
Fail-Stop Processors:
An Approach to Designing
Computing Systems

RICHARD D. SCHLICHTING

University of Arizona

and

FRED B. SCHNEIDER

Cornell University

Fault-Tolerant

A methodology that facilitates the design of fault-tolerant computing systems is presented. It is based
on the notion of a fail-stop processor. Such a processor automatically halts in response to any internal
failure and does so before the effects of that failure become visible. The problem of implementing
processors that, with high probability, behave like fail-stop processors is addressed. Axiomatic
program verification techniques are described for use in developing provably correct programs for
fail-stop processors. The design of a process control system illustrates the use of our methodology.

Categories and Subject Descriptors: C.2.4 [Computer-Communications Networks]: Distributed
Systems--network operating systems; C.3 [Special-Purpose and Application-Based Sys-
tems]:--real-time systems; D.4.5 [Operating Systems]: Reliability--verification; F.3.1 [Logics and
Meaning of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Reliability, Verification

Additional Key Words and Phrases: Fail-stop

1. INTRODUCTION

P r o g r a m m i n g a c o m p u t e r s y s t e m t h a t is s u b j e c t to fa i lu res is a di f f icul t task. A

m a l f u n c t i o n i n g p rocesso r m i g h t p e r f o r m a r b i t r a r y a n d s p o n t a n e o u s s t a t e t r ans -

f o r m a t i o n s i n s t ead of t h e t r a n s f o r m a t i o n s spec i f ied by t h e p r o g r a m s i t execu tes .

T h u s e v e n a co r r ec t p r o g r a m c a n n o t be c o u n t e d on to i m p l e m e n t a des i r ed i n p u t -

o u t p u t r e l a t i on w h e n e x e c u t e d on a m a l f u n c t i o n i n g processor . On t h e o t h e r hand ,

i t is imposs ib le to bui ld a c o m p u t e r s y s t e m t h a t a lways o p e r a t e s c o r r e c t l y in sp i te

This work is supported in part by NSF Grant MCS-81-03605.
Authors' addresses: R. D. Schlichting, Department of Computer Science, University of Arizona,
Tucson, Arizona 85721; F. B. Schneider, Department of Computer Science, Cornell University, Ithaca,
New York 14853.
This paper was originally submitted to A CM Transactions on Programming Languages and Systems.
The responsible editor was Susan L. Graham. The authors and editor kindly agreed to transfer the
paper to the ACM Transactions on Computer Systems.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
© 1983 ACM 0734-2071/83/0800-0222 $00.75

ACM Transactions on Computing Systems, Vol. 1, No. 3, August 1983, Pages 222-238.

Fail-Stop Processors 223

of failures in its components by using (only) a finite amount of hardware) Thus
the goal of implementing completely fault-tolerant computing systems is unat-
tainable. Fortunately, most applications do not require complete fault-tolerance.
Rather, it is sufficient that a system work correctly provided that no more than
some predefined number of failures occur within some time interval, or that
certain types of failures do not occur. This more modest goal is attainable.

In this paper we present an approach to designing fault-tolerant computing
systems based on the notion of a fail-stopprocessor, a processor with well-defined
failure-mode operating characteristics. Briefly, our approach is as follows. First,
software is designed assuming the existence of a computing system composed of
one or more fail-stop processors; the number of processors required is dictated by
response-time constraints that must be satisfied by the system. Then, a computing
system is designed that implements the requisite fail-stop processors.

We proceed as follows. Section 2 describes the characteristics of a fail-stop
processor and considers how such processors can be approximated using present-
day hardware. Section 3 discusses extensions to axiomatic verification techniques
for facilitating the development of provably correct programs for fail-stop proc-
essors. Satisfying response time constraints in the presence of failures is the
subject of Section 4. Section 5 discusses the application of our approach to a
nontrivial problem: the design of a fault-tolerant process-control system. Section
6 contrasts our work with other approaches to designing fault-tolerant systems,
and Section 7 presents some conclusions.

2. FAIL-STOP PROCESSORS

2.1 Definition

A processor is characterized by its instruction set. Each instruction causes a well-
defined transformation on the internal state of the processor and/or the connected
storage and peripheral devices. Thus the effects of executing each instruction can
be described by a precise semantic definition, be it a temporalaxiomatization of
the instruction set [18] or a "Principles of Operation" manual. A failure occurs
when the behavior of the processor is not consistent with this semantic definition.

A fail-stop processor is distinguished by its extremely simple failure-mode
operating characteristics. First, the internal state of a fail-stop processor and
some predefined portion of the connected storage are assumed to be volatile; the
contents of volatile storage are irretrievably lost whenever a failure occurs. The
remaining storage is defined to be stable; it is unaffected by any kind of failure.
Secondly, in contrast to a real processor, a fail-stop processor never performs an
erroneous state transformation due to a failure. Instead, the processor simply
halts. Thus, the only visible effects of a failure in a fail-stop processor are

FSI: It stops executing.
FS2: The internal state and contents of the volatile storage connected to it are

lost.

Sed quis custodiet ipsos Custodes? (Who shall guard the guards themselves?) , Juvenal , Sat i res VI,
347.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

224 R.D. Schlichting and F. B. Schneider

2.2 Implementation

While the notion of a fail-stop processor is a useful abstraction, it is impossible to
implement using a finite amount of hardware. With only a finite amount of
hardware, a sufficient number of failures could disable all the error detect ion
mechanisms and thus allow arbi t rary behavior. I t is, however, possible to con-
s truct computing systems that , with high probability, approximate the behavior
of a fail-stop processor.

One approach is to construct a system tha t behaves as specified, unless too
many failures occur within some specified t ime interval, after which no assump-
tions about its behavior can be made. A k-fail-stop processor is a comput ing
system tha t behaves like a fail-stop processor unless k + 1 or more failures occur
in its components. One implementat ion of a k-fail-stop processor is described
below; another appears in [23].

A k-fail-stop processor can be implemented by exploiting any solution to the
Byzantine Generals Problem [13] (or the Interact ive Consistency Problem [17]).
Such a protocol allows a collection of processors to agree on a value sent by a
potential ly faulty transmitter ("Commanding General") , so tha t

(1) each nonfaul ty processor agrees on the value sent by the transmit ter , and
(2) if the t ransmit ter is nonfaulty, each nonfaul ty processor receives the value

sent by the transmit ter .

A number of real processors and volatile memory units are in terconnected by
a communicat ions network to form a single k-fail-stop processor and its a t t endan t
stable storage. Each memory unit Mi is read by all processors but wri t ten to by
only one, Pi. Failures are detected by having each processor run the same
program and comparing results. Thus a copy of each variable is s tored in each
memory unit. During execution, whenever the value of a variable f rom stable
storage is required, the value of tha t variable is read from each memory unit and
a solution to the Byzant ine Generals Problem is employed to distribute the vector
of values read to every processor. If all of the values are not identical, then a
failure has occured and it is signaled. (Nonfaulty processors will hal t when the
failure is signaled.) A total of 2k + 1 processors are required in order for up to k
failures to be tolerated.

Since processors execute asynchronously, execution of the replicated programs
must be synchronized to compare results. This can be accomplished, assuming
processor clocks run at roughly the same rate, by associating a logical clock [11]
with each program. This logical clock is incremented whenever a variable tha t is
supposed to be stored in the stable storage of the k-fail-stop processor is read or
written. To synchronize, a processor constructs a vector of the values of each of
these clocks, again using a solution to the Byzant ine Generals Problem, and
marks t ime until all components in the vector have the same value or a "time-
ou t" period has elapsed. In the la t ter case, a failure has occurred and it is signaled.

A collection of k-fail-stop processors are in terconnected to implement a system
in which real-time response constraints can be me t despite failures. In tha t case,
it must be possible for one k-fail-stop processor to detect tha t ano ther has s topped
and then to read the contents of tha t k-fail-stop processor 's stable storage so tha t
the computat ion in progress at the t ime of the failure can be continued. This is

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Fail-Stop Processors 225

accomplished as follows. Each k-fail-stop processor is connected to a communi-
cations network tha t allows it to read the contents of the memory units tha t make
up the other k-fail-stop processors. A special location, failedi, in each memory
unit Mi, is reserved to record whether processor Pi thinks tha t the fail-stop
processor it is a par t of has hal ted due to a failure. A k-fail-stop processor fsp
determines tha t another, fsp' has hal ted by computing the vector of values failedi
for each memory unit in fsp', using a solution to the Byzant ine Generals Problem.
If any of the components has value true, then fsp' is deemed halted. Should fsp
require the values of the variables in the stable storage of fsp', they can be
reconstructed as follows. Each processor in fsp reads a different one of the
memory units tha t make up fsp'. Then, using a solution to the Byzant ine Generals
Problem, these values are exchanged. The majori ty value is taken to be the value
of the variable. Since at most k of the values read from fsp' are wrong, at least
2k + i different memory units are required to implement stable storage.

While the feasibility of implementing fail-stop processors is established by this
argument, the practicali ty is not. However, recent work in the implementa t ion of
highly reliable processors gives reason to believe tha t it is indeed practical to
implement fail-stop processor approximations. Both F T M P [10] and S I F T [26]
could be configured to behave like a collection of fail-stop processor approxima-
tions; both employ replicated processor and memory units. Redundancy can also
be introduced at lower levels in a var ie ty of ways [1, 25]. Th e level at which
redundancy is applied is an impor tant issue and is t rea ted in [2].

3. PROGRAMMING A FAIL-STOP PROCESSOR

3.1 Recovery Protocols

A program executing on a fail-stop processor is hal ted when a failure occurs.
Execution may then be restarted on a correct ly functioning fail-stop processor.
(This may be the original processor if the cause of the failure has been repaired,
or it may be another fail-stop processor.) When a program is restarted, the
internal processor state and the contents of volatile storage are unavailable. Thus,
some routine is needed tha t can complete the state t ransformat ion tha t was in
progress at the t ime of the failure and restore storage to a well-defined state.
Such a routine is called a recovery protocol.

Clearly, a recovery protocol (1) must execute correct ly when s tar ted in any
intermediate state tha t could be visible after a failure and (2) can only use
information tha t is in stable storage. In addition, because the code for a recovery
protocol must be available after a failure, it must be kept in stable storage.

We associate a recovery protocol R with a sequence of s ta tements A called the
action statement to form a fault-tolerant action F TA as follows:

FTA: action
A
recovery
R
end

Execution of FTA consists of establishing R as the recovery protocol to be in
effect when A is executed and then executing A. If execution of F TA is in ter rupted

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

226 R.D. Schlichting and F. B. Schneider

by a failure, upon restar t execution continues with the recovery protocol in effect.
Subsequent failures cause execution of F T A to be hal ted and execution of the
recovery protocol in effect to begin anew when the program is restarted. Execut ion
of F TA terminates when execution of ei ther A or R is performed in its ent i re ty
without interruption. At tha t time, e i ther the recovery protocol in effect when
F TA star ted is reestablished, or, if another faul t- tolerant action FTA' follows
FTA, then the recovery protocol for FTA' is established.

The following syntactic abbreviat ion is used to denote tha t an action s ta tement
A serves as its own recovery protocol:

FTA: action, recovery
A
end

Such a fault- tolerant action is called a restartable action. 2
A program running on a fail-stop processor mus t a t all t imes have a recovery

protocol in effect. This will be the case if the program itself is a single fault-
tolerant action. Alternatively, a program can be s t ruc tured as a sequence of fault-
tolerant actions, assuming tha t establ ishment of a recovery protocol can be done
in such a way tha t at all t imes ei ther the old recovery protocol or the new one is
in effect. Such an assumption seems quite reasonable.

3.2 Axioms for Fault-Tolerant Actions

Following the F loyd-Hoare axiomatic approach [8], an assertion is a Boolean-
valued expression involving program and logical variables. Th e syntact ic object,

(P) S (Q }

where P and Q are assertions and S is a programming language s ta tement , is
called a triple. The triple (P } S (Q } is a theorem if there exists a proof of it in
a specified formal deductive system, usually called a programming logic. A
programming logic consists of a set of axioms and rules of inference tha t re la te
assertions, programming language statements, and triples. Of part icular interest
are those logics tha t are sound with respect to execution of programming language
s ta tements on the program s t a t e - - t h a t is, deduct ive systems tha t are consistent
with the operat ion of a "real" machine. Then, the nota t ion { P } S (Q } is usually
taken to mean:

If execution of S begins in a state in which P is true, and terminates, then Q
will be true in the resulting state.

Numerous programming languages have been defined using such logics; a PAS-
CAL-like language [9] extended with guarded commands [4] is used in this paper.

I t is often more convenient to write a proof outline t han a formal proof. A
proof outline is a sequence of programming language s ta tements inter leaved with
assertions. Each s ta tement S in a proof outline is preceded directly by one
assertion, called its precondition and denoted pre (S), and is directly followed by
an assertion, called its postcondition and denoted post(S). A proof outline is an

2 As we shall see, any fault-tolerant action can be converted to such a restartable action simply by
omitting the action statement.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Fail-Stop Processors 227

abbreviation for a proof if

POI: for every s ta tement S, the triple {pre(S)} S (post(S)} is a theorem in the
programming logic, and

P02: whenever (P } and (Q} are adjacent in the proof outline, Q is provable
from P.

Let FTA be a fault- tolerant action formed from action s ta tement A and
recovery protocol R. We wish to develop an inference rule tha t will allow
derivation of

{P} FTA (Q}

as a theorem, while preserving the soundness of our programming logic with
respect to execution on a fail-stop processor.

First, assume

FI: {P '} A (Q ' } and {P"} R (Q"}

have been proved. Then, for execution of A to establish Q, we will need

F2: P ~ P ' and Q' ~ Q.

Similarly, for the recovery protocol R to establish Q, the following (at least) must
hold:

F3: Q" ~ Q.

Recall tha t R is invoked only following a failure. By definition, the contents of
volatile storage are undefined at tha t time. Therefore, any program variables
needed for execution of R must be in stable storage. 3 Thus, we require

F4: All program variables named in P" must be in stable storage.

We must also ensure tha t whenever the recovery protocol receives control,
stable storage is in a state tha t satisfies P " . This will be facilitated by constructing
a replete proof outline, a proof outline tha t contains assertions describing only
those states tha t could be visible after a failure. Then, we will require tha t the
precondit ion of the recovery protocol be satisfied in those states.

A replete proof outline is a proof outline in which certain assertions have been
deleted so tha t

RPOI: No assertion appears between adjacent fault- tolerant actions.
RPO2: Every triple (P } S (Q} in the replete proof outline satisfies e i ther

(a) S is a sequence of fault- tolerant actions, or
(b) (P k /Q } is invariant over execution of S.

RPO1 and RPO2(a) follow because the program state tha t exists between the
execution of two fault- tolerant actions FTA1 and FTA2 is never visible to the
recovery protocol for the enclosing fault- tolerant ac t ion- -e i ther the recovery

3 If P " is stronger than w p (R, Q "), then variables may appear in P " that need not be stored in stable
storage. Thus, in the interest of minimizing the amount of stable storage used, the proofs should be
in terms of the weakest assertions possible.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

228 R.D. Schlichting and F. B. Schneider

protocol for FTA1 or the recovery protocol for FTA2 will receive control. RPO2(b)
follows because if P V Q remains true while S is being executed, then ei ther P or
Q will be true of the state visible to the recovery protocol should a failure occur
and both {P} and {Q} already appear as assertions in the replete proof outline.

For example, if

{P} FTA1 (P~} FTA2 (Pz} . . . F T A , {P,}

is a proof outline, then

{P} FTA~; FTA2; - . . F T A , {Pn}

is a replete proof outline. If assignment of an integer value to a variable is
performed by executing a single, indivisible (store) ins t ruc t ion--as it is on most
mach ines - - then

(x = 3}x := 6 {x = 6}

is also a replete proof outline. This is because ei ther the precondit ion or the
postcondition of "x := 6" is t rue of every state tha t occurs during execution of the
assignment. Even if assignment is not implemented by execution of a single
instruction,

{ v a l - - 3 } x : = v a l (x = 3 / k v a l = 3 }

is a replete proof outline, because the assertion {va l = 3} is not des t royed by
assignment to x; it is t rue before, during, and af ter execution of " x := va l " .

Therefore, in addition to F1-F4, correct operat ion of a recovery protocol
requires

F5: Given a fault- tolerant action with action s ta tement A and recovery protocol
R satisfying F1, let al , a2, . . . , an be the assertions tha t appear in a replete
proof outline of {P ' } A {Q '} , and rl , r2 rm be the assertions tha t appear
in a replete proof outline of (P " } R { Q " } . Then:

(a) (Vi: 1 <_ i <-- n: ai ~ P ")
(b) (Vi: 1 __ i -< m: rl ~ P ")

Lastly, it must be guaranteed tha t failures at processors o ther than the one
executing FTA do not interfere with (i.e., invalidate) assertions in the proof
outline of FTA. Suppose an assertion in F TA names variables stored in the
volatile storage of another processor? Then, should tha t processor fail, such an
assertion would no longer be true since the contents of volatile storage would
have been lost. Hence, we require tha t

F6: Variables stored in volatile storage may not be named in assertions appearing
in programs executing on other processors.

Given a fault- tolerant action, a restar table action tha t implements the same
state t ransformation can always be constructed from the recovery protocol alone.
(The proof of this follows from F3 and F5.) Thus, in theory, the action s ta tement

4 This is often necessary when the actions of concurrently executing processes are synchronized. For
example, if it is necessary to assert that a collection of processes are all executing in the same "phase"
at the same time, then each would include assertions about the state of the others. See [21] for an
example of such reasoning.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Fail-Stop Processors • 229

is unnecessary. In practice, the additional flexibility tha t results from having an
action s ta tement different f rom the recovery protocol is quite helpful. Presum-
ably, failures are infrequent enough so tha t a recovery protocol can do a consid-
erable amount of extra work in order to minimize the amount of (expensive)
stable storage used. Use of such algorithms for normal processing would be
unacceptable.

3.3 Faul t -Tolerant P r o g r a m s - - A Simple Example

In addition to allowing axiomatic verification of programs wri t ten in terms of
fault- tolerant actions, F1-F6 permit a p rogrammer to develop a faul t- tolerant
program and its proof hand-in-hand, with the proof leading the way, as advocated
in [4] and [6]. F4 allows those variables tha t must be stored in stable storage to
be identified in a mechanical way from the proof; construction of a replete proof
outline provides a mechanical way to determine the intermediate states tha t
could be visible following a failure. To illustrate the use of rules F1-F6 as an aid
in developing a recovery protocol, we consider the following (artificial) problem.
(A more substantial example is t rea ted in Section 5.)

Periodically, variables x and y are updated based on their previous values.
Thus, given a function G, a rout ine called update is desired tha t runs on a
fail-stop processor and satisfies the following specification:

{P: x = X A y = Y} update {Q: x = G (X) A y = G (Y)) .

Logical variables X and Y represent the initial values of x and y, respectively.
If the possibility of failure is ignored, the following program will suffice:

SI : { P : x = X A y = Y }

S l a : x := G(x); {P la : x = G (X) A y = Y)

S l b : y := G(y); {Plb: x = G (X) A y = G (Y))

{Q: x = G (X) A y = G(Y)}

Note tha t this is a replete proof outline, provided assignment is implemented as
an atomic operation: {P V P l a } is invariant over execution of S l a and { P l a V

P l b } is invariant over execution of S l b .

Things become more complicated when the possibility of failure is considered.
In particular, S 1 could not be the action s ta tement of a restar table action because
F5 is violated (assuming G is not the identi ty function): both P l a ~ P and
P l b ~ P are false. In order to construct a restar table action, we must find a
way to make progress- -compute G (X) and G (Y) - -wi thou t destroying the initial
values of x and y until both values have been updated. One way to do this is to
modify S1 so tha t the new values are computed and stored in some temporary
variables, giving the following restartable action:

UI: ac t i on , r e c o v e r y
{ P : x = X A y - - Y}
U l a : x n e w := G(x); { x = X A x n e w = G (X) A y = Y)

U l b : y n e w := G(y); {x -- X A x n e w = G (X) A y = Y A y n e w = G(Y)}
e n d
{Q' : x = X A x n e w = G (X) A y = Y A y n e w = G(Y)}

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

230 R.D. Schlichting and F. B. Schneider

Note tha t in order to satisfy F4, x and y mus t be s tored in stable s torage bu t
variables used in comput ing G need not be. Having establ ished Q' , it is a s imple
ma t t e r to establish Q:

$2: { Q " : x n e w = G (X) A y n e w = G(Y)}
S 2 a : x := x n e w ; (x = x n e w = G (X) A y n e w = G(Y)}
S 2 b : y := y n e w ; {x = x n e w = G (X) A y = y n e w = G(Y)}
{Q: x = G (X) A y = G (Y))

This is a replete proof outline, and provided x n e w and y n e w are s tored in s table
storage. F1-F6 are satisfied. So

U2: a c t i o n , r e c o v e r y
(Q": x n e w = G (X) A y n e w = G (Y))

U2a: x := x n e w ; {x = x n e w = G (X) A y n e w = G (Y))

U2b: y := y n e w ; (x = x n e w = G (X) A y = y n e w = G(Y)}
e n d
{Q: x = G (X) A y = G(Y)}

is a res tar table action. Since Q ' ~ Q", the desired p rog ram is

U1; U2

4. TERMINATION AND RESPONSE TIME

Most s t a t ements in our p rogramming nota t ion are guaran teed to te rminate , once
started. However , loops and faul t - to lerant actions are not. Techniques based on
the use of var ian t functions or well-founded sets can be used for proving t ha t a
loop will t e rmina te [4]. Unfor tunate ly , wi thout knowledge abou t the f requency of
failures and s t a t emen t execution times, t e rmina t ion of a p rog ram wri t ten in t e rms
of faul t - tolerant actions cannot be proved. This is because if failures occur wi th
sufficiently high frequency, then there is no guarantee t ha t the componen t fault-
to lerant actions will terminate ; nei ther the act ion s t a t emen t nor the recovery
protocol of a faul t - to lerant act ion can be guaran teed to run wi thout interrupt ion,
and so the recovery protocol could continually restar t .

Moreover , such l i v e n e s s p r o p e r t i e s [16] cannot even be expressed in a Hoare-
style p rogramming logic, like the one above. Thus, we mus t resor t to informal
means to argue t ha t a p rogram will t e rmina te in a t imely manner . Presumably ,
a t some point in the future it will be possible to formalize such arguments . H a r t e r
and Bernste in [7] describe extensions to t empora l logic [16] tha t allow construc-
t ion of a proof t ha t a p rogram will mee t some specific response- t ime goals. T h a t
work would have to be extended to deal with s tochast ical ly defined events for use
in this context.

For a given execution of a p rogram S on a fault-free processor, let t (s) be the
m a x i m u m length of t ime tha t elapses once execution of s t a t emen t s is begun until
execution of the next faul t - to lerant action in S is s tarted. Define

Tmax = max t (s) .
s E S

For an execution of S to t e rmina te a t all, it is sufficient t ha t there be (enough)
intervals of length Vmax during which there are no failures. Then, no faul t - to lerant
action will be forever res ta r ted as a result of the (high) f requency of failures.

ACM Transact ions on Computer Systems, Vol. 1, No. 3, August 1983.

Fail-Stop Processors 231

Of course, this gives no bound on how much t ime will elapse before S completes.
Rather, we have argued tha t S is guaranteed to terminate if the elapsed t ime
between successive failures is long enough, often enough. This should not be
surprising. However, it does provide some insight into how to s t ructure a program
in terms of fault- tolerant actions if f requent failures are expected: one should
endeavor to minimize Tmax. This can be achieved by making entry into a fault-
tolerant action a f requent event, e i ther by nesting fault- tolerant actions, or by
composing them in sequence.

Given a collection of fail-stop processors, it is possible to configure a system
tha t not only implements a given relation between input and output, bu t performs
this state t ransformation in a t imely manner despite the occurrence of failures.
After the failure of a fail-stop processor fsp, a reconfiguration rule is used to
assign programs tha t were running on fsp to working fail-stop processors. Th e
recovery protocol in effect at the t ime of the failure facilitates res tar t of the
program. Thus, processor failures are t ransparent except for possibly increased
execution times.

As a result of a failure, execution delays from the following sources are incurred:

(1) Some time tdetect will elapse after the fail-stop processor halts until tha t fact
is detected and reconfiguration is begun.

(2) Reconfiguration causes execution delays, as well. First, trecon is required to
determine an appropriate assignment of programs to the remaining fail-stop
processors. Then, tmove might be required to move the program code and
contents of its stable storage.

(3) In the worst case, the effects of the last TA seconds execution by action
s ta tement A before the first failure will be lost.

(4) TR seconds worth of execution by repeated a t tempts to perform recovery
protocol R as a result of each subsequent failure will also be lost.

Both TA and TR are defined for the specific execution tha t was interrupted.
This suggests the following strategy for constructing faul t- tolerant systems tha t

will continue to behave correctly in spite of up to k failures, for k > 0. A program
is developed (1) tha t implements the desired state t ransformations when run on
fail-stop processors, (2) tha t satisfies its real-t ime response constraints provided
no failures occur, and (3) in which no process must respond to an event in less
than TF seconds, where

T F -~ k(tde tec t "}- tr -}- tmove) "b (k - 1) T R -}- T A .

Supppose R fail-stop processors are required to ensure tha t (1)-{3} hold. Then, a
computing system with R + k fail-stop processors will be able to tolerate up to k
fail-stop processor failures and meet its response-t ime goals. Th e obvious recon-
figuration nile must be used.

Note tha t if stable storage tha t can be shared by the fail-stop processors is
available, then tmove can be made 0. Also, by precomputing various configurations,
t~ can be made negligible. This, however, requires a sufficient amount of stable
storage to store all possible configurations. Lastly, TR can be made 0 by using
only restartable actions; however, this uniformly degrades execution speed, even
if no failures occur.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

232 R.D. Schlichting and F. B. Schneider

5. FAULT-TOLERANT PROCESS-CONTROL SOFTWARE

We now turn to a more substantial illustration of the application of our meth-
odology: development of a fault-tolerant process control program. First, a correct
program for a fault-free computing system is developed. The program is then
extended to run correctly on a system of fail-stop processors. While a fair amount
of detail is presented, these details are necessary to derive and establish the
correctness of the program.

Given are sensors to determine the state of the environment and actuators to
exert control over the environment. Correct operation of a process-control system
requires tha t

PC: The values written to the actuators are related to the values read from the
sensors according to a given application-specific function.

It is likely tha t correct operation also involves a liveness property, like "sensors
are read and actuators are updated often enough." We will make no a t t empt to
argue that our program satisfies such real-time response constraints, a l though
informal arguments like those developed in Section 4 could be used if t iming data
were available.

5.1 Assuming No Failures

Our process-control system will be s tructured as a collection of cyclic processes
tha t execute concurrently. Each process pi is responsible for controlling some set
of actuators acti. To do so, it reads from some sensors and maintains statei--a
vector of state variables tha t reflects the sensor valuespi has read and the actions
it has taken. Interprocess communicat ion is accomplished by the disciplined use
of shared variables; a process can read and write its state variables, but can only
read state variables maintained by other processes. For the moment , we will
ignore the problems that arise from concurrent access to state variables.

Each process will consist of a single loop. During execution of its loop body,
processpi (1) reads from some sensors, (2) computes new values for the actuators
it controls and state variables it maintains, (3) writes the relevant values to act~,
and (4) updates statei. Presumably, we are given applicat ion-dependent routines
tha t can be used to compute the values to be writ ten to the actuators and the
values to be stored in the state variables.

Without loss of generality, assume tha t each state variable and sensor is read
at most once in any execution of those routines. 5 Let statej[i, t] denote the value
of statej read by pi during the t th execution of its loop body, sensors[i, t] denote
the values read by p~ from sensors during the t th execution of its loop body, and
act~[t] denote the values written to acti byp i during the t th execution of the loop
body.

Behavior satisfying PC is characterized by the following, for each process p l ,

p2 Pn.
First, the values in statei must correctly encode past actions performed by pi.

Tha t encoding will be denoted here by the function E. Therefore, at the beginning

Code that satisfies this restriction can be written by using local variables to store state variables and
sensor values: each state variable and sensor value is stored in a local variable when it is first read;
subsequent references are then made to the local variable.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

Fail-Stop Processors 233

of the (t + 1)st execution of the loop body a t p i : 6

Is ta te(i , t): t = 0 c o r statei = E(sensors[i , t] , statel[i , t] staten[i, t]).

Secondly, the values wri t ten to ac tua tors by pi mus t be computed according to
the application-specific function, here called A, based on the sensor values read
and the pas t actions of processes. Therefore , af ter pi upda tes act~ for the t t h t ime,

Iact(i , t): t = 0 c o r acti[t] = A (E (s e n s o r s [i , t], s tatel[i , t] , staten[i, t])).

mus t be true.
Le t Ti be an auxiliary variable defined so tha t a t any t ime Ti - 1 executions of

the loop body have completed. Thus, Ti is initialized to 1 and (implicitly and
automatically} incremented immedia te ly af ter the loop body is executed. Then ,
the correctness criterion PC is satisfied if

I (i) : Is ta te(i , T~ - 1)/k Iact (i , T~ - 1)

is t rue at the beginning of each execution of the loop body, for each process pi.
In order to construct the loop, var iable n e w s t a t e is introduced. This is necessary

so tha t values used to upda te state~ and the ac tua tors are consis tent wi th each
other. Thus

Vnews ta te (i , t): n e w s t a t e ffi E (sensors[i , t] , state1 [i, t] , . . . , staten [i, t]).

The loop at process p~, which has as I (i) as its loop invar iant is

pi: p r o c e s s
do true --. (I(i)}

calc: newstate := E(sensors, statei, . . . , state,);
{Vnewstate(i, Ti) /k Istate(i, Ti - 1) A Iact(i, Ti - 1)}

up__act: acti : = A (newstate);
(Vnewstate(i, Ti) /k Istate(i, Ti - 1)/~ Iact(i, Ti))

up__st: state~ := newstate
{Vnewstate(i, Ti) A Istate(i, Ti) /~ Iact(i, Ti)}

od
e n d

However , because processes execute asynchronously, access to s ta te var iables
mus t be synchronized. Otherwise, a process might read s ta te var iables while they
are in the mids t of being updated, which could cause the process to pe r fo rm the
wrong actions. To avoid this problem, the s ta te var iables main ta ined by each
process p~ are assumed to be character ized by CCi, called the cons i s t ency
cons t ra in t for statei. CC~ is kept t rue of state~ except while p~ is updat ing those
variables, t ha t is, performing up__s t above. We assume tha t the code to compute
the applicat ion dependent functions A and E works correct ly as long as values
tha t satisfy the consistency constraints are read. To ensure tha t only values
satisfying the consistency constraints are read, r ead /wr i t e locks [5] can be used
to implement reader -wr i t e r exclusion on the s ta te variables main ta ined by each
process. A process trying to read var iables in statei must first acquire a read lock
for state~. Such a lock will not be granted if a write lock is a l ready held for those
s tate variables; hence tha t process will be delayed if statei is being updated. A

We use the notation "A cor B" to mean "ifA then true else B".

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

234 R.D. Schlichting and F. B. Schneider

process about to upda te statei will be delayed if o ther processes are reading those
values. Such lock operat ions are not explicitly included in our p rograms to
simplify the exposition; they are pa r t of the routine to compute E in calc and
up__s t , the routine to upda te the s ta te variables.

Similarly, we assume tha t the code to compute A and E requires t ha t the
sensor values used be consistent. T h e na tura l laws t ha t govern our physical world
ensure tha t a t any t ime t the values of the sensors are consistent. Thus, if a
process reads all the sensors s imultaneously, consis tent values would be obtained.
Such a s imul taneous read opera t ion is not implementable , however. We therefore
assume tha t sensors change values slowly enough and tha t processes execute
quickly enough so t ha t a consistent set of values is obta ined by reading each of
the sensors in sequence a t normal execution speed.

5.2 Allowing Failures

We shall deal with failures by a t t empt ing to mask their effects. T h u s we endeavor
to preserve

PC ' : At no t ime do s ta te var iables or ac tua tors have values they could not have
had if the failure had not occurred.

Recall t ha t I (i) character izes values of the s ta te var iables and ac tua tors t ha t
satisfy PC. Consequently, if it is possible to modify the loop body so t ha t I (i) is
t rue of every s ta te tha t could be visible af ter a failure, then P C ' will be satisfied,
as well. Our task, therefore, is to modify the loop body so t ha t it const i tu tes a
res tar table action.

I (i) is t rue except f rom when the execution of s t a t e m e n t u p _ _ a c t begins to
when s t a t emen t up__s t completes. Thus, we mus t e i ther mask in te rmedia te
s ta tes during execution of up__s t and up__act , or devise a way to execute up__s t
and up__ac t together as an a tomic action. This la t ter opt ion is precluded by mos t
hardware. Thus, to implement the former, we const ruct a single faul t - to lerant
action tha t upda tes the ac tua tors and s ta te var iables on the basis of news ta t e :

(Vnewstate(i, Ti) }
upall
{Vnewstate(i, Ti) A Istate(i, Ti) A Iact(i, Ti)}

As long as n e w s t a t e is saved in stable storage, the following reple te proof outline
satisfies F1-F6 and accomplishes the desired t ransformat ion.

upall: action, r ecove ry
(Vnewstate(i, Ti) }
u p _ a c t : acti : = A (newstate)
{Vnewstate(i, Ti) /~ Iact(i, Ti) }
up__st: statei := newstate;
(Vnewstate(i , Ti) A Istate(i, Ti) A Iact(i, Ti)}
end

A replete proof outline for the code executed a t pi is

pi: p rocess
action, recovery

do true ~ (I(i))
calc: newstate := E (sensors, statei state.);
(Vnewstate(i , Ti) A Istate(i, T~ - 1) A Iact(i, Ti - 1))

ACM Transact ions on Computer Systems, Vo|. 1, No. 3, August 1983.

Fail-Stop Processors 235

upall: action, recovery
up__act: acti := A (newstate);
up__st: statei := newstate;
end

od
end

Notice that following a failure, a process might at tempt to acquire a given
read/write lock that had already been granted to it. For example, if a failure
occurred while up__st was being executed, the recovery protocol would at tempt
to acquire the write lock on statei, which might already be owned by pi. Clearly,
repeated requests by a given process for the same lock, without intervening
release operations, should not delay the invoker. Implementation of read/write
locks with this property (binary semaphores do not suffice) is possible and is
described in [20].

6. DISCUSSION

6.1 Related Work

Few general techniques have been developed to aid in the design of programs
that must cope with operational failures in hardware or support software. One
paradigm, based on the use of state machines, was pioneered by Lamport [12,
22]. A program is viewed as a state machine that receives input, generates actions
(output), and has an internal state. A reliable system is constructed by replicating
these state machines and running them in parallel. By using a solution to the
Byzantine Generals Problem, each machine is guaranteed to receive the same
input, despite failures. A comparison of the state machine approach with the use
of fail-stop processors and fault-tolerant actions appears in [23]. A second general
paradigm, which appears to be promising, is based on the use of nested atomic
transactions [14].

A variety of protocols for specialized problems have also been developed.
Included are protocols for recovery in database systems [5], implementation of
highly reliable file systems [15], and the use of checkpoint/restart facilities in
operating systems [3].

Despite the apparent similarity between the recovery block construct developed
at the University of Newcastle-upon-Tyne [19] and our fault-tolerant actions, the
two constructs are intended for very different purposes. A recovery block consists
of a primary block, an acceptance test, and one or more alternate blocks. Upon
entry to a recovery block, the primary block is executed. After its completion, the
acceptance test is executed to determine if the primary block has performed
acceptably. If the test is passed, the recovery block terminates. Otherwise, an
alternate block--generally a different implementation of the same algorithm--is
attempted, and the acceptance test is repeated. Execution of each alternate block
is attempted in sequence until one produces a state in which the acceptance test
succeeds. Execution of an alternate block is always begun in the recovery block's
initial state.

Recovery blocks are used to mask design errors; fault-tolerant actions are used
in constructing programs that must cope with operational failures in the under-
lying hardware and software. The use of recovery blocks to cope with operational

ACM Transact ions on Computer Systems, Vol. 1, No. 3, August 1983.

236 R.D. Schlichting and F. B. Schneider

failures under such circumstances can only lead to difficulties. For example, a
recovery block has only a finite number of alternate blocks associated with it,
and therefore a large number of failures in the underlying system can cause the
available alternatives to be exhausted. Secondly, the recovery block model does
not admit the possibility of using stable storage for program variables.

6.2 Whence Fail-Stop Processors

The definition of the fail-stop processor as our underlying computational model
followed from our use of a partial correctness programming logic. In a fail-stop
processor all failures are detected and no incorrect state transformations result
from failures. Thus, if execution of a statement terminates, by definition the
transformation specified by that statement has occurred-- the effect of execution
is consistent with the programming logic. On the other hand, failure, by definition,
prevents statements from terminating. Thus, the partial correctness (as opposed
to total correctness) nature of the programming logic subsumes the consequences
of failures.

6.3 Application of the Methodology

We have successfully employed the methodology described in this paper both to
verify existing fault-tolerant protocols and to devise new ones. In [20], the two-
phase commit protocol, as described in [5], is verified. The process-control
example described in Section 5 of this paper was developed as part of a project to
apply this methodology in the design of a distributed computing system for
navigation in an airplane. The details of that work are discussed in [24].

It is natural to ask whether F1-F6, the components of our proof rule for fault-
tolerant actions, are too restrictive. In that case there would exist fault-tolerant
actions that would behave correctly, but for which no proof would be possible.
While we have not proved the relative completeness of our new rule, the success
we have had with its application and the way in which it was derived suggest that
F1-F6 are not too restrictive to allow proof of any "correct" fault-tolerant action.

7. CONCLUSIONS

We have described a methodology for constructing fault-tolerant systems. It is
based on the notion of a fail-stop processor--a processor with simple and well-
defined failure-mode operating characteristics. Fail-stop processors are very
appealing abstract machines to program and can be approximated by real
hardware.

We have shown how axiomatic program verification techniques can be extended
for proving the correctness of programs written for fail-stop processors. This
allows a programmer to argue convincingly about the correctness of a program ex
post facto. What is more important is that it allows a programmer to develop a
fault-tolerant program and its proof hand-in-hand, with the latter leading the
way, as advocated in [4] and [6]. Computing the weakest precondition of a
recovery protocol is a simple and mechanical way of determining what program
variables must be stored in stable storage; constructing a replete proof outline
similarly defines what intermediate states could be visible following a failure and
thus what states can be seen by a recovery protocol.

ACM Transact ions on Computer Systems, Vol. 1, No. 3, August 1983.

Fail-Stop Processors 237

ACKNOWLEDGMENTS

T h i s w o r k h a s b e n e f i t e d f r o m d i s c u s s i o n s w i t h G. A n d r e w s , R . W. C o n w a y , R .

C o n s t a b l e , E . W. D i j k s t r a , L. L a m p o r t , G. L e v i n , R . R e i t m a n , D . W a l l , a n d S.

W o r o n a . T h e p r o c e s s - c o n t r o l a p p l i c a t i o n w a s f i r s t s u g g e s t e d b y J . K e m p , W.

C o m f o r t , a n d M. K u s h n e r o f I B M (F S D / O w e g o) . D . G r i e s m a d e v e r y h e l p f u l

c o m m e n t s o n a n e a r l i e r d r a f t o f t h i s p a p e r . W e w o u l d a l so l i ke t o t h a n k t h e

r e f e r e e s fo r a v e r y c a r e f u l r e a d i n g o f t h i s p a p e r .

REFERENCES
1. AVIZIENIS, A. Fault-tolerant systems. IEEE Trans. Comput. C-25, 12 (Dec. 1976), 1304-1312.
2. BARLOW, R. W., AND PROSCHAN, F. Mathematical Theory of Reliability. Wiley, New York,

1965.
3. DENNING, P. Fault-tolerant operating systems. Comput. Surv. 8, 4 (Dec. 1976), 359-389.
4. DIJKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Engiewood Cliffs, N. J., 1976.
5. GRAY, J. Notes on data base operating systems. Operating Systems: An Advanced Course,

Lecture Notes in Computer Science, vol. 60. Springer-Verlag, New York, 1978, pp. 393-481.
6. GRIES, D. The Science of Programming. Springer-Verlag, New York, 1981.
7. HARTER, P., AND BERNSTEIN, A. Proving real time properties of programs with temporal logic.

In Proc. SOSP-8, Asilomar, California (Dec. 1981), 1-11.
8. HOARE, C. A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct.

1969), 576-580.
9. HOARE, C. A. R., AND WIRTH, N. An axiomatic definition of the programming language

PASCAL. Acta Inf. 2 (1973), 335-355.
10. HOPKINS, A. L., SMITH, T. B., AND LALA, J .H. FTMP--A highly reliable fault-tolerant multipro-

cessor for aircraft. Proc. IEEE 66, 10 (Oct. 1978), 1221-1239.
11. LAMPORT, L. Time, clocks and the ordering of events in a distributed system. Commun. ACM

21, 7 (July 1978), 558-565.
12. LAMPORT, L. Using time instead of timeout for fault-tolerant distributed systems. Tech. Rep. 59,

SRI Int., June 1981.
13. LAMPORT, L., SHOSTAK, R., AND PEASE, M. The Byzantine Generals Problem. ACM Trans.

Program. Lang. Syst. 3 (July 1982) 382-401.
14. LAMPSON, B. Atomic transactions. Distributed Systems--Architecture and Implementation.

Lecture Notes in Computer Science, vol. 105, Springer-Verlag, New York, 1981, pp. 246-265.
15. LAMPSON, B., AND STURGIS, H. Crash recovery in a distributed data storage system. To be

published.
16. OWICKI, S., AND LAMPORT, L. Proving liveness properties of concurrent programs. ACM Trans.

Program. Lang. Syst. 4, 3 (July 1982), 455-495.
17. PEASE, M., SHOSTAK, R., AND LAMPORT, L. Reaching agreements in the presence of faults. J.

ACM27, 2 (April 1979) 228-234.
18. PNUELI, A. The temporal semantics of concurrent programs. Semantics of Concurrent Com-

putation, Lecture Notes in Computer Science, vol. 70, Springer-Verlag, New York, 1979, pp. 1-20.
19. RANDELL, B., LEE, P. A., AND TRELEAVEN, P.C. Reliability issues in computing system design,

Comput. Surv. 10, 2 (June 1978), 123-165.
20. SCHLICHTING, R. D. Axiomatic Verification to Enhance Software Reliability. Ph.D. thesis,

Dept. of Comput. Sci., Cornell Univ., Jan. 1982.
21. SCHLICHTING, R. D., AND SCHNEIDER, F .B . Understanding and using asynchronous message

passing. In Proc. ACM SIGACT-SIGOPS Symp. Principles of Distributed Computing (Ottawa,
Canada, Aug. 1982), ACM, New York, pp. 141-147.

22. SCHNEIDER, F.B. Synchronization in distributed programs. ACM Trans. Program. Lang. Syst.
4, 2 (Apr. 1982), 125-148.

23. SCHNEIDER, F. B. Fail-stop processors. Digest of Papers from Spring CompCon '83 (San
Francisco, Calif., Mar., 1983), IEEE Computer Society, New York.

24. SCHNEIDER, F. B., AND SCHLICHTING, R.D. Towards fault-tolerant process control software. In

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

238 R.D. Schlichting and F. B. Schneider

Proc. Eleventh Ann. Int. Syrup. Fault-Tolerant Computing (Portland, Maine, June 1981), IEEE
Computer Society, New York, pp. 48-55.

25. SIEWIOREK, D., AND SWARZ, R.S. The Theory and Practice of Reliable System Design. Digital
Press, Bedford, Mass., 1982.

26. WENSLEY, J., WENSKY, J. H., LAMPORT, L., GOLDBERG, J., GREEN, M., LEVITT, K. N., MELLIAR-
SMITH, P. M., SHOSTAK, R. E., AND WEINSTOCK, C.B. SIFT: Design and analysis of a fault-
tolerant computer for aircraft control. Proc. IEEE 66, 10 (Oct. 1978) 1240-1255.

Received November 1981; revised July 1982; Accepted February 1983

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

