
A Majority Consensus Approach
to Concurrency Control for
Multiple Copy Databases

ROBERT H. THOMAS

Bolt Beranek and Newman, Inc.

A “majority consensus” algorithm which represents a new solution to the update synchronization
problem for multiple copy databases is presented. The algorithm embodies distributed control and
can function effectively in the presence of communication and database site outages. The correctness
of the algorithm is demonstrated and the cost of using it is analyzed. Several examples that illustrate
aspects of the algorithm operation are included in the Appendix.

Key Words and Phrases: distributed databases, distributed computation, distributed control, computer
networks, update synchronization, concurrency control, clock synchronization, multiprocess systems
CR Categories: 4.3, 4.32,4.33,4.39, 5.29

I. INTRODUCTION

In a computer network environment it is often desirable to store copies of the
same database at a number of different network sites. A number of advantages
can result from maintaining such duplicate databases. Among these advantages
are: increased data accessibility-the data may be accessed even when some of
the sites where it is stored have failed, as long as at least one of the sites is
operational; more responsive data access- database queries initiated at sites
where the data are stored can be satisfied directly without incurring network
transmission delays and those initiated from sites “near” the database sites can
be satisfied with less delay than those “farther” from the database sites; load
sharing-the computational load of responding to queries can be distributed
among a number of database sites rather than centralized at a single site.

These and other benefits of replicating data must be balanced against the
additional cost and complexities introduced in doing so. There is, of course, the
cost of the extra storage required for the redundant copies. This paper considers
the problem of maintaining synchronization of multiple copy databases in the
presence of update activity and presents a solution to that problem. Other
problems (e.g. determining for a given application the number of copies to

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
This research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract NOO14-75-0773.
Author’s address: Bolt Beranek and Newman, Inc., 50 Moulton St., Cambridge, MA 02136.
0 1979 ACM 036%5915/79/06CO-0160 $00.75

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979, Pages 180-209.

A Majority Consensus Approach to Concurrency Control 181

maintain and the sites at which to maintain them; selecting a database site or
sites to satisfy a query request when it is initiated) are not considered in this
paper.

The inherent communication delay between sites that maintain copies of a
database makes it impossible to ensure that all copies remain identical at all
times when update requests are being processed. The principal goal of an update
mechanism is to guarantee that updates get applied to the database copies in a
way that preserves the mutual consistency of the collection of database copies as
well as the internal consistency of each database copy. By mutual consistency we
mean that all copies converge to the same state and would be identical should
update activity cease. The notion of internal consistency is somewhat more
difficult to define precisely. It concerns the preservation of invariant relations
that exist among items within a database. As such, internal consistency is related
to the interpretation or semantics of items in the database. Therefore, most of
the responsibility for the internal consistency of a database must rest with the
application processes which update it. The update mechanism should incorporate
little, if any, knowledge of the database semantics. It should, however, operate in
a manner that does not destroy internal data relationships if the application
processes updating the database act in a way that preserves them.

An example should serve to clarify the distinction between the two types of
consistencies. Consider a simple database duplicated at sites A and B that
includes data items x, y, and z, which all initially have the value 1 in both copies.
Further assume that the relation

x+y+z=3

must be preserved for the database. Consider two updates Rl and R2:

Rl: x := -1, y := 3
R2: y := -1, .z := 3

each of which, based on the initial database state, preserves the relation. If Rl
and R2 are both applied, regardless of the order of application, the internal
consistency of the database (the relation x + y + z = 3) will be destroyed. Hence
(at least) one of the requests must be rejected in order to preserve the internal
consistency of the database. Stated somewhat differently, the update request that
gets rejected must be refused because it is based on information made obsolete
(the initial values of X, y, and z) by the request that gets accepted. Concurrency
control mechanisms designed to maintain internal consistency for single copy
databases typically use some sort of mutual exclusion scheme (lock or semaphore
discipline) to guarantee that updates applied are based on current information.
The mutual consistency of the database would be destroyed, while its internal
consistency would be preserved, if update Rl was accepted at site A and update
R2 was accepted at site B. Maintenance of mutual consistency requires all sites
to make the same decision for concurrently initiated conflicting updates.

Update mechanisms can be characterized in terms of the control disciplines
they utilize. One class of mechanisms involves some form of centralized control
whereby all update requests pass through a single central point. At that point the
requests can be validated and then distributed to the various database sites for
application to the database copies. A second, fundamentally different class of

ACM Tramactione on Database Systems, Vol. 4, No. 2, June 1979.

182 - Robert H. Thomas

update mechanisms embody distributed control. For this class the responsibility
for validating update requests and applying them to the database copies is
distributed among the collection of database sites.

Mechanisms which use centralized control are attractive because a central
control point makes it relatively easy to detect and resolve conflicts between
update requests which, if left unresolved, could lead to inconsistencies and
eventual divergence of the database copies. The primary disadvantage of such
mechanisms is that database update activity must be suspended whenever the
central control point is inaccessible. Such inaccessibility could result from failures
in the communications network or at the site where the control point resides.
Because a distributed control update mechanism has no single point of control,
it should, in principle at least, be possible to construct one capable of processing
database updates even when one or more of the component sites are inaccessible.’
The problem here is that it is nontrivial to design a distributed update control
mechanism which operates correctly; that is, which can resolve conflicting updates
in a way that preserves consistency and is deadlock-free. Centralized update
control is adequate for many applications; however, there are database applica-
tions whose update performance requirements can be satisfied only by a system
which uses distributed update control,

This paper presents an algorithm for maintaining multiple copy databases
which uses distributed control. The algorithm treats all database sites as more or
less equivalent. For example, an update can be initiated at any site.

The algorithm presented can be characterized as a majority consensus algo-
rithm, Database sites vote on the acceptability of update requests. For a request
to be accepted and applied to all database copies only a majority need approve it.
The voting procedure followed by each database site allows it to approve an
update request only if the information upon which the request was based is valid
when it votes. The algorithm employs a tin-restamping mechanism used both in
the voting procedure and in the application of accepted updates to the database
copies.

The update algorithm can be demonstrated correct in the sense that its
operation is deadlock-free and preserves both internal consistency and mutual
consistency of the database copies. Although a formal correctness proof of the
algorithm is beyond the scope of this paper, strong plausibility arguments for its
correctness are presented.

An important property of the algorithm is its ability to recover from and
function effectively in the presence of communication system and database site
failures. For example, the algorithm is robust with respect to lost and duplicate
messages and the temporary inability of database managing processes to com-
municate with one another. In addition, it can be made resilient to the loss of
memory (state information) by one or more of the database managing processes.
Unlike many other update algorithms [l-3], the robust behavior of the majority
consensus algorithm does not require the database system to detect component

’ A “distributed” mechanism that comes quickly to mind is one which locks all copies of the database
for the duration of the update activity. Since such a mechanism requires every database site to be
accessible to process an update, it is even more vulnerable to component outages than one which uses
centralized control.

ACM Transactions on Database Systems, Vol. 4, NO. 2, June 1979.

A Majority Consensus Approach to Concurrency Control - 183

. . .

. . . DBYP
N

‘b
OUERY

AP
Y

Fig. 1. Each database copy is directly accessible only through its local database managing
process (DBMP) which acts on behalf of application processes (APs) to process their

query and update requests

malfunctions or outages and to reconfigure or switch into a special recovery mode
of operation. Rather, its robustness is achieved as a side effect of its normal
operation.

2. DISTRIBUTED DATABASE ENVIRONMENT

We assume an environment within which copies of a database are accessible at
a number of database sites (see Figure 1). As presented, the algorithm assumes
full replication of the database at all sites. The algorithm can be adapted to deal
with partially replicated data, but this paper does not discuss partial data
replication further. It is further assumed that the database copy at each site is
accessible only through a database managing process (DBMP) which resides at
that site. Query and update accesses to the database are initiated by application
processes (APs). Each access to the database is completed by a DBMP acting on
behalf of the initiating AP.

The database is assumed to consist of a collection of named elements. For our
purposes the nature of such an element is unimportant. An element could be a
record, a field within a record, a collection of records, or a simple variable as in
the example above. Each named element has a value and a timestamp associated
with it. An element’s timestamp represents the time that the element received its
current value. As will be shown, timestamps are used in two ways. They are used
during update synchronization to ensure the preservation of internal database
consistency, and perform a function similar to that of mutual exclusion locks. In
addition, timestamps are used in the procedure followed by a DBMP when it
applies an update to its database copy. This “update application” procedure is
designed to guarantee mutual consistency of the database copies. Just as lock
granularity is an implementation issue in systems that use locks for concurrency
control, the granularity of timestamps is an issue for systems using majority
consensus. For the purpose of presenting the majority consensus algorithm it is

ACM Transactions on Database Systems, Vol. 4, NO. 2, June 1979.

184 - Robert H. Thomas

useful to think of a timestamp being associated with the smallest separately
modifiable database element. However, for storage efficiency an implementer
might choose to have collections of related elements share timestamps.

To query the database an AP sends a query request to a DBMP. The DBMP
acts upon the request by querying its copy of the database and returning the
results to the requesting AP.

The manner in which updates are performed is somewhat more involved. We
assume that, in general, an AP initiates an update by first performing a compu-
tation to generate new values for certain database elements using database values
obtained by one or more queries, and then submitting an update request to a
DBMP which cooperates with the other DBMPs to perform the update. The
update procedure can be decomposed into the following sequence of steps.

(1) Query Database. The AP queries the database to obtain data element values
to use in its update computation. The set of data elements used by the AP
are called the base variables. In addition to their values, the DBMP
responding to the query also supplies the base variable timestamps stored in
its copy of the database.

(2) Compute Update. The AP computes new values for the data elements to be
updated. The set of data elements to be updated are called the update
variables. The algorithm requires that the update variables be a subset of
the base variables.

(3) Submit Request. The AP constructs an update request composed of the
update variables with their new values and the base variables with their
timestamps, and submits it to a DBMP.

(4) Synchronize Update. The DBMP set cooperates to decide to accept or
reject the request.‘Each DBMP participating in the decision executes the
same voting procedure for the request. The voting procedure itself involves
checking the base variable timestamps in the update request against the
corresponding timestamps in the local copy of the database. This check
allows the DBMP to determine whether the base variables have been
modified since their values were obtained in the query step.

(5) Apply Update. If the request is accepted, each DBMP applies the update to
its copy of the database.

(6) Notify AP. A DBMP informs the AP how the request was resolved. If it was
rejected, the AP may resubmit it by repeating this sequence of steps.

This update procedure involves two sorts of interprocess communication.
Communication between APs and DBMPs occurs to initiate updates and report
their outcome. The second kind of communication occurs between DBMPs as
they work to reach a consensus on the outcome of update requests and to ensure
that updates accepted get applied to all database copies.

For purposes of this paper we assume the existence of a suitable interprocess
communication facility. We further assume that the communication system is
reliable in the sense that the delivery of interprocess messages is guaranteed even
if the receiving process is inaccessible when the sending process initiates a
message transmission. Implementation of such a facility usually involves persist-
ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control * 185

exe, until receipt of a positive acknowledgment indicating that the message was
successfulIy delivered.2

3. THE MAJORITY CONSENSUS ALGORITHM

The majority consensus algorithm consists of five rules.

(1)

(2)

(3)

(4)

(5)

DBMPIDBMP Communication Rule. This rule defines the communication
patterns used by the DBMP set as it cooperates to arrive at a consensus on
update requests. Possible communication patterns include daisy chaining,
daisy chaining with timeouts and retransmission (see below), and broad-
casting.
Voting Rule. This is the rule followed by each DBMP when it considers an
update request. Details of the voting rule are sensitive to the DBMP/DBMP
communication rule.
Request Resolution Rule. After DBMP voting this rule is applied to deter-
mine the outcome of the voting. Its details depend upon the particular
DBMP/DBMP communication rule used.
Update Application Rule. This rule governs the way updates are entered
into the database copies. When a DBMP learns that an update request has
been accepted, it uses the update application rule to perform the update on
its database copy.
Timestamp Generation Rule. A timestamp is generated and assigned to
each update request initiated by an AP. When an accepted update is applied
to a database copy, values for the data elements which are update variables
are modified as specified and the timestamps in the database copy for the
modified database elements are set to the timestamp assigned to the update.

The voting and request resolution rules constrain DBMP behavior such that no
two “conflicting” concurrent update requests can be accepted. This guarantees
that the update application rule, which operates to ensure mutual consistency,
can be used safely without destroying internal database consistency. The rest of
this section describes these rules in more detail.

3.1 DBMP/DBMP Communication Rule

Update requests made by APs must be communicated among the DBMPs for
voting and DBMP votes must be communicated to be tallied. Two possible
communication disciplines are (see Figure 2):

(1) Broadcast. The DBMP receiving an AP update request broadcasts it to the
other DBMPs for voting. After voting the DBMPs return their votes to the
original DBMP (and perhaps to each other if highly failure tolerant opera-
tion is required) for request resolution.

(2) Daisy Chain. The DBMP receiving the request votes and forwards the
request along with its vote to another DBMP. That DBMP, in turn, votes

‘The “network mail” facility of the ARPANET [4] incorporates such a reliable transmission
mechanism which ensures that network mail is always eventually delivered. The details of how such
mechanisms can be implement&l, though important, will not be discussed further here.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

186 . Robert H. Thomas

m... -$J-... AP DBYP DBYP

(bl

@.-@7. w . . .
(Cl

Fig. 2. Possible DBMP/DBMP communication patterns include: (a) broadcasting; (b) daisy
chaining; and (c) daisy chaining with timeout and retransmission

and forwards the request and the votes along to another DBMP that has
not voted yet. This procedure continues until the request is resolved.

Use of a broadcast discipline allows requests to be resolved with minimal delay
at the possible expense of extra messages.3 Daisy chaining results in resolution
with the minimum number of messages at the expense of relatively high delay. In
practice, the choice of a communication discipline should be based upon perform-
ance requirements for the database system as well as the characteristics of the
underlying communication system.4

The details of the voting and request resolution rules are sensitive to the
DBMP/DBMP communication rule and are presented below assuming daisy
chaining and the following variant of it which is introduced as a means for
increasing the robustness of the algorithm.

With pure daisy chaining, progress toward the resolution of an update request
can temporarily cease only if: (1) a DBMP trying to forward an unresolved
request is unable to find another DBMP that is accessible and has not yet voted

3 Since only a majority concensus is required, any messages to solicit and tally votes in excess of the
majority are extra.
’ For example, in a computer network such as the ARPANET [5], broadcasting is relatively expensive,
whereas it is relatively inexpensive in a satellite-based communication system or a local computer
network such as an Ethernet [6].

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control 187

on the request; (2) a DBMP trying to forward an unresolved request crashes
before fowarding the request.

In the first case there is little to be done until a DBMP that has not already
voted becomes accessible. We assume that the sending DBMP is persistent and
will forward the request when a nonvoting DBMP becomes accessible.

Timeouts can be used to detect and recover from failures of the second type.
A DBMP which has voted and forwarded an unresolved update request could
time the request out and if it does not learn that the request has been resolved
within the timeout period, it could act to help the request progress further toward
resolution.

A procedure that a DBMP can use when a request has been timed out is to
check with the DBMP (X) to which it forwarded the request. If it cannot
communicate with X, then it should attempt to forward the update request to
some other DBMP that, to its knowledge, has not yet voted. If X is up and knows
about the request, the checking DBMP need only reactivate the request timeout
since it can assume that X is using the same procedure to ensure that the request
proceeds toward resolution?

This procedure is analogous to the “timeout and retransmit” procedures used
in many network communication protocols [7]. It contributes to the robustness
of the database update algorithm by insuring that the system of DBMPs works
toward the resolution of an update request as long as at least one DBMP which
knows about the request is functioning.

3.2 DBMP Voting Rule

The voting rule is the basis for concurrency control. Together with the request
resolution rule it insures that mutual exclusion is achieved for possibly conflicting
concurrent updates. Two requests are said to conflict if the intersection of the
base variables of one request and the update variables of the other request is not
empty.

The basic idea of the voting rule is simple. When considering an update request
a DBMP checks to determine whether any of its base variables have been
modified since the request was constructed by the initiating AP. If none have
been changed, then so far as the DBMP can determine, the premises upon which
the update is based remain valid since no conflicting updates have been accepted
since the request was initiated or are currently in progress (see below). Conse-
quently, the DBMP may vote (OK) to accept the request. If any base variable
has been modified, then the premises are no longer valid and the DBMP must
vote (REJ) to reject the request. The currency of the request base variables is
checked by comparing their timestamps, which are supplied as part of the request,
with the corresponding timestamps stored in the DBMP’s database copy. Be-,
tween the time a DBMP votes on a request and the request is resolved, the
request is said to be pending at that DBMP.

Two factors contribute to complicate the voting rule somewhat. First, from
time to time a DBMP must consider a request that conflicts with a pending

’ A DBMP might choose the timeout period to be a function of the number of votes a request has
accumulated to account for the fact that, in most cases, it will take a request with few votes relatively
longer to be resolved than one with many votes.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

188 * Robert H. Thomas

request. This typically occurs when two APs concurrently initiate conflicting
requests. Even if the base variables of the second request are current, the DBMP
is not free to vote OK since the pending request may be accepted and render the
base variables for the second request obsolete. One possibility would be for the
DBMP to defer voting on the second request until the pending conflicting request
is resolved. The problem with deferring in this way is that it introduces the
second complicating factor: the possibility of deadlock. For example, for two
requests initiated at different DBMPs in a two DBMP system, voting on each
could be deferred at one of the DBMPs pending resolution of the other.

The solution to this problem as embodied in the voting rules stated below is to
introduce a new vote. A PASS vote is made when it is necessary to signal other
DBMPs that a potential deadlock situation exists with respect to the request in
question. When voting on a request that contlicts with a pending request, a
DBMP must either vote PASS or defer voting until the conflicting request is
resolved. The choice made by the DBMP depends upon the relation of the
requests in question to one another. The rule as stated below uses a priority
scheme: each request is assigned a priority and the priority of conflicting requests
are compared when the DBMP votes. A simple priority scheme is used where the
priority of a request is the timestamp assigned to it. Timestamps produced by the
timestamp generation rule will be shown in Section 3.5 to be unique.

The DBMP voting rule can now be stated:

(1) Compare the timestamps for the request base variables with the correspond-
ing timestamps in the local database copy.

(2) Vote REJ if any base variable is obsolete.
(3) Vote OK and mark the request as pending if each base variable is current

and the request does not conflict with any pending requests.
(4) Vote PASS if each base variable is current but the request conflicts with a

pending request of higher priority.
(5) Otherwise, defer voting and remember the request for later reconsideration.

Voting will be deferred if the request contlicts with a pending request of lower
priority or if any base variable is more current than the corresponding data
element in the database. Some request base variables could be more current if
the update request was initiated at a DBMP which had previously applied an
update that changed them and about which the voting DBMP has not yet
learned.

If the timeout and retransmit communication discipline is used, it is possible
for a DBMP to be asked to vote on a request for which it has already voted. A
DBMP is forbidden from changing its vote in such a case.

3.3 Reauest Resolution Rule

After voting a DBMP uses the request resolution rule to check whether its vote
resolved the request. The basic idea is that the request should be accepted if a
majority of the DBMPs have voted OK. The important property of majority
consensus is that the intersection of any two majorities has at least one DBMP
ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control * 189

in common.6 This means that for any two requests that are accepted at least one
DBMP voted OK for both.

The DBMP request resolution rule for daisy chaining has two parts:

(1) After voting on a request (R):
(a) if the vote was OK and a majority consensus exists:

accept R and notify all DBMPs and the AP that R was accepted.
(b) if the vote was REJ:

reject R and notify all DBMPs and the AP that R was rejected.
(c) if the vote was PASS and a majority consensus is no longer possible

(see discussion below):
reject R and notify all DBMPs and the AP that R was rejected.

(d) otherwise, forward R and the votes accumulated so far to a DBMP
that has not voted on it.

(2) After learning that a request (R) has been resolved:
(a) if R was accepted:

(i) Apply R to the local copy of the database using the update
application rule (see Section 3.4).

(ii) Reject conflicting requests that were deferred because of R.
(b) if R was rejected:

(i) Use the voting rule to reconsider conflicting requests that were
deferred because of R.

Part l(c) of the rule prevents deadlocks. Recall that a DBMP votes PASS
only when the request base variables conflict with those of another pending
request in order to inform other DBMPs that a potential deadlock situation with
respect to the request exists. The request in question can continue to be consid-
ered by other DBMPs until sufficient PASS votes accumulate to prevent a
majority consensus. If this condition occurs, the DBMP detecting it must reject
the request. In effect, this condition represents a consensus among the DBMPs
that the request should be rejected to prevent a possible deadlock. To see the
kind of situation rule l(c) prevents, consider a 2N DBMP system for which two
conflicting update requests are initiated at different DBMPs. Each request could
progress to the point where each has N OK votes. Without a rule such as the
PASS rejection rule, neither could achieve a majority consensus and a deadlock
would result.

Note that for the daisy chain communication discipline a single dissenting vote
is sufficient to cause a request to be rejected. If daisy chaining with timeout and
retransmit is used, the interpretation of a REJ vote must be weakened as follows:

(1) (b) if the vote was REJ and a majority consensus is no longer possible: reject
R and notify all DBMPs and the AP that R was rejected.

The reason for weakening REJ is to prevent the DBMP set from both accepting
and rejecting the same request. With pure daisy chaining a strong REJ (veto)

6 A natural way to define majority subsets for an N DBMP set is any collection of N/2 + 1 DBMPs.
Other groups of majority subsets are possible, however. The only requirement is that any two have
a nonempty intersection. It might be advantageous to include a particular DBMP in most or every
majority subset if, for example, it was resident on a very fast or highly reliable system.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

190 * Robert H. Thomas

works because a request follows a single path through the DBMP set as it
proceeds toward resolution and only one DBMP, the last one that votes, decides
the fate of the request. If daisy chaining with timeout and retransmission is used,
it is possible for the request’s path to branch into several paths,7 possibly allowing
several DBMPs to decide the fate of the request. Weakening the REJ vote
ensures that each DBMP makes the same decision.

3.4 Update Application Rule

Due to the way updates are accepted by and communicated among the DBMP
set it is possible for notification of the acceptance of an update (R 1) to arrive at
some DBMP after notification of the acceptance of a later update (R2) which
obsoletes R 1.

For example, consider a 3 DBMP system where DBMP 3 is down when Rl
and R2 are accepted. Further, suppose that R 1 was initiated by an AP at DBMP
1 and accepted at DBMP 2, and that R2 was later initiated at DBMP 2 and
accepted at DBMP 1. Now, assume that when DBMP 3 comes up DBMP 2 is
down. DBMP 3 will receive notification of R2’s acceptance from DBMP 1;
sometime later, when DBMP 2 comes up, DBMP 3 will receive notification of
Rl’s acceptance from DBMP 2. It is important that any data elements updated
by both R 1 and R2 have the values assigned by R2 after DBMP 3 has applied
both updates.

The update application rule ensures that accepted updates are “properly
sequenced” as they are incorporated into the database copies:

To apply an update (R) to a variable (u) in a database copy, compare the
timestamp of R (2’) with the timestamp of the variable in the database (5%): If
TV -C T, modify u and set TV to T; otherwise, omit the update to v since it is
obsolete.
For updates with more than a single update variable it may be the case that

some of the assignments to data elements are performed and others are omitted
as obsolete.8

3.5 Timestamp Generation Rule

Timestamps are used in two ways. They are used in the voting rule to determine
the currency of update request base variables and they are used in the update
application rule to guarantee that recent updates supersede older ones. In both

7 A path can branch if a DBMP that failed and was “bypassed” after a timeout is later restarted and
resumes normal processing of the request. Refer to Figure 2(c).
* Since update8 are applied in the order in which notification of their acceptance arrives at a DBMP,
it is possible that some DBMP X will apply them in a different order than they were accepted.
Consequently, it is possible for the internal consistency of the database copy at X to be temporarily
destroyed. However, the consistency will be restored when the “missing” updates are applied at X.
Furthermore, it can be shown that any updates initiated at X that are based on the inconsistent data
will be rejected by the DBMP set. If an application requires that such temporary inconsistencies
never occur, it is possible to reformulate the update application rule such that an update will be
applied to a database copy only after all previously accepted updates have been applied. Implemen-
tation of such a modified update application rule requires more communication among the DBMPs
regarding updates that have been accepted.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control 191

cases timestamps are used as sequence numbers for ordering events (e.g. conflict-
ing update requests) with respect to one another.g

The properties that the timestamps used in this way should have are: unique-
ness (i.e. no two update requests should have the same timestamp); and mono-
tonicity (i.e. successively generated timestamps should increase).

All timestamps in the DBMP system ultimately come from update requests.
The question of when and by whom the requests should be timestamped arises.
There seem to be only two logical choices: by the initiating DBMP at the time
the update is received from an AP; or by the accepting DBMP at the time the
update is accepted.

The timeout and retransmit communication discipline makes it possible for a
given request to be accepted by more than a single DBMP. Therefore, to ensure
a single, unique timestamp, requests are timestamped by the DBMP with which
the request is initiated.

It is assumed that each DBMP has access to a local, monotonically increasing
clock, but that there is no common clock accessible to all DBMPs. A timestump
generated by a DBMP i is a pair (T, i) where T is the time obtained from the
local DBMP clock. T is called the c-part (for clock) of the timestamp and i the d-
part (for DBMP) of the timestamp.

Equality, greater than, and less than for timestamps can be defined as follows.

Let Tl = (Cl, dl) and T2 = (C2, d2).
Equality (=): Tl = T2 if and only if Cl = C2 and dl = d2.
Greater than (>): Tl > T2 if and only if Cl > C2 or Cl = C2 and dl > d2.
Less than (<): Tl < T2 if and only if Cl < C2 or Cl = C2 and dl < d2.

It is not difficult to ensure that timestamps are unique. A DBMP need only take
care to never assign the same c-part to timestamps for different update requests.

The possibility that the local DBMP clocks are skewed with respect to one
another or run at different rates could lead to certain anomalous behavior [8]. In
terms of the example in Section 3.4, anomalous behavior would result if the
timestamp generated by DBMP 1 for Rl is more recent than that generated for
R2 by DBMP 2; the anomaly here would be that R 1, the earlier update, would
be retained in the database. We shall call such an occurrence a sequencing
anomaly. If permitted to occur, sequencing anomalies could destroy the internal
consistency of the database. For example, consider a database with the internal
consistency requirement that x + y + z = 3 for which initially x = 2, y = 0, and
z = 1 where

Rl: x := 0, y:= 2
R2: x := 1, 2 := 0.

Each update preserves the internal consistency requirement (assuming as in
Section 3.4 that R2 is initiated after Rl is accepted). However, if a sequencing
anomaly were to occur, the internal consistency requirement would be violated
after R 1 and R2 were applied since x + y + z = 2.

’ For purposes of the algorithm, sequence numbers would suffice. However, we shall continue to use
timestamps rather than sequence numbers because of their simple intuitive appeal and because the
date and time information they carry to support event ordering is useful in its own right.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

192 * Robert H. Thomas

The timestamp generation rule used by a DBMP i to assign a timestamp to a
request R is:

Let

T = 1+ max (time, max ((2%)))

where “time” is the time obtained by DBMP i from its local clock and the
{Z’b) are the c-parts of the time&s for R's base variables. The timestamp
for R is (T, i). To ensure that its local clock increases and that it never
regenerates the same time&, DBMP i also resets its local clock to T.
It will be shown in Section 4 that this rule prevents the occurrence of sequencing

ing anomalies.

3.6 Discussion

Several observations can be made regarding the robustness of the majority
consensus algorithm. Only a majority of the DBMPs or fewer (in the case of a
rejection for pure daisy chaining) are necessary for an update request to be
resolved. Therefore, the database can undergo modification when some of the
DBMPs are inaccessible. Furthermore, the DBMPs necessary for a majority
consensus need not be simultaneously available. Since the algorithm involves
only pairwise interactions among DBMPs, an update request can advance toward
resolution when only two DBMPs are up.

It is not necessary for the DBMP where a request is initiated to remain up for
the request to be resolved. The initiating DBMP need only remain active
sufficiently long to vote on the request and forward it to another DBMP. The
requesting AP is notified by the DBMP that detects resolution of the request,
rather than by the initiating DBMP.

The timeout and retransmit discipline provides an additional degree of robust-
ness. This additional robustness comes at an easily identifiable cost: the meaning
of the REJ vote must be weakened to achieve it. As a consequence more votes,
and therefore additional delay and messages, are required to reject an update.

A side effect of retransmission is that a DBMP may be asked to consider a
given update request more than once. This is analogous to the receipt of duplicate
messages in a communication system which uses retransmission. Duplicate re-
quests represent no problem as long as DBMPs can detect them and do not
change their votes.

When voting on an update request, a DBMP must be able to determine
whether it has previously voted on the request. Similarly, in order to be able to
“garbage collect” storage used for maintaining state information for pending
requests, when informed of the resolution of a request, a DBMP must be able to
determine whether it has any record of the request.”

It follows that update requests must be uniquely identified within the set of
DBMPs. We note that the update timestamp generated by the initiating DBMP
for a request is unique and, therefore, is adequate to serve as a unique request
identifier.

I0 A DBMP may “discard” an accepted update request after it has entered the update into its database
copy. DBMPs also “discard” rejected requests. This paper does not discuss how a DBMP can tell
when it is safe to discard a request; however, it is not difficult to devise methods for doing so.

ACM Transactions on Database Systmns, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control * 193

The Appendix to this paper presents several examples which illustrate how
update requests submitted to a DBMP set proceed toward resolution under the
communication, voting, and request resolution rules presented in the previous
sections.

4. WHY THE ALGORITHM WORKS

The way the voting, request resolution, and update application rules make use of
the properties of majority subsets and timestamps is the basis for the majority
consensus algorithm.

The mutual exclusion necessary to make preservation of internal consistency
possible is accomplished through the voting and request resolution rules which
constrain individual DBMP behavior with respect to conflicting update requests.
In particular, concurrency control is achieved as a consequence of the resolution
rule that ensures that the consenting majority subsets for any two accepted
requests have at least one DBMP in common, and the voting rule that prevents
a given DBMP from consenting (voting OK) to two conflicting concurrent update
requests.

The update application rule guarantees that the database copies are mutually
consistent by ensuring that recent updates supersede older ones. In effect it
enables each DBMP to reconstruct and act upon the same sequence of update
events regardless of the order in which different DBMPs learn of different
updates.

A formal proof of the correctness of the algorithm is beyond the scope of this
paper; however, the rest of this section informally argues for its correctness. In
particular, to establish the correctness of the algorithm we claim that:

(1) An update request R is either accepted or rejected by the DBMP set but
not both.

(2) The algorithm is deadlock-free.
(3) All copies of the database converge to the same value.
(4) The algorithm implements mutual exclusion for accepted updates, and

therefore acts in a way that preserves internal database consistency.
(5) Sequencing anomalies cannot occur.

Claim 1. An update request R is either accepted or rejected by the DBMP set
but not both.

Argument: Case A (pure daisy chaining-strong REJ). R follows a nonbranch-
ing sequential path through the DBMP set. After voting on R, each DBMP along
the path applies the request resolution rule to R before forwarding it to another
DBMP. If R is resolved the path is terminated. Thus the resolution decision for
R is made by a single DBMP which is constrained by the request resolution rule
to either accept or reject R.

Argument: Case B (daisy chaining with timeout and retransmit-weak REJ).
Because R may follow a branching path through the DBMP set a weak REJ is
used to ensure that if several DMBPs make the resolution decision for R each
makes the same decision. Assume R is both accepted and rejected. To be accepted
the request resolution rule requires that a majority of DBMPs voted OK on R; to
be rejected it requires that enough DBMPs voted PASS or REJ R to prevent a
majority consensus. This can only occur if some DBMP voted both OK and

ACM Transactions on Database Systems., Vol. 4, No. 2, June 1979.

194 * Robert H. Thomas

PASS/REJ. But the voting rule prohibits this. Therefore, R cannot be both
accepted and rejected.

Claim 2. An update request R will be resolved by the DBMP set in finite time
if given any pair of DBMPs in the set, they are capable of interacting with one
another in a finite time. It follows therefore that the DBMP set is deadlock-free.

Argument (for pure daisy chaining). Let R be initiated at DBMP I. I has four
options with respect to R: (1) it can vote REJ on R; (2) it can vote OK on R; (3)
it can vote PASS on R; or (4) it can defer voting on R.

If bBMP I votes REJ, R is resolved in finite time. Consider cases (2) and (3).
After voting, I can forward R to another DBMP J that has not voted on R. The
preniise assures that this is done in finite time.

DBMP J has the same four options with respect to R. If it rejects R, R is
resolved in finite time. If it votes OK or PASS and there are insufficient votes to
resolve R, J will forward R to another DBMP K that has not yet voted on R,
thereby, in finite time, advancing R one step closer toward resolution. Since there
are at most N (the number of DBMPs) such steps required to resolve R, it
suffices to show that each step requires only finite time.

The only case that is potentially troublesome is when a DBMP defers voting.
A DBMP will defer voting only if R conflicts with a pending request of lower
priority or if the timestamps for R’s base variables are too current. If it can be
shown that voting on R cannot be deferred indefinitely, then R will either be
resolved or advanced one step further toward resolution by the DBMP in finite
time.

There can be at most only a finite number of requests with priority less than
R’s. This is so since a request’s priority is its timestamp, and due to the way
timestamps are generated, there can be at most a finite number of requests with
timestamps less than R’s. Consider first the case in which there is a request
corresponding to every possible timestamp less than R’s. Number this finite set
of requests Ll, . . . , LN in order of increasing timestamp and priority. The lowest
priority request Ll will be resolved by the DBMP set in finite time since the
voting rule prevents it from being deferred by any DBMP. Next consider L2. If
L2 had been deferred at some DBMP J, it could have been only because it
conflicted with Ll or its base variables were too current. The base variables can
be too current only if L2 was initiated at a site that had already applied Ll. In
either case, J will learn in finite time that L 1 was resolved. It will then reconsider
L2 which since it is now the lowest priority request will be resolved in finite time.
By similar reasoning it follows that each of the Li will be resolved in finite time.
After LN is resolved, R will be the lowest priority request and voting on it can no
longer be deferred at any DBMP. Now, any particular case will involve only
requests corresponding to some subset of all the timestamps less than R’s. The
above argument, somewhat simplified since there are fewer requests to consider,
remains valid. This establishes Claim 2 for pure daisy chaining.

Argument (for daisy chaining with timeout and retransmit). The argument
here differs only slightly from the above. The differences result from the way the
REJ vote is interpreted by the request resolution rule. Because REJ and PASS
votes are equivalent, the argument is similar but slightly shorter than that for
pure daisy chaining. As above, the assumed finite time for pair&se DBMP
ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control * 195

communication ensures that all requests will accumulate sufficient votes for
resolution.

A guaranteed finite time for pairwise DBMP communication is necessary
because at any given time communication between a given pair of DBMPs may
not be possible due to network or host failures. It is possible for failures and
recoveries to occur in a way that prevents a request from ever being resolved. For
example, a two DBMP system in which the DBMPs are never up at the same
time can never accept requests since the two DBMPs never interact. In practice,
such failure and recovery patterns are extremely unlikely. Therefore, the fmite-
time condition for pair-wise DBMP communication is a reasonable assumption
for a real set of DBMPs.

Claim 3. All copies of the data base converge to the same value.
Argument. When a DBMP accepts an update it is obligated by the request

resolution rule to notify every other DBMP. The update application rule ensures
that the value for each data element in a database copy is the value assigned by
the accepted update with the most recent timestamp known to the DBMP. The
reliable communication mechanism (assumed in Section 2) guarantees that all
accepted updates eventually become known to all DBMPs.

Next, we wish to show that the algorithm implements mutual exclusion for
accepted updates. To do this we must be more precise about what we mean.

First, consider a DBMP set for which all database copies are initially identical
and assume that the set accepts the updates RI, R2, . . . , RN. Next, consider a
single centralized database which is initially identical to the DBMP database
copies. Assume that the transaction sequence:

L Wl UL L W2 UL . ..L wiv UL

is run against this database, where L and UL are operations which set and clear
a lock that controls access to the database and Wi is an update transaction which
first reads the base variables (Rj) of some Rj, next computes new values for the
update variables (Uj) of Rj using the algorithm used by the AP that submitted
Rj, and then updates the Uj. The lock and unlock operations are explicitly shown
in the sequence to emphasize that it is run serially, only one transaction at a
time.

Claim 4. Given a set of updates, Rl, . . ., RN, accepted by a DBMP set, it is
possible to construct a sequence

L WI UL L W2 UL . ..L WN UL

where each Wi = Rj and Wi # Wk for i # k such that the values assigned by the
Wi in the single copy database system are identical to the values assigned by the
corresponding Rj in the DBMP system.

When transaction Wj is performed on the single copy database all previous Wi
(i < j) have been performed. In particular, any base variables of Wj assigned
values by previous Wi’s have been updated since all Wi’s have been completely
processed. The analogous situation for the DBMP set is not necessarily true.
That is, when the base variables at some DBMP X were read to initiate Rj, it is
not necessarily true that all previous Ri which updated them had been applied to
X’s database copy.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

196 * Robert H. Thomas

It follows from Claim 4 that the effect of operating the majority consensus
algorithm for a set of updates on the database copies is equivalent to the effect
of operating a locking algorithm for the same set of updates on a single copy
database. That is, the effect on the database copies of any set of updates accepted
by the DBMP set is equivalent to applying the updates serially in a noninterleaved
fashion to a single copy database. Since serial application using a locking discipline
implements mutual exclusion, it follows that the majority consensus algorithm
implements mutual exclusion for accepted updates. Furthermore, since the total
set of updates accepted by the majority consensus algorithm is serializable [9],
if APs initiate only updates that preserve the internal consistency of the database,
the DBMP set will operate to preserve that consistency.

Argument. An induction argument will be used to show that a sequence of the
accepted updates can be generated such that each Ri in the sequence was
initiated at a DBMP that had applied (at least the most recent of) all Rk
preceding it in the sequence that updated its base variables. More specifically, let
Tj be the timestamp generated for Rj and Tuj be the timestamp for base variable
u in Rj; we wish to generate a sequence with the property that for each Ri in it,
Tvi E Tk for all Rk that precede Ri for which u is in Bi and in Uk, and Ti > Tvk
for all Rk which precede Ri for which v is in Ui and in Bk. Such a sequence of all
the accepted updates satisfies the claim since any update Rk that assigned values
to the base variables that are read by another update Ri precedes Ri in the
sequence, and any Ri that will assign, but has not yet assigned, values to the base
variables that are read by another update Rk follows Rk in the sequence.
Therefore, the values assigned by any Ri are identical to those it would assign if
all updates that precede it in the sequence were run in a noninterleaved fashion
against a single copy database.

The procedure for generating the sequence will be to start with Rl to make a
sequence of length 1 with the property; and then to iteratively consider each Rn
and order it with respect to the previously ordered Rl, . . . , Rn - 1 to generate a
sequence of length n with the desired property. Generation of a sequence that
satisfies the claim will be complete when the final request is added to the
sequence.

Before proceeding we need to introduce the notions of acceptance set and time
of acceptance and to establish a result concerning the relation between the time
of acceptance for requests and the positions they may occupy relative to one
another in a sequence with the desired property.

We define the resolution set for a request to be the set of DBMPs whose votes
contributed to the resolution of the request. The resolving DBMP for a resolution
set is the DBMP that accepted or rejected the request. The time of resolution for
a resolution set is the time at which the resolving DBMP resolved the request;

Tres = (max (time, C(T) + l), r)

where “time” is the time obtained by the resolving DBMP from its local clock,
C (T) is the c-part of the request timestamp, and r is the resolving DBMP. Notice
that for daisy chaining with timeout and retransmit a request may have more
than one resolution set.

We define the time of acceptance for an accepted request to be its minimum
ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control 197

time of resolution:

Tu = min ({ Tres}),

the acceptance set for a request to be the resolution set corresponding to its time
of acceptance, and the accepting DBMP to be the resolving DBMP for its
acceptance set. Even with a timeout and retransmit discipline an accepted request
has a single acceptance set and time of acceptance.

Next we define a constraint concerning where conflicting updates may appear
relative to one another in a sequence. Ri must precede Rj with respect to v if
either:

Pl: v is in Ui and in Bj and Tvj > Ti (i.e. Ri modified a base variable of Rj
before Rj read it); or

P!2: v is in Bi and in Uj and Tvi c Tj (i.e. Rj modified a base variable of Ri after
Ri read it).

Result. If Ri must precede Rj with respect to some v then Ri was accepted
before Rj.

Argument for Result. By the request resolution rule there must be a DBMP X
in the acceptance set of Ri and Rj that voted OK for both requests.

Suppose X voted first on Ri. In this case the voting rule prevents X from voting
OK on Rj until Ri is resolved (since Ri and Rj conflict). Therefore, Ri was
accepted before X voted on Rj and hence before Rj was accepted.

Suppose X voted first on Rj. In the following, let Tvdbi be the timestamp for
v in X’s copy of the database when X votes for Ri. As above the voting rules
prevent X from voting OK on Ri until Rj is accepted and Rj’s results are in X’s
database copy. Since Ri must precede Rj with respect to v, either Pl or P2 must
be the case.

Suppose Pl (Tvj 2 Ti). Tvdbi 2 Tvj since, when X voted OK on Rj, Tvdbj =
Tvj (v is in Bj) and the update application rule prevents the timestamp for v in
X’s database from decreasing. Since Tvj 2 Ti, it follows that Tvdbi 1 Ti. By the
timestamp generation rule Ti > Tvi. Therefore, Tvdbi > Tvi (v is in Ui and hence
Bi) which requires X to vote REJ on Ri. Hence if X voted first on Rj, Pl could
not be the case.

Suppose P2 (Tvi < Tj). Since Rj must have been applied when X votes on Ri,
Tvdbi L Tj (v is in Uj). Since Tj > Tvi, it follows that Tvdbi > Tvi. This requires
X to vote REJ on Ri. Hence if X voted first on Rj, P2 could not be the case.

Therefore, X could not have voted first on Rj. This establishes the result. Now
we can proceed with the construction of a sequence for Claim 4.

i = 1. Select Rl to form a sequence of length 1. This sequence has the desired
property since it contains only a single element.

Induction Step. Assume any n - 1 of the requests, Rl, . . . , Rn - 1, can be
arranged in a sequence Sn - 1:

Sn - 1: Rp . . . Rq

with the desired property. The induction step is to show that Rn can be added to
the requests in Sn - 1 to form a new sequence Sn with the desired property. The
approach is to identify a request, Rx (either Rn or one of the requests in Sn - l),

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

198 * Robert H. Thomas

which must (or may) be at the end of the new sequence Sn, and then to use the
induction assumption to assert that the remaining requests can be arranged in a
sequence of length n - 1.

Step 1. Identify the Ri nearest the end of Sn - 1 for which there is a u in Bn
and in Ui and Tun < Ti or a v in Un and in Bi and Tvi 2 Tn. If there is no such
Ri, then the new sequence is Sn = Sn - 1 Rn. If there is, set Rx to be Ri. By the
result above, Rn was accepted before Rx since Rn must precede Rx with respect
to v.

Step 2. Identify the Ri nearest the end of Sn - 1 for which there is a v such
that Rx must precede Ri with respect to v. If there is no such Ri, begin Step 3. If
there is, by the result above Rx was accepted before Ri. Set Rx to this Ri. Rn was

9 accepted before this new Rx, since it was accepted before the old Rx which was
accepted before the new Rx. Repeat this step.

Step 3. There is no Ri following Rx in Sn - 1 for which there is a v such that
Rx must precede Ri with respect to v. Since Rx updates no variables that are
base variables of any Ri following it in Sn - 1 and no Ri following Rx in Sn - 1
updates any base variable of Rx, Rx can be moved to the end of Sn - 1:

Sn - 1: Rp . . . Rq Rx.

Step 4. Form S = Sn - 1 Rn:

S: Rp...RqRxRn.

We know from the way Rx was found that Rn was accepted before Rx. If we can
show that Rx and Rn may (or must) be interchanged, we will establish Claim 4
since we will have

s: Rp.. .RqRnRx

and by the induction assumption any collection of n - 1 updates, and in particular
Rp . . . Rq Rn, can be arranged in a sequence with the desired property. The new
sequence we are trying to generate, Sn, is this rearranged sequence of length
n - 1 followed by request Rx.

There are three cases to consider: (a) there is a v in Un and Bx; (b) there is a
u in Bn and Ux; (c) neither (a) nor (b).

If (c) is the case then Rn and Rx may be interchanged in Sn since they do not
conflict.

Suppose (a). Consider the site Y in the acceptance sets of Rn and Rx which
voted OK on both requests. If Y voted first on Rn, then Rn’s results are in Y’s
database when it votes on Rx. To vote OK on Rx, Tvx must be zTn for all v in
Un and Bx. Therefore, Rn must precede Rx in the sequence and should be
interchanged with it. Now suppose Y voted first on Rx. Rx’s results must have
been in Y’s database when it voted on Rn. This could only occur if Rx was
accepted before Rn which was not the case. Therefore if (a), Rn and Rx must be
interchanged.

Suppose (b). Consider Y. From above we know that Y voted on Rn first. When
Y voted on Rn, Tvn = Tvdbn. When it later voted on Rx, Tvx = Tvdbx I Tvdbn
= Tvn since the update application rule ensures that Tvdb can never decrease.
(Since v is in Ux, it is also in Bx.) By the timestamp generation rule TX > Tvx
ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control * 199

from which it follows that TX > Tvn. Therefore, Rx must follow Rn in the
sequence and should be interchanged with it.

Claim 5. The timestamp generation rule prevents the occurrence of sequencing
anomalies.

Argument. Let A and B be two update requests. Assume that first A is
requested and accepted by the DBMP set and then B is requested and accepted.
To show that sequencing anomalies cannot occur we must show that the value of
any database element which is an update variable of A and B will be specified by
B. That is, we wish to show for the timestamps, Ta and Tb,‘generated for A and
B:

Tb > Ta.

Recall that the update variables for a request are a subset of the base variables.
Therefore, since A and B have update variables in common, there must be a
variable v that is a base variable of B and an update variable of A. Since B is
initiated after A was accepted, B must have been initiated at a DBMP X that
had already applied A; otherwise, the timestamp of v in request B would be
obsolete, leading to B’s eventual rejection. When B was initiated at X the
timestamp of u in X’s copy of the database must have been at least Ta. The
timestamp generation rule guarantees that Tb is at least Ta + 1. Therefore,
Tb > Ta.

Claim 5 means that it is possible for a DBMP set to properly sequence
conflicting update events without requiring that the local DBMP clocks used in
the generation of update timestamps be synchronized. A local DBMP clock can
run at a different rate than other DBMP clocks; it can even run at a variable
rate, or not run at all. Claim 5 is an important result because it is difficult to
synchronize clocks in a distributed environment.

We note that it does not follow from this result that any two events initiated
at different DBMPs in a system with asynchronous DBMP clocks can be properly
sequenced. It only ensures that events with something in common (i.e. those that
conflict with one another) can be sequenced. The ability of the algorithm to
properly sequence updates that modify the same variable or sets of variables is a
consequence of the requirement that the update variables be a subset of the base
variables. In intuitive terms, the variables in common between conflictin updates
are the handles which enable the voting DBMPs to properly sequence seemingly
asynchronous events. The reader interested in more on the subject of event
ordering and clock synchronization is referred to [lo].

5. COST OF THE ALGORITHM

It is possible to identify the following costs which are incurred as a result of using
the majority consensus algorithm:

(1) Communication. A number of inter-process messages must be exchanged to
accomplish an update.

(2) Computation. Values for the update variables must be computed. The race
resolution mechanism occasionally requires that an update request be re-
jected. If the requesting AP wishes to accomplish an update that has been

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

200 * Robert H. Thomas

rejected, the AP must, in general, first recompute it and then resubmit it as
another request.

(3) Delay. It takes some time for the DBMP set to resolve an update request.
(4) Storage. Timestamps must be stored in the database with the data elements.

In addition, while a request is being resolved, DBMPs where it is pending
must maintain a record of it until it is resolved and they can safely discard
it.

This section examines the communication and computation costs imposed by
the algorithm. A pure daisy chaining communication discipline is assumed.

Consider an n DBMP system. The number of messages required to accomplish
an update under best case conditions (i.e. no conflicts with other update requests,
no DBMP failures) is:

3 to initiate the update
(AP (-) DBMP messages to request variables,

transmit variables, request update)
+ b/21 to achieve a consensusll

(inter-DBMP messages);
+ n-l to notify the DBMP set of acceptance

(inter-DBMP messages);
+ 1 to notify AP’of acceptance

(DBMP -) AP message)

or n + [n/21 + 3 messages.
If there are conflicts, the votes of more than [n/2] DBMPs may be required to

resolve a request. Each additional DBMP vote requires an additional message.
Given that an update is accepted the fust time it is requested, in the worst case
every DBMP would have to vote before the request could be accepted. This
would require n - 1 inter-DBMP messages. Therefore, in this case, a request
would require 2n + 2 messages to be accepted.

If a timeout and retransmit discipline is being used and if a DBMP that has
voted on a request fails before it can forward the request, additional messages
may be generated by the request timeout mechanism.

The best case figure of n + [n/2] + 3 compares favorably with other techniques
one might consider for managing distributed, redundant databases.

An update algorithm is described in [8] which guarantees mutual consistency
but cannot ensure internal consistency of database copies. The number of
messages required by that mechanism to accomplish an update is:

3 for an AP to initiate an update;
+ 1 for the initiating DBMP to acknowledge the update;
+nA 1 to communicate the update to the other DBMPs

or n + 3 messages. The difference of [n/2] is exactly the number of messages
required to reach a majority consensus and can be regarded as the cost of insuring
internal consistency.

It is’interesting to note that update algorithms which use centralized control

I’ [xl is the “ceiling” function, the least integer s OX.

ACM Tnmsactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control 201

also require n + 3 interprocess messages. To see this assume that the central
control point resides in one of the DBMPs. As in the distributed control algorithm,
an AP and the central DBMP must exchange three messages to initiate the
update; n - 1 messages are required to distribute the update to the other DMBPs;
and one message is required to inform the AP that the update has occurred.

It is possible to imagine algorithms that involve locking each copy of the
database for the duration of the activity required to process an update. We
consider such a mechanism only for purposes of comparison: it is clearly less
robust with respect to component failures and outages than the majority consen-
sus mechanism; furthermore, it may be very difficult to specify such a locking
algorithm that is deadlock-free. The number of messages required by a locking
algorithm to accomplish an update would be:

n to lock each copy of the database;
+ 1 to obtain the base variables;
+ n to perform the update and unlock the database copies

or 2n + 1 messages. Thus even in the worst case (2n + 2) the majority consensus
algorithm compares well with a simple lock-update-unlock scheme.

The cost of accomplishing an update includes both computation and commu-
nication costs. Let C be the cost of computing an update and M be the cost of
transmitting a single message; for simplicity, assume that all messages cost the
same.

Using the results from above, the cost, CO, of an update that is accomplished
without rejection is

If we define

C + (n + [n/21 + 3)M 5 CO 5 C + 2(n + 1)M.

Co min = C + (n + [n/21 + 3)M

COmax=C+2(n+l)M

then the bounds on the cost, Cl, of an update that is accomplished with a single
rejection and resubmission can be shown to be:

Intuitively, these bounds can be explained as follows. In the best case, the first
update request will be rejected by the initiating DBMP; the 2M accounts for the
messages from the DBMP to the AP to reject the request and the message from
the AP to the DBMP to resubmit the update;” C represents the cost of recom-
puting the update. In the worst case, all DBMPs must vote before the first update
request is rejected, requiring n - 1 inter-DBMP messages and an additional
n - 1 inter-DBMP messages by the rejecting DBMP to communicate the
rejection to the other DBMPs.

In general, it can be shown that the cost, Ck, of an update that is rejected and

I2 This assumes the message to notify the AP that the request has been rejected includes the current
values and timestamps for the base variables; thii enables the AP to resubmit the update without re-
requesting the base variables. If the rejection is to prevent a possible deadlock, the values and
time&s returned may not be current.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

202 - Robert H. Thomas

resubmitted to the DBMP set K times before it is accomplished is:

COmin+iz(C+2M)rC~~COmax+K(C+2nM).

6. THE PROBLEM OF MEMORY LOSS

Correct operation of the majority consensus algorithm requires that information
regarding the state of the database system is never lost by any DBMP. We
assume that anything worth remembering by a DBMP, such as the database
itself and unresolved update requests, is maintained by the DBMP on a nonvol-
atile storage medium, such as disk, which normally survives host system failures.
We further assume that the DBMP can determine when data being moved from
volatile (e.g. core) to nonvolatile storage has been completely copied to the
nonvolatile medium.

A DBMP is said to have “lost memory” if it has forgotten updates which have
been accepted or if it has forgotten how it has voted on currently unresolved
update requests. A DBMP memory loss would occur if the information on the
nonvolatile storage medium used by the DBMP is destroyed.

If a DBMP that has lost memory is permitted to vote on update requests, that
DBMP could cause the majority consensus algorithm to malfunction. This could
happen if: (1) the DBMP votes OK for a request which conflicts with accepted
updates it has forgotten, thereby possibly enabling the request, which should be
rejected, to achieve a majority consensus; or (2) when asked to vote on an
unresolved request it has previously voted on and forgotten, the DBMP votes
differently (e.g. votes OK rather than PASS), thereby possibly causing the request
to be both accepted and rejected.

By itself, a DBMP has no way of determining whether it has lost memory. We
assume that memory loss occurs as the result of some catastrophic event at the
database site and that in such a case the information critical to DBMP operation
is restored by a human operator from a backup copy which is possibly out of
date. The backup copy would typically be archived on magnetic tape. We assume
that whenever the’information is backed up in this way, the DBMP is restarted
and signaled that a memory loss has occurred. In addition, we assume the DBMP
can determine the point of memory loss. That is, we assume that the
DBMP keeps a record of timestamps for recent significant events, such as the
last update accepted at each other DBMP, on the nonvolatile storage medium
and that this record is archived along with the database and also restored after
a memory loss occurs.

When a DBMP restarts after a memory loss, it must follow a memory recovery
procedure before it can safely vote on update requests. In order to become a
voting member of the DBMP set, a DBMP that has lost memory must: (1)
recover all updates which the set of DBMPs has accepted since the point of its
memory loss (and which have not been forgotten by the entire set of DBMPs);
and (2) recover all unresolved update requests which it has voted on since the
point of its memory loss.

It can be shown that, in general, a DBMP with memory loss must interact with
every other DBMP in order to guarantee recovery of all the information it has
lost. Furthermore, it can be shown that a recovery scheme which involves only a
ACM Transactions on Database System, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control * 203

simple interaction with each other DBMP, in which such information is requested
and transmitted, is insufficient to recover all the lost information.13

Below we present a two-pass memory recovery procedure which involves only
pairwise interactions among DBMPs. We assert that this memory recovery
procedure works correctly when one, several, or all DBMPs have lost memory.
However, it is beyond the scope of this paper to prove its correctness.

Let M be the DBMP with memory loss. On the first pass M informs each other
DBMP that it is trying to recover from a memory loss. When a DBMP is so
informed, it must acknowledge, and in addition, temporarily stop forwarding to
other DBMPs unresolved requests that have been voted on by M.14

On the second pass M requests from each other DBMP, in turn, information
concerning updates accepted since the point of M’s memory loss and unresolved
update requests voted on by M. After it supplies M such information, a DBMP
may resume forwarding unresolved requests that M has voted on.

If on the second pass M encounters a DBMP that is unaware that M is engaged
in the memory recovery procedure, that DBMP has also lost memory (since M’s
first pass). Should M encounter such a DBMP, it must abort the second pass of
the procedure. In such a case, to proceed with its memory recovery, M must
repeat the first pass of the procedure, after which it may restart the second pass.
When M successfully completes the second pass, it can participate as a voting
member of the DBMP set.

7. CONCLUDING REMARKS

This paper has presented a “majority consensus” algorithm which represents a
new solution to the update synchronization problem for multiple copy databases.
Because the responsibility for performing an update is distributed among the
collection of processes that manage database copies rather than centralized in a
single process, the algorithm can function effectively (i.e. process updates) in the
presence of communication and database site outages.

Analysis of the communication and computaticin costs incurred by the majority
consensus algorithm to accomplish an update (when it is unnecessary to reject
and resubmit it) shows these costs are not significantly greater than for other
more centralized approaches. When the pattern of update activity is such that
conflicting update requests occur, these costs increase because more votes are
required to resolve requests and because rejected update requests must be
resubmitted.

In addition to communication and computation costs, the algorithm imposes a
significant short-term storage requirement upon the database sites since each site

must remember the state of a pending update request until the request is resolved.
The short-term storage required for any application will depend upon the ex-

I3 While one DBMP is attempting to recover memory, it is possible for the other DBMPs to experience
memory loss and engage in memory recovery in pathological patterns which would enable unresolved
update requests voted on by the original DBMP to remain active in the DBMP set but unredoverable
by any simple one-pass procedure.
I4 This temporary freezing of database activity with respect to these unresolved requests prevents the
pathological behavior mentioned in footnote 13.

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

204 * Robert H. Thomas

petted patterns of update activity. In practice, the dominant cost associated with
the use of the algorithm is likely to be that incurred to satisfy this short-term
memory requirement.

A multiple copy database is one particular type of distributed database.
Another type is one which consists of distributed, nonoverlapping segments; that
is, a database which is a collection of smaller database segments each of which is
singly maintained at a (possibly) different site.15 Although the data are not
redundantly stored for this type of distributed database, in some applications it
may be desirable to maintain multiple copies of the catalogs for such a segmented
database. For these applications the majority consensus algorithm could be used
to handle updates to the database catalog.

A number of interesting questions regarding the use of multiple copy databases,
in general, and the use of the majority consensus algorithm, in particular, remain
to be answered. These questions include:

(1) How should application processes be programmed to deal with the fact that
data found in any given database copy may not be the most current? In
some cases it may not be critical that the data are not current. If it is critical,
how can a process locate the most current data?

(2) How will the algorithm perform under various patterns of update activity
and various patterns of communication system and site outages? For ex-
ample, given particular activity and outage patterns, what is the probability
that an update will be accepted the first time it is submitted; what is the
expected number of DBMPs that must vote for an update request to be
resolved?

(3) In practice, use of the memory recovery procedure sketched in Section 6
could be expensive in terms of the storage required to maintain update
history information at each DBMP site. What strategies can be used to
minimize the extent of the history information that is maintained at each
site? The memory recovery procedure that was presented is interesting in
that, like the majority consensus algorithm, it can be made extremely robust
because it incorporates distributed control. However, since memory loss by
a DBMP is likely to be a rare occurrence (relative to communication system
and site failures), a simpler, centralized recovery procedure may be adequate
in most situations.

APPENDIX

This Appendix includes a number of examples chosen to illustrate various aspects
of the update algorithm. Before presenting them it is necessary to specify in some
detail the messages exchanged among APs and DBMPs. The following messages
are used in the examples:

DBMP (-) AP messages:
RV - Request Variable values and timestamps (AP to DBMP).
VAR - VARiables and timestamps (DBMP to AP).

15These two types represent extremes. Some applications may call for “intermediate” types; for
example, a database comprised of a collection of smaller segments some, but not all, of which are.
redundantly maintained.
ACM Transactions on Database Systems, Vol. 4, NO. 2, June 1979.

A Majority Consensus Approach to Concurrency Control - 205

RU - Request Update (AP to DBMP).
UA - Update Accepted (DBMP to AP).
UR - Update Rejected (DBMP to AP).

Inter-DBMP messages:
RC - Request Consensus on specified update request.
DO - The specified update request has been accepted; enter it into your

copy of the database.
REJ - The specified update request has been REJected.

For each of the examples that follow a number of different sequences of events
are possible; only one sequence is presented for each example. The following
notation is used in the examples:

. X-) Y:Z represents transmission of message Z to process Y by process X.
l [A / B / C] indicates the event sequence in which event A is followed by event

B which is followed by event C.
l [A & B] indicates that events A and B occur concurrently.
l The update request status “--” indicates that the update request is currently

unknown at the DBMP in question. The status “XX” indicates that the
DBMP in question is down.

l ok@12 (pa@12, rj@12) means that DBMPs 1 and 2 have voted OK (PASS,
REJ) on the request. Similarly do@2 (rej@2) means that DBMP 2 accepted
(rejected) the update request.

l DONE means that the DBMP has performed the update.
l REJD means that the DBMP considers the request as rejected.
l “*” indicates that the DBMP is actively trying to forward information regarding

the request; *ok means that it is trying to forward an RC message; *DONE
means that it is trying to complete sending DO messages; *REJD means that
it is trying to complete sending REJ messages.

The first three examples assume pure daisy chain communication. The fourth
example uses daisy chaining with timeout and retransmit.

Example 1: Normal Update with no Conflict. Consider three DBMPs which
manage a database which includes a variable x. Assume that an AP wishes to do
the update:

x := x + 1.

Further, suppose that x is current in all copies of the database, and that its value
is 3. Let the update requested be called A. A has a single base variable, x, and a
single update variable, x. If accepted, A will change the value of x to 4.

The sequence of events that occurs and how the status of the request A as seen
by each DBMP evolves as the DBMPs work to accomplish the update is shown
below:

DBMP 1 DBMP 2 DBMP 3
status

OE

A
[AP-)l:RV(x) / 1-)&QAR(x)

--
/ AP-)l:RU(A)I 1 votes OK]

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

206 - Robert H. Thomas

A *ok@1
[l-)2:RC(A) / 2 votes OK]

-- --

A ok@1 *ok@12 --
[2 accepts A / 2-)l:DO(A) / 2-)AP:UA(A)]

A DONE *DONE --
do@2 do@2

[2-)3:DO(A)]

A DONE
do@2

[l, 2, 3 discard request A]

DONE DONE
do@2 do@2

Example 2: Concurrent Conflicting Updates. This is the example from Section
1. There are three DBMPs which manage a database that includes variables x,
y, and z. Assume all databases are current and x = y = z = 1 in all copies of the
database. Assume that APl initiates update A and that AP2 initiates update B:

A: x := -1, y := 3
B: y := -1, z := 3.

The base variables of A are x, y, z and the update variables are x, y; B’s base
variables are x, y, z also, and its update variables are y, z. A and B conflict.

In the following, A is accepted causing B to be rejected. AP2 then chooses to
reinitiate its update (called B’ to distinguish it from the AP2’s original request)
which is then accepted. We assume that the priority of request A is greater than
that of B.

DBMP 1 DBMP 2 DBMP 3
Status

OE

A -- -- --
B -- --
[APl-)l:RV(xyz) & AP2-)3:RV(xyz) / I-)APl:VAR(xyz) & 3-)AP2:VAR(ryz/APl-)l:RU(A)

& AP2-)3:RU(B) / 1 votes A-OK & 3 votes B-OK]

A *ok@1 --

B
[l-)3:RC(A) &3-)1;;(B) / 2 votes A-OK &Iites B-PASS]

--

*ok@3

A ok@1 *ok@12 --

B *ok@3pa@l -- ok@3
[2 accepts A & I-)2:RC(B) / I-)APl:UA(A) & 2-)l:DO(A) & 2 rejects B]

A DONE *DONE
do@2 do@2

B ok@3pa@l *REJD
rej@2

[2-)3:DO(A) & 2-)l, 3:REJ(B) & 2-)AP2:UR(B)]

--
--

ok@3

A DONE DONE
do@2 do@2

B REJD REJD
rej@2 rej@2

[I, 2,3 discard A and B]

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

DONE
do@2
REJD
rej@2

A Majority Consensus Approach to Concurrency Control * 207

A -- -- --
B -- -- --
[AP2-)2:RV(xyz) / 2-)AP2:VAR(xyz) / AP2-)2:RU(B’) / 2 votes B’-OK]

*ok@2
i-)3:RC(B’) / 3 votes;‘-OK / 3 accepts B’ / . , . etc.]

--

Example 3: Deadlock Avoidance. Assume three DBMPs which manage a
database which includes the variables x, y, and z. Assume that all copies of the
database are current and that x = 1, y = 2, and z = 3. Assume that three
application programs attempt the updates:

A: x := y*z (by APl)
B:y:= z + x (by AP2)
c:z:=x-y(byAP3).

Update A would change x to 6; B would change y to 4; C would change z to -1.
The base variables of all three requests are x, y, z; the update variables are such
that each request conflicts with each of the others. In the following scenario the
DBMPs act first to reject C in order to prevent a possible deadlock, next to accept
B , and finally, to reject A because it conflicts with B.

DBMP 1 DBMP 2 DBMP 3
Status

OE

A -- -- --
B -- -- --

--
[!. . APl-)l:RU(A) & AP2-)2:RU(B) & AP3-G&(C) / 1,2,3 vote OK oz;, i, C]

A *ok@1 -- --

B -- *ok@2 --

[:-)2:RC(A) & 2-)3GRC(B) & 3-)l:RC(C) / Zdefers A & 3 defers B & 1 vo~~~%‘ASS]

A ok@1 DEFR, ok@1 --

B -- ok@2 DEFR, ok@2
*ok@3pa@l

[:-)2:RC(C) / 2 votes C-PASS / 2 rejects C]
-- ok@3

A ok@1 DEFR, ok@1
B -- ok@2
C ok@3pa@l l REJD

rej@2
[2-)l, 3:REJ(C) & 2-)AP3:UR(C) / 3 votes B-OK / 3 accepts B]

--

DEFR, ok@2
ok@3

A ok@1 DEFR, ok@1
B -- ok@2

C REJD REJD
rej@2 rej@2

[3-)l, 2:DO(B) & 3-)AP2:UA(B) / 1,2,3 discard C & 1,2, reject A]

--

*DONE
do@3
REJD
rej@2

A

B

‘REJD

r4321
DONE

‘REJD --

rej@2
DONE DONE

ACM Transactions on Database System, Vol. 4, No. 2, June 1979.

208 - Robert H. Thomas

do@3 do@3 do@3
c -- -- --

[I, 2,3 discard B / l-)2,3:REJ(A) & l-)APl:UR(A) & 2-)l, 3:REJ(A) & 2-)APl:UR(A, zyz)]

A REJD REJD REJD
rej@12 rej@l2 rej@12

B -- -- --

[:, 2,3 discard A]
-- -- --

Example 4: Updating in the Presence of DBMP Crashes. For this example
assume a five DBMP system and that all database copies are current. Further
assume that DBMPs 4 and 5 are initially down and that when DBMPs crash and
later come up they do so without loss of memory. Suppose that conflicting
updates A and B are initiated at DBMPs 1 and 3, respectively. The following
illustrates a scenario in which various DBMPs crash and return as the set of
DBMPs act to accept B and reject A,

DBMP 1 DBMP 2 DBMP 3 DBMP 4 DBMP 5
status

OE

A -- -- -- xx xx
B -- --
[APl-)l:RU(A) & AP2-)3%(B) / 1,3 vote OK on A, B]

xx xx

A ‘ok@1 -- -- xx xx
B -- -- *ok@3 xx xx
[3-)l:RC(B) / 1 votes B-PASS / I-)2:RC(B) / 2 votes B-OK / l-)2:RC(A) / 2 defers A]

A ok@1 DEFR, ok@1 --
B ok@3pa@l *ok@23pa@l ok@3
[2 crashes / 1 times out A]

A *ok@1 xx --

B ok@3pa@l XX ok@3
[l-)3:RC(A) / 3 defers A / 4,5 up / 3 times out B]

xx xx
xx xx

xx xx
xx xx

A ok@1 xx
B ok@3pa@l XX
[3-)4:RC(B) / 4 votes B-OK]

DEFR, ok@1 -- --
*ok@3 -- --

A ok@1 xx DEFR, ok@1
B ok@3pa@l XX ok@3
[3,4 crash / 1 times out A]

-- --
*ok@34 --

A *ok@1 xx xx
B ok@3pa@l XX xx
[l-)5:RC(A) / 5 votes A-OK / 2,3,4 up]

xx --
xx --

A ok@1 DEFR, ok@1 DEFR, ok@1 --
B ok@3pa@l *ok@23pa@l ok@3 *ok@34

[Note that B has been resolved but that no single DBMP is aware of that yet.
5-)4:RC(A) & 4-)5:RC(B) / 4 defers A & 5 votes B-PASS]

*ok@15
--

A ok@1 DEFR, ok@1 DEFR, ok@1 DEFR, ok@15 ok@15
B ok@3pa@l *ok@23pa@l ok@3 ok@34 *ok@34pa@5
[2-)5:RC(B) / 5 accepts B / 5-)l, 2,3,4:DO(B) & 5-)AP2:UA(B) / 2,3,4 vote A-REJ]

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

A Majority Consensus Approach to Concurrency Control 209

A ok@1 *rj@2ok@l *rj@3ok@l *rj@4ok@l5 ok@15
B DONE DONE DONE DONE DONE

do@5 do@5 do@5 do@5 do@5
[2-)3:RC(A) & 3-)4:RC(A) & 4-)3:RC(A) / 3 notices rj@234 for A and rejects A 1

A ok@1 rj@2ok@l ‘REJD
rej@3

B DONE DONE DONE
do@5 do@5 do@5

[3-)1,2,4, B:REJ(A) / 1,2,3,4, 5 discard A, B]

rj@34ok@l5

DONE
do@5

ok@15

DONE
do@5

ACKNOWLEDGMENTS

Paul Johnson and Harry Forsdick contributed to the formulation of the ideas in
this paper. In addition, conversations with Rick Schantz, Vera Koetelboeter, Ray
Tomlinson, and Maurice Maybury were helpful.

REFERENCES
1. SHAPIRO, R.M., AND MILLSTEIN, R.E. The NSW reliability plan. Rep. CA-7701-1411, Massachu-

setts Computer Associates, June 1977.
2. ROTHNIE, J.B., GOODMAN, N., AND BERNSTEIN, P.A. The redundant update methodology of

SDD-1: A system for distributed data bases (the fully redundant case). Tech. Rep. CCA-77-02,
Computer Corp. of America, Cambridge, Mass., June 1977.

3. &S.BERG, P.A., AND DAY, J.D. A principle for resilient sharing of distributed resources. Rep. from
Ctr. for Advanced Comput., U. of Illinois at Urbana-Champaign, Urbana, Bl., 1976.

4. HENDERSON, JR., D.A., AND MYER, T.H. Issues in message technology. Proc. Fifth Data Com-
munication Symp., Snowbird, Utah, Sept. 1977, pp. 6-l-6-9.

5. ROBERTS, L.G., AND WESSLER, B.D. Computer network development to achieve resource sharing.
Proc. AFIPS 1970 SJCC, AFIPS Press, MontvaIe, N.J., pp. 543-549.

6. METCALFE, R., AND BOGGS, D. Ethernet: Distributed packet switching for local computer
networks. Comm. ACM 19,7 (July 1976), 395-404.

7. CERF, V., AND KAHN, R. A protocol for packet network interconnection. IEEE Trans. Comm.
Comm-22,5 (May 1974), 637-648.

8. JOHNSON, P., AND THOMAS, R. The maintenance of duplicate data bases. Network Information
Center (NIC) Document #31597, ARPA Network Working Group Request for Comments (RFC)
#677, Jan. 1975.

9. ESWAREN, K.P., GRAY, J.N., LORIE, B.A., AND TRAIGEN, IL. The notions of consistency and
predicate locks in a database system. Comm. ACM 19, 11 (Nov. 1976), 624-633.

10. LAMPORT, L. Tie, clocks and the ordering of events in a distributed system. Rep. CA-7603-2911,
Massachusetts Computer Associates, March 1976; also submitted to Comm. ACM

Received January 1978; revised May 1978

ACM Transactions on Database Systems, Vol. 4, No. 2, June 1979.

