Distributed Transactions for Reliable Systems

Alfred Z. Spector, Dean Daniels, Daniel Duchamp,
Jetfrey L. Eppinger, Randy Pausch

Department of Computer Science
Carnegie-Mellon University

Abstract

Facilities that support distributed transactions on user-defined
types can be implemented efficiently and can simplify the con-
struction of reliable distributed programs.. To demonstrate these
points, this paper describes a profotype transaction facility,
called TABS, that supports objects, transparent communication,
synchronization, recovery, and transaction management. Vari-
ous objects that use the facilities of TABS are exemplified and
the performance of the system is discussed in detail. The paper
concludes that the prototype provides useful facilities, and that it
would be feasible 1o build a high performance implementation
based on its ideas.

This work was supported by IBM and the Defense Advanced Research Projects
Agency, ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory
urder Contract F33615-81-K-1538, and by graduate fellowships from the National
Science Foundation and the Office of Nava! Research.

The views and conclusions contained in this dacument are those of the authors
and should not be interpreted as representing the official policies, either
expressed or implied, of any of the sponsoring agencies or the US gavernment.

.

Accent is a trademark of Carnegie-Mellon University. Perq i3 a trademark of

Perq Systems Corperation. TAB is a trademark of the Coca-Cola Company.

Permission to copy without fee all or part of this marerial is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission: of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/ar specific permission.

© 1985 ACM-0-89791-174-1-12/85-0127 $00.75

127

1. Introduction

General purpose facilities that support distributed transactions
are leasible to implement and useful in simplifying the
censtruction of reliable distributed applications. To justify this
assertion, this paper describes the design, implementation, use,
and performance of TABS [Spector et al. 85], a prototype facility
that supports transactions on user-defined abstract objects. We
attempt to generalize from our experiences with the prototyps,
particularly in the sections on the usage and performance of
TABS.

We define a distributed transaction faciiity as a distributed
collection of components that supports not only such standard
abstractions as processes and inler-process communication, but
also the execution of transactions and the implementation of
objects on which operations can be performed. Although there
is room for diversity in its exact functions, a distributed
transaction facility must make it easy to initiate and commit
transactions, to call operations c©n -objects from within
transactions, and to implement abstract types that have correct

synchronization and recovery properties.

Transactions provide three properties that should make them
uselul in a variety of distributed applications [Lomet 77, Liskov
82, Spector and Schwarz 83]. Synchronization properties, such
as serializability, guarantee that concurrent readers and writers
of data do nrot interfere with each other. Failure atomicity
simplifies the maintenance of invariants on data by ensuring that
updates are not partially done.
programmers the luxury of knowing that only catastrophic
failures wilf corrupt or erase previously made updates.

Pérmanence provides

Certainly, these properties of transactions are useful m
database applications {Gray 78, Date 83]. Datahase applications
are typically characterized by the need for absolute data
integrity, permanent updates, and careful synchronization
between processes that access large quantities of shared data.
When considering the application of transactions to other
domains such as the construction of distributed operating
systems and real time systems, there are questions pertaining to
what transaction facilities should be provided, how they should

be implemented o achieve adequate pertormance, and where
they should be used. For example, a typical question is whether
the recovery and synchronization technigues that are suitable for
database systems have sufficient performance and flexibility to
support transactions on user-defined shared abstract types in
other applications. Quite a few research projects in addition to
our own are considering these issues [Liskov and Scheifler
82, Alichin and McKendry 83, Birman et al. 83, Diel et al.
84, Jensen and Pleszkoch 84].

The next section surveys the underlying models and
techniques on which this research is based and provides
necessary background into the function, implementation, and
use of transaction facilities. The reader who is expert in
distributed transaction processing may be able tc skip most of
this section and read only the summary in Section 2.1.4.
Following this survey, Section 3 describes the interface and
implementation of TABS.

Section 4 shows how the TABS prototype is used 1o support
varipus abstract data types including arrays, queues, directories,
replicated directories and reliable terminal displays. Although
these objects do not constitute user-level applications, they
represent rather important building blocks. The primary goal of
this section is to show how the TABS interface is used and
thereby highlight its strengths and weaknesses.

Section 5 describes the performance of the TABS prototype on
a variety of benchmarks, both in terms of execution time and in
terms of primitive operations. This performance evaluation
permits us to predict the effect of changes to the system {e.g.,
combining certain TABS processes or reduced message passing
times) and conclude that high performance general purpose
transaction facilities based on the ideas of TABS are feasible.
Section 6 contains a brief comparison of TABS with two
important related systems, R’ [wWitiams et al. 81] and
Argus [Liskov et al. 83). Section 7 contains the conclusions of
this research project and directions for future work.

2. Background

This section surveys the research and development that has
influenced this work and identifies many of the algorithms and
paradigms that we have used. The discussion is divided into two
parts. The first discusses the fundamental issues in
implementing distributed . transactions on abstract objects
focusing on the objects themselves, distribution, and transaction
processing. The second part discusses the use of distributed
transactions.

2.1, Distributed Transactions on Abstract Objects

2.1.1. Abstract Objects

Abstract cobjects are data or input/output devices, having
distinct names, on which collections of operations have been

128

defined. Access to an object is permitted only by these
operations. A queue object having -‘operations such as
Enqueue, Dequeue, EmptyQueue is a typical data object, and
a CRT display having operations such as WriteLine, and
ReadLine is a typical 1/O object. Objects vary in their lifetimes
and their implementation. The notion of cbject presented here is
similar to the ciass construct of Simula[Daht and Hoare 72},
packages in ADA [Department of Defense 82], and the abstract
objects supported by operating systems such as Hydra [Wulf et
al. 74]. The operating system work has tended to emphasize

authorization — an issue not addressed here.

Many models exisl for implementing abstract objects that are
shared by multiple processes. In one model, objects are
encapsulated in protected subsystems and accessed by
protected procedure calls or capability mechanisms [Saltzer
74, Fabry 74]. TABS uses another model, called the client/server
model, as a basis for implementing abstract objects [Watson 81].
Servers encapsulate one or more data objects. They accept
request messages that specify operatiops and a specific object.
To implement cperations, they read or modify data they directly
control and invoke operations on other servers. After an
operation is pertormed, servers typically send a response
message containing the result. Servers that encapsulate data
objects are called Data Servers in TABS, Resource Managers in
R’ [Lindsay et al. 84], and Guardians in Argus [Ligkov et al. 83].

Message transmission mechanisms and server organizations
differ among implementations based upon the client/server
madel. In these aspects, TABS is substantially influenced by the
Accent opperating system kermel’ on which it was
developed [Rashid and Robertson 83]. Accent provides
heavyweight processes with 32.bit virtual address spaces and
supports messages that are arbitrarily long vectors of typed
information, addressed to ports. Many processes may have send
rights to a port, but anly one has receive rights. Send rights and
receive rights can be transmitted in messages along with
ordinary data. Large quantities of data are efficiently conveyed
between processes on the same machine via copy-on-write
mapping into the address space of the recipient process. This
message model differs from that of Unix 4.2 [Joy et al. 83] and
the V Kernel [Cherilon 84a] in that messages are typed
sequences cf data which can contain port capabilities, and that
large messages can be transmitted with nearly constant
overhead.

The programming effort associated with packing and
unpacking messages is reduced in TABS through the use of a
remote procedure call facility called Matchmaker [Jones &t al,
85]. (We use the term remote procedure call to apply to both
intra-node and inter-node communication.) Matchmaker's input
is a syntactic definition of procedure headers and its outputs are
client and server stubs that pack data into messages, unpack
data from messages, and dispatch to the appropriate procedures
on the server side.

Servers that never wait while processing an operation can be
organized as a loop that receives a request message, dispatches
to execute the operation, and sends a response message.
Unfortunately, servers may wait for many reasons: to synchronize
with other operations, to execute a remote operation or system
call, or to page-fault. For such servers, there must be multiple
threads of control within a server, or else the server will pause or
deadlock when it needn’t.

One implementation approach for servers is to allogate
independently schedulable processes that share access to data.
With this approach, a server is a class of related processes — in
the Simula sense of the word "class." An alternative approach is
to have multiple lightweight pracesses within a single server
process. Page-faults still cause all lightweight processes to be
suspended, but a lightweight process switch can occur when a
server would otherwise wait. Although this approach does not
permit servers to exploit the parailelism of 2 multiprocessor, it
was easy to implement on Accent, and TABS uses it. The topic of
server organization has been clearly discussed by Liskov and
Herlihy {Liskov and Herlihy 83].

Before leaving the topic of abstract objects, it is necessary to
discuss how objects are named. Certainly, a port to a server and
a fogical object identifier that distinguishes between the various
objects implemented by that server are sufficient to name an
object. The dissemination of these names ¢an be done in many
ways. A common method is for servers to register objects with a
well known server process on their node, often called a name
server, and for the name server to return one or more [port,
logical object identifier] pairs in response to name lookup
requests. Name servers can cooperate with each other to
provide transparent naming across a network.

2.1.2. Distribution

Replicated and partitioned distributed objects are feasible to
implement in the client/server model. For example, there may be
many servers that can respond identically to operations on a
replicated object. However, servers must contain the replication
or partitioning logic. The TABS project hypothesizes that the
availability of transaction support substantially simplifies the
maintenance of distributed and replicated objects.

Transparent inter-node message passing can simplify access
to remote servers. In the Accent environment, inter-node
communication is achieved by interposing a pair of processes,
called Communication Managers, between the sender of a
message and its intended recipient on a remote node [Rashid
and Robertson 81]. The Communication Manager supplies the
sender with a local port to use for messages addressed to the
remote process. Together with its counterpart at the remote
node, the Communication Manager manages the network and
implements the mapping between the local port used by the
sender and the corresponding remote port belonging- to the
target process.

129

There has been considerable reszarch aimed at providing
high-performance inter-process communication mechanisms.
Local and inter-node message facilities can be optimized with the
use of simplified protocols, machine registers, microcode, and
careful coding [Nelson 81, Spector 82, Birrell and Nefson
84, Cheriton 84b]. The TABS Project assumes that high
performance communication systems can be constructed, but it
has not invested the effort to build one for the prototype.
However, TABS has been careful to use datagrams for
communication during transaction commit; more costly commu-
nication based on sessions is used only for the remote procedure
calls that implement operations on remote data objects. R’ also
uses both datagram and session-based communication [Lindsay
etal. 84].

2.1.3. Transactions

Although the concept of a transaction has been defined
precisely in the literature [Eswaran et al. 76, Gray 80], TABS does
not require that objects enforce serializability, failure atomigity,
or permanence. Certainly, support exists for the standard
notions, but transactions are permitted to interfere with each
other and te show the effects of failure — if this is useful. In
other words, TABS provides basic facilities for supporting many
different type of objects and lets the implementors choose how
they want to use them.

Many techniques exist for synchronizing the execution of
transactions. Locking, optimistic, timestamp, and many hybrid
schemes are frequently discussed; these are surveyed by
Bernstein and Goodman [Bernstein and Goodman 81]. TABS has
chosen to use locking [Date 83]. Ta obtain synchronized access
to an object, a transaction must first obtain a fock on all or part of
it. A lock is granted unless another transaction already holds an
incompatible lock.

TABS chose to use locking for two reasons. First, locking is an
efficient synchronization mechanism that has been used
successiully in many commercial data management systems.
Second, because servers implemeant locking locally, they can
tailor their locking mechanism to provide betler performance.
With type-specitic locking, implementors can obtain increased
concurrency by defining type-specific lock modes and lock
protocois [Korth 83, Schwarz and Spector 84, Schwarz 84).
Type-specific locking requires use of a specialized compatibility
relation to determine whether a lock may be acquired by a
particular transaction.

Locking restricts the flow of information between transactions
by detaying operations on shared data, even if that delay leads to
a deadlock. Some systems implement local and distributed
deadlock detectors that identify and break cycles of waiting
transactions [Obermarck 82, Lindsay et al. 84]. However, TABS,
like many other systems, currently relies on time-outs, which are
explicitly set by system users [Tandem 82].

Recovery in TABS is based upon write-ahead Jogging, rather
than shadow paging [Lorie 77, Gray 78, Lindsay et al. 79, Gray et
al. 81, Lampson 81, Haerder and Reuter 83, Schwarz 84]. To
discuss write-ahead logging, it is first necessary to discuss the
three-tiered storage model on which it depends. Storage
consists of volatile storage — where portions of objects reside
when they are being accessed, non-volatile storage — whera
objects reside when they have not been accessed recently, and
stable storage — memory that is assumed to retain information
despite lailures. The contents of volatile storage are lost after a
system crash, and the contents of non-volatile storage are lost
with lower frequency, but always in a detectable way.

In recovery techniques based upon logging, stable storage
contains an append-only sequence of records. Many of these
records contain an undo component that permits the effe_cts of
aborted transacticns to be undone, and a redo component, that
permits the effects of committed transactions to be redone.
Updates to data objects are made by modifying a representation
of the object residing in volatile storage and by spooling one or
more records to the log. Logging is called "write-ahead"
because log records must be safely stored (forced) to stable
storage before transactions commit, and before the volatile
representation of an object is copied to non-volatile storage.
Because of this strategy, there are log records in stable storage
for all the changes that have been made to non-volatile storags,
and for all committed transactions. Thus, the log can be used to
recover from aborted transactions, system crashes and
non-volatile storage failures.

The advantages of write-ahead logging over other schemes
have been discussed elsewhere and include the potential for
increased concurrency, reduced /0 activity at transaction
commit time, and contiguous allocation of objects on secondary
storage [Gray et al. 81, Traiger 82, Reuter 84]. All cbjects in
TABS use one of two co-existing write-ahead logging techniques
and share a common log.

The simpler technique is value logging, in which the undo and
redo portions of a log record contain the old and new values of at
most one page of an object's representation. During recovery
processing, cbjects are reset to their most recently committed
values during a one pass scan that begins at the last log record
written and proceeds backward. [f this value logging algorithm is
used, only one transaction at a time may modify any individually
logged component of an object that is to be failure atornic and
permanent.

The other technique is calied operation (or transition) logging.
With it, data servers write log records containing the names of
operations and enough infermation to invoke them. Operations
are redone or undene, as necessary, during recovery processing
to restore the correct state of objects. An important feature of
this algorithm is that operations on multi-page objects can be
recorded in one log record. The operation-based recovery

130

algorithm also permits a greater degree, of concurrency than the
value based recovery algorithm and may require less log space.
However, it is more complex, and it requires three passes over
the log during crash recovery, instead of the single pass needed
for the value-based algorithm. The TABS recovery algorithms
are similar to other previously published write-ahead log-based
algorithms [Gray 78, Lindsay et al. 79)], and are fully described by
Schwarz [Schwarz 84].

Both value and operation logging algorithms require that
periodic system checkpoints be taken. Checkpoints serve to
reduce the amount of log data that must be available for crash
recovery and shorten the time to recover after a crash [Haerder
and Reuter 83]. At checkpoint time, a list of the pages currently
in volatile storage and the status of currently active transactions
are written to the iog. Some systems also force certain pages to
non-volatile storage and abort transactions that have been
running for a long time. To reduce the cost of recovering from
disk failures, systems infrequently dump the contents of
non-volatile storage into an off-line archive.

Recently, researchers have begun to discyss high performance
recovery implementations that integrate virtua! memory manage-
ment with the recovery subsystem and use higher performance
stable storage devices [Traiger 82, Banatre et al. 83, Stonebraker
84, Diel et al. 84]. Section 3 discusses how virtual memory
management and recovery are integrated in TABS.

The most important component of a transaction facility not yet
discussed is the one that commits and aborts transactions.
Commit algorithms vary in their
robustness [Lindsay et al. 79, Dwork and Skeen 83]. TABS uses
a tree-structured variant of the 2-phase commit protocol, in
which each node serves as coordinator for the nodes that are its
children. Though 2-phase commit is simple and efficient, it does
have failure modes in which nodes participating in a distributed
transaction must restrict access to some data until other nodes
recover from a crash. TABS could use ane of the other commit
algorithms that do not have this deficiency.

efficiency and

As a final point in the implementation of transactions, the
increased in building nested abstractions using
transactions has led to the investigation and implementation of
facilities for supporting nesting [Reed 78, Moss 81, Liskov et al.
83]. These facilities fimit the concurrency anomalies that can
occur within a single transaction that has simultaneous threads
of control, and they permit portions of a transaction to abort
independently.

interest

TABS has a limited subtransaction facility, which was very easy
to implement. it can be characterized by its synchronization and
commit policies. With respect to synchronization, a subtrans-
action behaves as a completely separate transaction. This
provides protection between simultaneous threads of control,
but may cause intra-transaction deadlock if two subtransactions
update the same data. With respect to commit, a subtransaction

is not committed until its top-level parent transaction commits,
but a subtransaction can abort without causing its parent
transaction to abort. Subtransactions that can abort
independently permit their parent to tolerate the failure of soms
operations.

2.1.4. Summary of Implementation lssues

The major points of this development can be tersely
summarized: TABS supports transactions on abstract objects.
Objects are processes, and
operations on objects are invoked via messages with a remote
procedure call facility to reduce the programming effort of
packing, unpacking, and dispatching. inter-node communi-
cation uses both sessions and datagrams. Inter-transaction
synchronization is done via lacking, with time-outs used to
resolve deadlock. Write-ahead logging is the basis of recovery
and transaction commit is done via the tree structured two-phase
commit protocol. A limited subtransaction model is imple-
mented.

implemented within server

2.2. Use of Transactions

Currently, transactions are primarily used to support the
higrarchical, relational, and networked abstract types used in
database systems. Date surveys these abstract types and
describes some aspects of their implementation [Date 83]. The
literature contains many descriptions of more general types, and
thete are some implementations of these. For example, Lomet,
Weihl and Liskov, and Schwarz and Spector have written about
buffer, directory, queue, and mailbox types [Lomet 77, Weihl and
Liskov 83, Schwarz and Spector 84], and there have been a few
experimental transactional file systems, e.g., one described by
Paxton {Paxton 79].

The properties provided by these transactionai types simplify
abstractions that are built on them. For example, the invariants
needed for the replicated objects described by Gifford, Bloch et
al., and Herlihy [Gifford 79, Bloch et al. 84, Herlihy 84] are easier
to maintain. The availability of distributed transactions make it
easier to generate R™s query execution ptans [Daniels Sé]. The
integrity guarantees of a mail system, such as one sketched by
Liskov, are also simplified. More collections of abstract types,
combined into larger and more diverse applications, will
undoubtedly be developed as general purpose transactions
facilities become more prevalent. (See Section 4 for a discussion
of abstract types that we have buiit.)

3. An Experimental Design -
The TABS Prototype
The TABS Prototype is implemented in Pascal on a collection

of networked Perq workstations [Perg Systems Corporation 84]
running a modilied version of the Accent operating system. At

each node, there is one instance of the TABS facilities and one
or more user-programmed data servers and/or applications.
Data servers are programmed with thé aid of system supplied
libraries for doing synchronization and recovery, and for
petforming a data server's role during two-phase commit.
Applications initiate transactions and call data servers to perform
operations on objects. The library interfaces to TABS are
described in detail in Section 3.1.

Apptication Apptication
Object |

N Recoverable
Object IObject | Processes
Data Server Data Server
Recovery Transaction
Manager Manager

N— TABS

System

Communication Name Components
Manager Servar
Accent Kernal

131

Figure 3-1: The Basic Components of a TABS Node

The TABS facilities are made up of four processes that run on
Accent (see Figure &.1). The processes, called Name Server,
Communication Manager, Recovery Manager, and Transaction
Manager, perform name dissemination, netwark communication,
recovery and log management, and transaction management,
respectively. Section 3.2 briefly describes the implementation of
these TABS processes and our modifications 1o Accent,

TABS began to operate in the Fall of 1984, and all the facilities
described in this paper are operational with one exception.
Operation-based recovery and the necessary type-specific
locking is not supported in the TABS libraries, lthough the
operation-based algorithm has been tested and integrated with
the value-based algorithm. The system contains about 51,000
lines of Matchmaker, Pasmac macro language [Lansky 80], and
Pascal sources. This count includes one data server and
application that we use in testing releases, but it does not include
the changes we have made 1o the Accent kernel.

3.1. The Tabs Programming Interface

The interface to TABS is provided by three libraries. The server
library, used only by data servers, supports shared/exclusive

Routine

Purpose

InitServer(ServeriD)

ReadPermanentData{DiskAddress)
. returns (VirtualAddress, DataSize)

RecaverServer
AcceptRequests(DispatchFunction)

CreateObjectDIVirtualAddress, léngth)
returns {ObjectiD)

ConvertObjectiDtoVirtualAddress(ObjectID)

returns {VirtualAddress)

LockCGbject(ObjectlD, LockMade)

ConditionallyLock(Object(ObiectID, LockMode)

returns {Boolean)}

IsObjectLocked(ObjectiD)
relurns (Boolean)

PinQbject{ObjectID}
UnPinObject(ObjectID)
UnPinAllObjects
PinAnd8ufter(ObjectiD)
LogAndUnPin{ObjectiD}
tockAndMark(ObjectiD, LockMade)
PinAnd8ufferMarkedObjects
LagAndUnPinMarkedObjects

ExecuteTransaction(TransectionProcedure)

Startup
Startup

Startup
Startup
Address Arithmetic

Address Arithmetic

Locking
Locking

Lacking

Paging Control

Paging Control

Paging Control

Paging Control, Logging
Logging, Paging Cantral
Locking

Paging Control, Logging
Paging Control, Logging

Transaction Management

Table 3-1: The Complete TABS Server Library

This table summarizes the library routines used by data servers. The rautine names have bean made as explicit as possible; 8
description of their function may be found in the accompanying prose. The types of the parameters and return values are
shown as well as lhe general purpose of each routine. Routines used both by data servers and applications arg shown in

Tables 3-2 and 3-3.

The
transaction management library provides routines for controlling

locking, vaiue logging, and miscellanecus utilities.

the execution of transactions. The name server library pravides
access to TABS name dissemination services. The use of many
routines from these iibraries is itlustrated in Section 4.

3.1.1. The Server Library

The functions that make up the server library fall into six broad
calegories. These categories are listed beside the procedure
headers of the library routines in Table 3-1.

Four procedures are used to initialize the data server.

InitServer initializes server library data structures, and
ReadPermanentData maps the data server’s recoverable data
into virtual memory. (See Section 3.2.1.) RecoverSesver
accepts the log records that the Recovery Manager reads from
the log. This procedure understands the format of the feg
records written by the server library routines during forward
processing, and calls the server library’s undo/redo code to
Once the

virtual memory copy of the recoverable data is consistent, the

restare the data to a transaction-consistent state.

132

data server calls AccepiRequests. This routine takes a
procedure argument that dispatches on operation request

messages.

Since a programmer works with virual addresses but the log
manager works with disk addresses contained in CbjectiDs, data
servers must do address translation. The routines
CrealeObjectlD and ConvertObjectiDioVirtualAddress
perform these conversions.

Three routines support locking. LockQbject altempts to
it the lock is not available.
ConditionallyLockObtject also attempts to acquire a lock, but
it returns immediately if the lock is unavailable.
IsObjectilocked returns true it and only if a lock is set. Al
unlocking is done automatically by the server library at commit or
abort time.

acquire a lock, and waits

Paging control operations prevent the kernel from paging an
object to secondary storage. They are used to ensure that an
object's permanent representation is not changed belore all
maodifications to it have been logged. PinOhject pravents the
kernel from paging an object to secondary storage until
UnPinObject or UnPinAlIObjects is called.

The paging contrgl operations are usually performed as side
effects of logging routines. PinAndBuffer pins the specified
object and then copies the existing {old} value of the object into a
butfer in anticipation of a modification. After the modification is
made, LogAndUnPin sends the (buffered) old value and the
existing (new) value to the Recovery Manager and unpins the
object.

The checkpoint proiocol requires that data servers not wait
{e.g., for a lock) while cbjects are pinned. One approach to
meeting this requirement is to set all locks before any
modifications are performed. The server library facilitates this by
providing three routines: LockAndMark locks the specified
object and enqueues a reference to the object on a “to be
modified" queue. PinAndBufierMarkedObjects pins every
ohject on the queue and copies each ohject’s current {old) value
into buflers. LogAndUnPinMarkedObjects sends to the
Recovery Manager the (bultered) old vaiue and existing (new}
value for each object on the queue When all the old and hew
values are logged, LogAndUnPinMarkedObjects unpins all
the objects and deletes the queue.

The remaining routine, ExecuteTransaction, takes a
procedure argument and exscutes that procedure within a new
top-level transaction.

Lightweight processes use a corouting mechanism embedded
within every data server. The server library treats each incoming
request as a separate coroutine invocation. A coroutine switch is
performed only when an operation waits, e.g., for a lock or for
starting a transaction. The server library contains additional
code that automates a data server's participation in transaction
commit, abort, and checkpoint.

3.1.2. The Transaction Management Library

The routines in the transaction management library provide a
standard interface 1o transaction management funclions (see
Table 3-2). BeginTransaction creates a subtransaction of the
specified transaction. To create a new top-levet transaction, 8
special null is given as the argument.
EndTransaction and AbortTransaction initiate commit and

TransactienlD

abort of the specified transaction, respectively. The
TransactionlsAborted exception is raised in the application
process if the specified transaction has been aborted by some
other process.

3.1.3. The Name Server Library

The abstractions represented by data servers are permanent
entities that must persist despite node failures, even though the
ports through which they are accessed change. The TABS Name
Server implements an interface that allows a single name to be
mapped to one or more {part, LogicalObjectldentifier> pairs.
A data server has the cption ol servicing operation requests for
several objects on the same port, and independent data server
processes can together implement replicated objects. The most
important routines in the Name Server library are summarized in
Table 3-3.

Routing

Register{Name, Type, Port, ObjectiD)
DeRegister(Name, Port, ObjectiD)

LookUp{Name, NodeName, DesiredNumber0tPortIDs, MaxWait)
returns(ArrayCfPortiDPairs, ReturnNumbesOfPartiDs)

Table 3-3: The TABS Name Server Library

Routine

BeginTransaction({TransactionlD)
returns(NawTransactioniD)

EndTransaction{TransactionID)
returns(Baalaan)

AbartTransaction(TransactionID)

TransactionlsAbarted(TransactionID}
[exception)

Table 3-2: The TABS Transaction Management Library

133

3.2. Implementation of TABS

Most of the operations TABS libraries provide to data servers
and applications are implemented by the TABS System
components and the Accent kernel. The modifications 1o the
kernel and the TABS system compenents are summarized in this
section and described in more detail in a recent paper [Spector
etal. 85].

3.2.1. The Accent Kernel

The failure atomic and/or permanent data stored by data
servers are stored in disk files that are mapped into virtual
memory. These files are called recoverable segments. When
mapped intc memory, the kernel's paging system updates a
recoverable segment directly instead of updating paging
storage [Eppinger and Spector 85].

To support the write-ahead log algorithms used by TABS, the
kernel sends three types of messages to the Recovery Manager.
The first message indicates that a page frame that is backed by a
recoverable segment has been modified for the first time. The
second message indicates that the kernel wants to copy a
modified page back to its recoverable segment. The kernel does
not write the page until it receives a message from the Recaovery
Manager indicating that all log records that apply to this page

have hbeen written to non-volatile storage. The third and final
message indicates whether the contents of a page frame have
been successiully copied 1o a recoverable segment.

In addition to the special messages that support the
write-ahead log algorithms, the Accent Kernel also implements
the paging control primitives of the server library.

A final modification to Accent has been made to support the
TABS operation logging recovery algorithm. This algorithm
requires that the kernel atomically write a sequence number
each time it copies a page of a recoverable segment to
non-volatie storage. This sequence number {currently, 39 bits)
is stored in header space that is available on a Perq disk sector.
The Recovery Manager sends the sequence number 1o the
kernel in the message that indicates that the page can be written
to disk. During crash recovery, the Recovery Manager sends a
reguest 1o the kernel when it wishes to read a page’s sequence
number.

3.2.2. Recovery Manager

The Recovery Manager coordinates access to the log. The log
should be on stable storage; but, because of cur Perg hardware
restrictions (only cne disk), the non-volatile storage used for the
log is not stable. Hence, we do not consider disk failures in this
wark.

The Recovery Manager wriles log records in response to
messages sent by data servers, the Transaction Manager, and
the Accent kernel. Log records written in response to kernel
messages help to identify (al recovery time) the pages that were
in memory at crash time. All log records are written into a volatite
buffer until the buffer fills or until the buffer is forced to
non-volatile storage by either the write-ahead-log or commit
protocols. Upon transacticn abon, the recevery manager follows
the backward chain of log records that were written by the
transaction and sends messages to the servers instructing them
to undo their efects.

After a node crash, the Recovery Manager scans the log one or
more times. It directly interprets the recovery fog records, but it
must pass transaction management records back to the
Transaction Manager. The Recovery Manager then queries the
Transaction Manager o discover the state of the transaction.
Based on this information, the Recovery Manager gives each
data server instructions to redo or undo previously performed
aperations. In this way the Recovery Manager assures that
cbjects in recoverable segments reflect only the operations of
committed and prepared transactions.

The last function of the Recovery Manager is to coordinate
checkpoints, After a crash, the Recovery Manager must read the
pertion of the log written after the last checkpoint. Depending on
the contents of the checkpoint record, earlier sections of the log
may also be read, but the most recent checkpoint record
contains enough information to determine when crash recovery

134

will be complete. In our system, checkpoints are performed at
intervals determined by the transaction manager or when the
system is close to running out of log space. In the latter instance,
the Recovery Manager runs a reclamation algorithm that
attempts to reclaim log space. Log reclamation may force pages
back to disk before they would otherwise be written.

3.2.3. Transaction Manager

The Transaction Manager’s major responstbilities are imple-
menting commit protocols and allocating globally unique
transaction icentifiers. Application processes and data servers
send the Transaction Manager messages 10 begin a transaction,
o attempt to commit a transaction, or to force a transaction to be
aborted. The tree-structured two-phase commit protocol used
by Transaction Manager is based on a spanning tree where a
node A is a parent of another node 8 if and only if A were the first
node to invoke an operation on behaif of the transaction on
B. The information about a node's relation to the nodes directly
above and below it in the spanning tree is kept by its
Communication Manager. '

There are two messages that processes send to inform the
Transaction Manager of the progress of a transaction. The first
is sent by a data server the first time it is asked to perform an
operation on behalf of a particular transaction; doing s¢ enables
the Transaction Manager to know which servers it must inferm
when the transaction is being terminated. The other message is
sent by the Communication Manager the first time an inter-node
message is sent or received on behalf of a particular transaction.
This message indicates that there are remote sites that have
servers active on behalt of the given transaction. At this point,
the Transaction Manager becomes aware that remote sites are
involved in the transaction, but it cannot yet identify these sites.
The complete site list is obtained from the Communication
Manager during commit processing.

The existence of subtransactions in the TABS model does not
complicate transaction management. The same messages that
are used to inform the Transaction Manager about top-level
transactions are used for subtransactions. The only regard in
which transaction processing differs is that subtransactions can
be aborted without requiring the parent transaction to abort,
Subtransactions, however, may not be committed before their
parents. When a parent transaction commils or aborts, its
subtransactions are committed or aborted as well.

3.2.4. Communication Manager

The Communication Manager is the only process that has
access 1o the network. It implements three forms of network
communication: datagrams for the distributed two-phase
commit; reliable session communication for implementing
remote procedure calls; and broadcasting for name lookup by

the Name Server.

For session communication, two Communication Managers
cooperate to provide at-most-once, ordered delivery of
arbitrary-sized messages. The Communication Manager detects
permanent communication failures and, thereby, aids in the
detection of remote node crashes. The Communication Manager
also scans any transaction identifters included in messages and
is responsible for constructing the local portiont of the spanning
tree that the Transaction Manager uses during two-phase
commit. In particular, the Communication Manager records the
node’s parent, whether the transaction was initiated by a remote
node, and the list of all the node’s children. It also records a
small amount of additional informatien that is used for detecting
some types of node crashes.

3.2.5. Name Sarver

in TABS, the Name Server process on each node maintains a
mapping of object names to one or more <port,
logical-object-identifier> pairs for all the pbjects managed by
data servers on that node. Whenever the Name Server is asked
about a name it does not recognize, it broadcasts a name lookup
request to all other Name Servers. If the broadcast is successful,
the Communication Managers on the local and the remote
machine automatically establish a session between the
requesting node and the data server implementing the named
object.

4. The TABS Prototype In Use

This section presents five of the data servers we have
implemented with the TABS prolotype: The integer array server,
the weak queue server, the 1O server, the B-tree server, and the
replicated directory objecl.
server, and replicated directory object all preserve the
seriglizability, failure atomicity, and permanence of the
transactions that invoke them. The IO server provides a
permanent, non-failure atomic object, and the weak queue server
provides a permanent, failure atomic object that is not
serializable.

The integer array server, B-tree

4.1, The Integer Array Server

The integer array server maintains an array of (one word)
integers, and provides the following abstract cperations:

FUNCTION GetCell{cellNum: integer):
integer; -

PROCEDURE SetCeli{cellNum: integer;
value: integer);

The two operations supported by the integer array server are
simple enough that the best descriptioh is the Pascal code that
implements one of them. Note that the virtual address of a cell is
obtained by adding the proper offset to the base of the
recoverable segment.

135

FUNCTION SetCell(arrayPort:port;
transaction:tid;
cel1Num: integer:
valua:integer): GensrslReturn;

{ for RPC }

{ SetCel] sots array[celiNum] to contain ‘value' }

VAR
obj: ObjactID; { object for the cell }
size: 1integer; { the size of a call)}

BEGIN

IF (cellkum >= 1} AND (cellNum <= maxCe11) THEN
BEGIN .
size := WordSize{intager);
obj := CreateQbjectID{basaOfArray +

(collNum-1) ® size, 3iz¢):

LockObject{ob]), Write);
PinAncButter{obj):
obj.ptrt :» value: { do the assignment }
LogAndUnPin{obj):
SetCell := Success;
END

ELSE SetCell := IndexOutDfRange;

END;

The implementation of GetCell is very similar, and the
combined code for both operations requires 50 lines of Pascal.
The balance of the 140 fines of code in the integer array server
perform mpdule imports and initialization. The integer array
server is a very straightforward data server; it uses only the
two-phase locking, vaiue logging techniques found in many
transaction-based systems. The data servers described below
take more advantage of the flexibility of TABS.

4.2. The Weak Queue Servey

The weak gqueue server provides access to a weak queue,
sometimes called a semi-queue [Weihl and Liskov 83, Schwarz
and Spector B4]. In a weak queue, items in the queue are not
guaranteed to be dequeued strictly in the order that they were
enqueued. Relaxing the strict FIFO nature of the queue aflows
greater concurrency while retaining failure atomicity. The weak
queue server provides the following abstract operations:

PROCEDURE Enqueve(data: integer);

FUNCTION Dequeue: integer;
FUNCTION IsQuaueEmpty: boolean;

The gueue is implemented as an array of individually 'ockable
elements, with head and tail pointers bounding the currently
used section of the array. Because gaps may exist in the range
between the head and tait pointers, each element in the array
contains both its contents and an extra bootean, InUse,
indicating whether that element actually contains a value that is
currently stored in the queue. Enqueue and Dequeue set and
clear this InlUise bit, and if they abort, this bit is restored along
with the previous contents of the element. The head poinier is a
permanent, failure atomic object. The tail pointer can be
recomputed after crashes by examining the head pointer and
Intise bits, so it is kept in volatile storage.

To add a new item to the queue, Enqueue places the item in
the element below the tail pointer, sets that element's InUse bit
to true, and sets the tail pointer to the new element. If the
Enquewe later aborts, this will leave a gap in the array when the
InUse bit is reset to false. Because the tail pointer is not locked,
the weak queue server relies on the monitor semantics of TABS
coroutines to ensure that only a single fransaction at a time can
update the tail pointer.

Dequeue is more complex, because elements in the array may
not be legally dequeued for either of two reasons: If an element
is locked, another operation is still manipuiating it; If an element’s
inUse bit is False, the Enqueue of that element aborted, or the
element has already been successfully removed. Deqgueue
scans elements starting at the head pointer, using the
IsObjectiLocked primitive, and then testing the InUse hit.
When an unlocked element whose InUse bit is True is found,
Dequeue locks it and returns its contents.

Enqueue and Dequeue both read the head pointer to check
for a full queue. Dequeue does not alter the head pointer
because this would restrict concurrency. The head pointer must
eventually be moved, however, or the queue will fill. Abstractly,
one imagines a “"garbage collection” operation that gets
randomly invoked and moves the head pointer past any elements

that are not locked, and whose InUse bits are False. The current.

implementation does the garbage coliection as a side effect of
Enqueue.

The weak queue server is 380 fines of Pascal code. Hs design
prompted the addition of the ConditionaliylL.ockObject and
IsObjeciLocked primitives 1o the server library. Much of the
wark that went into creating the weak queue server dealt with
mapping the logical operations on the queue into manipulations
ol data with the value logging mechanisms. For this reason, we
believe that certain abstract data types are more suited to
operation logging than value logging.

4.3. The Input/Quiput Server

The IO server extends the domain of TABS to include the
bitmap display by restoring the screen contents alter a failure,
and by giving the user a comfortable model of transaction-based
input/output. The current implementation uses character
input/output in a standard typescript fashion. Recovering the
screen is straightforward; TABS runs within a window manager
that provides overiapping, rectangutar windows. Restoring the
screen requires keeping track of a window's contents and
locatien in a recoverable s.egment.1

Providing a good user model of transaction-based 10 is more
complex. Writing to a terminal is often cited as the caronical

1The aasiest way to test whether windows are restared to the carrect location
is fo mark display screens with greese pencils. This leads lo research an
chemicals that remove grease penci markings from display screens ..

136

non-recoverable action. An obvious approach is to buffer ail
output and only display it if the transaction commits, but this
technique fails for conversational transactions. The 10 server
displays all output as it occurs, in a style that indicates the
current state of the transaction that performed the output. While
a transaction is in progress, the, output is -displayed in gray, to
indicate its tentative nature. If the transaction commits, the
output is redrawn in black, to indicate that the operation really
occurred. 1t the transaction aborts, lines are drawn through the
output. This is preferable to making the cutput disappear, which
is disconcerting to the user. Users know that an operation has

not really happened until its qutput is displayed in black,

Pleage type your name and hit RETURN - SHT_Bear]
Heflo, Yogi Beat, pleass type your account number ~>12]

Actount: 12 Checking balance: 300 Savings talance: §37
Deposit to Checking or Savings (hit Q to quit) ~>ENSEKiNg)
how much to deposit ko checking (hit Q to quit) ->F3

Account: 12 Checking balancer 333 Savings balance: 837

B || cooumt! 33 :Chesting batinice 505+ Suvligs-bali
| wuchacas o Criscasig of Suvlips (iQ Wiy
B [Ihow - iricohi s it i Pt itk (it S gl 53

Figure 4-1: Sample Disptay Screen
This is an actual snapshot of the current 1IQ server running a trivial bank
implementation. This exampie exhibits the tO server; the bank application alse
uses the integer array server to stora its infarmation.

In area one, the user successfulty depasited 35 dollars to a checking accaunt.
The user knew thal the aclion had occurred (committed), because its output was
displayed in black. In area two, the user attempted to withdraw 80 doliars from &
checking account, but the nude lailed during the transaction, causing it to abort
The 10 server restored the screen when the system became availabte, and the
user is currently trying again in area three, where the transaction is still in
progress. The rectangles drawn around user inpul indicate that the characters
have been read by the application,

Multiple input/output areas are maintained an the screen, to
allow for concurrent interaction with the user. The abstract

aperations are:

FUNCTION ObtainIQarea: ioArealD;

PROCEDURE DestroylOarea {icArea: ioArealD);

PROCEDURE WriteToArea {ioArea: ioArealD;
data: String);

PROCEDURE WriteinToArea (icArea: ioArealD;
data:String);

FUNCTION ReadCharfromArea(icArea: ioArealD):
Char;

FUNCTION ReadLineFromArea(ioArea: ioArealD):
String;

To display output even after a client transaction later aborts,
the 10 server maintains permanent, non-failure atomic data in an
array of characters for each area. Rather than having the client
modify this array, the [0 server uses
ExecuteTransaction to invoke a new top-level transaction to

transaction

write the data for each operation. If the client transaction aborts,
the characters stored via the ExecuteTransaction will not be
altered.

In order to display the output of a transaction, the IG server
needs to determine the status (aborted, committed, or in
progress) of the transaction. The Transaction Manager cannot
provide this facility, because doing so would require retaining an
infinite amount of log data. When a transaction establishes
ownership of an area, the IO server uses ExecuteTransaction
to write aborted into a state object in the data structure for the
area. The IO server then has the client transaction lock the state
object and set it to contain committed. This causes an old
value/new value pair of aborted/committed to be written in the
log for the client transaction. The 10 server can now determine
the transaction’s current state by using the IsObjectLocked
primitive. If the state object is locked, the client transaction is
still in progress. If the object is no longer locked, then the
transaction has finished. If the state object contains aborted, the
transaction aborted, and the object was reset by the recovery
mechanisms. QOtherwise, the object contains committed, and the
10 server knows that the transaction must have committed.

The implementation is 2500 lines of Pascal code, and, like the
weak queue server, Uses the ability to test if an object is currentfy
locked. The 10 server also provides an example of a data server
that needs to invoke transactions of its own in order to process
requests. The IO server is interesting because it extends the
domain of the transaction model.

4.4, The B-Tree Server

The B-tree server maintains arbitrary collections of directory
entries in B-trees, and is being used in an implementation of
replicated directories. The B-tree server provides the standard
operations on multi-key directories: add, delete, modify, etc.
Indices on non-primary keys are implemented as separate
B-trees, each of which points to the primary key B-tree's leaves
which contain the data.

Because the B-tree server dynamically allocates storage within
the recoverable segment,
recoverable storage allocator. If a transaction uses an operation
that allocates storage, and the transaction later aboris, the
The B-tree server

it was necessary to create a

memory is made available for re-use.
maintains a separate storage pool for each size object *hat it
allocates, and allocates blocks from the pool using techniques
similar to the weak queue server. This technique works for fixed
sized blocks, but cannot be used for variable size block
allocation, which will be implernented in future data servers using
operation-based logging.

137

The B-tree server was originally implemented as a Pascal
program running outside the TABS environment, By using the
LockAndMark, PinAndBufferMarkedObjects, and
LogAndUnPinMarkedObjects primitives, we were able to use
most of the existing code intact. These routines allowed us to
avoid bracketing every assignment in the original program with
PinAndBuffer and LogAndUnPin calls, in order to avoid
having data pinned when requesting other locks. The total
modifications, including initialization and storage allocation
changes, increased the size of the B-tree server from 4500 to
5000 lines of Pascal code.

4.5, A Replicated Directory Object

The replicated directory object provides an abstraction
identical to a conventional directory but stores its data in muyltiple
directary representative servers on different nodes. The
replicated directory uses our variation of Gifford's weighted
voting algorithm for global coordination [Gifford 79, Daniels and
Spector 83, Bloch et al. 84]. Each of the directory representative
servers uses a B-tree server to actually store the data, and
requires another 2700 lines of code to perform iocalized
functions for the voting algorithm. The interface to client
programs is provided by a module that does gfobal coordination
of the voting, and is implemented as 1100 lines of code that are
linked in with the client program.

The replicated directory object demonstrates many of the
facilities of the TABS prototype: Aborting transactions that use
the replicated directory requires recovery on muitiple nodes, and
committing transactions requires the global coordination
protocols for multiple node commit. Qur tests so far involve 3
nodes, which permits one node to fail and have the data remain
available.

4.6. Evaluation of Data Servers

The data servers that have been created cover a good range of
the design space, although we have currently restricted our data
servers to use standard read/write locking and value fogging.
Most of the advantages of the system are easy to overlook
because they involve simply having a system in the first place.
For example, recovery, synchronization, and communication
mechanisms exist as tools that are refatively easy to use.
Moreover, these tools are not mechanically imposed, which has
made it possible to t0 add new primitives easily, and to build
several data servers that use these tools in novel ways.

These flexible tools underscore our major claim: Many
interesting data servers are difficult, if not impossible, to build
using traditional read/write locking. In support of this claim, we
note that all the data servers except the integer array server
required the addition of primitives to circumvent the locking
mechanism, and that even with these additions, the imple.
mentors were required to use unnecessarity complex algorithms

and/or unprotected reads of data. We intend to explore the
type-specific locking capability of TABS with future data servers.

Our second claim is: Value logging is inconvenient for
non-array implementations. The implementors of the weak
queve server, the IO server, and the B-tree server storage
allocator initially sketched simple designs that used operation-
based logging. The eventual implementations were complicated
by the use of valus logging. The use of operation-logging,
type-specific locking, and value logging where appropriate will
provide a rich environment for re-implementing existing data
servers, and creating new ones.

5. Analysis of TABS Performance

This seclion presents analylical and experimental evidence
supporting our hypothesis that it is possible to implement
elficiant general purpcse faciiities that support distributed
transactions. This evaluation permits us to describe the
performance and limitations of the current implementation, and it
parmits us to predict how well TABS would work it it used more
efficient underlying primitives and were more tightly integrated.
The analysis presented in this paper is an application of a
performance evaluation methodology for predicting the cost of
transaction execution (latency and resource utilization) under
conditions of no load [Spectar and Daniels 85)2.

The section continues by describing a collection of
benchmarks and characterizing them in terms of the repeated
execution of primitive operations. We use both this
characterization and an empirical performance study to describe
the performance of TABS and to predict how it would perform if
improvements were made.

$.1. A Microscopic Approach to Transaction System
Performance Evatuation

The performance of a commercial transaction processing
system can be described macroscopically by its performance on
standard work loads [Anonymous et al, 85]. This approach is not
sufficient for our evaluation of TABS for two reasons. First, the
work loads encountered by a general purpose facitity supporting
ahsiract types are not easily characterizable. Second,
throughput rates or latencies, by themselves, do not lead to an
understanding of how individual algorithms and implementation
decisions have affected system performance. Hence, we need to
understand more microscopic effects to critique our system and
to predict the eflects of algorithmic or structural changes.

To describe TABS performance, we have chosen to measure
the performance of a collection of benchmarks from which it is

2his mathodology does nat address the effects of consurrent ransaction
execution on performance, sven though TABS fully supports the necessary

synchrgnization.

138

possibte to deduce the performance of other transactions. To
iHustrate this deduction process, consider two benchmarks: one
is a read-only transaction that performs one remote read
operation on data in primary memory, and the other is a similar
transaction that performs five remote read operations on data in
primary memory. From these two transactions, it is possible to
deduce the amount of time to perform an incremantal
non-paging, remote read operation. The benchmarks, which are
described below, are as simple as possible consistent with their
forming a basis for estimating the performance of other
transactions.

The execution times of benchmarks, while useful for predicting
the performance of other transactions, do not explain how
transaction performance changes as a function of algorithmic or
underlying system changes. Nor do the execution times of
benchmarks shed light on the resources that they use. To
provide this additional information requires a more complex
analysis. The analysis that we propose is based on the notion
that each benchmark is sybstantially made up of the repetitious
execution of a collection of primitive operations, such as disk
reads or inter-node datagrams. These primitives bhave
counterparts in all transaction systems and collectively account
for much of the execution time of a transaction.

The primitive operations we use are the following:

Dala Server Calls in TABS are remote procedure
calls between applications and data servers on a
single node. Servers instantiate a coroutine for each
call. We measure the time for the Data Server Call
primitive by measuring the time for a TABS
application process to call a null procedure in &
TABS data server process.

« Inter-Node Data Server Calls are implemented
and measured analogously to single ncde Data
Server Calls. These calls use sessions implemented
by the Communication Manager.

« Datagrams are used for inter-node transaction
management messages.

e« Accent inter-process messages are used for
communication between TABS applications, data
servers, and TABS system processes on one node.
Because message perfermance depends on the size
of messages and on the method by which data is
transferred from one precess to another, three
different message types are counted:

oA Small Contiguous Message. Small
messages typically contain less than 100
bytes, but in all cases have less than 500 bytes.

o A Large Contiguous Message. We use 1100
bytes for the average size of these messages.

o A Pointer Message containing a pointer to
data that is transmitted by copy-on-write
remapping of processes’ virtual memory.

Primitive Average Time
Data Servar Call 26.1
Inter-Node Data Server Call 89.
Datlagram 25.
Smail Contiguous Message 3.0
Larga Contigucus Message 4.4
Pointer Message 183
Random Access Paged I/0 32.
Sequential Read 18.
Stable Storage Write 79.

Tabte 5-1: Primitive Operation Times (in milliseconds)
These primilive times are used 1o predict system time In Table 5-4.

e in TABS, all disk reads and writes, other than those
for the log, are performed by Accent as part of its
demand paging of virtual memory. Pages are 572
bytes. In Accent, random access reads and writes
take about the same time, so we report only one
(combined) Random Access Paged 1/0 primitive.
Because our Perq's have only a single disk, log
writing breaks up seguential access disk writes, so
sequential access writes do not occur. Sequential
Reads do occur in our benchmarks, and this
primitive is also reported separately.

» The Stable Storage Write primitive is the elapsed
time required for the Recovery Manager to force a
page of log data to non-volatile storage.

The costs of the primitives were estimated by repeatedly calling
the appropriate Accent and TABS functions. For example, we
determined demand-paged 1/0 costs by instrumenting a
program that repeatedly read (or wrote) individual pages in a
large array that is mapped into virtual memory. This experiment
measures the average cost of a read (or a read/write pair). Table
5-1 shows the measured performance of the primitive operations
on a Perq T2 computer [Perq Systems Corporation 84]. The Data
Server Call primitive time is high due to an inefficient
implementation of coroutings. As background, we note that the
speed of a Perq executing Pascal is approximately 20 to 25
percent the speed of a Vax-11/780 executing C [Fitzgerald and
Rashid 86).

Alter determining the appropriate primitives and measuring
their performance, the next step in our analysis is to define a set
ol benchmarks and 1o express tne latency of each benchmark as
a function of primitive operation times. The benchmarks are
among the simplest that can be designed to produce the desired
systam behavior. There are four dimensions of system behavior
that the benchmarks exercise. First, some benchmarks are
read-only while others modily data. Second, benchmarks either
cause no page faults, cause random page faults, or read pages
sequentially. Third, benchmarks either perform a single data

Remote Small Large Sequential Random
Banchmark Data Sarver Data Server Lacal Lecal Page Page
Calls Calls Msg Msg Reads [Fao)
1 Local Read, No Paging 1 4
5 Locat Aead, No Paging 5 4
1 Local Read, Seq. Paging 1 4 1
1 Local Read, Random Paging 1 4 88
1 Local Write, No Paging 1 [1
5 Local Write, No Paging 5 14 5
1 Local Write, Seq. Paging 1 10 1 2
1Lel Rd, 1 Rem Rd, No Paging 1 1
1 Lci Rd, 5 Rem Rd, No Paging 1 5
1Lcl Rd, 1 Rem Rd, Seq. Paging 1 1 8 2
1Lcl Wr, 1 Rem W1, No Paging 1 1 12
1 Lel Wr, 1 Rem W1, Seq. Paging 1 b 20 2 4
1Le! Rd, 1 Rem Rd, 1 Rem Rd, NP 1 2 11
1 Lcl Wr, 1 Rem Wr, 1 Rem Wr, NP 1 2 17 3

Table 5-2: Pre-Commit Primitive Counts

This table shows the number of primitive cperations each benchmark is expecled to perform before starling commit. The
primitive operations are listed in Table 5-1. Tha number .86 is the measured number of page 1/0's per transaction. Blank

entries denote zero values.

139

server operation on each node or perform muitiple data server
operations on one of the nodes in the benchmark. Finalty,
benchmarks perform operations on one, two, or three nodes.

There are four read-only benchmarks in which both the
application and data server process are located on the same
machine. The simplest is a transaction that reads an identical
element of a recoverable array of integers. The second is similar,
but is a transaction that reads the same array element five times.
This permits the determination of the costs of individual read
aperations on data servers. The third is similar to the first but is
modified to measure the performance of the demand paging of
recoverable data. It is a transaction that reads an element from
successive pages of a large array. This array is 5000 pages,
which is more than three times the available physical memory on
a Perq with TABS running. The final test reads random elements
from the array and demonstrates the effect of random 1/0 times
on TABS performance.

The performance of the system for transactions that modify
recoverable data is measured by benchmarks that write the array
instead of reading it. Because there is only one disk on our
system, there should be no significant difference between the
random-access case and the sequential-access case because of
the intervening seeks required by paging writes. Hence, we
include only a sequential paging test.

To study the performance effects of inter-node communi-
cations, there are similar benchmarks that use two data servers,
one on the same node as the application and one on a remote
node. Read iests have one local non-paging read and one
remate non-paging read; one local non-paging read and five
remcte non-paging reads:; and one local sequential paging read
and one remote sequential paging read. Two additional tests
measure two node write transactions: one test with one local
non-paging write and one remote non-paging write, and one test
with ene local paging write and one remote paging write. These

remote write tests reflect the cost of the more complex
two-phase commit protocal. We do not include a benchmark
that measures 5-wrile operations remotely, as this can be
deduced from other benchmark times.

To show how the cost of transaction commit increases as a
function of the number of nodes, benchmarks that read or write
the same cell on three nodes are included. The performance of
these benchmarks must be adjusted for the number of
operations to show the incremental commit cost directly.

The time in each benchmark attributable to primitive operations
<an be expressed as a function of primitive operation times.
Potentially, this analysis involves complicated stochastic modeis,
but our benchmarks have a simple approximate analysis. In our
transaction model, all operations prior {0 commitment execute
sequentially. Hence the pre-commit latency of a transaction that
is dug to the execution of primitive operations is a sum of the
primitive cperation times weighted by the numbers of primitive
operations performed. The benchmarks are deterministic in
steady state, so determining the primitive counts is fairly easy.
For the random read benchmark, it is simpler to count page
reads during the test than to measure the available buffer
memory and estimate what fraction of references will be to pages
in the buffer. These formulas are reported in Table 5-2, the
Pre-Commit Primitive Count Table.

The latency of the commit portion of a transaction is sequential
in the local case, but involves parallel processing in the
distributed case. For each type of transaction commit protocol,
we estimate the execution path of longest duration through the
distributed system. This path is used as the basis of the
benchmark counts that are incorporated in Table 5-3, the
Commit Primitive Count Table. Because different transactions
use the same commit protocol, there are fewer entries in this
table than in the Pre-Commit Benchmark Count Table. Commit
times for the three node benchmarks are longer than commit

Remote Smali Large Lacal Stable

Protocal Datagram Local Local Pointer Slorage

Msg tsg Msg Msg Writes

1 Node, Read Only

1 Node, Write B 1 1
2 Node, Raad Only 2 11 1 1
2 Node, Write 4 17 5 1 4
3 Node, Read Qnly 25 1" 1 1
3 Node, Write 5 17 - 1 4

Table 5-3: Commit Primitive Counts

This table shows the number of primitive operalions in tha longest estimated axacution path for various commit protocola. The
one-halt datagram time in the 3 Node, Read Only case is an approximation for the time reguired to immediately send a
“Prepare" datagram to the second remate noge. The 3 Node, Write case containg 2 one-half dalagram times, because ther is
also 8 "Commit" datagram that is sent to the secand remote node. Blank entries denote zero values.

140

Sys Time Measured Measured Improved New
Benchmark Predicted TABS Proc Elapsed TABS Primitive

by Primitives Time Time Architeclure Times
1 Local Read, No Paging 53 41 110 107 67
5 Local Read, No Paging 157 41 217 213 a0
1 Local Read, Seq. Paging ral 41 126 123 75
1 Local Read, Random Paging 81 41 140 137 96
1 Local Write, No Paging 156 83 247 228 138
5 Locat Write, No Paging 302 119 467 424 225
1 Local Write, Seq. Paging 232 104 i 345 249
1 Lcl Rd, 1 Rem Rd, No Page 306 223 469 459 228
1 kel Rd, 5 Rem Rd, No Page 662 3638 829 818 2638
1 Lcl Rd, 1 Rem Rd, Seq. Page 341 226 514 504 257
1 Lel Wr, 1 Rem Wr, No Page 697 407 939 778 442
1 Lcl Wr, 1 Rem Wr, S5eq. Page a64 441 1125 ara 539
1 Ll Rd, 1 Rem Rd, 1 Rem Rd, NP 418 381 621 €11 282
1 Lel Wr, 1 Ram Wr, 1 Rem Wr, NP a1 670 1200 268 534

Table 5-4: Benchmark Times (in milliseconds)

This table shows predicted, average measured, and projected improved times for the benchmarks. The System Time
Predicted by Primitives is computed by summing the primitive operation times for each benchmark fram Tables 5-1, 5-2,
and 5-3. Measured TABS Process Time is the sum of TABS syslem process times on ail nodes. Measured Elapsed Time
is the average measured time of the benchmark over a lang run inclueding ali points except starting and ending transients. For
the single node tests, Predicied System Time plus Measured TABS Process Time should approximately yield Measured
Elapsed Time, as they do. As described in the text, the TABS architecture could be improved and the primitive times reduced.
The Improved TABS Architecture column shows projection of elapsed times based on algorithmic and structural changes
te TABS. The New Primitiva Times column shaws how the times in the preceding column would improve if primitive
operations times were as in Table 5-5. Multi-node write tesls used one or two Perq 2 computers, which have average disk seek
times about 15 milliseconds slower than the Perq T2 used tor the primitive time measurements of Table 5-1. The System Time
Predicted by Primitives for these tests have been increased by 30 or 45 milliseconds. Projected times always assume the

use of Perq T2 disks.

times for the two node benchmarks by a one-half datagram time
for read-only transactions and by 2 one-half datagram times for
update transactions. This is due to the estimated cost of sending
datagrams in parallel to different nodes.

5.2. The Performance of TABS

The sum of the primitive operation times in Table 51, as
weighted by the counts of Tables 5-2 and 5-3, accounts for a
significant portion of the latency of each benchmark. This sum is
shown in the first column of Table 5-4, labeled "System Time
Predicted by Primitives.”

Benchmarks limes were measured by counting the number of
transactions executed in 20 or 30 second time intervals and
averaging these rates aver 20 to 30 minutes of testing.
Transients at the beginning and ending of lests were discarded.
The ¢olumn labeled "Measured Elapsed Time" in Table 5-4 show
the average elapsed time for each benchmark. The column
labeled "Measured TABS Process Time" reports the sum of

141

average measured CPU time of the TABS Communication,
Recovery, and Transaction Manager Processes on all nodes in
the test.

Rather than reiterating numbers in the tables, we instead
present more details about the performance of the system. We
account for the latency ol a local, singie operation, non-paging
read fransaction. We also show where the additional time is
spent in a single node, non-paging write transaction. Finally, we
show how to reconcile System Time Predicted by Primitives,
Measured TABS Process Time, and Measured Elapsed Time for
two-node transactions. This discussion uses execution time data
for individual processes, which are not included in Table §-4.

The measured elapsed time for processing a transaction that
performs a single node, non-paging read operation is 110 msec.
This is 57 msec greater than predicted by primitive operations
alone. Of this additional time, 41 msec is accounted for by TABS
system processes: 36 msec in the Transaction Manager and 5
(TABS system process times
By a

msec in the Recovery Manager.
remain constant in all local read-only transactions.)

complex deduction, we determined that the application and data
server require about 3 msec and 4 msec, respectively, to initiate
and commit a transaction. Cur analysis does not account for the
remaining 9 msec.

The difference in measured times belween the simplest read
and simplest update transactions is 137 msec, of which 78 msec
is the time for the Stable Storage Write. The data server uses an
additicnal 5 msec to do a write, rather than a read. This time is
used to format and send log data to the Recovery Manager. The
Recovery Manager uses an extra 10 msec to spooi this data to
the log. The more complex commit protocol for an
update-transaction requires an additional & msec in the Recavery
Manager, 24 msec in the Tranzaction Manager, and 4 msec in the
data server. Together, these times with the additional message
primitives executed (see Tables 52 and 53) sum to 155
milliseconds. This is 18 milliseconds more than measured, which
may be partially due to double counting some Recovery Manager
time included in the Stable Storage Write time.

Two-node distributed involve little paraliel
execution, so we might expect System Time Predicted by
Primitives plus Measured TABS Process Time to equal Measured
Elapsed Time. This is not true, however, because communi-
calion time is counted in both the Measured TABS Process Time
and the System Time Predicted by Primitives. It the
Communication Manager time were subtracied, the sum of the
remaining TABS Process time and Predicted times is within 4
percent of elapsed time for read lransactions and within 10
percent for write transactions. Three node transactions involve
considerable parallel processing during commit so this simple
reconciliation is not applicable.

transactions

5.3. Improving TABS performanca

In this section, we use the primitive operation analysis to
project the performance of different implementations of TABS.
Two projections are given here. The first projection is based on
the measured times of primitive operations reported ahove, but
assumes leasible architectural and implementation changes to
TABS. The second projection is based on the first, but also
assumes new primitive operation times, which are described and
justified below. In neither case are we counting on a faster
processor or better compiler; thus, projected times are higher
than measured TABS Process Time except for benchmarks
having parallelism ¢r high communication costs.

For the lirst projection, labeled "Improved TABS Architecture"
in Table 5-4, we assume thal the Recovery Manager and
Transaction Manager processes are merged with the Accent
kernel. This eliminates message passing between these three
components, and also allows one prepare message sent from a
data server to the modified kernel 1o perform the function of twe
messages in the current implementation.
experience with the integration of functions implemented by

We have previous

142

separate processes into the kernel and believe that this is a
simple process. Additicnally, we assume optimized commit
algorithms that eliminate unnecessary méssages and permit
some of the processing for commit of distributed write
transactions t0 occur in paraliel with the execution of succeeding
transactions. The projections based on these changes are
derived by reducing the measured eiapsed times by the times for
primitive cperations that would not be performed. Remote write
ransactions show the biggest perfermance increase, because of
the elimination of considerable commit progessing from the
critical execution path of the transaction.

The second performance projection, labeled "New Primitive
Times" in Table 54 is derived from the "Ilmproved TABS
Architecture” projections by setting the primitive operation times
to those given in Table 5-5. The costs of these new primitives are
based on our estimates of the applicability to the Perg/Accent
environment of published technigues for efficient implementation
of these primitives. Accent random /0 times aiready approach
the performance of the disk, so we da not assume any
improvement here, though we hypothesize a small improvement
in sequential read tima.

Primitive Avarage Time

Data Server Call 2.5
Inter-Node Dala Server Call 9.
Datagram 2.0
Small Contiguous Message 1.0
Large Conliguous Message 1.25
Painter Message 15.
Random Access Paged 1/0 32.
Sequential Read 10.
Stable Storage Write 32,

Table 5-5: Achievable Primitive Operation Times (in milliseconds})

“This table shows primitive tlimes achievable by tuning sofiware and adding disks.

Intra-processor message times have been reported as low as
0.77 msec on hardware that is (roughly) similar in performance to
the Perg[Cheriton 84b]. However, Accent processes have
completely separate virtual address spaces and context
switching times are greater for Accent than for other operating
systems, and so we chose times of 1.0 and 1.25 msec for our
projections. The implementation of pointer messages is fairly
complex and we therefore assume only small improvement.
Careful implementation or the use of lazy evaluation should
substantially eliminate to high costs of coroutine allgcation in the
Data Server Call primitive.

Considerable work has been devoted to efficient inter-
processor message passing [Birrell and Nelson 84, Spector 82).

We feel that times of 9 msec for remote data server calls, and 2
msec for datagram messages allow reasonable overheads
compared with times reported for similar hardware [Nelson 81].

If the existence of small {disk track size) quantities of zero
latency stable storage (e.g. battery backup CMOS primary
memary) and dedicated logging disks are assumed, then log
writing costs could approach main memory copy costs.
However, to lend more credence to our projections we estimate
that log writing can be performed for the same cost as paged
disk writes. This estimate assumes dedicaled logging disks and
offline archival of the log.

With these improvements, the projected performance of local
transactions range from 67 msec for non-paging, read-only
transactions to 249 msec for paging write transactions. The
performance of multi-node benchmark transactions range from
228 msec t0 539 msec. Of course, these numbers could be
reduced further by improving the code in the TABS system
comporents and by using a faster CPU. TABS system process
times dominate the costs in these projections, and their
execution time would decrease on a faster CPU.

6. Relationship to R" and Argus

TABS is similar in many ways to R~ and Argus [Williams et al.
81, Lindsay et al. 84, Liskov 84,Liskov ¢t al. 83). R is a
distributed database management system, developed at IBM San
Jose Research, that supports Iransactions on relationai database
servers., Argusis a programming language, developed at the MIT
Laboratory for Computer Science, that supports transactions and
user-defined types on which they can cperate.

The transaction facility of " is implemented by a combination
of the underlying operating system, CICS [IBM Corporation 78],
and a component called T™". This logically unified facility
permits servers to register themselves and their operations when
they are ready to receive requests, and performs routing of
operation requests to local servers. The facility also issues
transaction identifiers, oversees transaction commitment and

aborting, and does deadlock detection.

Servers in R™ have two types of interlaces. The first type
includes operations specific o a server. The second type
inciudes operations required for transaction management,
deadlock detection/resolution, and remote access by other
servers. In R'. reguests are never directly issued to remote
servers. Instead, they are passed to local servers, which then
interact with remote ones.

Broadly, TABS is very simifar to R’ in that both systems make
available transaction facilities for applications and servers.
However, they differ in many ways. For example, TABS, its
applications, and its servers are implemented as a collection of
processes that communicate via messages, rather than via the

143

protected procedure calls, which R* uses. Another major
difference is that remote servers in TABS can be directly invoked
in a transparent way. Also, TABS servers refain little context
between operations and use a common log and recovery
algorithms provided by the system; servers in R must utilize the
same context for each operation within a transaction, and each
server must provide for its own recovery. Some of these
differences are retatively minor, but some affect performance or
usability. For example, the common log and transparent
inter-node . communication provide efficiency and flexibility
respectively; but, on the other hand, protected procedure calls
on the |BM 370 are very fast.

Internally, Argus contains many facilities that are analogous to
those of TABS and R, but it has the more ambitious goal of
making those facilities very easy to use. Some abjects can be
implemented without the type implementor having to consider
synchronization or recovery issues. However, types needing
highly concurrent access require explicit attention paid to
synchronization and recovery. For these high concurrency
types, synchronization and recovery are done with the aid of a
specialized object, called a mutex, rather than via explicit locking
and logging.

Argus Is centainly easier to use than TABS for constructing
simple objects. However, it is difficult to compare the amount of
waork needed to use mutex objects versus that of expticitly setting
tocks and writing log records. We have not considered the
pertormance differences between the approaches.

7. Conclusions

Our use of TABS has convinced us that ils facilities for
supponting transactions and data servers are usefu! tor both local
and distributed abstractions. Speciafized distributed database
systems, file systems, mail systems, spoolers, editors, et¢. could
be based on the implementation iechniques that our existing
servers use. In our view, the use of location-transparent
operation invocation, logking within data servers, write-ahead
logging with a .common log, and the implementation of
permanent objects in virtual memory were good design choices.
We must give due credit to the Accent kernel, which implements
many of the facilities that TABS uses or provides, and which has
proven invaluable for suppaorting distributed computation.

Because TABS uses nearly the minimum number of expensive
primitive operatians such as disk 1/Q's, {og writes, inter-node
messages, and datagrams, TABS performance is sufficient for
many applications in an interactive workstation environment.
Transactions considerably more compiex than the benchmarks
of Section 5 take less than a few seconds of elapsed time. For
example, our analysis indicates that aboul two seconds are
required for a local transaction that invokes five operations, each
of which updates two pages that are not in memaory. The same
transaction would require about one-half second if the data were

in main memory. |l the cperations were performed on one ar
mare remote nodes, these transactions would take only about
one second longer.

Certainly, TABS can be substantially improved. To simplify
programming simple data servers, the calis to TABS synchro-
nization and recovery facilities should be hidden in a language
run-time system, such as that of Argus. For more complex
servers that need greater flexibility, the server fibrary should
provide a better set of primitives, including some for operation
logging and type-specific locking. Thought should also be given
1o providing better debugging support for data servers.

Functioneally, TABS should be extended to permit the recovery
of a single server without the recovery of the entire node. In
addition, TABS should use stable storage for the tog and support
media recovery. Finally, TABS should probably have a more
complete subtransaction model, particularly for the implement-
ation of replicated objects.

'n its imptementation, TABS loses performance because of the
division of the Recovery Manager, Transaction Manager, and
Accent into separate processes. The TABS coroutine, logging,
and inter-node communication facilities need re-implementation
or tuning. If these changes were made and TABS used more
modern hardware, one would expect transaction times that are
four to ten times faster than the currently measured ones,

We are continuing to enhance the system and study its use.
For example, we plan to empirically compare the relative merits
of value and operation logging. We are also continuing to
investigate architectures and algorithms that will provide
increased transaction throughput. 'n addition, we would like to
develop a performance methodology for measuring and
predicting throughput. Though much work remains, our
experiences to date have convinced us that general purpose
distributed transaction lacilities are feasible and useful for a wide
variety of systems.

Acknowledgments

Jacob Butcher, Charles Finaman, Sherri Menees, and Peter
Schwarz made major design and programming efforts; their work
was essential 1o the underlying TABS prototype and the data
servers that use it Maxwell Berenson constructed the
distributed performance monitoring systeni that made it possible
to get accurate performance measurements of distributed
transactions. Sherri Menees provided editorial assistance for
this paper, and Maurice Herlihy, David Nichols, and Rick Rashid
provided helpful comments.

144

References

[Alichin and McKendry 83] J. E. Allchin, M.S. McKendry.
Synchronization and Recovery of Actions. (n
Proceedings of the Second Annual Sympasgium on Prin-
ciples of Distributed Computing, pages 31-44. ACM, Au-
gust, 1983,

[Anonymaus et al. 85] Anonymous, et at. A Measure of Trans-
action Processing Power. Datamation 31(7), April, 1985.
Also available as Technica! Repart TH 85.2, Tandem
Corporation, Cuperting, California, January 1988.

[Banatre et al. 83] J. P. Banatre, M, Banatre, F. Ployette.
Construction of a Distributed System Supporting Atomic
Transactions. In Proceedings of the Third Symposium
on Reliabiiity in Distributed Software and Database
Systems. {EEE, October, 1083.

[Bernstein and Goodman 81] Philip A. Bernstein, Nathan Goaod-
man. Concurrency Control in Distributed Database
Systems. ACM Computing Surveys 13(2):185-221, June,
1981.

[Birman et al. 83] K. P. Birman, D. Skeen, A. El Abbadi, W.C.
Dietrich, T. Raeuchle. isis: An Environmant for Con-
strucling Fault-Tolerant Distribuled Systems. Technical
Aeport 83-552, Corneli University, 1983,

[Birrelt and Nelson 84] Andrew D. Birrell, Bruce J. Nelson.
Implementing Remote Procedure Calls. ACM Trans-
actions on Computer Systems 2(1):39-58, February,
1984,

[Bloch et al. 84] Joshua J. Bloch, Dean 8. Daniels, Alfred
Z. Spectar. Weighted Volting for Directories: A Compre-
hensive Study. Technical Report CMU-CS-84-114,
Carnegie-Mellon University, April, 1984.

[Cheriton B4a] David R. Cheriton. The V Kernel: A Software
Base for Distributed Systems. IEEE Software 1(2):1886-
213, April, 1984,

[Cheriton 84b] David R. Cheriton. An Experiment using Regis-
ters for Fast Message-Based Interprocess Communica-
tion. Operating Systems Review 18{4):12-20, October,
1984,

[Dahi and Hoare 72] O.J. Dahl, C. A. R. Hoare. Hierarchical
Program Structures. In C. A. R. Hoare (editor), A.P...C.
Studies in Data Processing. Volume 8: Structured
Programming, chapler 3, pages 175-220. Academic
Press, London and New York, 1972.

[Daniels 82] Dean S. Daniels. Query Compilation in a Distrib-
uted Database System. Master's thesis, Massachusetls
Institute of Technology, March, 1982.

{Daniels and Spector 83) Dean 5. Daniels, Alfred Z. Spector. An
Algorithm for Replicated Directories. In Proceedings of
the Second Annual Symposium on Principles of Distrib-
uted Computing, pages 104-113. ACM, August, 1983.

[Date 83] C. J. Date. The System Programming Series: An in-
troduction to Database Systems Volume 2,
Addison-Wesley, Reading, MA, 1983.

[Department of Defense 82] Relerence Manual for the Ada Pro-
gramming Language July 1982 edition, Department of
Defense, Ada Joint Program Office, Washington, DC,
1982.

[Diel et al. 84] Hans Diel, Gerald Kreissig, Norbet Lenz, Michael
Scheible, Bernd Schoener. Data Management Fagcilities
of an Operating System Kernel. In Sigmod ‘84, pages
58-69. June, 1984,

[Bwork and Skeen B3} Cynthia Dwork, Dale Skeen. The Inher-
ent Cost of Nonblocking Commitment. In Proceadings
of the Second Annual Sympasium on Principles of Dis-
tributed Computing, pages 1-11. ACM, August, 1983.

[Eppinger and Speclor 85) Jeffrey L. Eppinger, Alfred
Z. Spector. Virtual Memory Management for Recover-
abls Objects In the TABS Prototype. Technical Report
CMU-CS-85-163, Carnegie-Mellon University, Octaober,
1985. Forthcoming.

[Eswaran et al. 76] K. P. Eswaran, James N. Gray, Raymond
A Lorig, Irving L. Traiger. The Notions of Consisiency
and Predicate Locks in a Database System.
Communications of the ACM 19(11):624-633, November,
19786.

[Fabry 74] R.S. Fabry. Capability-Based Addressing.
Communications of the ACM 17(7):403-411, July, 1974,

[Fitzgerald and Rashid 86} Robert P. Fitzgerald, Richard
F. Rashid. The Integration of Virtual Memory Manage-
ment and Interprocess Communication in Accent. ACM
Transactions on Computer Systems 4(2), May, 1986, To
be presented at the Tenth Symposium on Operating
System Principles, Orcas Island, Washington, Decem-
ber, 1985.

[Gifford 79] David K. Gifford . Weighted Voting for Replicaled
Data. In Proceedings of the Seventh Symposium on
Operating System Principles, pages 150-162. ACM, De-
cember, 1979,

[Gray 78] James N. Gray. Notes on Database Operating
Systems. in R. Bayer, R. M. Graham, G. Seegmufler {ed-
itars), Lecture Notes in Computer Science. Volume 60:
Qperating Systems - An Advanced Course, pages
393-481.Springer-Verlag, 1978. Alsc available as Tech.
nical Report RJ2188, IBM Research Laboratory, San
Jose, California, 1978,

[Gray 80] James N. Gray. A Transaction Modei. Technical
Report RJ2895, IBM Research Laboratory, San Jose,
California, August, 1980.

{Grayet al. 81] James N. Gray, et al. The Recovery Manager of
the System R Dalabase Manager. ACM Computing
Surveys 13(2):223-242, June, 1981.

[Haerder and Reuter 83] Theo Haerder, Andreas Reuter.
Principles of Transaction-Oriented Database Recovery.
ACM Computing Surveys 15(4):287-318, December,
1983.

[Herlihy 84] Maurice P. Herlihy, General Quorum Consensus: A
Raplication Method for Abstract Data Types. Technical
Report CMU-CS-84-164, Carnegie-Melion University, De-
cember, 1984,

[IBM Corporation 78] Customer infarmation Control
System/Virtual Storage, Introduction to Program Logic
SC33-0067-1 edition, IBM Corporation, 1976.

[Jensen and Pleszkoch 84] E.D. Jensen, N, Pleszkoch.
ArchQS: A Physically Dispersed Operating System. IEFE
Distributed Processing Technical Committee Newsieiter
,Jdune, 1984,

[Jones et al. 85] Michael B. Jones, Richard F. Rashid, Mary
R. Thompson. Matchmaker: An Interface Specification
Language for Distributed Processing. in Proceedings of
the Twelfth Annuai Sympaosium an Principies of Pro-
gramming Languages, pages 225-235. ACM, January,
1885.

[Joy et al. 83] William Joy, Eric Cooper, Robert Fabry, Samuel
Leffler, Kirk McKusick, David Mosher. 4.2 BSD System
interface Overview. Technical Report CSRG TR/5, Uni-
versity of California Berkeley, July, 1983.

[Korth B3] Henry F. Korth. Locking Primitives in a Database
System. Journal of the ACM 30(1):55-79, January, 1983.

[Lampson 81] Butier W. Lampson. Atomic Transactions. In
G. Goos and J. Hartmanis (editors), Lecture Notes in
Computer Science. Volume 105: Distributed Systems -
Architecture and Implementation: An Advanced Course,
chapter 11, , pages 246-265.Springer-Verlag, 1981.

[Lansky B0] Amy L. Lansky. Pasmac -- A Macro Processorfor
Pascal. Technical Report CSL-TN-174, Stanford Univer-
sity Computer Systems Labacratory, April, 1980,

[Lindsay et al. 79] Bruce G. Lindsay, et al. Notes on Distributed
Databases. Technical Report RJ2571, IBM Research
Laboratory, San Jose, California, July, 1979. Also ap-
pears in Dreffen and Poole (editors), Distributed
Databases, Cambridge University Press, 1930,

[Lindsay et al. 84] Bruce G. Lindsay, Laura M. Haas, C. Mohan,
Paul F. Wilms, Robert A. Yost. Computation and Com-
munication in R*: A Distributed Database Manager.
ACM Transactions on Computer Systems 2(1):24-38,
February, 1984.

[Liskov 82] Barbara Liskov. On Linguistic Support for Distrib-
uted Programs. /EEE Transactions on Software
Engineering SE-8(3):203-210, May, 1882.

[Liskov 84] Barbara Liskov. Overview of the Argus Language
and System. Programming Methodology Group Memo
40, Massachusetts Institute of Technology Laboratory
tor Computer Science, February, 1984.

[Liskov and Herlihy 83] Barbara Liskov, Maurice Herlihy. issues
in Process and Communication Structure for Distributed
Programs. in Proceedings of the Third Symposium on
Reliability in Distributed Software and Database
Systems. Qctober, 1983.

fLiskov and Scheifler 82] Barbara Liskov, Robert Schaeifler.
Guardians and Actions: Linguistic Support for Robust,
Distributed Programs. .In Praceedings of the Ninth An-
nual Symposium on the Principles of Programming
Languages, pages 7-19. ACM, January, 1982.

[Liskov et al. 83] B.Liskov, M, Herlihy, P. Johnson, G. Leavent,
R. Scheifler, W. Weihl. Preliminary Argus Reference
Manual. Programming Methodology Group Memo 39,
Massachusetts Institute of Technolcgy Laboratory for
Computer Science, October, 1983.

[Lomet 77] David B. Lomet. Process Structuring, Synchreniza-
tion, and Recovery Using Atomic Actions. ACM SiG-
PLAN Notices 12(3), March, 1977.

[Lorie 77] Raymond A. Lorie. Physical integrity in a Large Seg-
mented Database. ACM Transactions on Database
Systems 2(1):91-104, March, 1977.

[Moss 81] J. Eliot B. Moss. Nested Transactions: An Approach
to Reliable Distributed Computing. PhD thesis, Massa-
chuselts Institute of Technology, April, 1981.

[Nelson 81] Bruce Jay Nelson. Remote Procedure Call. PhD
thesis, Carnegie-Mellon University, May, 1981. Available
as Technical Report CMU-CS-81-119a, Carnegie-Mellon
University.

[Obermarck 82] Ron Obermarck. Distributed Deadlock Detec-
lion Algorithm. ACM Transactions on Database Systems
7(2):187-208, June, 1882,

[Paxton 79] William H. Paxton. A Client-Based Transaction
System to Maintain Data Integrity. In Proceedings of the
Seventh Symposium on Cperating System Principles,
pages 18-23. ACM, December, 1978.

[Perg Systems Corporation B4] Perg System Overview March
1984 edition, Perg Systems Corporation, Pittsburgh,
Pennsylvania, 1884.

[Rashid and Rabertson 81] Richard Rashid, George Robertson.
Accent; A Communication Oriented Network Operating
System Kernel. In Proceedings of the Eighth Sympo-
siuvm on Operaling Sysiem Principles, pages 64-75.
ACM, December, 1981,

[Reed 78] David P. Reed. Naming and Synchronization in a Da-
centralized Computer System. PhD thesis, Massachu-
setts Institute of Technology, September, 1978.

[Reuter 84] Andreas Reuter. Performance Analysis of Recovery
Techniques. ACM Transactions on Database Systems
9(4):526-559, December, 1984.

[Saltzer 74] Jerome H. Saltzer. Protection and the Control of
information in Multics. Communications of the ACM
17(7), duly, 1974.

{Schwarz 84] Peter M. Schwarz. Transactions on Typed
Objects, PhD thesis, Carnegie-Mellon University, De-
cember, 1984, Available as Technical Report CMU-
CS5-84-166, Carnegie-Mellon University.

[Schwarz and Speclor 84] Peter M. Schwarz, Alfred Z. Spector.
Synchrenizing Shared Abstract Types. ACM Trans-
actions an Computer Systems 2(3):223-250, August,
1884. Also available as Technical Report CMU-
C5-83-163, Carnegie-Mellon University, November 1983.

[Speclor 8B2] Alfred Z. Spector. Performing Remote Operations
Efficiently on a Lacal Computer Network.
Communications of the ACM 25(4).246-260, April, 1982.

[Spector and Daniels 85] Alfred Z. Spector, Dean S. Daniels.
Performance Evaluation of Distributed Transaction Fa-
cilities. September, 1985.Presented at the Workshop on
High Performance Transaction Processing, Asilomar,
September, 1985.

146

[Spector and Schwarz 83] - Alired Z. Spector, Peter M. Schwarz.
Transactions: A Construct far Reliable Distributed Com-
puting. Operating Systems Revieaw 17(2):18-35, April,
1983. Also available as Technical Report CMU-
CS.82-143, Carnegie-Mellon University, January 1983.

[Spector et al. 85} Alfred Z. Spector, Jacob Butcher, Dean
S. Daniels, Daniel J. Duchamp, Jeffrey L. Eppinger,
Charles E. Fineman, Abdelsalam Heddaya, Peter
M. Schwarz. Support for Distributed Transactions in the
TABS Prototype. IEEE Transactions on Software
Engineering SE-11(6):520-530, June, 1285. Also avail-
able in Proceedings of the Fourth Sympaosium en Relia-
bitity in Distributed Soltware and Database Systems, Sil-
ver Springs, Maryland, IEEE, October, 1884 and as
Technical Report CMU-CS-84-132, Carnegie-Melion Uni-
versily, July, 1884,

[Stonebraker 84] Michael Stonebraker. Virtual Memory Trans-
action Management. Operaling Systems Review 18(2):8-
18, April, 1984.

[Tandem 82]) ENCOMPASS Distributed Data Management
System Tandem Computers, Inc., Cuperting, California,
1982,

[Traiger 82] Irving L. Traiger. Virtual Memory Management for
Database Systems. Technical Report RJ3489, IBM Re-
search Laboratory, San Jose, California, May, 1882,

[watson 81] R.W. Watson. Distributed system architecture
model. In B.W. Lampson (editors), Lecture Notes in
Computer Science. Volume 105: Distributed Systems -
Architecture and Implemeniation. An Advanced Course,
chapter 2, , pages 10-43.8pringer-Verlag, 1981.

[Weihl and Liskov B3] W. Weihl, B. Liskov. Specification and
implementation of Resilient, Atomic Data Types. in
Symposium on Programming Language lssues in Soft-
ware Systems. Juns, 1983.

{Williams et al. 81] R. Williams, etal. R*: An Overview of the
Architecture. IBM Research Report RJ2325, IBM Re-
search Laboratory, San Jose, California, Decembaer,
1981.

[Wull et al. 74] W. A, Wull, E. Cohen, W. Corwin, A. Jones,
R. Levin, C. Piarson, F. Pollack. HYDRA: The Kernel of a
Muiltiprocessor Operating System. Communications of
the ACM 17(8):337-345, June, 1974.

