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A methodology that facilitates the design of fault-tolerant computing systems is presented. It is based 
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1. INTRODUCTION 

P r o g r a m m i n g  a c o m p u t e r  s y s t e m  t h a t  is s u b j e c t  to  fa i lu res  is a di f f icul t  task.  A 

m a l f u n c t i o n i n g  p rocesso r  m i g h t  p e r f o r m  a r b i t r a r y  a n d  s p o n t a n e o u s  s t a t e  t r ans -  

f o r m a t i o n s  i n s t ead  of  t h e  t r a n s f o r m a t i o n s  spec i f ied  by  t h e  p r o g r a m s  i t  execu tes .  

T h u s  e v e n  a co r r ec t  p r o g r a m  c a n n o t  be  c o u n t e d  on  to  i m p l e m e n t  a des i r ed  i n p u t -  

o u t p u t  r e l a t i on  w h e n  e x e c u t e d  on  a m a l f u n c t i o n i n g  processor .  On  t h e  o t h e r  hand ,  

i t  is imposs ib le  to  bui ld  a c o m p u t e r  s y s t e m  t h a t  a lways  o p e r a t e s  c o r r e c t l y  in sp i te  
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of failures in its components by using (only) a finite amount of hardware)  Thus 
the goal of implementing completely fault-tolerant computing systems is unat- 
tainable. Fortunately, most applications do not require complete fault-tolerance. 
Rather, it is sufficient that a system work correctly provided that  no more than 
some predefined number of failures occur within some time interval, or that  
certain types of failures do not occur. This more modest goal is attainable. 

In this paper we present an approach to designing fault-tolerant computing 
systems based on the notion of a fail-stopprocessor, a processor with well-defined 
failure-mode operating characteristics. Briefly, our approach is as follows. First, 
software is designed assuming the existence of a computing system composed of 
one or more fail-stop processors; the number of processors required is dictated by 
response-time constraints that must be satisfied by the system. Then, a computing 
system is designed that implements the requisite fail-stop processors. 

We proceed as follows. Section 2 describes the characteristics of a fail-stop 
processor and considers how such processors can be approximated using present- 
day hardware. Section 3 discusses extensions to axiomatic verification techniques 
for facilitating the development of provably correct programs for fail-stop proc- 
essors. Satisfying response time constraints in the presence of failures is the 
subject of Section 4. Section 5 discusses the application of our approach to a 
nontrivial problem: the design of a fault-tolerant process-control system. Section 
6 contrasts our work with other approaches to designing fault-tolerant systems, 
and Section 7 presents some conclusions. 

2. FAIL-STOP PROCESSORS 

2.1 Definition 

A processor is characterized by its instruction set. Each instruction causes a well- 
defined transformation on the internal state of the processor and/or  the connected 
storage and peripheral devices. Thus the effects of executing each instruction can 
be described by a precise semantic definition, be it a temporalaxiomatization of 
the instruction set [18] or a "Principles of Operation" manual. A failure occurs 
when the behavior of the processor is not consistent with this semantic definition. 

A fail-stop processor is distinguished by its extremely simple failure-mode 
operating characteristics. First, the internal state of a fail-stop processor and 
some predefined portion of the connected storage are assumed to be volatile; the 
contents of volatile storage are irretrievably lost whenever a failure occurs. The 
remaining storage is defined to be stable; it is unaffected by any kind of failure. 
Secondly, in contrast to a real processor, a fail-stop processor never performs an 
erroneous state transformation due to a failure. Instead, the processor simply 
halts. Thus, the only visible effects of a failure in a fail-stop processor are 

FSI: It stops executing. 
FS2: The internal state and contents of the volatile storage connected to it are 

lost. 

Sed quis custodiet ipsos Custodes? (Who shall  guard the  guards  themselves?) ,  Juvenal ,  Sat i res  VI, 
347. 
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2.2 Implementation 

While the notion of a fail-stop processor is a useful abstraction, it is impossible to 
implement  using a finite amount  of hardware.  With  only a finite amount  of 
hardware,  a sufficient number  of failures could disable all the  error  detect ion 
mechanisms and thus allow arbi t rary  behavior.  I t  is, however,  possible to con- 
s truct  computing systems that ,  with high probability, approximate  the  behavior  
of a fail-stop processor. 

One approach is to construct  a system tha t  behaves as specified, unless too 
many  failures occur within some specified t ime interval, after  which no assump- 
tions about  its behavior  can be made. A k-fail-stop processor is a comput ing 
system tha t  behaves like a fail-stop processor unless k + 1 or more  failures occur 
in its components.  One implementat ion of a k-fail-stop processor is described 
below; another  appears  in [23]. 

A k-fail-stop processor can be implemented  by exploiting any solution to the  
Byzantine Generals Problem [13] (or the Interact ive Consistency Problem [17]). 
Such a protocol allows a collection of processors to agree on a value sent  by  a 
potential ly faulty transmitter ("Commanding  General") ,  so tha t  

(1) each nonfaul ty processor agrees on the value sent  by the transmit ter ,  and 
(2) if the t ransmit ter  is nonfaulty,  each nonfaul ty  processor receives the value 

sent by the transmit ter .  

A number  of real processors and volatile memory  units are in terconnected by  
a communicat ions network to form a single k-fail-stop processor and its a t t endan t  
stable storage. Each memory  unit  Mi is read by all processors but  wri t ten to by 
only one, Pi. Failures are detected by having each processor run  the same 
program and comparing results. Thus  a copy of each variable is s tored in each 
memory  unit. During execution, whenever  the value of a variable f rom stable 
storage is required, the value of tha t  variable is read from each memory  unit  and 
a solution to the Byzant ine Generals Problem is employed to distribute the vector  
of values read to every processor. If all of  the values are not  identical, then  a 
failure has occured and it is signaled. (Nonfaulty processors will hal t  when the 
failure is signaled.) A total  of 2k + 1 processors are required in order  for up to k 
failures to be tolerated. 

Since processors execute asynchronously,  execution of the replicated programs 
must  be synchronized to compare  results. This  can be accomplished, assuming 
processor clocks run at roughly the same rate, by associating a logical clock [11] 
with each program. This  logical clock is incremented whenever  a variable tha t  is 
supposed to be stored in the stable storage of the k-fail-stop processor is read or 
written. To  synchronize, a processor constructs a vector  of the values of each of 
these clocks, again using a solution to the Byzant ine  Generals  Problem, and 
marks t ime until  all components  in the vector  have the same value or a "time- 
ou t"  period has elapsed. In the la t ter  case, a failure has occurred and it is signaled. 

A collection of k-fail-stop processors are in terconnected to implement  a system 
in which real-time response constraints can be me t  despite failures. In tha t  case, 
it must  be possible for one k-fail-stop processor to detect  tha t  ano ther  has s topped 
and then  to read the contents  of tha t  k-fail-stop processor 's  stable storage so tha t  
the computat ion in progress at  the t ime of the failure can be continued. This  is 
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accomplished as follows. Each k-fail-stop processor is connected to a communi-  
cations network tha t  allows it to read the contents  of the memory  units tha t  make  
up the other  k-fail-stop processors. A special location, failedi, in each memory  
unit  Mi, is reserved to record whether  processor Pi thinks tha t  the fail-stop 
processor it is a par t  of has hal ted due to a failure. A k-fail-stop processor fsp 
determines tha t  another,  fsp' has hal ted by computing the vector  of values failedi 
for each memory  unit  in fsp', using a solution to the Byzant ine Generals Problem. 
If any of the components  has value true, then  fsp' is deemed halted. Should fsp 
require the values of the variables in the stable storage of fsp', they  can be 
reconstructed as follows. Each processor in fsp reads a different one of the 
memory  units tha t  make up fsp'. Then,  using a solution to the Byzant ine Generals 
Problem, these values are exchanged. The  majori ty  value is taken  to be the value 
of the variable. Since at most  k of the values read from fsp' are wrong, at  least 
2k + i different memory  units are required to implement  stable storage. 

While the feasibility of implementing fail-stop processors is established by this 
argument,  the practicali ty is not. However,  recent  work in the implementa t ion of 
highly reliable processors gives reason to believe tha t  it is indeed practical  to 
implement  fail-stop processor approximations. Both  F T M P  [10] and S I F T  [26] 
could be configured to behave like a collection of fail-stop processor approxima- 
tions; both  employ replicated processor and memory  units. Redundancy  can also 
be introduced at  lower levels in a var ie ty  of ways [1, 25]. Th e  level at  which 
redundancy is applied is an impor tant  issue and is t rea ted  in [2]. 

3. PROGRAMMING A FAIL-STOP PROCESSOR 

3.1 Recovery Protocols 

A program executing on a fail-stop processor is hal ted when a failure occurs. 
Execution may  then  be restarted on a correct ly functioning fail-stop processor. 
(This may  be the original processor if the cause of the failure has been repaired, 
or it may  be another  fail-stop processor.) When a program is restarted,  the 
internal processor state and the contents  of volatile storage are unavailable. Thus,  
some routine is needed tha t  can complete the state t ransformat ion tha t  was in 
progress at  the t ime of the failure and restore storage to a well-defined state. 
Such a routine is called a recovery protocol. 

Clearly, a recovery protocol  (1) must  execute correct ly when s tar ted in any 
intermediate  state tha t  could be visible after  a failure and (2) can only use 
information tha t  is in stable storage. In addition, because the code for a recovery 
protocol must  be available after  a failure, it must  be kept  in stable storage. 

We associate a recovery protocol R with a sequence of s ta tements  A called the 
action statement to form a fault-tolerant action F TA  as follows: 

FTA: action 
A 
recovery  
R 
end  

Execution of FTA consists of establishing R as the recovery protocol  to be in 
effect when A is executed and then  executing A. If  execution of F TA  is in ter rupted  
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by a failure, upon restar t  execution continues with the recovery protocol  in effect. 
Subsequent  failures cause execution of F T A  to be hal ted and execution of the  
recovery protocol in effect to begin anew when the program is restarted.  Execut ion 
of F TA terminates  when execution of ei ther  A or R is performed in its ent i re ty  
without  interruption. At tha t  time, e i ther  the recovery protocol  in effect when 
F TA star ted is reestablished, or, if another  faul t- tolerant  action FTA'  follows 
FTA, then  the recovery protocol  for FTA'  is established. 

The  following syntactic abbreviat ion is used to denote  tha t  an action s ta tement  
A serves as its own recovery protocol: 

FTA: action, recovery 
A 
end 

Such a fault- tolerant  action is called a restartable action. 2 
A program running on a fail-stop processor mus t  a t  all t imes have a recovery 

protocol in effect. This  will be the case if the program itself is a single fault- 
tolerant  action. Alternatively, a program can be s t ruc tured  as a sequence of fault- 
tolerant  actions, assuming tha t  establ ishment  of a recovery protocol  can be done 
in such a way tha t  at  all t imes ei ther  the old recovery protocol  or the new one is 
in effect. Such an assumption seems quite reasonable.  

3.2 Axioms for Fault-Tolerant Actions 

Following the F loyd-Hoare  axiomatic approach [8], an assertion is a Boolean- 
valued expression involving program and logical variables. Th e  syntact ic  object,  

(P )  S ( Q }  

where P and Q are assertions and S is a programming language s ta tement ,  is 
called a triple. The  triple ( P } S ( Q } is a theorem if there  exists a proof  of it in 
a specified formal deductive system, usually called a programming logic. A 
programming logic consists of a set of axioms and rules of inference tha t  re la te  
assertions, programming language statements,  and triples. Of part icular  interest  
are those logics tha t  are sound with respect  to execution of programming language 
s ta tements  on the program s t a t e - - t h a t  is, deduct ive systems tha t  are consistent  
with the operat ion of a "real"  machine. Then,  the nota t ion { P } S ( Q } is usually 
taken to mean: 

If  execution of S begins in a state in which P is true, and terminates,  then  Q 
will be true in the resulting state. 

Numerous  programming languages have been defined using such logics; a PAS- 
CAL-like language [9] extended with guarded commands  [4] is used in this paper. 

I t  is often more convenient  to write a proof outline t han  a formal  proof. A 
proof  outline is a sequence of programming language s ta tements  inter leaved with 
assertions. Each  s ta tement  S in a proof  outline is preceded directly by one 
assertion, called its precondition and denoted pre (S), and is directly followed by  
an assertion, called its postcondition and denoted  post(S). A proof  outline is an 

2 As we shall see, any fault-tolerant action can be converted to such a restartable action simply by 
omitting the action statement. 
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abbreviation for a proof  if 

POI: for every s ta tement  S, the triple {pre(S)} S (post(S)} is a theorem in the 
programming logic, and 

P02:  whenever  ( P }  and (Q} are adjacent  in the proof  outline, Q is provable 
from P. 

Let  FTA be a fault- tolerant  action formed from action s ta tement  A and 
recovery protocol R. We wish to develop an inference rule tha t  will allow 
derivation of 

{P}  FTA (Q} 

as a theorem, while preserving the soundness of our programming logic with 
respect to execution on a fail-stop processor. 

First, assume 

FI: {P '}  A ( Q ' }  and {P"} R (Q"} 

have been proved. Then,  for execution of A to establish Q, we will need 

F2: P ~ P '  and Q'  ~ Q. 

Similarly, for the recovery protocol R to establish Q, the following (at least) must  
hold: 

F3: Q" ~ Q. 

Recall tha t  R is invoked only following a failure. By definition, the contents  of 
volatile storage are undefined at  tha t  time. Therefore,  any program variables 
needed for execution of R must  be in stable storage. 3 Thus,  we require 

F4: All program variables named in P" must  be in stable storage. 

We must  also ensure tha t  whenever  the recovery protocol  receives control, 
stable storage is in a state tha t  satisfies P " .  This  will be facilitated by constructing 
a replete proof outline, a proof  outline tha t  contains assertions describing only 
those states tha t  could be visible after  a failure. Then,  we will require tha t  the 
precondit ion of the recovery protocol  be satisfied in those states. 

A replete proof outline is a proof  outline in which certain assertions have been 
deleted so tha t  

RPOI:  No assertion appears between adjacent  fault- tolerant  actions. 
RPO2: Every  triple ( P }  S (Q} in the replete proof  outline satisfies e i ther  

(a) S is a sequence of fault- tolerant  actions, or 
(b) ( P k /Q  } is invariant  over execution of S. 

RPO1 and RPO2(a) follow because the program state tha t  exists between the 
execution of two fault- tolerant  actions FTA1 and FTA2 is never  visible to the 
recovery protocol for the enclosing fault- tolerant  ac t ion- -e i ther  the recovery 

3 If P "  is stronger than w p  (R, Q "  ), then variables may appear in P "  that  need not be stored in stable 
storage. Thus,  in the interest of minimizing the amount  of stable storage used, the proofs should be 
in terms of the weakest assertions possible. 
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protocol for FTA1 or the recovery protocol for FTA2 will receive control. RPO2(b) 
follows because if P V Q remains true while S is being executed, then  ei ther  P or 
Q will be true of the state visible to the recovery protocol  should a failure occur 
and both  {P} and {Q} already appear  as assertions in the replete proof  outline. 

For  example, if 

{P} FTA1 (P~} FTA2 (Pz} . . .  F T A ,  {P,} 

is a proof  outline, then  

{P} FTA~; FTA2; - . .  F T A ,  {Pn} 

is a replete proof  outline. If  assignment of an integer value to a variable is 
performed by executing a single, indivisible (store) ins t ruc t ion--as  it is on most  
mach ines - - then  

( x = 3}x := 6 {x = 6} 

is also a replete proof  outline. This  is because ei ther  the precondit ion or the 
postcondition of "x := 6" is t rue of every state tha t  occurs during execution of the 
assignment. Even  if assignment is not  implemented  by execution of a single 
instruction, 

{ v a l - - 3 } x : = v a l ( x = 3 / k v a l = 3 }  

is a replete proof  outline, because the assertion {va l  = 3} is not  des t royed by 
assignment to x; it is t rue before, during, and af ter  execution of " x  := va l " .  

Therefore,  in addition to F1-F4, correct  operat ion of a recovery protocol  
requires 

F5: Given a fault- tolerant  action with action s ta tement  A and recovery protocol  
R satisfying F1, let al ,  a2, . . . ,  an be the assertions tha t  appear  in a replete  
proof  outline of {P ' }  A {Q '} ,  and rl ,  r2 . . . . .  rm be the assertions tha t  appear  
in a replete proof  outline of ( P " }  R { Q " } .  Then:  

(a) (Vi: 1 <_ i <-- n: ai  ~ P " )  
(b) (Vi: 1 __ i -< m: rl ~ P " )  

Lastly, it must  be guaranteed tha t  failures at  processors o ther  than  the one 
executing FTA do not  interfere with (i.e., invalidate) assertions in the proof  
outline of FTA. Suppose an assertion in F TA  names  variables stored in the 
volatile storage of another  processor? Then,  should tha t  processor fail, such an 
assertion would no longer be true since the contents  of volatile storage would 
have been lost. Hence,  we require tha t  

F6: Variables stored in volatile storage may  not  be named  in assertions appearing 
in programs executing on other  processors. 

Given a fault- tolerant  action, a restar table  action tha t  implements  the same 
state t ransformation can always be constructed from the recovery protocol  alone. 
(The proof  of this follows from F3 and F5.) Thus,  in theory,  the action s ta tement  

4 This  is often necessary when the actions of concurrently executing processes are synchronized. For 
example, if it is necessary to assert  that  a collection of processes are all executing in the same "phase"  
at the same time, then each would include assertions about  the state of the others. See [21] for an 
example of such reasoning. 
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is unnecessary. In practice, the additional flexibility tha t  results from having an 
action s ta tement  different f rom the recovery protocol is quite helpful. Presum- 
ably, failures are infrequent  enough so tha t  a recovery protocol can do a consid- 
erable amount  of extra work in order to minimize the amount  of (expensive) 
stable storage used. Use of such algorithms for normal  processing would be 
unacceptable. 

3.3 Faul t -Tolerant  P r o g r a m s - - A  Simple Example 

In addition to allowing axiomatic verification of programs wri t ten in terms of 
fault- tolerant  actions, F1-F6 permit  a p rogrammer  to develop a faul t- tolerant  
program and its proof  hand-in-hand, with the proof  leading the way, as advocated 
in [4] and [6]. F4 allows those variables tha t  must  be stored in stable storage to 
be identified in a mechanical  way from the proof; construction of a replete  proof  
outline provides a mechanical  way to determine the intermediate  states tha t  
could be visible following a failure. To illustrate the use of rules F1-F6 as an aid 
in developing a recovery protocol, we consider the following (artificial) problem. 
(A more substantial  example is t rea ted  in Section 5.) 

Periodically, variables x and y are updated  based on their  previous values. 
Thus,  given a function G, a rout ine called update  is desired tha t  runs on a 
fail-stop processor and satisfies the following specification: 

{P: x = X A y = Y} update  {Q: x = G ( X )  A y = G ( Y ) ) .  

Logical variables X and Y represent  the initial values of x and y, respectively. 
If the possibility of failure is ignored, the following program will suffice: 

SI :  { P : x = X A  y =  Y }  

S l a :  x := G(x); {P la :  x = G ( X )  A y = Y )  

S l b :  y := G(y);  {Plb:  x = G ( X )  A y = G ( Y ) )  

{Q: x = G ( X )  A y  = G(Y)} 

Note tha t  this is a replete proof  outline, provided assignment is implemented as 
an atomic operation: {P V P l a }  is invariant  over execution of S l a  and { P l a  V 

P l b }  is invariant  over execution of S l b .  

Things become more complicated when the possibility of failure is considered. 
In particular, S 1 could not  be the action s ta tement  of a restar table action because 
F5 is violated (assuming G is not  the identi ty function): both  P l a  ~ P and 
P l b  ~ P are false. In order  to construct  a restar table action, we must  find a 
way to make progress- -compute  G (X) and G (Y) - -wi thou t  destroying the initial 
values of x and y until both  values have been updated.  One way to do this is to 
modify S1 so tha t  the new values are computed  and stored in some temporary  
variables, giving the following restartable action: 

UI: ac t i on ,  r e c o v e r y  
{ P : x = X A y - -  Y} 
U l a :  x n e w  := G(x); { x  = X A x n e w  = G ( X )  A y = Y )  

U l b :  y n e w  := G(y); {x -- X A x n e w  = G ( X )  A y = Y A y n e w  = G(Y)} 
e n d  
{Q' :  x = X A x n e w  = G ( X )  A y = Y A y n e w  = G(Y)} 
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Note  tha t  in order to satisfy F4, x and y mus t  be s tored in stable s torage bu t  
variables  used in comput ing  G need not  be. Having  establ ished Q' ,  it is a s imple 
ma t t e r  to establish Q: 

$2: { Q " :  x n e w  = G ( X )  A y n e w  = G(Y)} 
S 2 a :  x := x n e w ;  ( x  = x n e w  = G ( X )  A y n e w  = G(Y)} 
S 2 b :  y := y n e w ;  {x  = x n e w  = G ( X )  A y = y n e w  = G(Y)} 
{Q: x = G ( X )  A y = G ( Y ) )  

This  is a replete  proof  outline, and provided x n e w  and y n e w  are s tored in s table  
storage. F1-F6  are satisfied. So 

U2: a c t i o n ,  r e c o v e r y  
(Q":  x n e w  = G ( X )  A y n e w  = G ( Y ) )  

U2a:  x := x n e w ;  {x  = x n e w  = G ( X )  A y n e w  = G ( Y ) )  

U2b:  y := y n e w ;  ( x  = x n e w  = G ( X )  A y = y n e w  = G(Y)} 
e n d  
{Q: x = G ( X )  A y  = G(Y)} 

is a res tar table  action. Since Q '  ~ Q",  the  desired p rog ram is 

U1; U2 

4. TERMINATION AND RESPONSE TIME 

Most  s t a t ements  in our p rogramming  nota t ion  are guaran teed  to te rminate ,  once 
started.  However ,  loops and faul t - to lerant  actions are not. Techniques  based  on 
the use of var ian t  functions or well-founded sets can be used for proving t ha t  a 
loop will t e rmina te  [4]. Unfor tunate ly ,  wi thout  knowledge abou t  the  f requency of 
failures and s t a t emen t  execution times, t e rmina t ion  of a p rog ram wri t ten  in t e rms  
of faul t - tolerant  actions cannot  be proved.  This  is because if failures occur  wi th  
sufficiently high frequency, then  there  is no guarantee  t ha t  the  componen t  fault- 
to lerant  actions will terminate ;  nei ther  the  act ion s t a t emen t  nor  the  recovery  
protocol  of a faul t - to lerant  act ion can be guaran teed  to run  wi thout  interrupt ion,  
and so the recovery  protocol  could continually restar t .  

Moreover ,  such l i v e n e s s  p r o p e r t i e s  [16] cannot  even be expressed in a Hoare-  
style p rogramming  logic, like the one above. Thus,  we mus t  resor t  to informal  
means  to argue t ha t  a p rogram will t e rmina te  in a t imely  manner .  Presumably ,  
a t  some point  in the future  it will be possible to formalize such arguments .  H a r t e r  
and Bernste in  [7] describe extensions to t empora l  logic [16] tha t  allow construc-  
t ion of a proof  t ha t  a p rogram will mee t  some specific response- t ime goals. T h a t  
work would have  to be extended to deal with s tochast ical ly defined events  for use 
in this context. 

For  a given execution of a p rogram S on a fault-free processor,  let  t ( s )  be the  
m a x i m u m  length of t ime tha t  elapses once execution of s t a t emen t  s is begun until  
execution of the next  faul t - to lerant  action in S is s tarted.  Define 

Tmax = max t ( s ) .  
s E S  

For  an execution of S to t e rmina te  a t  all, it is sufficient t ha t  there  be (enough) 
intervals of length Vmax during which there  are no failures. Then,  no faul t - to lerant  
action will be forever  res ta r ted  as a result  of the  (high) f requency of failures. 
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Of course, this gives no bound on how much t ime will elapse before S completes.  
Rather,  we have argued tha t  S is guaranteed to terminate  if the elapsed t ime 
between successive failures is long enough, often enough. This  should not  be 
surprising. However,  it does provide some insight into how to s t ructure  a program 
in terms of fault- tolerant  actions if f requent  failures are expected: one should 
endeavor to minimize Tmax. This  can be achieved by making entry  into a fault- 
tolerant  action a f requent  event, e i ther  by nesting fault- tolerant  actions, or by  
composing them in sequence. 

Given a collection of fail-stop processors, it is possible to configure a system 
tha t  not  only implements  a given relation between input and output,  bu t  performs 
this state t ransformation in a t imely manner  despite the occurrence of failures. 
After the failure of a fail-stop processor fsp, a reconfiguration rule is used to 
assign programs tha t  were running on fsp to working fail-stop processors. Th e  
recovery protocol in effect at  the t ime of the failure facilitates res tar t  of the 
program. Thus,  processor failures are t ransparent  except for possibly increased 
execution times. 

As a result  of a failure, execution delays from the following sources are incurred: 

(1) Some time tdetect will elapse after  the fail-stop processor halts until  tha t  fact  
is detected and reconfiguration is begun. 

(2) Reconfiguration causes execution delays, as well. First, trecon is required to 
determine an appropriate assignment of programs to the remaining fail-stop 
processors. Then,  tmove might  be required to move the program code and 
contents  of its stable storage. 

(3) In the worst case, the effects of the last TA seconds execution by action 
s ta tement  A before the first failure will be lost. 

(4) TR seconds worth of execution by repeated a t tempts  to perform recovery 
protocol R as a result  of each subsequent  failure will also be lost. 

Both  TA and TR are defined for the specific execution tha t  was interrupted.  
This suggests the following strategy for constructing faul t- tolerant  systems tha t  

will continue to behave correctly in spite of up to k failures, for k > 0. A program 
is developed (1) tha t  implements  the desired state t ransformations when run on 
fail-stop processors, (2) tha t  satisfies its real-t ime response constraints provided 
no failures occur, and (3) in which no process must  respond to an event  in less 
than TF seconds, where 

T F  -~ k( tde tec t  "}- tr  . . . .  -}- tmove) "b ( k  - 1 ) T R  -}- T A .  

Supppose R fail-stop processors are required to ensure tha t  (1)-{3} hold. Then,  a 
computing system with R + k fail-stop processors will be able to tolerate  up to k 
fail-stop processor failures and meet  its response-t ime goals. Th e  obvious recon- 
figuration nile must  be used. 

Note tha t  if stable storage tha t  can be shared by the fail-stop processors is 
available, then tmove can be made 0. Also, by precomputing various configurations, 
t~ . . . .  can be made negligible. This, however, requires a sufficient amount  of stable 
storage to store all possible configurations. Lastly, TR can be made  0 by using 
only restartable actions; however, this uniformly degrades execution speed, even 
if no failures occur. 
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5. FAULT-TOLERANT PROCESS-CONTROL SOFTWARE 

We now turn to a more substantial illustration of the application of our meth-  
odology: development of a fault-tolerant process control program. First, a correct  
program for a fault-free computing system is developed. The  program is then 
extended to run correctly on a system of fail-stop processors. While a fair amount  
of detail is presented, these details are necessary to derive and establish the 
correctness of the program. 

Given are sensors to determine the state of the environment  and actuators  to 
exert control over the environment.  Correct operation of a process-control system 
requires tha t  

PC: The values written to the actuators  are related to the values read from the 
sensors according to a given application-specific function. 

It  is likely tha t  correct operation also involves a liveness property,  like "sensors 
are read and actuators are updated often enough." We will make no a t t empt  to 
argue that  our program satisfies such real-time response constraints, a l though 
informal arguments  like those developed in Section 4 could be used if t iming data  
were available. 

5.1 Assuming No Failures 

Our process-control system will be s tructured as a collection of cyclic processes 
tha t  execute concurrently. Each  process pi is responsible for controlling some set 
of actuators acti. To do so, it reads from some sensors and maintains statei--a 
vector of state variables tha t  reflects the sensor valuespi  has read and the actions 
it has taken. Interprocess communicat ion is accomplished by the disciplined use 
of shared variables; a process can read and write its state variables, but  can only 
read state variables maintained by other  processes. For the moment ,  we will 
ignore the problems that  arise from concurrent  access to state variables. 

Each process will consist of a single loop. During execution of its loop body, 
processpi  (1) reads from some sensors, (2) computes  new values for the actuators  
it controls and state variables it maintains, (3) writes the relevant values to act~, 
and (4) updates statei. Presumably,  we are given applicat ion-dependent  routines 
tha t  can be used to compute  the values to be writ ten to the actuators  and the 
values to be stored in the state variables. 

Without  loss of generality, assume tha t  each state variable and sensor is read 
at most  once in any execution of those routines. 5 Let  statej[i, t] denote the value 
of statej read by pi during the t th  execution of its loop body, sensors[i, t] denote 
the values read by p~ from sensors during the t th  execution of its loop body, and 
act~[t] denote the values written to acti byp i  during the t th  execution of the loop 
body. 

Behavior satisfying PC is characterized by the following, for each process p l ,  

p2 . . . . .  Pn. 
First, the values in statei must  correctly encode past  actions performed by pi. 

Tha t  encoding will be denoted here by the function E. Therefore,  at  the beginning 

Code that satisfies this restriction can be written by using local variables to store state variables and 
sensor values: each state variable and sensor value is stored in a local variable when it is first read; 
subsequent references are then made to the local variable. 
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of the  (t + 1)st execution of the  loop body  a t p i :  6 

Is ta te( i ,  t): t = 0 c o r  statei  = E(sensors[ i ,  t] ,  statel[i ,  t] . . . . .  staten[i,  t]). 

Secondly, the values wri t ten to ac tua tors  by  pi  mus t  be computed  according to 
the application-specific function, here  called A, based on the sensor values read  
and the pas t  actions of processes. Therefore ,  af ter  pi  upda tes  act~ for the  t t h  t ime, 

Iact( i ,  t): t = 0 c o r  acti[t] = A ( E ( s e n s o r s [ i ,  t], s tatel[i ,  t] . . . .  , staten[i,  t])). 

mus t  be true. 
Le t  Ti be an auxiliary variable defined so tha t  a t  any  t ime Ti - 1 executions of 

the loop body have  completed.  Thus,  Ti is initialized to 1 and  (implicitly and 
automatically} incremented  immedia te ly  af ter  the  loop body  is executed. Then ,  
the correctness criterion PC is satisfied if 

I ( i ) :  Is ta te( i ,  T~ - 1)/k Iact ( i ,  T~ - 1) 

is t rue at  the beginning of each execution of the loop body, for each process pi.  
In order  to construct  the  loop, var iable  n e w s t a t e  is introduced.  This  is necessary  

so tha t  values used to upda te  state~ and the ac tua tors  are consis tent  wi th  each 
other. Thus  

Vnews ta te ( i ,  t): n e w s t a t e  ffi E ( sensors[ i ,  t] ,  state1 [i, t] ,  . . . ,  staten [i, t]).  

The  loop at  process p~, which has  as I ( i )  as its loop invar iant  is 

pi: p r o c e s s  
do true --. (I(i)} 

calc: newstate := E(sensors, statei, . . . ,  state,); 
{Vnewstate(i, Ti) /k Istate(i, Ti - 1) A Iact(i, Ti - 1)} 

up__act: acti : = A (newstate); 
(Vnewstate(i, Ti) /k Istate(i, Ti - 1)/~ Iact(i, Ti)) 

up__st: state~ := newstate 
{Vnewstate(i, Ti) A Istate(i, Ti) /~ Iact(i, Ti)} 

od 
e n d  

However ,  because processes execute asynchronously,  access to s ta te  var iables  
mus t  be synchronized. Otherwise, a process might  read  s ta te  var iables  while they  
are in the mids t  of being updated,  which could cause the process to pe r fo rm the  
wrong actions. To  avoid this problem,  the s ta te  var iables  main ta ined  by  each 
process p~ are assumed to be character ized by  CCi, called the cons i s t ency  
cons t ra in t  for statei.  CC~ is kept  t rue of state~ except  while p~ is updat ing  those 
variables, t ha t  is, performing up__s t  above. We assume tha t  the code to compute  
the applicat ion dependent  functions A and E works correct ly as long as values 
tha t  satisfy the consistency constraints  are read. To  ensure tha t  only values 
satisfying the consistency constraints  are read, r ead /wr i t e  locks [5] can be used 
to implement  reader -wr i t e r  exclusion on the s ta te  variables  main ta ined  by  each 
process. A process trying to read  var iables  in statei must  first acquire a read  lock 
for state~. Such a lock will not  be granted  if a write lock is a l ready held for those 
s tate  variables; hence tha t  process will be delayed if statei is being updated.  A 

We use the notation "A cor B" to mean "ifA then true else B". 
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process about  to upda te  statei  will be delayed if o ther  processes are reading those 
values. Such lock operat ions are not  explicitly included in our  p rograms  to 
simplify the  exposition; they  are pa r t  of the routine to compute  E in calc  and 
up__s t ,  the routine to upda te  the  s ta te  variables.  

Similarly, we assume tha t  the  code to compute  A and E requires  t ha t  the  
sensor values used be consistent.  T h e  na tura l  laws t ha t  govern our  physical  world 
ensure tha t  a t  any  t ime t the  values of the sensors are consistent.  Thus,  if a 
process reads all the sensors s imultaneously,  consis tent  values would be obtained.  
Such a s imul taneous  read opera t ion is not  implementable ,  however.  We therefore  
assume tha t  sensors change values slowly enough and tha t  processes execute  
quickly enough so t ha t  a consistent  set  of values is obta ined  by  reading each of 
the sensors in sequence a t  normal  execution speed. 

5.2 Allowing Failures 

We shall deal with failures by  a t t empt ing  to mask  their  effects. T h u s  we endeavor  
to preserve 

PC ' :  At  no t ime do s ta te  var iables  or ac tua tors  have  values they  could not  have  
had  if the  failure had  not  occurred. 

Recall  t ha t  I ( i )  character izes  values of  the  s ta te  var iables  and ac tua tors  t ha t  
satisfy PC. Consequently,  if it is possible to modify  the  loop body  so t ha t  I ( i )  is 
t rue of every s ta te  tha t  could be visible af ter  a failure, then  P C '  will be  satisfied, 
as well. Our task, therefore,  is to modify  the loop body  so t ha t  it const i tu tes  a 
res tar table  action. 

I ( i )  is t rue  except  f rom when the execution of s t a t e m e n t  u p _ _ a c t  begins to 
when s t a t emen t  up__s t  completes.  Thus,  we mus t  e i ther  mask  in te rmedia te  
s ta tes  during execution of up__s t  and up__act ,  or devise a way to execute up__s t  
and up__ac t  together  as an a tomic  action. This  la t ter  opt ion is precluded by  mos t  
hardware.  Thus,  to implement  the  former,  we const ruct  a single faul t - to lerant  
action tha t  upda tes  the  ac tua tors  and s ta te  var iables  on the  basis of news ta t e :  

( Vnewstate(i, Ti) } 
upall 
{Vnewstate(i, Ti) A Istate(i, Ti) A Iact(i, Ti)} 

As long as n e w s t a t e  is saved in stable storage, the  following reple te  proof  outline 
satisfies F1-F6  and accomplishes  the desired t ransformat ion.  

upall: action, r ecove ry  
( Vnewstate(i, Ti) } 
u p _ a c t :  acti : = A (newstate) 
{Vnewstate(i, Ti) /~ Iact(i, Ti) } 
up__st: statei := newstate; 
(Vnewstate(i ,  Ti) A Istate(i, Ti) A Iact(i, Ti)} 
end 

A replete  proof  outline for the code executed a t  pi  is 

pi: p rocess  
action, recovery  

do true ~ (I( i ) )  
calc: newstate := E (sensors, statei . . . . .  state.); 
(Vnewstate(i ,  Ti) A Istate(i, T~ - 1) A Iact(i,  Ti - 1)) 
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upall: action, recovery  
up__act: acti := A (newstate); 
up__st: statei := newstate; 
end 

od 
end 

Notice that following a failure, a process might at tempt to acquire a given 
read/write lock that had already been granted to it. For example, if a failure 
occurred while up__st was being executed, the recovery protocol would at tempt 
to acquire the write lock on statei, which might already be owned by pi. Clearly, 
repeated requests by a given process for the same lock, without intervening 
release operations, should not delay the invoker. Implementation of read/write 
locks with this property (binary semaphores do not suffice) is possible and is 
described in [20]. 

6. DISCUSSION 

6.1 Related Work 

Few general techniques have been developed to aid in the design of programs 
that must cope with operational failures in hardware or support software. One 
paradigm, based on the use of state machines, was pioneered by Lamport [12, 
22]. A program is viewed as a state machine that receives input, generates actions 
(output), and has an internal state. A reliable system is constructed by replicating 
these state machines and running them in parallel. By using a solution to the 
Byzantine Generals Problem, each machine is guaranteed to receive the same 
input, despite failures. A comparison of the state machine approach with the use 
of fail-stop processors and fault-tolerant actions appears in [23]. A second general 
paradigm, which appears to be promising, is based on the use of nested atomic 
transactions [14]. 

A variety of protocols for specialized problems have also been developed. 
Included are protocols for recovery in database systems [5], implementation of 
highly reliable file systems [15], and the use of checkpoint/restart  facilities in 
operating systems [3]. 

Despite the apparent similarity between the recovery block construct developed 
at the University of Newcastle-upon-Tyne [19] and our fault-tolerant actions, the 
two constructs are intended for very different purposes. A recovery block consists 
of a primary block, an acceptance test, and one or more alternate blocks. Upon 
entry to a recovery block, the primary block is executed. After its completion, the 
acceptance test is executed to determine if the primary block has performed 
acceptably. If the test is passed, the recovery block terminates. Otherwise, an 
alternate block--generally a different implementation of the same algorithm--is 
attempted, and the acceptance test is repeated. Execution of each alternate block 
is attempted in sequence until one produces a state in which the acceptance test 
succeeds. Execution of an alternate block is always begun in the recovery block's 
initial state. 

Recovery blocks are used to mask design errors; fault-tolerant actions are used 
in constructing programs that must cope with operational failures in the under- 
lying hardware and software. The use of recovery blocks to cope with operational 
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failures under such circumstances can only lead to difficulties. For example, a 
recovery block has only a finite number of alternate blocks associated with it, 
and therefore a large number of failures in the underlying system can cause the 
available alternatives to be exhausted. Secondly, the recovery block model does 
not admit the possibility of using stable storage for program variables. 

6.2 Whence Fail-Stop Processors 

The definition of the fail-stop processor as our underlying computational model 
followed from our use of a partial correctness programming logic. In a fail-stop 
processor all failures are detected and no incorrect state transformations result 
from failures. Thus, if execution of a statement terminates, by definition the 
transformation specified by that statement has occurred-- the effect of execution 
is consistent with the programming logic. On the other hand, failure, by definition, 
prevents statements from terminating. Thus, the partial correctness (as opposed 
to total correctness) nature of the programming logic subsumes the consequences 
of failures. 

6.3 Application of the Methodology 

We have successfully employed the methodology described in this paper both to 
verify existing fault-tolerant protocols and to devise new ones. In [20], the two- 
phase commit protocol, as described in [5], is verified. The process-control 
example described in Section 5 of this paper was developed as part of a project to 
apply this methodology in the design of a distributed computing system for 
navigation in an airplane. The details of that  work are discussed in [24]. 

It is natural to ask whether F1-F6, the components of our proof rule for fault- 
tolerant actions, are too restrictive. In that  case there would exist fault-tolerant 
actions that  would behave correctly, but for which no proof would be possible. 
While we have not proved the relative completeness of our new rule, the success 
we have had with its application and the way in which it was derived suggest that  
F1-F6 are not too restrictive to allow proof of any "correct" fault-tolerant action. 

7. CONCLUSIONS 

We have described a methodology for constructing fault-tolerant systems. It  is 
based on the notion of a fail-stop processor--a processor with simple and well- 
defined failure-mode operating characteristics. Fail-stop processors are very 
appealing abstract machines to program and can be approximated by real 
hardware. 

We have shown how axiomatic program verification techniques can be extended 
for proving the correctness of programs written for fail-stop processors. This 
allows a programmer to argue convincingly about the correctness of a program ex 
post facto. What is more important is that  it allows a programmer to develop a 
fault-tolerant program and its proof hand-in-hand, with the latter leading the 
way, as advocated in [4] and [6]. Computing the weakest precondition of a 
recovery protocol is a simple and mechanical way of determining what program 
variables must be stored in stable storage; constructing a replete proof outline 
similarly defines what intermediate states could be visible following a failure and 
thus what states can be seen by a recovery protocol. 
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