utilize a probe-then-send model.
In this scheme, n consumers are chosen uniformly at random, and then queried
as to their current queue length. When all of the replies filter back, the producer
picks the consumer with the least data in its queue, and sends the data to it. The
performance assumption that this family of algorithms makes is that the probes
will return in a timely manner. However, if any one of the probed consumers
exhibits performance deficiencies, the result is that the producer spends too
much a time waiting for a response to its query.

3.3 Graduated Declustering

We now describe the Ganges implementation of graduated declustering. Let us
start with the consumer-side of the algorithm, for that is more straightforward.
In N -way graduated declustering, a consumer Ci of a particular partition of
the data set Di has N choices from where to request a particular data item.
To jumpstart the process, the consumer sends out requests for a fixed num-
ber of blocks, distributing them in a round-robin fashion among the possible
producers. Thus, if we are sending out 10 requests, and there are 2 producers,
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request 0 would go to producer 0, request 1 to producer 1, request 2 to producer
0, request 3 to producer 1, and so forth.

The crucial adaptation on the consumer-side occurs when replies come back
from producers. When a reply for a particular data block returns from a pro-
ducer, the consumer requests the next data item from that very producer. Thus,
if one of the producers is much more responsive than another, the consumer-
side of the algorithm will adapt to that responsiveness by requesting more data
from the more active producer.

One more aspect of the consumer-side algorithm is quite important. Along
with each request, the consumer sends extra information to the producer: a
progress metric. This small amount of extra knowledge will be crucial to the pro-
ducer in determining which consumers’ requests should be served. The progress
metric that we use is the total number of bytes that has been received by each
consumer. In the previous implementation, we had used the average bandwidth
the consumer has received, but through experimentation, we have found the
total number of bytes to be a more robust and reliable metric.

The producer-side of the algorithm is a bit more complex. The producer is
represented by two components: a set of service threads and a scheduler thread.
The service threads, one per replica, each receive requests from the scheduler
thread, read the data from disk (or whatever the data source may be), and then
send the data back directly to the consumers. Note that in N -way graduated
declustering, each machine will receive requests from N different consumers.

The second component is the scheduler thread. This thread is crucial to the
proper operation of graduated declustering. It examines the progress metric of
each consumer, and then biases the scheduling of requests so as to “catch up” the
lagging consumer. Thus, if a producer is serving requests from two consumers
C1 and C2, and C1 has only received 100 blocks of data and C2 has received 200
blocks, C2 will not get any blocks from the producer until C1 has caught up to C2.

3.4 GD: Discussion

The distributed algorithm that implements graduated declustering is based on
the following intuition: if a producer is able to balance the progress metric of the
consumers to which it delivers data, and all producers strive for this localized
balance, a global balance among all consumers will be achieved. The key to
success is the producer-side scheduler, which is directly in charge of the biasing
that must occur.

Clearly, the choice of progress metric is central to the correct operation of
GD. In the current implementation, the consumer piggybacks information in
consumer requests in order to help the producer decide which consumer should
receive what proportion of service. Although the current metric is the total
number of bytes received by a consumer, other metrics are certainly possible.
The important aspect of the metric is that it should give some notion of global
progress towards the final goal. Average bandwidth also fits this definition,
when each partition of the data set is roughly identical in size. In the future,
this metric could be exposed to applications instead of kept internal to the GD
implementation to allow for application-specific scheduling.
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4. METHODS AND MODELS

To study the behavior of River, we employ both simulations and implementa-
tion, and compare results to a simple idealized model of system behavior. The
original study [Arpaci-Dusseau et al. 1999] was based solely on results from a
prototype implementation, and thus suffered in certain regards. First, although
one could conclude that the mechanisms of River were generally better as com-
pared to a nonadaptive approach, one could not know the true upper bound on
performance. Second, implementation details were often difficult to separate
from the inherent behavior of the distributed algorithms.

To remedy the first problem, we develop an idealized model of system be-
havior under performance faults. By plotting results versus these models, we
are able to gauge how well the system is doing in an absolute sense, not just
relative to another, perhaps nonadaptive, system. Without models, it is quite
difficult to know when to be satisfied with system performance.

To remedy the second of these problems, we utilize simulation. With simu-
lations, we explore basic algorithmic behavior under a wide range of system
parameters, most of which would not be feasible to measure in the prototype.
Measurements of the implementation are then gathered to confirm simula-
tion results, as well as to bring forth various “systems issues” not modeled in
simulations. The combination of both techniques improves our understanding,
separating intrinsic properties of the algorithms from implementation details.

4.1 A Model of System Behavior

We now develop a model of the behavior of an ideal system under performance
faults. An ideal system can adapt instantly to any performance fault, can move
work or data to best utilize system resources, and is only limited by underlying
hardware resources. By comparing experimental or simulation results or both to
a model of an ideal system, we are able to better gauge how well the algorithms
and implementations are functioning. Note that the model, although simple, is
general and could be applied in evaluating the behavior of other systems under
performance faults.

Assume that a device is expected to deliver performance at some rate Ppeak
while unperturbed over a given time interval of interest. When the device is
suffering from a performance fault, the fault uses some amount of available
resources. We term the rate of the fault Pfault, where Pfault ≤ Ppeak. For a given
resource that is undergoing a performance fault, we can view the fault as an
entity that utilizes some given portion of the resource, akin to an application
that utilizes the resource; the delivered rate of performance of the performance-
faulty device is thus Ppeak − Pfault. For example, a disk may be able to deliver
a peak bandwidth of 5 MB/s (Ppeak), but then might suffer a fault that takes
away 2 MB/s (Pfault), leaving 3 MB/s for applications.

To characterize the strength of a performance fault, we define the fault uti-
lization Ufault= Pfault/Ppeak, where the value of the fault utilization ranges from
0 to 1. Note that an absolute failure is a special case of a performance fault,
where Ufault= 1 (i.e., Pfault= Ppeak), although in River, we concentrate only on
the range 0 ≤ Ufault < 1.
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Fig. 8. Performance availability spectrum: overall performance under an increasing number
of performance faults. Along the x-axis, the number of components experiencing the performance
fault is increased up to the maximum number of components in the system n. Overall system
performance, as a fraction of ideal performance in a setting free of performance faults, is plotted
on the y-axis.

The final definition required before developing the model of behavior under
faults is application utilization of a resource. Assume that an application of
interest normally runs at a rate of Papp on the given resource during some pe-
riod of interest. For example, if the application were I/O-intensive, Papp might
be the rate that it reads data from disk during a read phase. As above, Ppeak
is the peak rate that the resource can deliver, and Pfault is the faulty perfor-
mance level. Thus an application uses Uapp= Papp/Ppeak fraction of the resource
when unperturbed. Note that Uapp is precisely 1 when the resource is under
heaviest demand from the application, that is, the CPU during a compute-
bound calculation phase, or a disk during a strictly I/O-bound portion of a
program.

To help understand the behavior of the ideal system under an increasing
number of performance faults, we plot a graph called the performance avail-
ability spectrum, shown in Figure 8. Along the x-axis of the graph, we increase
the number of components that are experiencing the given performance fault.
For simplicity of notation, we assume that the same performance fault occurs on
each faulty component, the application utilizes the same fraction of resources of
each component, and the peak rate of each component is identical—restrictions
that are easily relaxed if desired. The y-axis plots overall system performance
as a fraction of ideal performance under nonperturbed “perfect” conditions.
Thus if the application completes the phase of interest in time T (x), where x is
the number of faults in the system, the graph plots Tideal/T (x), while increasing
x along the x-axis. Tideal is the minimal time that an algorithm could complete
the particular operation, and is not just equal to T (0). For example, if we were
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examining the read phase of an external one-pass sort, Tideal would be the time
to read the data from the disks at their peak rate. If we instead use T (0) as our
comparison point (and not Tideal), the spectrum would not differentiate between
poorly performing algorithms and those that perform well.

Our basic approach in developing the model of ideal behavior is a simple
two-step process. First, we derive the point where the system is fully utilized
by both the faults present and the application; before this point, the sum of the
utilization of the faults in the system and the application is less than the total
amount of available resources. After this point, the system is under duress,
and even in the ideal case the application will see a performance loss, as the
application will not have enough available resources to continue unperturbed.
Second, we derive the point at which all components are experiencing the per-
formance fault. With both of these points in place, we are able to generate a
complete piecewise-linear model of ideal performance.

The first point of interest that we derive is labeled xloss in Figure 8, and is
the point where the ideal system begins to see a performance degradation due
to the presence of performance faults. At this point, the perturbed resource
(which could be a CPU, network link, or disk) is fully utilized across all compo-
nents in the system. Up to that point, the ideal system is able to move work or
data elsewhere, and thereby not suffer any performance loss. After that point,
performance degrades as compared to the nonperturbed system due to lack of
resources.

We now solve for xloss. At this point, we know that 100% of the resource is
utilized across all n components; thus the sum of application resource usage
and perturbation resource usage across all n components is equal to n: (n ·
(Papp/Ppeak))+ (xloss · (Pfault/Ppeak)) = n. Solving for xloss, we arrive at: xloss =
(Ppeak − Papp/Pfault) · n, or in terms of utilization: xloss = (1−Uapp/Ufault) · n.

We now present a simple example to make this more concrete. Imagine that
the CPU is the resource of interest. Assume that a parallel application runs on
16 CPUs in a cluster (n= 16), and that each process of the application utilizes
75% of the CPU in an unperturbed system; thus Papp/Ppeak is 0.75, and the
application uses 75% of the total 16 CPUs, or 12 full CPUs. Assume that the
performance fault we are interested in has a fault utilization Pfault/Ppeak of 0.5;
therefore, a fault utilizes 50% of the CPU. By substituting these values into the
equation, we arrive at xloss= 8. When more than half of the CPUs are perturbed,
we expect overall performance to drop to less than 100% of peak.

We can also make a few general observations. First of all, xloss degenerates
to 0 when Uapp= Papp/Ppeak = 1. This observation matches intuition: when
the application uses 100% of the resource in the unperturbed case, any per-
turbation to the system leads to a loss of overall performance. Second, in the
other extreme, if Papp + Pfault < Ppeak (i.e., Uapp + Ufault < 1), then xloss is
greater than n. Plainly stated, if the sum of application resource utilization
and performance-fault resource utilization is less than the total amount of re-
sources available, even with all components under perturbation, no slowdown
should be experienced in the ideal case.

The other point of interest in Figure 8 is the y value when all n components in
the collection are experiencing the performance fault. We call the y-axis value
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yn, to denote the performance level of the ideal system when all n components
incur performance faults.

We now derive yn. At this point, all n components are under perturbation,
and the rate that each node can deliver under perturbation is Ppeak−Pfault. From
this, we can calculate yn directly by observing that application slowdown, when
resources are overtaxed, is the rate that can be delivered divided by the rate
needed by the application: yn = (Ppeak − Pfault)/Papp, or in terms of utilization:
yn = (1−Ufault)/Uapp.

For example, if an application utilizes 75% of the CPU and the performance
fault utilizes 50%, when all nodes are perturbed, total ideal system performance
will be 1− 0.75/0.50= 2/3. In general, as application needs increase, the value
of yn decreases. Similarly, as the fault utilization increases, yn decreases.

Between the two points of interest (xloss, 1) and (n, yn) we expect a linear drop
in performance. The drop in performance is linear between these two points
because the amount of resources taken away from the application increases
linearly, and those resources correspond directly to performance. For example,
if an application needs 100 MB/s of disk bandwidth during a write phase, and
only 50 MB/s are available, the slowdown will be exactly a factor of two in the
ideal case.

We can thus derive the slope of the line that connects the two points, and
express expected ideal system behavior in closed form:

y =
 1 0 ≤ x ≤ xloss

1+
(

yn − 1
n− xloss

)
· (x − xloss) xloss ≤ x ≤ n.

We now have a piecewise linear model of ideal performance under a given set
of performance faults, which we can use to judge the absolute performance of
the system in both simulations and the prototype implementation.

4.2 Limitations of the Model

Before describing the simulation environment, we briefly discuss several pri-
mary limitations of our model. First, we address the assumption of linear slow-
down under faults within the model. This assumption may not always hold, de-
pending on the scaling properties of the application in question. In the model, if
an application is given half as much of a given bottleneck resource, it is assumed
that the application will run at half the rate as when given the full resource.
Although this holds for the applications we are interested in, in general, it does
not. For example, some applications can more easily utilize fewer resources,
and thus will perform worse than expected as the total number of resources is
increased [Singh et al. 1992].

Second, the model assumes that the manner in which perturbations occur
across components does not exponentially worsen performance, which is not
always the case for parallel programs [Arpaci et al. 1995]. For example, if
communicating processes are not coscheduled [Ousterhout 1982], their per-
formance may worsen by many orders of magnitude, as the progress of the

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.



Run-Time Adaptation in River • 57

application may depend on the progress of a specific process. Thus, when com-
paring to the ideal, it may not always be realistic to assume that a program
will be able to attain such an ideal under uncorrelated faults across multiple
components.

Third, the model also assumes that throughput (and not response time) is
the performance metric of interest. The result of this assumption is that two
systems may deliver the same throughput and thus appear identical under the
model, but one may have much better response time than the other: the costs
of queueing are not reflected in the performance analysis.

In practice, we have found that these assumptions are adequate for the
database query-processing applications that we have focused upon, which have
good scaling behavior, do not require coscheduling for good performance, and
process large volumes of data and thus are throughput-oriented. Despite these
limitations, we have found the model to be an invaluable tool during the devel-
opment of the system: by providing a performance target, an ideal model focuses
performance tuning, letting the designer know what aspects of the system need
to be improved. Furthermore, a good model lets a designer know when to stop
tuning: if performance approximates the ideal, there is little need to fine-tune
the system any further.

4.3 Simulation Environment

In addition to models and measurements of a real implementation, we employ
a set of simulations to demonstrate some of the properties of the distributed al-
gorithms. The simulator that we have constructed provides only low-level prim-
itives: queues, which consume data at user-specified rates, and sources, which
generate data at user-specified rates. Simulations of both the distributed queue
and graduated declustering can be readily constructed from these components.

The simulator core consists of an event-based simulator. The event subsys-
tem is written in C for efficiency, whereas the rest of the simulation system, in-
cluding queue and source abstractions, callbacks, and other glue code, is written
in Tcl [Ousterhout 1990]. Tcl affords great flexibility in assembling arbitrarily
complex simulations, and with Tk [Ousterhout 1991], enables visualization and
animation of scenarios.

5. HOW EFFECTIVE ARE THE ADAPTIVE MECHANISMS OF RIVER?

In the next four sections, we answer each of the four questions posed in the
introduction, with the basic goal of better understanding run-time adaptation
as an approach to robust system design. As stated before, we utilize results
from simulations and a prototype implementation where appropriate, often
comparing to the ideal.

We begin by exploring the general effectiveness of the River mechanisms, by
presenting results from experiments that test the performance of the DQ and
GD under an increasing number of performance faults. For these experiments,
we utilize both simulation and implementation results and show that the two
match quite closely. These results extend previous work along a number of axes,
by enhancing understanding via simulation, showing that the mechanisms
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Fig. 9. Distributed queue performance: results from a simulation of DQ and an implementa-
tion of the DQ are presented, and compared to ideal performance under an increasing number of
performance faults, as well as to the performance of a “static transfer.” In the experiments, produc-
ers generate data at 40 MB/s and nonfaulty consumers consume data at 5 MB/s. A performance
fault reduces a consumer’s performance by a factor of 5, down to 1 MB/s.

work nearly ideally as compared to our model, displaying the sensitivity of
GD to the layout of performance faults, and demonstrating the improved per-
formance of second-generation implementations of the DQ and GD.

5.1 The Distributed Queue

As described in an earlier section, the distributed queue presents applications
with a high-speed backplane for data sharing and can be used to tolerate
consumer-side performance faults. Within an application, producers place data
into the distributed queue, and consumers receive the data. Thus a consumer
can logically receive any data block that has been put into the DQ. The central
challenge is to design a scalable, efficient, distributed algorithm that moves
data from producers to consumers such that faster consumers receive a propor-
tionally higher amount of aggregate producer bandwidth.

Figure 9 illustrates the performance of the DQ under a simple perturba-
tion scenario, and compares its performance to the ideal and to a static non-
adaptive approach. In these experiments, 16 producers send data to 16 remote
consumers (32 total machines). The producers are able to generate data at
40 MB/s, whereas the nonfaulty consumers can sink data at 5 MB/s; this setup
emulates a set of processes (producers) writing in-memory records in parallel to
disk, where the disks (consumers) are the bottlenecks in the transfer. Along the
x-axis, we increase the number of consumers undergoing performance faults,
where a performance fault reduces the rate of a consumer by a factor of five (i.e.,
the consumer performance is reduced from 5 MB/s to 1 MB/s). Thus the leftmost
point on the x-axis shows performance in the system under zero performance
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faults, and the rightmost point shows performance when all consumers perform
at the perturbed rate.

The y-axis plots DQ performance as a fraction of the ideal in the unperturbed
case (i.e., when there are no faults in the system), where the ideal is simply
the aggregate bandwidth across the consumers. The “Ideal” performance line
reflects the model as developed earlier. Note that xloss = 0 in these experiments,
because the test utilizes all available consumer bandwidth in the unperturbed
case; in such a case, even the ideal system drops in performance under only a
single fault.

As shown in the figure, a “static transfer,” where each producer uses a static
hashing algorithm to pick which consumer to send data to, performs well only
with zero faults in the system; at that point, throughput is high and scales
well to 32 machines. However, with just a single fault, performance of this
static approach drops immediately to that of the slowest consumer, because the
transfer does not complete until the last consumer has finished its portion of
the global task. As performance faults are added into the system, performance
stays at the same low level.

As also shown in Figure 9, by utilizing implicit information and run-time
adaptation, the simulated performance of the distributed queue under perfor-
mance faults is excellent, delivering nearly ideal performance across the range
of induced faults. The figure also shows that our simulation results closely
match those of the implementation running the same experiment, and that the
implementation is within 5% of ideal for all datapoints.

5.2 Graduated Declustering

Whereas the distributed queue tolerates consumer-side performance faults (by
moving more data to faster consumers), it suffers when a producer does not
deliver data at the expected rate. If the data are not available from another
locale and the producers are the bottleneck in the data transfer, then there
is no solution to this problem. However, in many cases, data are replicated
for the sake of reliability; for example, in a mirrored disk system, each data
block is available from two locations. Graduated declustering can be used to
coordinate access to a replicated data set by dividing the aggregate producer
bandwidth equally among consumers, thus lessening the effects of producer-
side performance faults.

Figure 10 shows the performance of GD, both via simulation and imple-
mentation. For the simulations, two different performance-fault layouts are
presented: in the “worst” case, faults occur on adjacent producers, and thus
immediately affect both data sources for a given consumer; in the “best” case,
they are distributed throughout the producers such that no two faults are on
consecutive producers until more than half of the producers are perturbed. The
implementation results are only shown for the best layout. Note that previous
results only presented best-layout performance and thus do not capture the
range of possible behaviors.

Overall, performance with the best layout of faults is good, though not ideal,
due to the limited amount of replication; only if each producer contained every
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Fig. 10. Graduated declustering performance: results from simulation and implementation
of GD are compared to ideal performance under an increasing number of performance faults, as
well as to a “static transfer.” In all experiments, nonfaulty producers generate data at 5 MB/s and
consumers can consume data at 40 MB/s. A performance fault reduces a producer’s performance by
a factor of 5, down to 1 MB/s. Due to limited replication, the layout of performance faults matters;
“best” implies that they are spread out, and “worst” indicates that they occur consecutively on
producers.

data set would the flexibility necessary for ideal performance be available. More
generally, given that R is the level of replication for each data item and P is
the number of producers in the system, then the GD algorithm can always
tolerate the presence of R−1 performance faults, given the “worst” layout, and
potentially tolerate up to P · (1− (1/R)) faults, under the “best” layout. In a real
system with randomly placed faults, delivered performance will fall in between
the best- and worst-case lines.

6. WHAT ARE THE KEYS TO EFFECTIVE RUN-TIME ADAPTATION?

We now discuss four keys to the success of the run-time adaptation of the DQ
and GD. The first key is the careful management of the interaction with the
communication layer; communication is at the heart of adaptation within River,
and managing the interaction of the River distributed algorithms and flow
control is crucial to robust performance. The second key is the presence of excess
parallelism at the application level. To be robust to performance faults, River
applications must move a reasonable number of objects through the DQ or GD;
the fewer objects that are transferred, the more likely a performance fault will
have an unexpected and deleterious effect. Fortunately, many data-intensive
applications will have no trouble meeting this requirement. The third key is the
presence of globally aware data scheduling; each entity that participates in a
robust data transfer must in some way monitor the progress of all others in
the transfer, and compensate for laggards accordingly. At ends with this goal
is a scalable and distributed implementation. Finally, the fourth key is the
presence of “slack” in the system. If the system is driven at its full rate, any
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Fig. 11. The need for flow control: the amount of flow control is varied under a set of pertur-
bation simulations for the DQ. Each line plots the performance under perturbation of the DQ for
a given number of flow-control credits ( f = x, the total number of credits given to each producer),
and the number of perturbations is increased along the x-axis. Without a credit per consumer,
it is not possible to tolerate the full range of perturbations. For these experiments, there are 16
producers and 16 consumers, the rate of unperturbed production and consumption is 5 MB/s, and
a fault reduces the rate of consumption to 1 MB/s.

performance fault will lower performance, even in an ideal system. Thus the
system should be engineered with some amount of extra capacity, which the
adaptive mechanisms of River can then utilize when unexpected problems occur
to deliver performance at a consistently high rate. Both the first and third keys
led to refinements in the DQ and GD algorithms.

6.1 Communication Layer

One crucial aspect to the implementation of the distributed queue and gradu-
ated declustering is the behavior of the underlying message layer. In particu-
lar, the message layer must not restrict the number of outstanding messages
to less than these mechanisms need; if the layer does so, performance under
perturbation will be less than expected. Unfortunately, most message layers,
including AM, restrict the number of outstanding messages to a particular ar-
bitrary number, chosen by the message-layer developers. Worse, this number is
often hidden from clients of the communication layer, which would render the
construction of distributed algorithms such as the DQ and GD impossible. We
now investigate the number of flow-control credits needed to mask performance
faults.

Figure 11 plots the results of simulations that vary the amount of available
flow-control credits for the DQ (results for GD are quite similar and therefore
not shown). The simulations reveal the importance of flow control to the DQ
algorithm, both in the unperturbed case where there are zero performance
faults in the system, and in the face of perturbation.
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In the unperturbed case, we see that with very few outstanding credits per
producer (four or less), performance drops below ideal. Not surprisingly, each
producer must be able to keep enough outstanding messages to fully pipeline
the system.

More interestingly, as the number of faults increases, the number of credits
that a producer is allocated must also increase. In cases where the number of
flow control credits is less than or equal to the number of perturbed consumers,
performance suffers. The reason for this drop-off is straightforward: if a pro-
ducer does not have enough message credits to keep at least one outstanding
to each of the slow producers, the algorithm will not be able to “remember”
which nodes were the slow nodes, and will keep sending messages to those slow
nodes.

Thus, from these simulations, we can conclude that the distributed queue
algorithm should always have at least one outstanding message per consumer;
this delivers to each producer a perspective on the remote performance of all
consumers in a straightforward, simple, and effective manner. From the per-
spective of the prototype, the underlying message layer must not restrict the
number of outstanding messages to less than the number of consumers in the
system. The current AM implementation has a hard limit of 30 total outstand-
ing messages;3 thus, in our prototype, we cannot tolerate performance faults
on more than 30 consumers.

6.2 Excess Parallelism

One essential ingredient to tolerating performance faults is the presence of ex-
cess parallelism. For example, in a system with one producer and n consumers,
if there are only n items of data to send, a perfect distribution through the
distributed queue leads to one piece of data per consumer, and performance is
dictated by the rate of the slowest consumer. Even in more realistic settings, ex-
cessively perturbed nodes lead to end-of-run effects that become first-order per-
formance factors. We now explore the amount of parallelism needed to tolerate
performance faults.

Figure 12 plots the simulated performance of graduated declustering under a
single performance fault, as a function of the total amount of data read (again,
as results from the DQ are nearly identical, we focus solely on GD for this
experiment). As we can see from the graph, if only a small amount of data
is sent through GD, it does not perform well, as the time for the perturbed
producer to deliver its remaining blocks after all others have finished takes a
significant proportion of overall run-time. Because each consumer is willing to
send a request for data to each producer, even the slowest producer receives R
messages, where R is the level of replication of the data set (e.g., in a mirrored
disk system, each producer processes at least two messages). Thus end effects
can be noticeable, especially when there is not much work in the system. If the
total amount of work is small, performance faults are difficult to tolerate under
the current River approach.

3This number arises from a hardware limitation on the Myrinet network-interface card in tandem
with design decisions in AM.
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Fig. 12. The need for excess parallelism: performance under a single perturbation plotted as
a function of the total amount of work that is pushed through a simulated GD in blocks, where
a block is 8 KB. The consumption rate of the perturbed producer is 1 MB/s, or 1/5th of an unper-
turbed producer. In all cases, if only a small number of blocks pass through GD, the system will
be vulnerable to performance faults, delivering performance noticeably less than ideal. For these
simulations, there are 16 producers and 16 consumers. Note that the best performance the system
could deliver is 95% of ideal in this experiment, as there is a single fault present.

We can view this problem as a weakness of the run-time methods of River:
data are always given to or taken from all the nodes in the system, with
more data sent to or requested from those nodes that operate faster. This
problem could partly be remedied with historical methods, which remember
which nodes performed poorly in the past, and bias actions from the very
start. For example, if a certain node of the system is performing so poorly
that its inclusion in the data transfer does not offer much gain, that node
could be avoided altogether. Furthermore, the current mechanisms of River
are memoryless across runs, and thus must relearn at every run what the per-
formance characteristics of the system are. If performance faults are lengthy
in duration (i.e., past performance predicts future performance), historically
based techniques could be effective. For now, our solution is to write applica-
tions such that they utilize as much parallelism as possible, and thus amortize
end-of-run effects, which we have found is not overly burdensome for a range
of data-intensive applications. In addition, the added complexity of includ-
ing an historical approach may not warrant the resultant small performance
benefit.

6.3 Globally Aware Local Scheduling

With the GD algorithm, each producer is made aware of the progress of the two
consumers it serves; by biasing the scheduling of its data blocks towards the
lagging consumer, each producer can make purely local decisions and yet coerce
the system towards a common global goal. In the original DQ algorithm, we
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Fig. 13. The need for globally aware local scheduling: the average producer bandwidth in
the DQ plotted over the lifetime of an experiment. In the experiment, 16 producers send data to
16 consumers. The consumers receive data at 5, 10, and 15 MB/s, which is varied across the three
lines. At rates of 5 and 10 MB/s, each producer receives roughly a fair share of the bandwidth,
and thus they all finish at the same time. However, when each producer sends data at 15 MB/s,
contention in the network begins to appear, leading to an unfair bias towards some of the producers.
By distributing progress information to each consumer, more clever local scheduling solves the
unfairness problem.

believed there was no need for such global awareness within the DQ. However,
as we demonstrate below, the DQ also requires globally aware local scheduling
in certain contexts.

Figure 13 plots the performance of the DQ in three different experiments on
the prototype system. In each experiment, there are 16 producers sending data
to 16 consumers. Across the three experiments, the rate that each consumer
sinks data is controlled, from 5 MB/s up to 10 MB/s and 15 MB/s. The y-axis of
the figure plots the relative share of aggregate consumer bandwidth that each
producer numbered along the x-axis receives. Ideally, each producer receives
an equal share of the bandwidth, which would be reflected as a y value of 1.

With the consumer rate at 5 or 10 MB/s, each producer receives a fair share
of consumer bandwidth, and all is as expected. However, at 15 MB/s, some
producers (those on the left of the graph) receive a notably higher portion of
consumer bandwidth, whereas others receive correspondingly less.

The problem is inherent in the original design of the DQ, which uses a first-
come, first-served algorithm for processing blocks on the consumer, and its
interaction with Myrinet switch fairness properties. When performing more
detailed measurements of our implementation, we found that under high loads
and with many participating nodes, the Myrinet switches do not fairly schedule
transfers and thus some producers do not receive their fair share of network
bandwidth. Because overall performance is determined by the rate of the slow-
est entity, unfairness causes the performance of the system to drop to that of
the last producer to finish its transfer.
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To overcome this problem, we piggyback extra information in DQ messages.
Specifically, by sending information about the rate of progress from producers
to consumers in each data request and response, each consumer can schedule
its service in a more informed (and not a blind FCFS) manner. Our initial re-
sults, of a modified DQ that performs this consumer-side scheduling, are also
shown in the figure; by biasing service towards lagging producers, performance
is level across all producers, and thus the unfairness problem is solved. Note
that this behavior was not discovered via simulation—the simplified simula-
tions do not model switch behavior in any detail—underscoring the importance
of our combined approach.

6.4 Slack In the System

Finally, we explore the need for “slack” in the system or, more formally, the need
for excess performance capability in components. Without slack, even a single
performance fault in the system reduces overall performance, as we have seen
in our idealized model and real results (see Figure 9). When slack is present,
the run-time adaptive methods of River should be able to exploit it and deliver
consistent high performance to applications.

Figure 14 shows the results of three simulations with the DQ, where the
unperturbed rate of the consumer is varied across the three graphs. In all three
experiments, the producers generate data at a fixed rate which is less than
the peak rate of the consumers, and the DQ performs nearly ideally across
all three graphs. Not surprisingly, as the consumer rate increases, more faults
are required to induce a performance decrease as compared to the unperturbed
system. (We have also generated similar results for GD, although we again omit
them.)

The resulting dilemma for a designer is exactly how much excess perfor-
mance capacity to engineer into the system, a decision beyond the scope of this
current work. To answer this question, we believe one needs to develop stochas-
tic models of modern device behavior, and then apply those models to analyze
the likely behavior of the system. This may enable probabilistic guarantees
of overall system behavior, similar to Birman et al’s [1999] work on Bimodal
Multicast; we plan to investigate this further in our work on fail-stutter fault
tolerance [Arpaci-Dusseau and Arpaci-Dusseau 2001]. Of course, if the designer
of the system does not value the consistent performance provided by slack, the
system could be engineered to simply provide what the applications need: in
this case, the mechanisms of River are still useful in that they allow for graceful
degradation under performance failure.

7. HOW USEFUL ARE THE RIVER MECHANISMS TO APPLICATIONS?

We now examine the system from the application level. How easily can applica-
tions utilize the DQ and GD in order to create robust applications? In this study,
we concentrate on database query-processing primitives. First, we present per-
formance results of a range of query-processing primitives built on top of the
prototype implementation of River, again comparing performance to “ideal.”
With regard to previous results in Arpaci-Dusseau et al. [1999], we present
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Fig. 14. The need for slack: results from simulations of the DQ compared to ideal performance
under an increasing number of performance faults. In the experiments, producers generate data at
5 MB/s and nonfaulty consumers consume data at 7, 10, and 20 MB/s. A performance fault reduces
a consumer’s performance by a factor of 5, down to 1 MB/s. As one can see, as nonfaulty consumer
performance increases, more faults are required to reduce performance to less than peak. Thus the
DQ is able to take advantage of slack in the system, as predicted by the model.

results from a greater number of applications, and because of the improved im-
plementations of the DQ and GD, improve the performance robustness of the
applications. Second, we discuss difficulties in utilizing the basic River mecha-
nisms. Although not always a perfect match for application semantics, we find
that the DQ and GD are usually suitable for creating robust programs.

7.1 Application Performance

In general, to develop a robust River application, programmers insert dis-
tributed queues and graduated declustering into their applications to form
“points of flexibility”: places in the dataflow where performance faults can
be tolerated. Application writers focus on constructing flexible flows, and the
infrastructure handles the rest. By utilizing the two core River mechanisms,
applications can potentially withstand performance faults and achieve nearly
ideal performance under a range of faults.

In this study, we present the performance of six I/O-intensive, parallel
database query-processing primitives, each of which has been transformed
from a static parallel application into a robust and adaptive version. Figure 15
presents our results for each primitive. In the figure, performance of the appli-
cation with an increasing number of disk performance faults is shown, where a
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Fig. 15. Application performance: the results of running database primitives on a 16-machine
cluster under disk performance faults. The applications are a parallel scan of a data set (read only),
a parallel generation of a data set (write only), a parallel filter (read data from disk, select certain
records based on a user-defined function, write selected records to disk), a top-N selection (find
the top N values in the data set, and be able to find the next N efficiently), a parallel hash-join of
two data sets, and finally a parallel external sort. Each application operates on roughly 150 MB
of data per disk per node, for a total of 2.4 GB across 16 machines. A performance fault reduces
performance by a factor of 2. Each datapoint represents a single run, and 5 runs are shown per
point along the x-axis; a best-fit line of the data is also plotted.
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fault to the disk utilizes half of available disk bandwidth. For all applications,
“Ideal” is the amount of data touched by the application divided by the peak
rate available from the disks, a reasonable though harsh ideal because the
applications are all data intensive (compute time is mostly negligible). For ex-
ample, the parallel scan reads a total of 2.4 GB from 16 disks, each of which can
run at 5.45 MB/s. Thus ideal time for the scan is 2.4 GB/(16× 5.45 MB/s) ≈
28.18 seconds.

From the figure, we can see that for all applications, performance is good
when there are no faults in the system, and degrades gracefully as faults are
imposed upon the disks, following the desired trend. Specifically, performance
is within 89% of ideal across the entire range of disk faults for all applications.

By examining the leftmost point of each graph, we can also gain insight
as to the overheads of utilizing the River mechanisms to provide performance
robustness. First, let us examine one of the simpler applications, a scan. The
scan is simply a parallel scan of the input data; in this case, 16 processes read
data from 16 disks. Because it is a read-only application, the robust version of
the scan utilizes GD to access data from a mirrored collection. From the graph,
we can see that there is a noticeable overhead (roughly 10%) for using GD, as
compared to the ideal application in which each process reads data from a single
disk. Most of the overhead of GD can be attributed to the change in workload
presented to the disk: in the static (nonrobust) scan, each of 16 disks serves a
single sequential stream of data to a single process, whereas in the robust scan
using GD, each disk serves two streams to two processes, due to replication.
By serving two streams, additional seeks are induced, thus lowering overall
performance.

Next, let us examine generate, which can be viewed as the converse of scan,
as it is a parallel data generator. Each of 16 processes generates random records
and writes them to disk. The robust version of the generate uses a DQ to dis-
tribute the load across the disks and thus tolerate disk performance faults.
Even at the leftmost point, the generate application delivers 95% of ideal per-
formance, showing a slight but acceptable degradation.

The other four applications exhibit more complex combinations of these basic
costs, as each of them utilizees both GD and one or more DQs in their robust
versions. The only exception is found in the sort (described further below), which
utilizes a DQ in a more coarse-grained manner than the other applications,
and thus exhibits slightly worse performance characteristics than would be
expected.

7.2 Application Semantics

7.2.1 Top-N Selection. We next examine the cases where application se-
mantics do not perfectly mesh with the DQ and GD mechanisms. We first focus
on the top-N selection. The top-N selection selects the top N data items from a
collection based on a user-specified key value. N is usually a small number, such
as 10. Queries of this form are common in databases and Internet search en-
gines, which, after generating a large set of candidate results, order the results
based on a quality metric and present the top few results to the user.
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Fig. 16. Top-N data flow: static and robust versions of the top-N selection are presented. On the
top is the static (nonrobust) version of the application. Data are read from disk by the disk-read
modules (DR ), and passed to sort modules (S), which buffer some amount of data before generating
a sorted run and writing it to disk via the disk-write modules (DW ). Runs are generated as such
until all data have been transformed into a set of sorted runs. In the (short) final phase, the runs are
merged to produce the top N data items. If the user desires more data, the merge can be continued
from the sorted runs. On the bottom, the diagram depicts the disk-robust first-phase of top-N
selection. Both robust mechanisms are employed; GD allows us to tolerate read side performance
faults, and a DQ, placed between the disks and the sort modules, allows us to tolerate performance
faults at the write side.

Figure 16 presents the basic dataflow of the top-N selection.4 In the first
phase, sorted runs are generated by reading through the entire data set, sorting
a block at a time as they are read into memory, and then writing each sorted
run to disk. The second phase completes by merging the top few records of the
sorted runs into the final result. This approach is particularly useful when a
user is likely to request the next N items, which can be quickly supplied by
continuing the merge.

The challenge to the programmer is how to make this program robust to disk
performance faults. We begin with the first phase. Figure 16 shows the disk-
robust version of the first phase of top-N. Both graduated declustering and a
distributed queue are utilized in order to make the first phase of the program
robust. By utilizing GD over a replicated data set, producer faults are easily
handled. By inserting a DQ immediately after GD, more data are moved to
faster sorters, whose rates are each limited by their local disks. Thus a fully
disk-robust first phase is generated; results in Figure 15 confirm this.

4Note that there are many ways to implement a top-N selection; we do not present this as the best
or only method.
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We find that adding robustness to the merge phase of the program is quite
difficult for two reasons, both of which are general and could apply to other
applications. First, in order to utilize GD, we would have to replicate the sorted
runs as they are written. The need for replication highlights a general weakness
of our run-time adaptive approach: any multiphase program pays a high cost
to replicate data when writing to disk if it wishes to subsequently use GD to
avoid producer-faults during a read phase. GD is better suited for oft-read data
sets, which are replicated once and read many times.

In addition, all of the data must be merged into a single merge module (M ),
which prints the final output. If that module runs slowly for some reason, the
application will also run slowly during that phase. The DQ cannot be utilized, as
there is only a single destination for the data. Thus applications with dataflows
that are similar to this need to minimize the time spent in that portion of the
dataflow.

With those two weaknesses in mind, we still believe that in this case, overall
application performance will be highly robust, due to Amdahl’s law. Almost no
time is spent in the second phase, particularly for large data sets. Thus even
if one particular disk is greatly slowed during this phase, overall application
performance will not suffer unduly.

7.2.2 Sorting. Next we present a challenging operator, external (or disk-
to-disk) sorting. In general, sorting is a good benchmark for clustered systems
because it stresses disk, memory, and interconnect bandwidth. In this section,
we only consider a one-pass version of sort; a two-pass sort consists of multiple
runs of the one-pass sort (plus a merge), and therefore also benefits from the
development below. Also, following the precedent set by other researchers, we
measure the performance of sort only on key values with uniform distributions.
This assumption has implications for our method of distributing keys into local
buckets and across processing nodes. With a nonuniform distribution, we would
need to modify our implementation to perform a sampling phase before the sort
described below [Blelloch et al. 1991; DeWitt et al. 1991]; this sampling phase
could also be made robust via the use of GD.

The topmost diagram in Figure 17 presents the flow of data in the standard
version of the sort, which is based upon the flow of NOW-Sort, a world-record
breaking parallel sorting program for clusters [Arpaci-Dusseau et al. 1997].
First, data begin as an unsorted parallel collection on a number of disks. Data
are read in on each disk node via the disk read module (DR), and then passed to
a range-partitioning module (R). The partitioning modules perform a key-range
partitioning of the data; thus each partitioning module reads the top few bits of
each record to determine which sorter module (S) should be sent a particular
record. When a sorter module has received all of its input, it sorts the data, and
begins streaming them to the disk write module (DW ), which proceeds to write
the data out to disk as a stream, thus preserving the order. This read-sort-write
phase repeats until all of the data have been transformed into a series of sorted
runs.

To enhance the sort with disk-robustness, we must utilize both graduated
declustering and a distributed queue, as shown in the bottommost diagram
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Fig. 17. Sort dataflow: data are read from disk in parallel by a set of disk-read modules (DR )
and then passed on to a set of range partitioners (R). These partitioners segment the data set
across sort modules (S) by key value; for example, with four sort modules present, the top fourth of
the keys would be sent to sorter 0, the next fourth to sorter 1, and so forth. After the sort modules
have received a large chunk of data (perhaps enough to fill memory), they each independently sort
the data, and pass them to the disk-write module (DW ) for output to disk. In a multipass sort,
this phase would repeat until all the data have been sorted into many sorted runs. To facilitate
robustness to disk performance faults in the sort, we again employ both graduated declustering and
a distributed queue. Graduated declustering is utilized as before, and transparently transforms the
sort into a read-robust sort. The use of the distributed queue, however, is more complex. After the
data have been sorted, the sorters cannot place their data in the distributed queue in the standard
way; if they did, the data would get randomly scattered across the disks, essentially undoing all
of the work that the sorting has just performed. Instead, a slightly different distributed queue
is utilized. Each sorter, instead of handing a few records to the distributed queue, instead hands
the distributed queue an entire sorted run at a time. Load balancing occurs at a much coarser
granularity, while preserving the semantics of the sort.

of Figure 17. As is the case with previous operators, we employ graduated
declustering at the disk read to provide a performance-robust parallel data
stream to the program.

The addition of the distributed queue is more complex. From the figure, one
can observe that the queue is placed between the sort modules and the disk-
write modules. If the sort modules passed sorted records to the distributed
queue as in the other programs, the application would not perform as expected,
because the distributed queue algorithm would spread the records randomly
across the disks, undoing all of the work of the sort! Furthermore, the dis-
tributed queue cannot be placed before the sort modules, because the key-range
partitioning that occurs there is crucial to the semantics of the sort; removing
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the key-range partitioning would change the correctness of the sort as specified.
Thus we have placed the distributed queue in the only position possible.

For this placement to function properly, a slight modification had to be made
to the distributed queue. Instead of handing records one at a time to the dis-
tributed queue, the sort module passes large sorted chunks of data to the dis-
tributed queue.5 The distributed queue then adapts to the rate of the disks
at this much coarser granularity. For example, if each sort module received
100 MB of data to the sort, it might divide this into ten 10 MB chunks.

Note that this slightly changes the form of the output of the one-pass
sort; instead of an n-node sort that generates n sorted runs, we now have an
n-node sort that produces n · k runs, where k is the number of sorted runs
that the sort modules hand to the distributed queue. However, there is little
performance cost to this; the only extra work that the sort must now perform
is that n · k files must be opened and closed, instead of n with the standard
sort.

Figure 15 presents the results of the perturbation experiment. From the
figure we can see that performance under perturbation is the least stable of all
of the programs. We attribute this directly to the coarser granularity of the load
balancing across disks; with only a few 10 MB runs to balance across disks, a
single slightly faster disk could end up with a noticeably larger amount of work.
In general, performance degrades gracefully as expected, although the absolute
performance is not as high as with other primitives, due to the extra amount
of per-run overhead associated with managing n · k runs.

7.3 Extending River to Other Application Domains

Given our concentration on database query-processing primitives, a natural
question arises about the generality of the River model: What other types of
applications could benefit from the mechanisms provided by the River environ-
ment? Clearly, any application could be written in the River model, as it is a
general-purpose programming substrate. The better question is what types of
applications would be easily and naturally written in the River framework, and
can thus readily utilize the adaptive mechanisms provided in order to achieve
some level of performance robustness.

One application domain that we believe would also benefit from the River
environment is that of parallel scientific codes. Wolniewicz and Graefe [1993] al-
ready have shown that many common scientific operators fit well into a dataflow
environment. We further believe that these operators can often be reengineered
for performance robustness in a manner similar to the database primitives
above. For example, a common operation in those types of applications is a
matrix transpose [Poole 1994]. Assuming data must begin and end on disk, a
transpose is structurally quite similar to the external sort described above; in-
stead of routing data based on a key value, each “record” (i.e., a floating-point
value) is routed to its final destination based on its location in the final output
set. One slight difference is how the input should be read into memory. The sort
can just read in each input stream in sequential order, whereas the transpose

5Some slight modifications had to be made to the standard distributed queue to accommodate this.
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would have to read from each input stream (i.e., from each row or column) in a
staggered manner, so as to balance output load properly.

Other examples that would work well in the River environment are out-of-
core matrix–vector or matrix–matrix multiplications. Both of these applications
have a great deal of flexibility in the order that they process data (i.e., when
elements are multiplied), and thus are likely to be amenable to transforma-
tion into performance-robust programs. Finally, many of the other applications
described in Poole’s survey of I/O-intensive scientific applications do not re-
quire strict ordering among records being written to disk, also hinting at their
suitability for the River environment [Poole 1994]. Of course, although these
applications seem like excellent candidates for River, only through implemen-
tation and experimentation can we truly know how good a match they are.

8. WHAT ARE THE LIMITATIONS OF RIVER RUN-TIME ADAPTATION?

Finally, we discuss two scenarios where the run-time adaptive techniques of
River do not work well. In the first situation, a Myrinet switch deadlock show-
cases the reliance of River on the network as a performance-reliable medium.
Note that this problem only arose within the implementation, again high-
lighting the value of experimentation with a real system. The second scenario
demonstrates an inherent weakness of run-time adaptation, in that decisions
made at run-time lack global perspective. For example, data written to disk
under current conditions may not be laid out properly for later access under
potentially different conditions.

8.1 Global Performance Faults

The first problem that we present is the result of a peculiar switch behavior,
but demonstrative of a more general problem. Figure 18 plots the performance
of graduated declustering under scale, increasing the number of producers and
consumers from 1 to 16 along the x-axis, and plotting total throughput, as a
percentage of peak, along the y-axis. In this case, producers were not throttled
(i.e., they produce data as fast as they can), and there are no perturbations
within the system.

In the figure, performance is excellent at low scale, coming very close to 100%
of peak, but then drops off unexpectedly with 7, 9, and 11 or more producers and
consumers involved. Via careful instrumentation, we found that in all poorly
performing experiments, performance was fine for a period of time, but then suf-
fered from dramatic, systemwide two-second pauses. Further investigation of
this symptom led to the conclusion that the Myrinet switches were deadlocking,
halting progress until they detected the deadlock and recovered.

Fortunately, with assistance from the implementors, the AM library could be
and was altered to avoid this problem.6 However, the experience is illustrative

6The library had to be changed so as not to fragment messages into smaller chunks. When frag-
mented, the switches would observe fragment interarrival time, and sometimes erroneously assume
that a delayed fragment implied a deadlock, and therefore would go into deadlock recovery mode.
When the implementors of AM installed a fix, by not fragmenting messages, the switches no longer
had reason to time-out.

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.



74 • R. H. Arpaci-Dusseau

Fig. 18. Switch deadlock: performance of graduated declustering plotted under scale, in cases
where the switch deadlock would occur. In the graph, the number of producers and consumers is
covaried along the x-axis, and the percent of ideal performance is plotted along the y-axis. Thus,
at x = 16, there are 32 machines involved in the experiment. The deadlock only occurs at scale and
higher rates, but when it does occur, performance drops noticeably.

of a more general point: River, and its method for run-time adaptation, relies on
the global characteristics of the network. If and only if the network as a whole
is performing as expected will the system be able to tolerate producer- and
consumer-side performance faults. Global performance faults in the network
have a global effect, and cannot be avoided by our mechanisms. In contrast,
localized performance faults in the network, such as link contention or link
performance-failure, would naturally be handled by the adaptive mechanisms
of River.

Faults such as this one are indicative of the need for “design diversity” [Gray
and Reuter 1993], also called architectural heterogeneity. This type of hetero-
geneity avoids the problems that occur when a collection of identical compo-
nents suffers from an identical design flaw, by including components of dif-
ferent makes and manufacturers in a system. As Gray and Reuter [1993]
state, heterogeneity is akin to having “a belt and suspenders, not two belts
or two suspenders.” If an additional and different network had been available,
it is likely that a graceful “performance fail-over” to that network could have
avoided the Myrinet deadlock problem. Unfortunately, such solutions are quite
costly.

8.2 Local Versus Global Perspective

Finally, we discuss a potential and general weakness with run-time adapta-
tion in River. In this scenario, assume an application is writing records to disk
through a DQ; if some disks are faster than others, the DQ will naturally allo-
cate a proportional amount of data to those disks. If an application then reads all

ACM Transactions on Computer Systems, Vol. 21, No. 1, February 2003.



Run-Time Adaptation in River • 75

of those data back from the disks, it will still obtain peak performance from the
system. However, if the performance characteristics of one or more of the disks
have changed (e.g., one of the previously high-performing disks is no longer
high-performing), read performance will suffer. When data are written to disk,
a performance footprint is created; if at some time in the future the state of the
system no longer matches that footprint, a performance mismatch occurs, and
delivered performance no longer approaches ideal.

One method that can be used to ameliorate this potential problem is repli-
cation. By replicating the data, we can then use GD to access them, and thus
potentially tolerate unanticipated performance fluctuations. However, we are
still left with the question of which data sets to replicate, and when to do so. This
type of adaptation—rearranging data offline to account for the current charac-
teristics of the system—is of a broader scale than the run-time mechanisms of
River were designed to handle. We believe that complementary offline adaptive
techniques, similar to those developed by Neefe et al. in Matthews et al. [1997],
are required to provide a complete solution, and view the development of such
techniques as one of the main goals of future work.

9. RELATED WORK

River draws on related work in the areas of parallel databases, parallel storage
systems, parallel file systems, and parallel programming environments. We
now discuss related work from each of these four areas in turn.

9.1 Parallel Databases

Large-scale I/O operations are common in parallel database systems. There
are a number of parallel databases found in the literature, including Gamma
[DeWitt et al. 1988], Volcano [Graefe 1990], the Digital Rdb prototype [Barclay
et al. 1994], and Bubba [Copeland et al. 1988]. Many of these systems are based
on techniques that are similar to the dataflow model of River, where parallel
queries are described as a directed graph that connects different sequential
data operators.

Gamma. Gamma is a parallel database system developed at Wisconsin
[DeWitt et al. 1988]. The initial prototype was developed for a shared-nothing
cluster: 20 VAX 11/750 processors, each with 2 MB of main memory, connected
via a 10 MB/s token-ring network. Eight of those machines had identical 160 MB
hard drives attached [DeWitt et al. 1986].

There are four basic partitioning techniques provided to distribute data
among processors: round-robin, hash, range with a user-specified key value,
and range assuming a uniform distribution. Communication among processors
is performed via a split table, which takes tuples from the sending processor
and distributes them to receiving processors in one of the aforementioned dis-
tribution styles.

In contrast to River, all data distribution techniques in Gamma make strong
performance assumptions; with any of the partitioning techniques, the total
time to completion is determined by the slowest consumer in the group. Fur-
thermore, the network that connects the machines is a shared medium, in this
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case, a token-ring network. Thus, because aggregate network bandwidth does
not scale with processors, data cannot be easily moved through the cluster for
remote consumption, one of the fundamental tenets of the River design.

Volcano. Another prominent parallel database system in the literature is
Volcano [Graefe 1989, 1990; Wolniewicz and Graefe 1993]. Volcano uses a con-
struct called the exchange operator to move data among processors, which is
quite similar to the Gamma split table. As was the case with Gamma and also in
contrast to River, Volcano makes use of solely nonrobust distribution techniques
such as hash-partitioning, range-partitioning, round-robin, and replication. No
flexible distribution mechanism such as a DQ is available.

The major difference between the Volcano and Gamma models of parallelism
is that Gamma uses a demand-driven approach, where sinks pull data from
sources with request messages. Conversely, Volcano uses a data-driven ap-
proach, where data are eagerly sent to consumers before the consumers ex-
plicitly request the data. In message-passing libraries, the same issues arise
in the form of pull-based message layers versus push-based ones [Karamcheti
and Chien 1995].

Although conceptually similar to Gamma and other parallel database sys-
tems, Volcano was intended primarily for use on a shared-memory machine.
In particular, early prototypes ran on a 12-processor Sequent Symmetry. A
shared-memory machine is an excellent platform for a River-like system, as
interconnect performance is usually quite good.

Digital Rdb. In work on a parallel-load prototype for the Digital Rdb project,
Barclay et al. [1994] describe another dataflow execution environment. Connec-
tions among N producers and M consumers are known as data-flow rivers, as
they connect N × M streams of data. As stated therein: “ . . . river partitioning
is based on a split-table. All the streams of a river have the same split table.
As the name suggests, when a record is inserted into a river, the river program
uses the split table to pick a destination stream for the record. The river first
extracts field values from the record. Then it compares these values to values
in the split table to pick a destination stream. The split-table can be a range-
partitioning, a hash partitioning, a round-robin, or even a replication (in which
input records are sent to all sink operators)” [Barclay et al. 1994, p. 2].

Once again, these static techniques do not provide performance availabil-
ity, and will run at the rate of the slowest “sink”. As the authors themselves
state: “If different nodes have different speeds and different amounts of mem-
ory, then it is no longer straight-forward to distribute the work evenly among
the nodes” [Barclay et al. 1994, p. 7]. A flexible method of distribution such as
that found in River would be a useful addition.

Parallel DB2. River takes advantage of unordered record processing when-
ever the DQ is used; another example of such a system to provide some form
of run-time adaptation is the IBM DB2 for SMPs [Lindsey 1998]. In this sys-
tem, shared data pools are accessed by multiple threads, with faster threads
acquiring more work. Lindsey refers to this access style as “the straw model,”
because each thread “slurps” on its data straw at a potentially different rate.
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Implementing such a system is quite natural on an SMP; a simple lock-protected
queue will suffice, modulo performance concerns. The River DQ can be viewed
as a distributed implementation of the same concept.

ParSets. The notion of applying operations on a data set in parallel has been
explored with ParSets [DeWitt et al. 1994]. In this object-oriented database sys-
tem, an application developer could create a function and subsequently direct
the system to apply it to all objects in a collection. This model of computation
would allow for great flexibility in building a performance robust system, if the
data are replicated, much as GD provides robust access to replicated data stor-
age. However, the ParSets implementation processes the function statically
at each data site, and thus does not dynamically balance load and avoid the
ill-effects of performance variations.

NCR TeraData. Current commercial systems, such as the NCR TeraData ma-
chine, exclusively use hashing to partition work and achieve parallelism. A
good hash function has the effect of dividing the work equally among proces-
sors, providing consistent performance and achieving good scaling properties.
However, as Jim Gray [1997] said of the TeraData system, “The performance
is bad, but it never gets worse.” Consistency and scalability are the goals of
the system, perhaps at the cost of getting the best use of the underlying hard-
ware. In contrast, River attempts to deliver the best performance of the current
configuration; thus, if the system is not stable, the performance of River-based
applications will fluctuate.

Eddies. Finally, Eddies are an adaptive dataflow environment built on top
of the River system [Avnur and Hellerstein 2000]. Eddies take some of the
adaptive ideas within River a step further by reordering data operators on-the-
fly in order to achieve higher levels of performance. Specifically, by monitoring
which selection or join predicates are more highly selective, Eddies can adapt
the dataflow to place more highly selective operators first, and thus reduce the
total amount of work performed by the system.

9.2 Storage Systems

RAID. Redundant arrays of inexpensive disks (RAIDs) are a popular way to
organize collections of multiple disks [Gibson 1992; Katz et al. 1989; Patterson
et al. 1988b]. The idea is quite simple: aggregate a set of less-expensive disks
behind a block-level interface. Commonly, some amount of this storage is used
to circumvent failures via a variety of redundancy mechanisms; see Chen et al.
[1994] for an excellent survey.

Striping is commonly used to extract the full aggregate bandwidth from
multiple disks. Striping spreads blocks across disks in a fixed round-robin pat-
tern, based on the logical address of the block. Simple striping breaks down
when any one or more of the disks in the collection runs at a slower rate than
expected. The performance of simple striping can thus be classified as perfor-
mance fragile: every entity must perform as expected for global performance to
match expectations, and too many performance assumptions are made of each
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disk. Some recent work addresses static performance heterogeneity in RAID
systems [Cortes and Labarta 2001]; however, if the relative performance rates
of the drives change, the same performance problems will occur.

Petal. Petal is a distributed system that also exports a block-level inter-
face [Lee and Thekkath 1996]. Assembled from a group of workstations or PCs,
each with multiple disks attached, Petal presents this collection to clients as
a highly available virtual disk on which to place data. The main objective of
Petal is to provide easily administrable, high-performance storage via a scalable
switch-based network.

Petal is one of the few I/O systems to provide some form of run-time adapta-
tion, similar to GD in spirit. Because Petal mirrors data to two or more disks,
a set of reads from a given client can be directed to multiple locations, based
on load information. Petal currently uses a simple dynamic algorithm: “Each
client keeps track of the number of requests it has pending at each server and al-
ways sends read requests to the server with the shorter queue length” [Lee and
Thekkath 1996, p. 5]. GD performs a similar balancing, but with the additional
element that each disk server services requests in a biased fashion, optimizing
global application progress. Furthermore, Petal provides no load-balancing for
writes, and global operations, such as striping, still suffer the same fate as they
would in traditional storage systems.

Chained Declustering. Chained declustering is a technique that performs bet-
ter than a naive mirrored system when there is a failure present in the sys-
tem [Hsiao and DeWitt 1990]. In typical mirrored systems, replication is naive,
as blocks on one disk are mirrored identically upon another. When a failure
occurs, the surviving disk in a pair becomes overloaded. Chained decluster-
ing avoids this problem by spreading the replica blocks over many disks, thus
balancing load under read-intensive workloads. In some ways, GD is a gener-
alization of chained declustering; chained declustering works well in the case
of an absolute failure of a single disk, whereas GD works well when there is a
performance failure of a single disk.

Active Disks. A recent trend in storage systems allows for some or all of com-
putation to be moved to the disks themselves [Acharya et al. 1998; Riedel et al.
1998]. These “active” disk systems are a perfect environment for River, as
the same problems encountered within clusters are likely to be encountered
therein (indeed, Acharya’s stream-based programming model is quite similar
to the River dataflow model, and therefore extending it with adaptive mecha-
nisms such as the DQ and GD would be straightforward). However, additional
adaptation techniques may be required, to allow for the dynamic migration of
computation from the host processor(s) to the disks, depending on the current
system load and network performance levels [Amiri et al. 2000].

9.3 Parallel File Systems

We now turn our attention to the large body of work in parallel file systems.
Most systems have focused on extracting high performance from a set of uni-
form disks, including PPFS [Huber et al. 1995], Bridge [Dibble et al. 1988],
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Panda [Seamons and Winslett 1996], Galley [Nieuwejaar and Kotz 1996],
Vesta [Corbett and Feitelson 1996], Swift [Cabrera and Long 1991],
CFS [Nitzberg 1992], SFS [LoVerso et al. 1993], the SIO specification [Bershad
et al. 1994], and SPIFFI [Freedman et al. 1996]. Some common features include
scatter–gather transfers, asynchronous interfaces, layout control, prefetching,
and caching support at the client or server or both. Most of these parallel file
systems stripe data naively across the set disks in the I/O subsystem, which
can have undesirable performance properties.

Shared File Pointers. One interesting feature provided by some of these sys-
tems is the notion of a shared file pointer, as found in CFS [Nitzberg 1992] and
SPIFFI [Freedman et al. 1996]. With a shared file pointer, multiple processes
on different machines can access a file concurrently in a consistent manner, as
if sharing a local file pointer. Shared file pointers have some excellent perfor-
mance properties. For example, when a group of processes is reading from a
data collection, faster processes will read more data, providing coarse-grained
load balancing for the application, similar in spirit to GD. However, shared-file
pointers only provide these properties for sequentially read files, and provide
no support for load-balancing on writes to disk.

Collective I/O. More advanced parallel file systems have specified higher-level
interfaces to data via collective I/O [Kotz 1994] (also referred to as disk-directed
I/O); a similar concept is expressed with two-phase I/O [Choudhary et al. 1994].
In his original paper, Kotz found that many scientific codes show tremendous
improvement by aggregating I/O requests and then shipping them to the un-
derlying I/O system; the I/O nodes can then schedule the requests, and often
noticeably increase delivered bandwidth. However, because requests are made
by and returned to specific consumers, load is not balanced across those con-
sumers dynamically, and thus they do not solve the performance problems we
believe are common in clustered systems.

Panda. Of all the systems discussed, Panda [Kuo et al. 1999; Seamons and
Winslett 1996] is the only one that deals explicitly with performance hetero-
geneity. However, its solutions are limited. First, it only deals with hetero-
geneity on disk writes; reads are left unbalanced if the previous write has not
perfectly balanced the load across disks, or if the access pattern changes. Fur-
thermore, its approach uses an a priori static measurement of disk performance
to calculate how to lay out data across disks. Thus, if performance during the
write changes, their system will not properly react until the next round of mea-
surement. In contrast, River applications make decisions dynamically as to the
state of drive performance, and thus can handle changes in performance during
run-time.

9.4 Parallel and Distributed Programming Environments

Finally, there have been many parallel programming environments that
have exploited the benefits of run-time adaptation. Some examples include
Cilk [Blumofe et al. 1995], Lazy Threads [Goldstein et al. 1996], and Multipol
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[Chakrabarti et al. 1995]. All of these systems dynamically balance load across
consumers in order to facilitate the programming of highly irregular, fine-
grained parallel applications.

Cilk. Cilk [Randall 1998] is a parallel programming environment designed for
parallel machines. Parallelism is attained by spawning extremely lightweight
threads, allowing users to express arbitrarily complex parallel control con-
structs. Load-balancing is achieved in Cilk via work stealing: when a processor
has no work to do, it examines another processor’s work queue, picked uni-
formly at random, and steals work from there, if any is available. Conceptually,
stealing work from a work queue is quite similar to load balancing within the
DQ, although the Cilk implementation is tuned for thread-level work stealing,
whereas the DQ is aimed at high-performance data movement. One contribu-
tion of note of the Cilk system is that the authors have proven that the Cilk
work-stealing scheduler achieves space, time, and communication bounds that
are all within a constant factor of optimal.

Multipol. Multipol provides run-time support for irregular applications via
distributed data structures, with a focus on hiding communication latency via
asynchrony [Chakrabarti et al. 1995]. Load balancing is provided via a dis-
tributed task queue [Wen 1996], which is similar in design but not implemen-
tation to the DQ.

Linda. Linda provides a shared, globally addressable, tuple-space to paral-
lel programs [Carriero 1987; Gelernter et al. 1985]. Applications can perform
atomic actions on tuple-space, inserting tuples, and then querying the space to
find records with certain attributes. The tuple space is similar to but more gen-
eral than the DQ, and because of the generality of this model, high performance
in distributed environments has been shown to be difficult to achieve [Bal et al.
1992].

Reliable Multicast. Finally, Birman et al. [1999] encountered similar problems
with “performance faulty” nodes in their research on reliable multicasting. In
their work, they alter the guarantee provided by their multicast infrastructure,
from an absolute guarantee to a probabilistic one, and thus avoid the ill-effects
of a stuttering node. We pursue similar goals, but instead sometimes exploit
application flexibility to obtain robust performance.

10. CONCLUSIONS

The heart of the River system is run-time adaptation. No component in the
system statically trusts the performance of any other component; instead, each
node constantly gauges the performance of others during data transfers, and
allocates data or requests to nodes in proportion to their perceived perfor-
mance. Both the DQ and GD are built with this philosophy in mind and, as
we have demonstrated within this article, both are robust data-transfer mech-
anisms, delivering nearly ideal performance under a range of perturbation
scenarios.
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There are several keys to run-time adaptation that we have derived. First,
the interaction with the communication layer is of utmost importance; the num-
ber of flow control credits provided must scale with the size of the system. Sec-
ond, excess parallelism is needed in order to overcome the potential problems of
extremely poorly performing components; without it, performance will be dic-
tated by the slow component in the system. Third, local data processing must
be guided by global knowledge of progress; GD has always had this property,
and we have also found that is necessary for the DQ. Fourth and final, slack is
needed to allow the run-time adaptive methods to deliver 100% of peak perfor-
mance even in the presence of some small number of performance faults; how
much slack a given system should have remains an open question.

Applications built within the River framework can make use of the two
primitives in order to be robust to disk performance faults. A suite of six
database query-processing primitives all run within 89% of ideal across a broad
range of disk performance faults. However, sometimes the needs of the appli-
cations are not perfectly met by the system, as was demonstrated by the Top-N
query and the external sort.

We have also uncovered some weaknesses in the River approach. Run-time
adaptive methods such as the DQ and GD both rely strongly on the network as
the backplane for adaptation; if the entire network does not function properly
(e.g., all the switches deadlock), performance will not match expectations. There
are also cases where run-time adaptation is too short-sighted; we plan to inves-
tigate the complementary use of long-term adaptation in order to eventually
build a fully adaptive system.

From a methodological point of view, we believe that the combination of
modeling, simulation, and implementation is crucial in understanding system
behavior. With simulations, we were able to study the DQ and GD in isolation
and in a well-controlled setting, allowing us to focus on important properties
such as flow control. After understanding how the algorithms should behave,
the second-generation implementation of the distributed algorithms proceeded
with ease. Through implementation, we were able to find limitations in the sys-
tem that did not arise in simplified simulations, underscoring the importance
of building a working prototype. Even with relatively simple models, we were
able to better gauge absolute performance under faults. Understanding the per-
formance of a complex adaptive system is made easier when one understands
the potential ideal.
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