
Goals Guiding Design: PVM and MPI

William Gropp Ewing Lusk
gropp@mcs.anl.gov lusk@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

Abstract

PVM and MPI, two systems for programming clusters,
are often compared. The comparisons usually start with the
unspoken assumption that PVM and MPI represent differ-
ent solutions to the same problem. In this paper we show
that, in fact, the two systems often are solvingdifferent
problems. In cases where the problems do match but the
solutions chosen by PVM and MPI are different, we explain
the reasons for the differences. Usually such differences can
be traced to explicit differences in the goals of the two sys-
tems, their origins, or the relationship between their speci-
fications and their implementations. For example, we show
that the requirement for portability and performance across
many platforms caused MPI to choose approaches differ-
ent from those made by PVM, which is able to exploit the
similarities of network-connected systems.

1 Introduction

The emergence of the cluster as a viable parallel comput-
ing platform, even scaled into the supercomputer range, has
been enabled by the simultaneous emergence of message-
passing libraries that have made it possible to map parallel
algorithms onto them in a portable way. PVM and MPI have
been the most successful of such libraries.

PVM [10] and MPI [19, 20] are both specifications1

for message-passing libraries that can be used for writing
portable parallel programs. Recent books on building clus-
ters, both for Linux [26] and for Windows [27], contain
chapters on using both MPI and PVM. Since there are freely
available versions of each, users have a choice, and begin-
ning users in particular can be confused by their superficial
similarities. Several comparisons of PVM and MPI have
been carried out since the mid-1990s [18, 17, 12, 23, 16].
We consider it worthwhile to do so again for two reasons.

1We treat the Oak Ridge version of PVM as represented by [5, 11] as
the PVM specification. MPI is represented by the MPI-2 specification.

The most obvious is that some convergence has recently
taken place in the functionality offered by the two systems
(e.g., dynamic processes in MPI, static groups and mes-
sage contexts in PVM), and the very different approaches
taken in these extensions merit comment. Equally impor-
tant, however, is the fact that previous analyses have fo-
cused on local, feature-by-feature comparisons, describing
similarities as well as differences. Such feature-by-feature
comparisons can be misleading, particularly when the two
systems use the same word for different concepts. For ex-
ample, an MPI group and a PVM group are really quite
different objects, although they have superficial similari-
ties (e.g., in MPI, sources and destinations are relative to
a group, while in PVM sources and destinations are always
absolute in terms of the “task ids”).

We prefer to analyze the differences in PVM and MPI by
looking first at sources of these differences. The structure of
this paper is as follows. In Section 2 we review the explicit
design goals of the MPI Forum. In Section 3, we review the
similarities between PVM and MPI, leading us in Section 4
to discuss the consequences of separating implementation
from design. In Sections 5, 6, 7, and 8, we show how these
sources have influenced differences between PVM and MPI
in the areas of dynamic processes, contexts, nonblocking
operations, and portability, respectively. In Section 9 we
focus on those aspects of MPI that go beyond the message-
passing model. This paper expands an earlier version [16].
Among the additions here are discussions of parallel I/O,
the safety of contexts, and a subtle performance issue in
multiparty communications.

2 MPI’s Goals

Rather than go through each specification feature by fea-
ture, we will discuss some of the explicit design goals that
were established by the MPI Forum before it undertook to
specify the details. In many cases these goals dictated de-
tails of the specification (such as the contents of individual
function parameter lists). Where these details differ from
the corresponding details in PVM, out goal-oriented ap-



proach will elucidate the sources of the differences. In addi-
tion to differences in explicit goals, we will note a few dif-
ferences more attributable to the origin of the two systems.
PVM was the effort of a single research group, allowing it
great flexibility in design and also enabling it to respond in-
crementally to the experiences of a large user community.
Moreover, the implementation team was the same as the
design team, so design and implementation could interact
quickly. In contrast, MPI was designed by the MPI Forum
(a diverse collection of implementors, library writers, and
end users) quite independently of any specific implemen-
tation but with the expectation that all of the participating
vendors would implement it. Hence, all functionality had
to be negotiated among the users and a wide range of im-
plementors, each of whom had a quite different implemen-
tation environment in mind.

The first task of the MPI Forum was to define the goals
that would guide its subsequent discussions. Some of these
goals (and some of their implications) were the following:

† MPI would be a library for writing application pro-
grams, not a distributed operating system. This goal
has implications for resource management issues, as
discussed in Section 5.

† MPI would not mandate thread-safe implementations,
but its specification would allow them. Thread safety
implies that there can be no notion of a “current”
buffer, message, error code, and so on. As the “nodes”
in the network become symmetric multiprocessors,
thread safety becomes increasingly important in a het-
erogeneous, networked environment.2 Recent experi-
ences from vendor implementations of a thread-safe
MPI (in particular, the IBM implementation [30]) con-
firm that the MPIdesignis thread-safe.

† MPI would be capable of delivering high performance
on high-performance systems. Hence, no memory
copies would be mandated by the design. Scalability,
combined with correctness, for collective operations
required that groups be “static”. An open research
problem is finding semantic definitions and appropri-
ate algorithms that allow dynamic groups to meet these
same requirements.

† MPI would be modular, to accelerate the development
of portable parallel libraries. Modularity has many im-
plications. For example, all references must be rela-
tive to a module, not the entire program. Consider a
module that solves a system of linear equations on an
arbitrary subset of processes; the ability to restrict the

2There is a project to join threads with PVM (TPVM [9]), but this is
more a lightweight process model than a fully threaded model and, as such,
does not offer as rich a programming model as a fully thread-safe model
would.

module to a subset of processes is needed by domain
decomposition methods and for multidisciplinary ap-
plications. Hence, process source/destination must be
specified by rank in a group rather than by an absolute
identifier, and context must not be a visible value (see
Section 6). Some other implications of modularity are
described below.

† MPI would be extensible to meet future needs and de-
velopments. This requirement led to an object-oriented
approach without a commitment to an object-oriented
language. This approach required functions to manip-
ulate the objects, and was one minor reason for the rel-
atively large number of functions in MPI (large here
is relative to C and Fortran programs; C++ and Java
programmers are used to large numbers of functions).

† MPI would support heterogeneous computing (the
MPI Datatype object allows implementations to be
heterogeneous), although it would not require that all
implementations be heterogeneous.

† MPI would require well-defined behavior (no race con-
ditions or avoidable implementation-specific behav-
ior).

For simplicity, the MPI Forum sought to make each ap-
proach solve as many of these goals as possible. For ex-
ample, datatypes solve both heterogeneity and noncontigu-
ous data layouts, both for messages and for files. Similarly,
communicators combine both process groups with commu-
nications contexts.

The MPI standard has been widely implemented and is
used nearly everywhere, attesting to the extent to which
these goals were achieved. See [15] for a discussion of
the importance of these goals to the success of MPI (or any
method for parallel programming).

PVM had, with the exception of support for hetero-
geneous computing and a different approach to extensi-
bility, different goals. In particular, PVM was aimed at
providing a portable, heterogeneous environment for us-
ing clusters of machines using socket communications over
TCP/IP as a parallel computer. Because of PVM’s focus on
socket-based communication between loosely-coupled sys-
tems, PVM places a greater emphasis on providing a dis-
tributed computing environment and on handling commu-
nication failures.

3 What is Not Different?

Despite their differences, PVM and MPI certainly have
features in common. In this section, we review some of
the similarities and, in the process, correct some common
misconceptions about the MPI specification. In most cases
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these misconceptions arise because of confusion between
specification and implementation.

Both PVM and MPI areportable; the specification of
each is machine independent, and implementations are
available for a wide variety of machines, particularly those
likely to appear in clusters.

Once a system is portable, the issue ofhomogeneitycan
be addressed. Can two processes on different machine ar-
chitectures communicate with one another despite differ-
ences in byte ordering in memory or even word length?
To this end PVM provides thepvm pack/unpack func-
tions and the datatype arguments topvm send/recv ;
MPI does the same with its more generalMPI Datatype
argument to many routines. Of course, someimplemen-
tationsof MPI, particularly those from hardware vendors,
may not be used in a heterogeneous environment, but the
MPI specification is designed to encourage heterogeneous
implementations, and both the MPICH [13] and LAM [2]
implementations support heterogeneous environements.

Both MPI and PVM permit different processes of a par-
allel program to execute different executable binary files.
(This would be required in a heterogeneous implementa-
tion, in any case.) That is, both PVM and MPI support
MIMD programs as well as SPMD programs, although
again some implementations may not do so, and launch-
ing MIMD programs may be less convenient than launching
SPMD programs. Both MPICH and LAM support MIMD
programming.

A final issue is that ofinteroperability. This term refers
to the possibility of communicating among processes linked
with two completely different implementations. We discuss
this issue, and provide further comments on portability and
heterogeneity, in Section 8.

In summary, both MPI and PVM are systems designed to
provide users with libraries for writing portable, heteroge-
neous, MIMD programs. In comparing issues, one must not
confuse the MPI specification with a particular implemen-
tation subcase, such as thech p4 device of MPICH, which
is widely used on clusters but does not define MPI.

4 Implementation and Definition

One common confusion in comparing MPI with PVM
comes from comparing the specification of MPI with the
implementation of PVM. Standards specifications tend to
specify the minimum level of compliance, while any im-
plementation offers more functionality. In the MPI Forum,
many such “added-value” features are listed as expected of
a “high-quality implementation”.

Error handling and recovery are a good example. Stan-
dards tend not to mandate specific behavior on errors, other
than to list error indicator values. The expectation is that
high-quality implementations will give users what they ex-

pect. Specific implementations can easily define their indi-
vidual handling of errors. Thus, most MPI implementations
do not simply abort when an error is detected; just as the
PVM implementation does, they attempt to provide a useful
error indication and allow the user to continue. Specifically,
in any system, there are recoverable and nonrecoverable er-
rors. An example of a recoverable error is an illegal argu-
ment to a routine, such as a null-pointer or an out-of-range
value. A nonrecoverable error is one where the program
may not be able to continue. In many applications, access-
ing an invalid address or attempting to execute an invalid or
privileged instruction is nonrecoverable. The MPI standard
does not specify which errors are recoverable, though there
has been some discussion in this direction. This is an exam-
ple of the determination of the MPI Forum to maintain max-
imum portability—mandating any specific behavior would
limit the portability of MPI. Note that even for PVM, some
systems provide a less “recoverable” environment than oth-
ers. For example, systems with proprietary interconnects
may kill all processes when any one exits.

Another source of confusion involves features of a par-
ticular implementation that are exposed to the programmer.
Consider thepvm reg tasker routine that allows a pro-
cess to indicate to PVM that it, rather thanfork/exec ,
should be used to start tasks. This is an powerful hook to
allow extension of the PVMimplementationby special ap-
plications, such as debugger servers and batch schedulers.
MPI, as a standard, has no such object, but specific MPI
implementationscan and do provide similar services; for
example, the MPICH implementation of MPI provides a
process startup hook used by the TotalView [29] debugger.
The MPI standard does not specify how implementations
are to provide this service; as a standard, it should not. At
the same time, the experience with TotalView has defined
an interface that MPI implementations (not just MPICH)
can use, allowing any debugger to access this information
[4]. We note that some PVM implementations for mas-
sively parallel processors (MPPs) also do not provide the
pvm reg tasker routine. This is an example of the free-
dom of PVM to provide features only in some environ-
ments. As a standard, MPI does not have that freedom. If
the MPI standard had mandated such a routine, any MPI
implementation would have to provide it. Instead, MPI’s
explicit goals mandated that it choose portability over cer-
tain kinds of functionality.

When we compare implementations rather than an im-
plementation of PVM with the MPI standard, the gap in this
type of functionality narrows. For example, MPICH [13],
rather than MPI, does provide a way for debuggers like To-
talView to access to internal MPICH state on the message
queues. Many users want this information, but it raises an
interesting issue: How does one define a standard for the in-
ternal state of an implementation? For any implementation
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this can be done, but different implementations may have
different internal states. For example, one optimization for
communication has the process issuing anMPI RECVsend
a message to the expected source of the message, allow-
ing the sender to deliver the message directly into the re-
ceiver’s memory [21]. Should this information be presented
to the user? Other implementation choices might elimi-
nate some queues altogether or make it more difficult to
find all pending communication operations; in fact, in the
MPICH implementation, there is no send queue unless the
system has been configured and built to support the mes-
sage queue service. By not specifying a model of the inter-
nals of an MPI implementation, such as defining a “message
queue” does, the MPI standard allows MPI implementations
to make tradeoffs between the performance and functional-
ity that the users want.

5 Dynamic Processes

One way to understand the differences between PVM
and MPI is to look at the MPI features for creating and at-
taching to processes. While the two approaches may seem
similar, they are actually quite different. Perhaps the great-
est difference is in the handling of resource information that
is used to determine where to create the new process. This
reflects a difference in the approach to providing distributed
operating system support by PVM and MPI. PVM, through
its virtual machine (implemented as the PVM daemons)
provides a simple yet useful distributed operating system.
Special interfaces, such as thepvm reg tasker , allow
the PVM system to interface with other resource manage-
ment systems. MPI does not mandate or define a virtual
machine, even in MPI-2. Rather, it provides a way, through
a new MPI object (MPI Info ), to communicate with what-
ever mechanism is providing distributed operating system
services. That mechanism may well be a parallel virtual ma-
chine; several implementations already use distributed dae-
mons to start and manage MPI jobs. But we emphasize that
daemons are not required by the MPI specification. This
feature is important for extreme-scale architectures, where
the very existence of local daemons may be impractical.

To understand the difference, consider the resources that
an application may want to specify when creating a new
process:

Any system that can run an RS/6000, AIX 4.y
(y ‚ 3) executable, with 4 memory banks and at
least 512 MB of memory, 400 MB of/tmp , and
a load of< 2, and is able to run for 48 hours, with
access to/home/me and the runtime libraries for
xlf version 3.4.5 or 3.4.6 but not 3.4.7 or 3.4.4.

Such a specification is complicated, and probably beyond
what would be expected from a parallel programming sys-

tem. But it is well within the capabilities of advanced re-
source management systems. How should a parallel com-
puting system interface with such a system? The choices
are (a) pick a small subset that all systems can support,
(b) define a general and generic, but fully expressive, sys-
tem, or (c) provide an interface that allows information to
be passed, in an implementation-specific manner, to the re-
source system.

PVM chose (a)3; this is the most convenient form for
many users, particularly if the default choices are adequate.
More demanding users want (b); this gives them the max-
imum portability without sacrificing too much expressiv-
ity. Unfortunately, (b) has two drawbacks—it isn’t exten-
sible, and it assumes that there is a well-defined interface
that users agree on.4 These drawbacks led the MPI Forum,
which spent a great deal of time trying to find a solution like
(b), to choose (c). In MPI, this is the “info” argument to an
MPI Commspawn command:

MPI_Comm_spawn(worker_program,
MPI_ARGV_NULL,
universe_size-1,
info_for_resource_manager, 0,
MPI_COMM_SELF, &everyone,
MPI_ERRCODES_IGNORE);

Just like filenames, the specific contents of “info” depend on
the implementation. MPI specifies a few predefined items,
such as working directory and architecture. Other infor-
mation can be passed directly to the local resource man-
ager. For example, an MPI implementation could provide
a way to pass the above example to the resource manager.
MPI implementations are required to ignore unrecognized
fields; this strategy encourages users to provide extra infor-
mation when possible. Note that theMPI Info object is
also used in the file I/O section of MPI-2 to provide per-
formance hints. This is another example of MPI using the
same feature to solve multiple goals.

Another difference between MPI and PVM shows up in
the presence ofpvm config and the lack of an MPI equiv-
alent. Thepvm config function provides information on
the virtual machine. This information can be used by the
programmer to attempt to manage resources directly, for ex-
ample, by specifying particular hosts inpvm spawn . Why
doesn’t MPI provide a similar function?

The problem is that the information that any command
can provide on the environment is immediately out of date.
For example, even in PVM, between the timepvm config

3PVM-aware resource managers such as Condor and LoadLeveler can
provide more complex services, but this is outside of the PVM program
itself and is specific to the particular resource manager in use. Portable
PVM programs cannot rely on such services.

4Several systems are specific to particular resource managers such as
LoadLeveler and LSF (Load Sharing Facility), but there is no consensus
on which of these, or which combination of features, should be adopted.
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is called andpvm spawn is called, another PVM applica-
tion may have executedpvm delhosts , thus invalidating
the information provided bypvm config . As the num-
ber of items grows larger and more complex, the likelihood
that some critical item will be out of date increases (con-
sider space in/tmp or load average). In the PVM case, the
impact of this problem is somewhat mitigated by the fact
that each user has a personal parallel virtual machine. Of
course, a single user may have multiple parallel jobs run-
ning at the same time (e.g., under the control of a system to
explore a parameter space), so the problem is not eliminated
by providing single user virtual machines.

The MPI Forum discussed this situation at great length
but could find no workable solution. This is an example
of a “race condition,” a situation in which the user is in a
race with other users and the system and where the “ex-
pected” behavior depends on the user’s winning the race.
It is also another example of the tradeoff in user conve-
nience and precise system behavior. Naturally, one would
like to perform the operations PVM provides. But one can-
not guarantee that the resources described will exist when a
process is created.

Hence, theMPI Commspawn call combines process
creation with information on the needed resources. Com-
bining operations is a classic approach for solving race con-
ditions, and this solution is used in many places in MPI.
Eliminating race conditions makes many operations in MPI
collective. Note that the PVM 3.4pvm newcontext [5]
presents a race condition in the delivery of the new context
value to other processes; MPI solves this problem by mak-
ing context creation collective over all processes that will
use the context. Note that the race isremovedby this ap-
proach, not just moved into the MPI implementation.

Because of the presence of such race conditions, MPI
also forms the MPI communicator (roughly similar to a
PVM group and context) at the same time as creating
the processes. For the same reason, MPI provides an
MPI Commspawn multiple routine that allows MPI to
create processes for a large collection of different executa-
bles in a single operation.

Another difference in the handling of process creation is
in the use of MPI intercommunicators. An MPI intercom-
municator represents two groups of processes that commu-
nicate with each other. It is a natural representation for cre-
ated processes: one group represents the children and one
group represents the parents (multiple parents are allowed
in MPI to avoid race conditions). In PVM, created pro-
cesses have only one parent; this reflects PVM’s use of the
fork/exec or system spawn model of process creation as
separate from connecting processes for communication.

6 Contexts

Writing parallel programs is notoriously difficult. One
solution is to accelerate the development of parallel li-
braries, with the expectation that end users will access par-
allelism through libraries rather than by invoking message-
passing functions directly. Thus an original goal of the MPI
design was to provide the functionality needed by libraries
and missing in most message-passing systems of the time.

The single greatest impediment to the use of parallel li-
braries has been the lack of modularity. In its simplest form,
this impediment manifests itself when a message sent by a
library is received unexpectedly by either user code or an-
other library. The solution lies incontexts[8]. (Readers not
familiar with the notion of context should see the discussion
of contexts in Section 2.3 of [14].)

The treatment of contexts illustrates how a combination
of features can affect future enhancements. Following MPI,
PVM 3.4 adds contexts; unlike MPI, these are user-visible
integers that may be sent from process to process and oth-
erwise manipulated by the user. They are also guaranteed
to be globally unique; PVM can ensure uniqueness because
there is a single virtual machine. MPI’s contexts are opaque
and defined only by their effect in MPI operations; while
a simple implementation could make them globally unique,
that is not required (and, for scalability reasons, may not be
desirable).

Consider the case of two parallel programs that wish to
connect to each other. Both MPI and PVM provide a way to
do this. But the PVM approach requires that both programs
belong to a single PVM virtual machine. The decision to
make the PVM context a visible, explicit integer means that
programs belonging to different PVMs cannot safely con-
nect, because they may already have the same “unique” con-
text id. It also means that different PVMs cannot be merged
into a single PVM, since again previously unique context
integers would no longer be unique. Using an external ser-
vice (such as a context value server) to allocate contexts
simply pushes the problem to a different level without solv-
ing it. In addition, there is the very real issue that users may
choose to ignore the problems of distributing a visible mes-
sage context and pick a fixed value. This can lead to subtle
problems and was one reason that the MPI Forum made the
context value opaque. The MPI approach sacrifices some
flexibility (explicit, unique context values) for the extensi-
bility offered by a more modular and encapsulated design.
The PVM design is backward-compatible but not as safe.

7 Nonblocking Operations

Nonblocking operations (e.g.,MPI Isend ) are often
misunderstood as a “performance” optimization. In fact,
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these are necessary when constructing any large, com-
plex communication system. They should be distinguished
from asynchronousoperations. A nonblocking operation
is simply one that does not block the calling process. An
asynchronous operation usually implies that it continues to
take place concurrently with other operations. (Note that
the PVM documentation sometimes uses “asynchronous”
where MPI would use “nonblocking” and sometimes uses
nonblocking.)

MPI provides an extensive set of nonblocking operations
(MPI Isend , MPI Irecv , MPI Ibsend , etc.). PVM
does not provide nonblocking operations in the MPI sense
(pvm nbrecv is really what MPI would call a “probe”).
MPI provides such operations not only to allow for over-
lapping communication, but also to make it easier to write
portable, correct programs.

Consider the program running on two processes
shown in Figure 1, in the case wherepvm setopt(
PvmRoute, PvmRouteDirect ) has been called.
Does this program work? The answer depends on the size of
the messages (size ), the particular platforms (MPP, work-
station networks, or symmetric multiprocessors), and even
the environment (e.g., free swap space). For short messages,
the program will almost always work. At some message
size, on the other hand, it will fail, since the messages must
be bufferedsomewhereoutside the program itself; the pro-
grams will hang, each waiting for the other to execute the
pvm precv . This may seem unusual, but programs that
process large amounts of data can easily exceed the amount
of available buffering.

Again, tradeoff exists between user convenience and pre-
cise behavior by the interface. MPI is careful to specify
the kind of buffering behavior and to provide alternative
solutions to the problem of writing reliable programs: a
buffered send (MPI Bsend ) with a guaranteed amount of
(user-controlled) buffering, or nonblocking operations. The
degree to which users want such programs to work was
shown by the public reaction to the MPI 1 draft that did not
provide a buffered send; the MPI Forum added the buffered
send to satisfy this need. See [14] and [25] for a more de-
tailed introduction to MPI’s handling of buffering.

The MPI Forum attempted to define the conditions when
MPI Send could be safely used (and in fact, most ven-
dors currently document these and provide some control by
way of environment variables). Defining such conditions,
however, requires mandating a particular implementation
model. The most obvious model is not scalable in its use
of memory; more complex models are harder for users to
work with and further constrain implementations.

We note that the Unix socket interface provides a so-
lution much like the MPI nonblocking operations, though
somewhat less convenient for the user. A socket can be set
so thatread or write returns rather than blocking, using

the error codeEAGAINto indicate that the operation would
block. This allows careful users to avoid deadlock in their
applications. POSIX also defines a form of nonblocking
operation even more like the MPI nonblocking operations:
theaio read , aio write , aio error , aio return ,
and aio cancel interface for asynchronous I/O. These
routines have a test operation (aio error returns 0 when
an operation is complete andEINPROGRESSwhen not
complete) and a cancel operation. Asynchronous I/O has
been used for years in large-scale scientific computing; the
MPI approach is not unusual.

A more subtle need for nonblocking operations comes
from considering the performance of communication pat-
terns involving more than two processes. Consider four pro-
cesses communicating with the program

MPI_Irecv( ..., nbr1,..., &request[0] );
MPI_Irecv( ..., nbr2,..., &request[1] );
MPI_Send( ..., nbr3, ... ); /* 1 */
MPI_Send( ..., nbr4, ... ); /* 2 */
MPI_Waitall( 2, requests, statuses );

This code looks fine but has a subtle problem. If the sends
labeled with the comment/* 1 */ on two processes tar-
get the same receiver, then they may suffer a performance
degradation because of limits on how fast any process can
receive data (for example, limited by network bandwidth).
If instead the code was

MPI_Irecv( ..., nbr1,..., &request[0] );
MPI_Irecv( ..., nbr2,..., &request[1] );
MPI_Isend( ..., nbr3, ..., &request[2] );
MPI_Isend( ..., nbr4, ..., &request[3] );
MPI_Waitall( 4, requests, statuses );

the MPI implementation can send the data for the sends us-
ing request[2] and request[3] at the same time,
maximizing the use of the available network bandwidth.
Accomplishing the same efficient use of the network re-
sources is possible with blocking operations but requires
very careful ordering of operations (and hence much more
difficult programming) than in the nonblocking case.

8 Portability, Heterogeneity, and Interoper-
ability

Portability refers to the ability of the same source code to
be compiled and run on different parallel machines.Hetero-
geneityrefers to portability to “virtual parallel machines”
made up of networks of machines that are physically quite
different. Interoperability refers to the ability of different
implementations of the same specification to exchange mes-
sages. In this section we compare PVM and MPI with re-
spect to these three properties.
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Process 1 Process 2
pvm_psend( ..., size, ... ) pvm_psend(..., size, ... )
pvm_precv( ) pvm_precv( )

Figure 1. Head-to-head communication

Both PVM and MPI had portability as an original goal.
As we have seen, MPI’s very strict adherence to this prin-
ciple prevented it from having some features desirable on
workstation networks precisely because they could not be
implemented in all environments. PVM, defined primarily
by a single implementation for workstation networks, has
more freedom to add features appropriate for that environ-
ment, but at the cost of making some PVM programs not
portable to more restrictive environments.

Portability is an underappreciated issue. PVM is consid-
ered by many to be highly portable, and in fact the PVM
group has done an excellent job in providing implemen-
tations across a wide range of platforms, covering most
Unix systems and Windows [24]. But the designers of MPI
had to consider running on systems that were neither; in
fact, MPI has even been used in embedded systems (see
http://www.mc.com ). MPI could not assume that any
particular operating system support was available; the de-
sign of MPI reflects this constraint. Some users have com-
plained that MPI does not mandate support for certain Unix
features, when in fact features such as standard input, pro-
cess creation, and signals are absent in many important,
non-Unix systems.

Support for heterogeneity is provided in both spec-
ifications. PVM has separate functions to pack spe-
cific data types into buffers; MPI uses basic and derived
datatypes. The MPI specification does not mandate hetero-
geneous support, however; that is up to the implementation.
LAM [2], CHimP [1], and MPICH [13] are implementa-
tions of MPI that can run on heterogeneous networks of
workstations.

Interoperability is outside the scope of the user program,
and entirely up to the implementation. Some vendor im-
plementations of PVM are neither heterogeneous nor in-
teroperable with the Oak Ridge version of PVM. The MPI
standard does not mandate implementation details, and thus
MPI implementations, of which there are many, typically
are not interoperable.

Thus, “interoperability” of MPI matches that of PVM.
Versions of thesameimplementation (Oak Ridge PVM,
MPICH, or LAM) are interoperable. True interoperability
is among completelydifferentimplementations, matched at
the level of the wire protocol.

A separate effort (not part of the MPI Forum) has devel-
oped an “interoperability standard” called IMPI that pro-
vides sufficient standardization for some implementations

details so that implementations conforming to this standard
can exchange messages. IMPI is now available [3] and sev-
eral vendor implementations exist.

9 Beyond Message Passing

The evolution of parallel computing has taken us beyond
simple message passing. One area that MPI-2 has devel-
oped is remote-memory operations. These operations sup-
port put, get, and accumulate operations in a “one-sided”
manner. Maintaining MPI’s commitment to heterogeneity,
even these analogues of “store into array” are defined to
operate in a heterogeneous environment. MPI uses MPI
datatypes and a new MPI object, a “window” (MPI Win),
to provide this capability. Maintaining MPI’s commitment
to performance and scalability as well as adaptability to a
wide range of environments, MPI-2 introduces a number of
ways to synchronize access to the shared data areas, includ-
ing support for the bulk synchronous programming (BSP)
model. These functions have already been implemented by
several vendors (HP, Fujitsu, and Cray). PVM provides no
similar functionality.

Parallel I/O is another area where MPI-2 provides a rich
set of performance-oriented operations. As with all MPI op-
erations, these support heterogeneous systems and allow the
user to choose between forms optimized for a particular sys-
tem (“native”) or for interoperation with other environments
and MPI implementations (“external32”). These facilities
are fully integrated with MPI’s other functions. In PVM’s
case, while there are some projects such as PIOUS [22], no
integrated parallel I/O capability exists. This situation re-
flects the differences in the orientation of the two systems:
many of the parallel I/O functions are collective and are best
defined in terms of static groups, such as MPI defines. PVM
eventually added static groups, but they are not as fully de-
veloped as the groups in MPI, which has a comprehensive
set of operations for manipulating and performing collective
communication and computation using scalable algorithms.
MPI datatypes have also proved to be critical in obtaining
high performance in I/O operations [28].

PVM provides more support for fault tolerance and re-
covery by exposing to the programmer some of the prop-
erties of sockets. MPI does less, in the interest of greater
portability. Fault tolerance in MPI is an important research
topic. The work on FT-MPI [6, 7] has shown what can be
done if one is willing to change some of the fundamental

7



semantics of the MPI specification.

10 Conclusion

In this paper we have focused on a few of the many dif-
ferences between MPI and PVM. We have shown that the
differences between MPI and PVM remain profound, de-
spite some convergence. These differences are accountable
for if one bears in mind their quite different origins and
goals.
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