
Attacking the
Process Migration Bottleneck

Edward R. Zayas
Computer Science Departrnent

Carnegie Mellon University
Pittsburgh, PA 15213

(Currently at the Information Technology Center, Carnegie Mellon University)

Abstract

Moving the contents of a large virtual address space stands
out as the bottleneck in process migration, dominating all
other costs and growing with the size of the program. Copy-
on-reference shipment is shown to successfully attack this
problem in the Accent distributed computing environment.
Logical memory transfers at migration time with individual
on-demand page fetches during remote execution allows
relocations to occur up to one thousand times faster than with
standard techniques. While the amount of allocated memory
varies by four orders of magnitude across the processes
studied, their transfer times are practically constant. The
number of bytes exchanged between machines as a result of
migration and remote execution drops by an average of 58%
in the representative processes studied, and message-handling
costs are cut by over 47% on average. The assumption that
processes touch a relatively small part of their memory while
executing is shown to be correct, helping to account for these
figures. Accent's copy-on-reference facility can be used by
any application wishing to take advantage of lazy shipment of
data.

1. Introduction
Process migration is a valuable resource management tool in

a distributed computing environment. However, very few
migration facilities exist for such systems. Part of the
problem lies in providing an efficient method for naming
resources that is completely independent of their location.
The major difficulty, though, is the cost of transferring a
computation's context from one system node to another. This
context, which consists primarily of the process virtual ad-
dress space, is typically large in proportion to the usable
bandwidth of the interconnection medium. Moving the con-
tents of a large virtual address space thus stands out as the
bottleneck in process migration, dominating all other costs.
As programs continue to grow, the cost of migrating them by
direct copy will also grow in a linear fashion.

This research was supported by the AT&T Cooperative Research Fellowship
Program. It was also supported by the Defense Advanced Research Projects
Agency (DoD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory under contract F33615-g4-K-1520.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 A C M 089791-242-X/87/0011/0013 $1.50
13

Any attempt to make process migration a more usable and
attractive facility in the presence of large address spaces must
focus on this basic bottleneck. One approach is to perform a
logical transfer, which in reality requires only portions of the
address space to be physically transmitted. Instead of ship-
ping the entire contents at migration time, an IOU for all or
part of of the data can be sent. As the relocated process
executes on the new host, attempts to reference "owed"
memory pages will result in the generation of requests to copy
in the desired blocks from their remote locations. Context
transmission times during migration are greatly reduced with
this demand-driven copy-on-reference approach, and are vir-
tually independent of the size of the address space. Processes
are assumed to touch relatively small portions of their address
spaces, justifying the higher cost of accessing each page
during remote execution.

This paper describes the process migration facility built for
the SPICE [12] environment at Carnegie Mellon University,
which demonstrates the validity of using copy-on-reference
transfer to attack the migration bottleneck. Section 2
describes the design of the Accent copy-on-reference
mechanism, available to any application wishing to lazy-
evaluate its data transfers. Accent's organization and abstrac-
tions not only provide the transparency needed to support
migration, but lend themselves to the natural construction of
such a mechanism. Section 3 show how the migration system
capitalizes on copy-on-reference data delivery. Section 4
presents performance measurements taken on a set of repre-
sentative processes that were migrated using different trans-
mission strategies. Process relocations occur up to one
thousand times faster using copy-on-reference transfers.
While the amount of allocated data varies by four orders of
magnitude across the processes studied, their transfer times
are practically constant. The number of bytes exchanged
between machines as a result of migration and remote execu-
tion drops by 58.2% on average, and message-handling costs
are cut by 47.8%. The assumption that processes touch a
relatively small part of their memory while executing is
shown to be correct, helping to account for these figures. The
detailed measurements are used to assess the effect of such
copy-on-reference variations as prefetching in response to
remote page requests and migration-time transfer of the ad-
dress space portions resident in main memory. Section 5
compares the Accent migration work to other activity in the

field. Finally, Section 6 summarizes the lessons learned from
the Accent migration system and considers future research
directions suggested by this work.

2. The Accent Copy-On-Reference Mechanism
Accent's design and organization allows such intelligent vir-

tual memory techniques as copy-on-write to be applied to data
passed through the IPC system. It is this feature which aids in
the construction of another intelligent strategy, copy-on-
reference. This section begins by providing a quick overview
of the Accent features that contribute to the natural construc-
tion of a transparent, genetic copy-on-reference facility.
Accent's imaginary segment abstraction serves as the basis
for lazy data delivery, and is described next. The con-
sequences of permitting imaginary objects to exist are ex-
plored, along with the method of shipping imaginary areas
between machine boundaries.

2,1. Accent Fea tu res
The Accent IPC and virtual memory facilities axe closely

integrated, operating symbiotically. Unlike most message-
based systems, a single Accent IPC message can hold all of
the memory addressible by a process. Message contents are
conceptually copied by value directly from the sender's ad-
dress space into the receiver's. In reality, a message is first
copied into the kernel's memory, buffered there until the
recipient decides to accept it, and then copied out again.
Accent provides the advantages of double-copy semantics for
transferring message data between address spaces while still
achieving the performance expected of a system that passes
data by reference. This is possible through the use of a
copy-on-write virtual memory mechanism by the IPC facility.
If the amount of message data falls below a certain threshold,
it is physically copied to the receiver. However, the kernel
uses much faster memory-mapping techniques for messages
exceeding this threshold. The receiver's virtual memory map
is modified to provide access to the message data, and the
region is marked copy-on-write for both parties. The two
processes share this single copy of the data until either one
tries to modify it. The deferred copy operation is then carried
out, but only for the 512-byte page(s) affected. Files are
accessed through an IPC interface and mapped in their en-
tirety into process memory, allowing these techniques to be
applied to their data as well. Since large amounts of data are
often transferred through IPC messages and only rarely
modified to any degree, this lazy strategy realizes perfor-
mance that approaches by-reference transfer. Fitzgerald's
study [3] reveals that up to 99.98% of data passed between
processes in a system-building application did not have to be
physically copied.

2.2. Imaginary Segments
Accent's copy-on-reference mechanism is based on a new

segment class, the imaginary segment. Imaginary segment
data is accessed not by direct reference to physical memory or
a hard disk, but rather through the IPC system. Each imagi-
nary segment is associated with a backing IPC port which
provides memory management services for the object. When
a process touches a page mapped to an imaginary segment,

the high-level Pager~Scheduler process sends an Imaginary
Read Request message to the region's backing port. The
process with Receive fights for this port interprets the request
and returns the required page in an Imaginary Read Reply
message. The Pager/Scheduler completes the handling of the
imaginary "fault" by mapping in the page and resuming the
process attempting the access. Currently, page-outs for im-
aginary data are performed to the local disk at the site that
touched the page. Any process may create an imaginary
segment based on one of its ports, map all or part of it into its
address space and pass this memory to another process via an
IPC message. In effect, it transmits an "IOU" for the
region's data, promising to deliver it as needed. The backing
process continues to field page request messages aimed at the
imaginary object until all references to it die out. At this
point, Accent informs the backer of the object's demise by
sending it an Imaginary Segment Death message.

2.3. Accessibil i ty Maps
The existence of imaginary objeets forces the operating sys-

tem to provide a facility for determining the accessibility of
any given virtual address range. Carelessly touching imagi-
nary regions can result in deadlock. For example, an Accent
process executing in the kernel context deadlocks if it touches
a page with port-based backing. The faulter is caught holding
the system critical section, preventing the backing process
from executing the protected Receive operation needed to
respond to the fault.
Accessibility Maps (or AMaps) were created to supply the

necessary addressing information in Accent. Four different
memory "distances" have been defined for AMaps:

1. RealZeroMem: This is a region that has been
validated (allocated) by a process but has never
been accessed. When memory is validated, it is
conceptually filled with zeros. Accent
postpones these filling operations until the pages
are first touched. A special fault condition, the
FillZero fault, is realized for this case. The only
action the Pager/Scheduler process takes is to
reserve a page of physical memory, fill it with
zeros and create the appropriate virtual memory
mappings. The disk is never consulted while
handling this type of fault. In practice, Accent
processes validate large amounts of virtual
memory and only touch a small percentage.
Lazy initialization of address space regions and
the use of a special inexpensive fault-handling
operation combine to make creation and main-
tenance of large virtual memory regions afford-
able. These RealZeroMem pages are considered
immediately accessible to the process.

2. RealMem: The data in this type of region is
either already present in physical memory or
accessible by fetching the corresponding local
disk page. The distinction between disk address
mappings owned by the kernel and process
mappings for the same data allows a disk page
image to be resident without being visible to a
user process. In this eventuality, the

14

Pager/Scheduler again simply fills in the miss-
ing user mapping and promotes the faulted
process to a rurmable state. If neither the disk
nor the process mapping are available for the
page, the matching disk block is determined.
The page is brought in, and disk and process
mappings for it are entered. RealMem pages are
ra ted ' 'moderately" accessible, since the system
may have to go out to disk to get them.

3. ImagMem: The contents of memory regions
mapped to imaginary segments have lmagMem
accessibility. Touching a page in this acces-
sibility class results in the the generation and
processing of an imaginary fault, as described in
Section 2.2. ImagMem pages are considered
distantly accessible, since it may take an ar-
bitrarily long time to complete a page fetch.
The network state, the load on the machines
involved and the amount of work being per-
formed by the backing process all contribute
variables to the service time.

4. BadMem: Attempting to touch a page in a
region that hasn't been validated causes a true
addressing error. Referencing a BadMem page
invokes a debugger so the human user can
analyze and properly terminate the delinquent
process. Since referencing a BadMem page is
illegal, its accessibility is considered infinitely
distant.

2.4. Extending I m a g i n a r y S e g m e n t s
As with the port abstraction, copy-on-reference access via

imaginary segments depends on a user-level server for trans-
parent extension across the network. The NetMsgServer
process, running on each host, provides this service by chang-
ing its message fragmentation and reassembly algorithms to
account for imaginary subranges. Using an AMap as a guide
on both sides, the RealMem portions are physically trans-
mitted to the remote location and placed in the corresponding
locations in the reassembly buffer. The receiving
NetMsgServer creates its own local ports and imaginary
object(s) to stand in for the originals. Messages generated in
response to faults on the remote imaginary objects are
automatically channeled to the correct backing site.

On its own initiative, a NetMsgServer may cache the
RealMem portions of a message destined to a remote site and
instead pass IOUs for them, becoming the manager for that
data. Senders can inhibit this behavior by setting the NolOUs
bit in the message header, which is inspected by the
NetMsgServer. This action guarantees that non-imaginary
message data is physically copied to the remote site.

3. M i g r a t i o n U s i n g C o p y - O n - R e f e r e n c e
The SPICE migration facility is designed to take advantage of

the copy-on-reference mechanism described in the previous
section. This is done by special migration primitives which
automatically separate out the context portions eligible for
copy-on-reference shipment. Using these operations, the

MigrationManager process on each machine has several op-
tions for context delivery to the new execution site.

3.1. ExciseProcess a n d InsertProcess
The Excise.Process kernel trap allows the complete context

of an active process to be removed from its current host.
Accent contexts are divided into five components: the state of
the Perq 1 microengine, the kernel stack if the process is ex-
ecuting in supervisor mode, the PCB, the set of port rights
owned by the process and the virtual address space contents.
While the first four parts combined only account for roughly 1
Kbyte, the address space contributes up to 4 gigabytes. Once
a context is excised, the process ceases to exist. Since all port
rights are passed transparently to the caller, there is no disrup-
tion to the set of processes capable of naming these ports.

ExciseProcess delivers a process context in two separate IPC
messages, ready for shipment to the new execution site. The
Core message contains the first four context pieces, which
must be physically copied to the remote site. It also carries an
AMap describing the entire process address space. The
RIMAS 2 message contains all of the RealMera and ImagMem
portions of the address space, collapsed into a contiguous
area. This allows the caller to fit one or more excised address
spaces into its own memory at one time. It also allows the
bearer to cache the ReaIMera portions and substitute its own
imaginary objects in the RIMAS message. If the migration
agent doesn't wish to actively manage the excised address
space, it simply turns off the NoIOUs bit in the RIMAS mes-
sage header as described in Section 2.4, prompting the local
NetMsgServer to assume backing services for the memory.

The counterpart for ExciseProcess is InsertProcess, which
uses the two context messages to recreate the process. Since
the messages are self-contained, they do not have to be pre-
processed in any way. The embedded port rights are passed
to the new incarnation. Using the AMap for guidance and the
RIMAS data for ammunition, the process address space map-
pings are restored. The reconstituted process is finally placed
into the kernel queue representing the original execution
status.

3.2. T h e MigrationManager P r o c e s s
Each SPICE machine wishing to participate in process migra-

tion runs a simple MigrationManager process. This server
accepts and executes commands to perform migrations.
Given a process name, it uses the ExciseProcess primitive to
acquire the process context. The two context messages are
then simply sent to the MigrationManager at the new execu-
tion site, which uses InsertProcess to reconstruct the target
process.

The current MigrationManager doesn't attempt sophis-
ticated address space management for the processes it ex-
tracts. If asked to use copy-on-reference transfer for process
memory, the MigrationManager allows the intermediary
NetMsgServers to cache the data and become its backer.

1Designed by Perq Systems, Inc., the Perq workstation has a microcoded
CPU, 16-bit words and a 150 nanosecond cycle time. It's rated at between 1/5
and 1/2 the speed of a Vax-11/780, depending on the instruction set used. More
detailed Sl~S are in [3].

2RIMAS stands for Real and Imaginary Memory Address Space.

15

4. E v a l u a t i o n
This section summarizes the results of experiments carried

out on the augmented Accent testbed system to determine the
effectiveness of the copy-on-reference technique in reducing
the dominant cost of migration: transfer of large process ad-
dress spaces. Representative processes were chosen and
monitored as they were migrated with the different strategies
of interest. These programs are implemented in a variety of
languages, perform widely different tasks and differ greatly in
memory requirements and access patterns. Figures on their
address space composition and utilization are presented, along
with the basic costs of the migration primitives used to extract
and insert process contexts on a host. Based on such metrics
as the quantity and distribution of byte traffic, message
processing costs and end-to-end elapsed times, copy-on-
reference is shown to be superior to the brute-force method.
Two variations on the basic lazy-transfer theme were simu-
lated using the detailed performance figures and also
evaluated. While prefetch of between 1 and 15 nearby pages
in response to imaginary faults proved to be a valuable op-
timization, the shipment of process resident sets (as an ap-
proximation to their working sets [2]) was found to be
generally detrimental. Overall, the experiments show that this
lazy transfer technique significantly reduces the dominant
context transmission costs by exploiting the fact that
processes tend to use only small portions of their address
spaces during execution.

4.1. R e p r e s e n t a t i v e Processes
Several processes were chosen to undergo relocation, each

representing a class of programs sharing similar attributes.
The results obtained for these representatives should be
characteristic of other programs in their class.

1. Minprog: This program is used to judge the
effects of the various transmission strategies on
d "minimal" program. Written in Perq Pascal,
Minprog prints a message on the standard out-
put, waits for user input and terminates.
Measurement of this program is the equivalent
of timing the "null trap" when exploring
operating system performance.

2. Lisp-T: Accent supports the SPICE Lisp dialect,
complete with a customizable screen editor and
compiler. The Lisp-T trial resembles Minprog
in that the minimum computation is performed.
After migration, the Lisp interpreter is simply
asked to evaluate T. This process represents
simple Lisp programs, or larger Lisp jobs
migrated late in life. The primary difference
between Lisp-T and Minprog is the amount of
address space used. Lisp processes validate
their entire 4 gigabyte address spaces at birth,
compared to Minprog's use of only 330 Kbytes.

3. Lisp-Del: This Lisp process performs a sig-
nificant amount of computation and I/O. Im-
mediately after migration, a Delaunay triangula-
tion package written at Carnegie Mellon by Rex
Dwyer is loaded. Utilizing a divide-and-

conquer algorithm on a random set of points,
this package displays its actions graphically on
the screen as the triangulation is built.

4. PM-Start: The Pasmac macro processor for
Perq Pascal represents the class of programs
whose primary duty is to read flies from the
disk, process them in some way and write the
results back out. In this instance, a 164 Kbyte
file containing the program with macro
references imports five definition fries totaling
114 Kbytes. Migration takes place at the point
the first definition f'rie is being accessed.

5. PM-Mid: This trial postpones migration of the
above macro processor until all of the def'mition
files have been read in. Thus, the file images
have become part of the process context and are
carried along by the migration. The relocated
program doesn't perform any more file accesses
until it writes out the expanded program text.

6. PM-End: The final trial involving the Perq Pas-
cal macro processor further postpones migration
until the original file has almost been com-
pletely expanded. With little computation left to
perform, this trial reveals the performance of the
various migration strategies on processes near
the end of their lifetimes.

7. Chess: A chess program written by Charly
Drechsler at Siemens rounds out the group. It
performs a large amount of computation to
evaluate beard positions and generate moves,
but doesn't use a lot of its address space. A
graphical representation of the chess board is
displayed on the screen along with a game
dock. The game clock ticks every second, so
screen updates occur at least that often. Migra-
tion takes place as soon as the program initial-
izes itself and draws the first screen image.

4.2. A d d r e s s Space Ana lys i s

4.2.1. Composition
Table 4-1 expresses the address space sizes and breakdowns

of the representative processes at migration time.

Real RealZ Total % RealZ
Mlnprog 1 4 2 " ~ 157,904 330,240 56.9

IAs -T 2,203,136 4,225,926,144 4,228,129,280 99.9
Lis~-~el 99.9 2,200,064 4,225,929,216 4,228,129,280

PM-Start 449,024 501,760 950,784 52.8
PM-Mid 446,464 466,432 912,896 51.1
PM-End 492,032 398,848 890,880 44.8

Chess 195,584 305,1b'2 500,736 60.9

Table 4-1: Representative Address Space Sizes in Bytes
Listed for each ~-escmativo proce~ is the amomat of non-zc~ dats it acld~cs (Re.a/),

the alloca'~d but t,x,~,oudxed z~ro-rdlcd mmnory ~¢a/~, the total mmno~ ~ckessed (Tota/)
and the tgrcentago of the ovcraU Woce.-- :mm~-y taken up by allocated, u~ouched
zzro-fiRod m g i ~ (~ ReaIZ). Memory qmmfiti~ am ~a bye .

There is wide variance in the amount of validated memory in

16

the representative Accent processes. The space utilized by the
biggest process is a factor of 12,803 larger than that of the
smallest. This is the consequence of the way Lisp processes
manage their address spaces. The amount of RealMem
mapped into processes doesn't vary nearly as much, only by a
factor of 15 for these samples. Notice that RealZeroMem
forms a significant part of all process address spaces, more
than half even in most non-Lisp examples.

4.2.2. Resident Set Analysis
The process resident set sizes at migration time and their

relationships to their2-,ost address spaces are shown in Table
4-2.

RS Size % of Real % of Total
M i n p r o 2 71,680 50.4 21.7

Lisp-T 190,464 8.6 0.005
Llsp-Del 190,464 8.7 0.005

P M - S t a r t 132,096 29.4 13.9
P M - M i d 190,976 42.8 20.9
P M - E n d 302,080 61.4 33.9

Chess 110,080 56.3 22.0

Table 4-2: Representative Resident Sets

Listed is the resident set size ha bytes at migration time (colurma RS Size) for each
representative, as well as the relative siz~ compared to the process non-~:ro data (% of Real)
and total ,,llocated space (% of Totel). i

The range of resident set ~izes is even narrower than that of
the RealMem figures in Sec~tion 4.2.1, a factor of only 4. With
the unrealistic Minprog process excluded, the factor drops to
2.7. This implies that the transfer of a process resident set
will contribute a relatively consistent delay to the migration
operation. Because of the amount of memory involved, resi-
dent set transfers are a significant expense. Viewing resident
set transfer as a middle ground between a pure-copy transfer
and a pure-IOU strategy appears reasonable, since the resident
sets are roughly half as large as the RealMem in most cases.
However, Section 4.3.4 demonstrates that this added expense
at migration time doesn't translate into better overall perfor-
mance.

4.2.3, Address Space Utilization
As postulated, Accent processes reference a small portion of

their address spaces on average in their lifetimes. Table 4-3
reveals the amount of data transferred between machines
during the trials in relation to address space size. Percentages
are listed for the pure-IOU and resident set strategies without
prefetching (pure-copy transmits 100% of RealMera by
definition). Pure-IOU figures (the first column) indicate the
portions actually touched by the process at the remote site.

I O U RS
Mlnprol~ 8 .6 [3.7] 50.4 [21.71

Lisp-T 3.0 [0.002] 9.010.005l
I.Isp-Del 16.5 [0.009] 17.4 [0.0091

PM-Sta r t 58.0 [27.41 76.0 [35.91
PM-Mid $1.5 [25.2] 77.5 [37.9]
P M - E n d 26.9 [14.8] 72.5 [40,1]

Chess 35.6 [13.9] 66.0 [25,8]

Table 4-3: Percent of Address Space Accessed
For esch t~presentative process, the poaiou of the sdd:~s spice transferred to the new site

is g i v ~ for the pure copy-on-mfean~ (/OU) mad r=,idmat set (RS) strategies. The first
number ha each column repge.~ntJ the p ~ t of thz allor.~led, non-zero (RealMem) memory
shipped, while the nttml~r ha iqwtm brsckew ~ the pefoet~ of the total allocated add~n
~ . By definition, the pme-¢.ol~ technique ItartJferJ 100% of non-zero data.

The Lisp representatives, while they have the largest address
spaces, touch the smallest percentage in the course of execu-
tion. This applies even when performing a considerable
amount of computation and I/O, as in the case of Lisp-Del.
The Pasmac macro processor trials showed the highest ad-
dress space utilization, as their mapped disk files are touched
sequentially and in their entirety. In all cases, the resident set
transfer method accessed larger portions of the address space,
bringing over pages that are never used. This is especially
acute for Pasmac. Since physical memory under Accent tends
to act as a disk cache, old file pages that have already been
processed are still sent to the new execution site. This ex-
plains why the pure-IOU method references significantly less
of the Pasmac process address space the later in life it is
migrated while the resident set approach results in nearly
constant utilization.

4.3. M i g r a t i o n P h a s e T i m i n g s
Migration under Accent may be broken down into three

phases:
1. Packaging and unpackaging the process context

at the source and destination hosts.

2. Transferring the context between the sites.

3. Running the program at its new location.

This section examines how the migration strategies and their
variations perform in each of these phases, and also presents
an end-to-end analysis. Copy-on-reference transfers are
shown to greatly reduce the time spent in the transfer phas~
while only moderately increasing remote execution times,
resulting in significant overall performance improvements.
While the first phase is insensitive to the migration strategy
chosen, the experiments reveal some interesting facts about
Accent 's virtual memory system.

4.3.1. Process Excision and Insert ion
Two operations dominate the removal and packaging of a

process context, as revealed by Table 4-4: AMap construction
for the target address space and the collapse of process
memory into a contiguous chunk.

A M a p R I M A S Overa l l
M i n p r o g ..37 .36 .82

Lisp-T 2.12 .59 2.79
Lisp-Del 2.46 .73 3.38

PM-Sta rt .98 .63 1.67
PM-Mid 1.01 .68 1.74
PM*End 1.4 .94 2.45

Chess .37 .43 1.00

Table 4-4: Process Excision Times in Seconds

The righ~most cciurrm of this table lists thc amount of alzpzcd timc used by d~c
ExciseProcess kcmcl trap on ©ach of the ~prcsentativcs (~vo l /) . Also listed ate thc
individual timings for the two domhlant activities carried out during exaction: AMap
construction (AMap) and i~.ntion of tl~ ~ mcsssge C~'lLtinhag lh0" c~l:lclls¢~ ~ 1 ~
address space (RIMAS).

There are two reasons why AMap construction is an expen-
sive operation under Accent. The complex process map or-
ganization chosen to support sparse address spaces and copy-
on-write makes it difficult to determine accessibility for
ranges of addresses. Also, the lazy update algorithm
employed for process maps often forces a costly search of

17

system virtual memory tables. The Lisp processes take the
longest to service, as might be expected. The Mhaprog and
Chess programs have small, uncomplicated address spaces
and hence require the shortest amount of time.

While process memory is rearranged into a compact form
and delivered to the migration agent via memory-mapping
techniques instead of physical copies, it is still an important
part of the excision activity. Address space collapses con-
tribute a much smaller variation to excision times than does
AMap construction. Overall, excision times vary only by a
factor of 4, compared to the 4 orders of magnitude difference
in the address space contents.

Process reincarnation given the two context messages in-
volves reestablishing the microeode and port state of the
process, along with setting up its address space to correspond
to the original structure. The times required to insert the
transferred contexts into the new site ranged from 263 mil-
liseconds for Minprog to 853 milliseconds for Lisp-Del. Ad-
dress space reconstruction is the major factor in the insertion
operation, and times are very similar to the RIMAS creation
times during context extraction. As with other portions of the
migration mechanism, this insertion costs grow much more
slowly than the address spaces involved, only a factor of 3.3.

4.3.2. Context Transfer Times
Approximately one second is required to transmit the Core

context message (microstate, PCI], port fights) in all cases.
These messages differ by a small number of bytes, since some
AMaps are slightly larger than others. The real variation
involves die delivery of the RIMAS message (v'did, non-zero
address space) tinder the different transfer strategies. Table
4-5 provides these timings.

Pure-lOU RS Copy
Minprog .16 5.0 8.5

Lisp-T .16 25.8 157.0
Lisp-Del .17 25.8 168.5

PM-Start .15 9.0 30.8
PM-Mid .16 13.0 28.1
PM-End .19 20.5 31.0

Chess .21 7.7 11.7

Tab le 4-5: Address Space Transfer Times in Seconds

Address space lnmfcr times are closely clustmcd for the copy-on-reference approach
(IOU), but vat/covalderably for the n:sident set (RS) mad pure-voiD, (Copy) techniques.

Times required to ship process address spaces pure-IOU are
nearly independent of the amount of memory involved. Use
of pure-copy doesn't fare nearly as well, where RIMAS trans-

864.99

........................ P M ~ S ~ . /
186.50 ::: •

Copy PF0 PFI PF'3 PF7 PFI5 •

PM-End

o

Copy PFO PFI PF3 PF7 PFI5

Minprog

. PM "Mid /
t 25.7 t ~i~!~:;:: :;::i:~ ::i:: i::i::i ~ : : ! i == •

o.J....N,.1 I
Copy PFO PFI PF3 PF7 PFI5 •

Legend

[] Pure-IOU scheme

[] RS scheme

[] Pure-Copy scheme

F i g u r e 4-1 : R e m o t e E x e c u t i o n T i m e s in S e c onds

The measurement interval starts when the relocated program is restarted at its new location and ends when remote execution
completes; Column PFn describes a trial where n pages were prefetched in response to an imaginary fault. Note: each chart is
scaled individually.

18

mission times vary by a factor of 20. Pure-IOU allows the
address space transmission to complete in significantly less
time. Lisp-Del is the most extreme example, where a physical
copy is almost 1,000 times more expensive. Resident set
transfers once again display intermediate performance.
4.3.3. Remote Execution Times

Figure 4-1 shows the remote execution times of the repre-
sentative processes, namely the elapsed time in seconds from
the first instruction executed at the new host up to the
program's termination. These figures show the effects of the
different migration strategies, combined with differing
prefetch values for the pure-IOU and resident set approaches.

Part of the effort saved in the lazy transfer of an address
space must be expended as the process accesses its memory
remotely. Referencing imaginary memory through the inter-
mediary Scheduler and NetMsgServer processes on both
testbed machines is roughly 2.8 times more expensive than
accessing data backed by a local disk (115 milliseconds vs.
40.8 milliseconds). The most glaring effect of this cest dif-
ferential on remote execution time is .seen in the Minprog
case, which executes 44 times slower under the pure-IOU
strategy. The majority of this time is spent collecting its

"-iiiiiiiiiiiiiiiiiii i,,iiiii ii!iiiiii i!iii i ii i! iiiiiiiiiii iii iiiiiiiii::i::i ; i ii/

- ~ ::

"90* i

PM-End
.9o~ !i•iiiiiiiiiiii•iiiiiii!iiiiiiiiiiiiiii•i••ii••!!!•iii•i!i!•!!••!i•!i•ii•!i!•ii•iiiiiiiiiiiiiiiiiiiiiiiiii•iiiii•iiiii

iiiiiiiiiiiiiiiiiiiiiiiiii iiiiiiiii!iiiiiiiiiiiiiiiiiiiiii
o iiiiiii~iiiii~i~i~i~i~i~i~i~iii~i~i~iiiiiiiiii~ili~~iiii~iii

. i i i i i:i i iiiiiiiiiiiiiiiiiii!iiii i !iiiiiii i!ii iii

working set as it attempts to execute the few instructions
before it terminates. The long-lived, compute-bound Chess
program suffers a much smaller execution penalty, running
only about 3% longer.

Dependent on the memory access patterns exhibited, the
effect of prefetch varies considerably among the represen-
tatives. The Lisp family, which doesn't display memory
locality, suffered from increased prefetch. The additional
pages were rarely used and did not justify the larger fault-
handling time. Hit.ratios on these extra Lisp pages dropped
from around 40% to 20% as prefetch increased. On the other
hand, programs such as Pasmae, which access large tracts of
memory in a sequential fashion, benefitted greatly from large
prefeteh. Pasmac tallied a steady 78% hit ratio across all
prefetch values used, and improved its IOU remote execution
times by up to a factor of 2 across this range.

Transferring process resident sets to the new execution site
only had a significant impact on the extremely short-lived
processes (Lisp-T, Minprog). This implies that the underlying
working sets change quickly for Accent processes, in turn
suggesting that resident set transfers are not a useful optimiza-
tion in this setting.

Lisp-T IB
+90~ !!ii :::::::::::::::::::::::: ... ::iiii::ii 0 ml .,. i,iii, iiiiiiiiiiiii!iiiii iiii i!iiiiiiiiiiiiiiiiiiii:iTii:i :i i :i:i:i:iTii:iiTi:ii:i .. !

Minprog
+90~ :::

0 iiiii iiii!iii iiii!i iiiiiiiii!iiiii ii iiiiiiiiiiiii iiii ii iiii iii iiiiiii iiii iii iiiiiiiiiii ii!ii ii ii iiiiiiiiiiiiiiiii ii ii

+90~0 ~ ~ P M ' M i d l

.90 ••ii•iiiii•i•••i•i••iiiii!i!iiiii•ii••iii•ii•iiii!iiii•iiiiiiiiiiii•iiiiiiiiiiiiiiiiiiiii•i•i•iiiii•i

Legend

[] Pure-IOU scheme
[] RS scheme

F i g u r e 4 -2 : Percen t Overal l S p e e d u p o v e r P u r e - C o p y

Shown are the end-to-end speedups resulting from use of pure-IOU and RS transmissions. Elapsed times for address space
transfer and remote execution are summed for each representative process and prefetch value and compared to the pure-copy
results. From left to right in each group, bars indicate percent speedup over pure-copy for prefeteh values of 0, 1, 3, 7 and 15
pages. Negative values (bars drawn in the bottom half of each gray area) represent slowdowns in relation to pure-copy.

19

4.3.4. Overall Migration Speedup
As demonstrated above, the pure-IOU and RS~schemes hold

a clear advantage in the address space transfer phase of migra-
tion yet generally cause processes to execute longer at the
remote site. In order to get overall or end-to-end performance
figures, elapsed times for context transfer and remote execu-
tion are summed for these strategies and compared to the
pure-copy results. The percent speedups over the straightfor-
ward pure-copy technique are displayed in Figure 4-2 for the
pure-IOU and RS approaches as different amounts of prefetch
are performed. The pure-IOU results (white bars) are grouped
together on the left-hand side of each chart; similarly, the
resident set results (dark gray bars) are placed on the right-
hand side. From left to right in, each group, the bars show the
percent speedup for prefetch values of 0, 1, 3, 7 and 15.
Negative values indicate slowdowns in relation to pure-copy.

As expected, processes that access the smallest portion of
their address spaces at the new site are best suited to use the
copy-on-reference technique when overall elapsed time for
migration and remote execution is the metric. In the current
implementation, the breakeven point is around one-quarter of
the process RealMem. Once past this percentage, as in the
Pasmac family of processes, the higher cost of fetching in-

dividual pages during remote execution in the pureqOU sys-
tem outweighs the savings achieved during migration itself.
The exception to this observation is the Chess program, which
is insensitive to the transfer method used. In that case, the
differences imposed the various strategies were drowned out
by the program's longevity.

With its strong influence on remote execution times, the
amount of prefetch performed is a critical factor in end-to-end
performance. Pasmac, as a representative for processes past
the breakeven point and demonstrating strong sequential ac-
cess patterns, went from an overall 21% slowdown on average
to a 44% speedup as prefetch increased. In all cases, the
results demonstrate that returning one additional contiguous
page per remote fault improves performance. With intelligent
use of prefetch, copy-on-reference migration is significantly
faster than pure-copy transfer for the representatives (except
the long-lived Chess process) when overall timings are con-
sidered. On the other hand, process resident sets didn't "pay
their way" by cutting remote faulting activity enough to of-
fset their shipment costs,

4.4 . Cost Ana lys i s
Section 4.3 reports that copy-on-reference ~'eatment of ad-

556,ooo i i

o I
:::: :: :: ~op~:: :: :: PFO ::i:::: PFI ::::ii PF3 ii!::i:: PF7 i:::::: PF15 iiiiiiii:: I

..... Lisp-Del
2,256,546 i::~::~::i::== ::::::::::::::::::::::::: :::::: :: ::~::~::~ii ~i~ ~ ~::~::~::

Copy PFO PFI PF3 PF7 PFI5

620.340

0

'Ill

PM-Star t

. : , : . : . : . : , : , : , . : . : , : . ,:,:.:, ,:.:.:. . : . : . : . . : . : . : , : .

Copy PFO PFI PF3 PF7 PF15

593,926
PM-End

Copy PFO PF1 PF3 PF7 PF15

Lisp-T i z210.058 :::
ii

. nprog /

'Copy PF0 PF1 PF3 PF7 PF15 II

549.914

Legend

[] Pure-IOU scheme

[] RS scheme

[] Pure-Copy scheme

F i g u r e 4 -3 : B y t e s T r a n s f e r r e d D u r i n g T r i a l s

Number of b~es transferred for each program, transmission strategy ar~ page prefetch value during the migration trials. The
measurement mterval starts when the migration request is received by the M~grationManager and ends when the program
completes its remote execution. Column PFn describes a trial where n pages were prefetched m response to an imaginary fault.
Note: each chart is sealed individually.

20

dress space transfers significantly improves the time required
to migrate a process to a new site and complete its execution
there. This section supports these results by examining the
specific costs incurred by the different migration strategies,
and how these costs are distributed across the migration
phases. Experiments reveal that copy-on-reference reduces
the number of bytes transferred between the hosts as well as
the cost of handling messages related to migration activities.
Not only are the overall costs lowered by this approach, but
they are also more evenly distributed across the context trans-
fer and remote execution phases.
4.4.1. Bytes Transferred

Figure 4-3 reports the number of bytes exchanged between
machines due to migration and remote execution of the
representatives under the different strategies. Note that a
single value is reported for each pure-copy trial, since
prefeteh doesn't apply in these cases.

The pure copy-on-reference strategy was superior to pure-
copy across all prefetch settings. This technique reduced byte
traffic by an average of 58.2% over pure-copy when no
prefeteh was used. As a rule, more data was exchanged as the
number of contiguous pages prefetched grew. This is reason-
able, since not all the extra pages were referenced. Shipping
resident sets cut into the savings realized by the IOU strategy,

again implying that very little of this data was actually used at
the remote site.
4.4,2. Message Costs

Pure-copy is the clear winner when evaluated by the number
of messages processed by the test systems. However, it does
not fare nearly as well in a more important metric, the amount
of time required to process and deliver these messages. Each
second of execution time spent by the NetMsgServer to
handle message traffic is not only a second stolen from the
migrated process but from all processes in both systems.
Figure 4-4 displays the amount of time spent by each node in
message manipulation.

These figures further confirm the utility of a lazy approach
to address space access. By putting off the apparent work that
needs to be performed until the last moment, a significant
portion does not need to be done at all. Although the bulk
transfer of the process context when the pure-copy strategy is
employed allows a higher throughput than the page-by-page
access imposed by the pure-IOU and resident set approaches,
the majority of pages sent by the pure-copy approach are
never used. The pure-IOU strategy only performs work that
is productive and necessary.

In every ease, the IOU and resident set strategies outperform
pure-copy. The average savings in message processing is

Chess ~1
1~.o3 i!isiii;:i:i:i~iii~i;iiii::iii~ii;i::i::i::::::::ii~!iiii::::::::::ii::ii!!~ii::ii::::iii;!ii!iis;i~ii::i::ii::iii ::::::::::::::::::::: !::i::::~i

o I
Lisp-T

160.49 •i•iiiii•••i•i::::::::::•::::i::i!i::ii•iii•i•i::!!•••i::•::i::•ii::iii::•i•iiii••iiii::i::•::i::ii•••i•i••i••i•iiiii!i•iii•i••••ii!iiiiiii•i•••i•••i••iii•iiiiiiiiii•ii•i•••iiiii i

i?? i 0',
Copy PF0 PF1 PF'3 PF"/ PFI5

2 11 iiiii i i- ii iii!iiiiiiiii iiiii i iiiiiiiiiiiii iii iiiiiiiiiiii ii iL sp. ii l o o p , l¸ P 0 i ii pF1 11.180 iiiiiiii iiiii!iii iiiiiiiiiiiiiii iiiiiiii iii!iiiiii i!!iiiiiiiiiii iii p ii I B m .
PM-Start i

0 C o p y pFO " PFI " PF3 " PF7 " PF15

PM-Mid i

Copy PF0 PF1 PF3 PF7 PFI5

69.34

PM-End i Legend

51.6o i ~ i i ! ~ i ~ ~ ~ i []1''1Pure-IOU s c h e m e R s scheme

0 . [] Pure-Copy scheme
Copy PF0 PF1 PF3 PF7 PF15

F i g u r e 4-4: To ta l M e s s a g e T i m e s in S e c o n d s

dDisplayed ~ e the elapsed time in seconds required to process the IPC messages generated for each migration trial. Column PFn
escnt~es a ~a l where n pages were prefetehed in response to an imaginary fault. Note: each chart is sealed individually.

21

47.8% for IOU trials without prefetch. The effect of prefetch
is an interesting one. When only a single additional page is
prefetched in response to an imaginary fault, the time spent
processing messages drops slightly. As we increase the num-
ber of pages prefetched, the system spends more and more
time in message handling. Although the prefetching
eliminates many of the imaginary faults, it also transfers some
"dead weight" pages that are never used. Also, since each
message carries more data, the time to process each imaginary
reply message grows.

Combined with the results on end-to-end costs, these figures
suggest that one page should be prefetched regardless of the
transfer strategy chosen.

4.4.3. Distribution of Costs
The vast majority of migration costs charged to the pure-

copy strategy are incurred during the transfer phase of process
migration. On the other hand, the copy-on-reference ap-
proaches radically reduce the cost of context shipment and

instead incurs its expenses across the remote lifetime of the
process involved. Thus, not only are costs reduced overall,
but they are also more evenly distributed. Pure IOU transfers
don't experience the same magnitudes and bursts of activity
reqttired by the pure-copy strategy. Instead, a lower, more
constant rate of work is exhibited. The trials demonstrate that
sustained network transmission speeds are reduced up to 66%.

Figure 4-5 presents the data transfer rates caused by the
migration and remote execution of the Lisp-Del ease under
the different strategies, starting at the time of migration and
ending with the execution of the f'mal remote instruction.

These panels depict the results of a full-IOU transfer of
Lisp-Del, a resident set approach and finally the full-copy
method. The areas in white represent bytes exchanged in
support of imaginary fault activity. Full-copy transfers have a
characteristic signature, with a large bulk data transfer early
on. The resident set panel illustrates that a sizable amount of
data is still physically shipped during the migration phase, but
does not improve the overall time significantly from the pure-

16,000 :::::::::::::::::::::::::: ::

ii!ii ii•ii••iiiiiiiiiiiiiiiiiiiii•iiiiii•••••••••i••i••!iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii•ii••••i••••••••i••••ii!•ii•iiiiiiiiiiiiiiiiiiiiiiii•iii•i••i•••i•••••••••iiiiiiii

0 303
Elapsed time in seconds

16,000 ~ili~i!i~i~i~i~ :::

iiiiiiiii iiii i !i i !i i ii! iiiiiiiiiiiiiiiiiiiii iii ii ii iiiiiiiiiiiiiiiiiiiiiii ii ii i iiiiiiiiiiiiiiiiiiiii!ii ii ii i iiiiiiiiiiiiiiiiiiii ii i i i i i i! ii ! !i i i iiiiii

:: i:: i iiii::.i::::: :::iiiiiiiiii[iiiiiiii!!iii~?iiii?ii!i!iii~i~i~[ii~iii!iiiiii[i~iiiiiiiiii
0 303

Elapsed time in seconds

16,000
o

0 303
Elaosed time in seconds

Figure 4-5: Byte Transfer Rates for Lisp-Del
Network data transfer rates during the migration and remote execution of the Lisp-Del (Delaunay triangulation) program. No

prefetch is being performed. White areas show data transferred in support of imaginary faults, black areas sfiow all other
transfers.

22

IOU approach. Copy-on-reference allows the process to re-
sume execution very quickly. In this case, Lisp-Del finishes
its work shortly after the full-copy trial begins its remote
execution.

4.5. Summary
The trial data collected for the Accent migration facility

reveals several interesting facts about process composition
and behavior. While address space size varies by as much as
a factor of 12,803 in the representative processes, the amount
of ReaIMem only differs by a factor of 15. RealZeroMem
forms a significant portion of every process address space,
more than half in most cases and 99.9% in the Lisp examples.
These representatives touched between 0.002% and 27.4% of
their validated address spaces, and between 3% and 58% of
the RealMera portions, This verifies the assumption that
processes access relatively small parts of their addressible
data.

Process excision and insertion times are also much less
variable in this study, factors of 4 and 3.3 respectively across
the samples. IOU context transfers take roughly one second
in all cases, and thus provide a lower bound for this activity.
Pure-copy transfers vary by a factor of 20, and in the most
extreme case are 1,000 times more expensive than the cor-
responding pure-IOU transfer.

Much less data needs to be communicated between
machines when copy-on-reference tactics are used. On
average, 58% fewer bytes are transferred and message
processing times drop by 47%. Touching remote pages via
the copy-on-reference mechanism is roughly 2.8 times more
expensive than local disk accesses, and this figure can likely
be improved through tuning.

The copy-on-reference variations studied in this system
produced mixed results. Resident sets were found to be poor
predictors of the data required by the process at its remote
site. Since Accent uses its physical memory as a disk cache,
many resident pages are sometimes guaranteed not to be
referenced again, especially by the Pasmac class of processes.
On the other hand, small amounts of page prefetch were
found to always be useful. Prefetching more pages each time
degrades performance in some cases, but greatly aids
programs performing mostly sequential accesses.

5. Related Work
Investigation into process migration began in the early

1970's. Such efforts as the "Creeper" program [11] by Bob
Thomas at BBN and the "Relocatable McRoss" [14] air traf-
fic controller demonstrated migration's feasibility. However,
they did little to address the transparency issues. DCN
[6] added name transparency by associating resources with

processes, but failed to provide location transparency. DCN's
resource names specified the supplying host, and were in-
validated if the resource was moved. The RIG system [4] is
Accent 's direct ancestor and shared many of the same con-
cepts. RIG's ports were visibly tied with the process owning
them, so it suffered from DCN's problem. The DEMOS/MP
operating system [9] was among the first to offer full trans-
parency. Link names contained hints to the location of the
service, and were not invalidated by resource relocation. The

University of Washington's object-oriented Eden [5] system
provided full transparency and migration services, but could
n o t take advantage of a copy-on-reference mechanism.
Eden's objects were forced to reside entirely on a single host.
Darmenberg's Butler [1] made use of an older version of
Accent which did not provide copy-on-reference data ship-
merit, but demonstrated Accent 's suitability for transparent
migration support.

Various systems have attempted different attacks on the cost
of context transfer. The LOCUS [8] remote invocation
facility exploits shared code present at the target site, cutting
down the amount of data that must flow to the new site. This
approach doesn't address the data portions of a process con-
text, including memory-mapped files. Marvin Theimer's
migration facility for the V system [13] tried to hide trans-
mission costs from processes by pre-copying the context in an
iterative fashion before moving the process. Process
downtime was thus reduced, but beth hosts still paid the
transfer costs. Theimer's measurements reveal that this tech-
nique suffers from network buffering problems and overruns.

6. Conclusions
The Accent testbed's use of copy-on-reference address space

transfer has demonstrated its effectiveness in tackling process
migration's dominant cost. Unlike the conventional trans-
mission technique, copy-on-reference avoids the linear
growth in costs as processes address more and more data.
Any distributed system in the same class can expect similar
results in the construction and use of a copy-on-reference
facility.

Studying the Accent example also teaches important lessons
in operating system design. The simple yet powerful port
abstraction and the close integration of IPC and virtual
memory facilities give Accent the transparency needed to
cleanly support migration without sacrificing performance.
These features, along with extensibility through user-level
processes, allows a generic copy-on-reference mechanism to
be built in a natural way. This mode of data transfer has
proven useful in the migration domain, but may be just as
easily applied to any task requiring sparse access to large
tracts of memory.

Copy-on-reference data transmission is inherently more
flexible than the conventional method. Only two variations of
actual data delivery have been explored here. Tasks with
special knowledge of the data requirements they will en-
counter may apply that knowledge to optimize the physical
shipment of data.

This investigation opens many avenues for future research.
The creation and evaluation of automatic migration strategies
appropriate for such systems have not been addressed here.
Good strategies are necessary to capitalize on the inherent
advantages of lazy transfers. Part of this activity will involve
the development of good load metrics which specifically take
into account the fact that a process virtual address space may
be physically dispersed among several computational hosts.
Copy-on-reference may be proven useful in remote file and
database accesses, remote invocation facilities and intelligent
RPCs. It would be interesting to attempt to extend this work

23

to systems allowing shared memory, and to evaluate the ap-
plication of copy-on-reference techniques to a shared central-
ized file system such as Andrew [7].

Although Accent is no longer actively in use at Carnegie
Mellon University, the lessons learned from this work are
being applied to the Math environment [10] currently being
developed there. A successor to Accent aimed at supporting a
wide range of hardware configurations, Mach allows external
pager processes which provide copy-on-reference administra-
tion of data. Study of copy-on-reference behavior in this new
facility will provide further insights on the basic mechanism
in a more modem computing system.

References

1. Roger B. Dannenberg. Resource Sharing in a Network of Per-
sonal Computers. Ph.D. Th., Carnegie Mellon University, December
1982.

2. Peter J. Denning. "The Working Set Model for Program
Behavior". Communications of the ACM 11, 5 (May 1968), 323-333.

3. Robert P. Fitzgerald. A Performance Evaluation of the Integration
of Virtual Memory Management and Inter-Process Communication in
Accent. Ph.D. Th., Carnegie Mellon University, October 1986.
Available as CMU technical report CMU-CS-86-158.

4. Keith A. Lantz, Klaus D. Gradischnig, Jerome A. Feldman and
Richard F. Rashid. "Rochester's Intelligent Gateway". Computer
(October 1982), 54-68.

5. E.D. Lazowska, H.M. Levy, G.T. Almes, M.J. Fischer, R.J.
Fowler, S.C. Vestal. Tbe Architecture of the Eden System. Tech.
Rept. 81-04-01, Department of Computer Science, University of
Washington, April, 1981.

6. David. L. Mills. An Overview of the Distributed Computer
Network. National Computer Conference, University of Maryland,
1976, pp. 523-531.

7. James H. Morris, Mahadev Satyanarayanan, Michael E. Conner,
John H. Howard, David S. H. Rosenthal and Donelson Smith.
"Andrew: A Distributed Personal Computing Environment".
Communications of the ACM 19, 3 (March 1986), 184-201.

8. G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin,
G. Thid. LOCUS: A Network Transparent, High Reliability Dis-
tributed System. Joint Conference on Computer Performance
Modelling, Measurement and Evaluation, ACM, 1986.

9. Michael L. Powell and Barton P. Miller. Process Migration in
DEMOS/MP. Proceedings of the Sixth Symposium of Operating
System Principles, ACM, November, 1983, pp. 110-119.

10. Richard F. Rashid. "Threads of a New System". Unix Review 4,
8 (August 1986), 37-49.

11. 1ohn F. Shoch and Jon A. Hupp. "The 'Worm' Programs - Early
Experience with a Distributed Computation". Communications of the
ACM25, 3 (March 1982), 172-180.

12. CMU Computer Science Department. Proposal for a Joint Effort
in Personal Scientific Computing. Carnegie Mellon University,
August, 1979.

13. Marvin M. Theimer, Keith A. Lantz and David R. Cheriton.
Preemptable Remote Execution Facilities for the V-System. Proceed-
ings of the Tenth Symposium on Operating System Principles, ACM
SIGOPS, 1985, pp. 2-12.

14. Robert H. Thomas and D. Austin Henderson. McRoss - A
Multi-Computer Programming System. Proceedings, Spring Joint
Conference. 1972.

24

