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Abstract  

Facilities that support distributed transactions on user-defined 
types can be implemented efficiently and can simplify the con- 
struction of reliable distributed programs. To demonstrate these 
points, this paper describes a prototype transaction facility, 
called TABS, that supports objects, transparent communication, 
synchronization, recovery, and transaction management. Vari- 
ous objects that use the facilities of TABS are exemplified and 
the performance of the system is discussed in detail. The paper 
concludes that the prototype provides useful facilities, and that it 
would be feasible to build a high performance implementation 
based on its ideas. 
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1. In t roduct ion 

General purpose facilities that support distributed transactions 

are feasible to implement and useful in simplifying the 

construction of reliable distributed applications. To justify this 

assertion, this paper describes the design, implementation, use, 

and performance of TABS [Spector et al. 85], a prototype facility 

that supports transactions on user-defined abstract objects. We 

attempt to generalize from our experi6nces with the prototype, 

particularly in the sections on the usage and performance of 

TABS. 

We define a distributed transaction facility as a distributed 

collection of components that supports not only such standard 

abstractions as processes and inter-process communication, but 

also the execution of transactions and the implementation of 

objects on which operations can be performed. Although there 

is room for diversity in its exact functions, a distributed 

transaction facility must make it easy to initiate and commit 

transactions, to call operations on .objects from within 

transactions, and to implement abstract types that have correct 

synchronization and recovery properties. 

Transactions provide three properties that should make them 

useful in a variety of distributed applications [Lomet 77, Liskov 

82, Spector and Schwarz 83]. Synchronization properties, such 

as serializability, guarantee that concurrent readers and writers 

of data do not interfere with each other. Failure atomicity 

simplifies the maintenance of invariants on data by ensuring that 

updates are not partially done. Permanence provides 

programmers the luxury of knowing that only catastrophic 

failures will corrupt or erase previously made updates. 

Certainly, these properties of transactions are useful in 

database applications [Gray 78, Date 83]. Database applications 

are typically characterized by the need for absolute data 

integrity, permanent updates, and careful synchronization 

between processes that access large quantities of shared data. 

When considering the application of transactions to other 

domains such as the construction of distributed operating 

systems and real time systems, there are questions pertaining to 

what transaction facilities should be provided, how they should 
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be implemented to achieve adequate performance, and where 

they should be used. For example, a typical question is whether 

the recovery and synchronization techniques that are suitable for 

database systems have sufficient performance and flexibility to 

support transactions on user-defined shared abstract types in 

other applications. Quite a few research projects in addition to 

our own are considering these issues [Liskov and Scheifler 

82, AIIchin and McKendry 83, Birman et al. 83, Diel et al. 

84, Jensen and Pleszkoch 84]. 

The next section surveys the underlying models and 

techniques on which this research is based and provides 

necessary background into the function, implementation, and 

use of transaction facilities. The reader who is expert in 

distributed transaction processing may be able to skip most of 

this section and read only the summary in Section 2.1.4. 

Following this survey, Section 3 describes the interface and 

implementation of TABS. 

Section 4 shows how the TABS prototype is used to support 

various abstract data types including arrays, queues, directories, 

replicated directones and reliable terminal displays. Although 

these objects do not constitute user-level applications, they 

represent rather important building blocks. The primary goal of 

this section is to show how the TABS interface is used and 

thereby highlight its strengths and weaknesses. 

Section 5 describes the performance of the TABS prototype on 

a variety of benchmarks, both in terms of execution time and in 

terms of primitive operations. This performance evaluation 

permits us to predict the effect of changes to the system (e.g., 

combining certain TABS processes or reduced message passing 

times) and conclude that high performance general purpose 

transaction facilities based on the ideas of TABS are feasible. 

Section 6 contains a brief comparison of TABS with two 

important related systems, R= [Williams et al. 8.1] and 

Argus [Liskov et al. 83]. Section 7 contains the conclusions of 

this research project and directions for future work. 

2. Background 
This section surveys the research and development that has 

influenced this work and identifies many of the algorithms and 

paradigms that wehave used. The discussion is divided into two 

parts. The first discusses the fundamental issues in 

implementing distributed transactions on abstract objects 

focusing on the objects themselves, distribution, and transaction 

processing. The second part discusses the use of distributed 
transactions. 

2.1. Distr ibuted Transact ions on Abstract  Objects  

2.1.1 : Abst rac t  Objects  

Abstract objects are data or input/output devices, having 

distinct names, on which collections of operations have been 

defined. Access to an object is permitted only by these 

operations. A queue object having Operations such as 

Enqueue, Dequeue, EmptyQueue is a typical data object, and 

a CRT display having operations such as WriteLine, and 

ReadLine is a typical I /0  object. Objects vary in their lifetimes 

and their implementation. The notion of object presented here is 

similar to the class construct of Simula [Dahl and Hoare 72], 

packages in ADA [Department of Defense 82], and the abstract 

objects supported by operating systems such as Hydra [Wulf et 

al. 74]. The operating system work has tended to emphasize 

authorization - -  an issue not addressed here. 

Many models exist for implementing abstract objects that are 

shared by multiple processes. In one model, objects are 

encapsulated in protected subsystems and accessed by 

protected procedure calls or capability mechanisms[Saltzer 

74, Fabry 74]. TABS uses another model, called the client/server 

model, as a basis for implementing abstract objects [Watson 81]. 

Servers encapsulate one or more data objects. They accept 

request messages that specify operations and a specific object. 

To implement operations, they read or modify data they directly 

control and invoke operations on other servers. After an 

operation is performed, servers typically send a response 

message containing the result. Servers that encapsulate data 

objects are called Data Servers in TABS, Resource Managers in 

R ° [Lindsay et al. 84], and Guardians in Argus [Liskov et al. 83]. 

Message transmission mechanisms and server organizations 

differ among implementations based upon the client/server 

model. In these aspects, TABS is substantially influenced by the 

Accent operating system kernel" on which it was 

developed[Rashid and Robertson 81]. Accent provides 

heavyweight processes with 32-bit virtual address spaces and 

supports messages that are arbitrarily long vectors of typed 

information, addressed to ports. Many processes may have send 
rights to a port, but only one has receive rights. Send rights and 

receive rights can be transmitted in messages along with 

ordinary data. Large quantities of data are efficiently conveyed 

between processes on the same machine via copy-on-write 

mapping into the address space of the recipient process. This 

message model differs from that of Unix 4.2 [Joy et al. 83] and 

the V Kernel[Cheriton 84a] in that messages are typed 

sequences of data which can contain port capabilities, and that 

large messages can be transmitted with nearly constant 

overhead. 

The programming effort associated with packing and 

unpacking messages is reduced in TABS through the use of a 

remote procedure call facility called Matchmaker [Jones et al. 

85]. (We use the term remote procedure call to apply to both 

intra-node and inter-node communication:) Matchmaker's input 

is a syntactic definition of procedure headers and its outputs are 

client and server stubs that pack data into messages, unpack 

data from messages, and dispatch to the appropriate procedures 

on the server side. 
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Servers that never wait while processing an operation can be 

organized as a loop that receives a request message, dispatches 

to execute the operation, and sends a response message. 

Unfortunately, servers may wait for many reasons: to synchronize 

with other operations, to execute a remote operation or system 

call, or to page-fault For such servers, there must be multiple 

threads of control within a server, or else the server will pause or 

deadlock when it needn't. 

One implementation approach for servers is to allocate 

independently schedulable processes that share access to data. 

With this approach, a server is a class of related processes - -  in 

the Simula sense of the word "class." An alternative approach is 

to have multiple lightweight processes within a single server 

process. Page-faults still cause all lightweight processes to be 

suspended, but a lightweight process switch can occur when a 

server would otherwise wait. Although this approach does not 

permit servers to exploit the parallelism of a multiprocesser, it 

was easy to implement on Accent, and TABS uses it. The topic of 

server organization has been clearly discussed by Liskov and 

Herlihy [Liskov and Herlihy 83]. 

Before leaving the topic of abstract objects, it is necessary to 

discuss how objects are named. Certainly, a port to a server and 

a logical object identifier that distinguishes between the various 

objects implemented by that server are sufficient to name an 

object. The dissemination of these names can be done in many 

ways. A common method is for servers to register objects with a 

well known server process on their node, often called a name 

server, and for the name server to return one or more [port, 

logical object identifier] pairs in response to name lookup 

requests. Name servers can cooperate with each other to 

provide transparent naming across a network. 

2 . 1 . 2 .  D i s t r i b u t i o n  

Replicated and partitioned disti'ibuted objects are feasible to 

implement in the client/server model. For example, there may be 

many servers that can respond identically to operations on a 

replicated object. However, servers must contain the replication 

or partitioning logic. The TABS project hypothesizes that the 

availability of transaction support  substantially simplifies the 

maintenance of distributed and replicated objects. 

Transparent inter-node message passing can simplify access 

to remote servers. In the Accent environment, in ter -node 

communication is achieved by interposing a pair of processes, 

called Communication Managers, between the sender of a 

message and its intended recipient on a remote node [Rashid 

and Robertson 81]. The Communication Manager supplies the 

sender with a local port to use for messages addressed to the 

remote process. Together with its counterpart at the remote 

node, the Communication Manager manages the network and 

implements the mapping between the local port used by the 

sender and the corresponding remote port belonging-to the 

target process. 

There has been considerable research aimed at providing 

high-performance inter-process communication mechanisms. 

Local and inter-node message facilities can be optimized with the 

use of simplified protocols, machine registers, microcode, and 

careful coding [Nelson 81, Specter 82, Birrell and Nelson 

84, Cheriton 84b]. The TABS Project assumes that high 

performance communication systems can be constructed, but it 

has not invested the effort to build .one for the prototype. 

However, TABS has been careful to use datagrams for 

communication during transaction commit; more costly commu- 

nication based on sessions is used only for the remote procedure 

calls that implement operations on remote data objects. R also 

uses both datagram and session-based communication [Lindsay 

et al. 84]. 

2.1.3. Transac t i ons  

Although the concept of a transaction has been defined 

precisely in the literature [Eswaran et al. 76, Gray 80], TABS does 

not require that objects enforce serializability, failure atomicity, 

or permanence. Certainly, support exists for the standard 

notions, but transactions are permitted to interfere with each 

other and to show the effects of failure - -  if this is useful. In 

other words, TABS provides basic facilities for supporting many 

different type of objects and lets the implementors choose hew 

they want to use them. 

Many techniques exist for synchronizing the execution of 

transactions. Locking, optimistic, timestamp, and many hybrid 

schemes are frequently discussed; these are surveyed by 

Bernstein and Goodman [Bernstein and Goodman 81 ]. TABS has 

chosen to use locking [Date 83]. To obtain synchronized access 

to an object, a transaction must first obtain a lock on all or part of 

it. A lock is granted unless another transaction already holds an 

incompatible lock. 

TABS chose to use locking for two reasons. First, locking is an 

efficient synchronization mechanism that has been used 

successfully in many commercial data management systems. 

Second, because servers implement locking locally, they can 

tailor their locking mechanism to provide better performance. 

With type-specific locking, implementors can obtain increased 

concurrency by defining type-specific lock modes and lock 

protocols [Korth 83, Schwarz and Spector 84, Schwarz 84]. 

Type.specific locking requires use of a specialized compatibility 

relation to determine whether a lock may be acquired by a 

particular transaction. 

Locking restricts the flow of information between transactions 

by delaying operations on shared data, even if that delay leads to 

a deadlock. Some systems implement local and distributed 

deadlock detectors that identify and break cycles of waiting 

transactions [Obermarck 82, Lindsay et al. 84]. However, TABS, 

like many other systems, currently relies on time-outs, which are  

explicitly set by system users [Tandem 82]. 
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Recovery in TABS is based upon write-ahead logging, rather 

than shadow paging [Lorie 77, Gray 78, Lindsay et al. 79, Gray et 

al. 81, Lampson 81, Haerder and Reuter 83, Schwarz 84]. To 

discuss write-ahead logging, it is first necessary to discuss the 

three.tiered storage model on which it depends. Storage 

consists of volatile storage - -  where portions of objects reside 

when they are being accessed, non.volatile storage = where 

objects reside when they have not been accessed recently, and 

stable storage - -  memory that is assumed to retain information 

despite failures. The contents of volatile storage are lost after a 

system crash, and the contents of non-volatile storage are lost 

with lower frequency, but always in a detectable way. 

In recovery techniques based upon logging, stable storage 

contains an append-only sequence of records. Many of these 

records contain an undo component that permits the effects of 

aborted transactions to be undone, and a redo component, that 

permits the effects of committed transactions to be redone. 

Updates to data objects are made by modifying a representation 

of the object residing in volatile storage and by spooling one or 

more records to the log. Logging is called "write-ahead" 

because log records must be safely stored (forced) to stable 

storage before transactions commit, and before the volatile 

representation of an object is copied to non-volatile storage. 

Because of this strategy, there are log records in stable storage 

for all the changes that have been made to non-volatile storage, 

and for all committed transactionS. Thus, the log can be used to 

recover from aborted transactions, system crashes and 

non-volatile storage failures. 

The advantages of write.ahead logging over other schemes 

have been discussed elsewhere and include the potential for 

increased concurrency, reduced I / 0  activity at transaction 

commit time, and contiguous allocation Of objects on secondary 

storage [Gray et al. 81, Traiger 82, Reuter 84]. All objects in 

TABS use one of two co-existing write-ahead logging techniques 

and share a common log. 

The simpler technique is value logging, in which the undo and 

redo portions of a log record contain the old and new values of at 

most one page of an object's representation. During recovery 

processing, objects are reset to their most recently committed 

values during a one pass scan that begins at the last log record 

written and proceeds backward. If this value logging algorithm is 

used, only one transaction at a time may modify any individually 

logged component of an object that is to be failure atmhic and 

permanent. 

The other technique is called operation (or transition) logging. 

With it, data servers write log records containing the names of 

operations and enough information to invoke them. Operations 

are redone or undone, as necessary, during recovery processing 

to restore the correct state of objects. An important feature of 

this algorithm is that operations on multi.page objects can be 

recorded in one log record. The operation-based recovery 

algorithm also permits a greater degree.of concurrency than the 

value based recovery algorithm and may require less log space. 

However, it is more complex, and it requires three passes over 

the log during crash recovery, instead of the single pass needed 

for the value-based algorithm. The TABS recovery algorithms 

are similar to other previously published write-ahead log-based 

algorithms [Gray 78, Lindsay et al. 79], and are fully described by 

Schwarz [Schwarz 84]. 

Both value and operation logging algorithms require that 

periodic system checkpoints be taken. Checkpoints serve to 

reduce the amount of log data that must be available for crash 

recovery and shorten the time to recover after a crash [Haerder 

and Reuter 83]. At checkpoint time, a list of the pages currently 

in volatile storage and the status of currently active transactions 

are written to the log. Some systems also force certain pages to 

non-volatile storage and abort transactions that have been 

running for a long time. To reduce the cost of recovering from 

disk failures, systems infrequently dump the contents of 

non-volatile storage into an off-line archive. 

Recently, researchers have begun to discuss high performance 

recovery implementations that integrate virtual memory manage- 

ment with the recovery subsystem and use higher performance 

stable storage devices [Traiger 82, Banatre et al. 83, Stonebraker 

84, Diel et al. 84]. Section 3 discusses how virtual memory 

management and recovery are integrated in TABS. 

The most important component of a transaction facility not yet 

discussed is the one that commits and aborts transactions. 

Commit algorithms vary in their efficiency and 

robustness [Lindsay et al. 79, Dwork and Skeen 83]. TABS uses 

a tree-structured variant of the 2-phase commit protocol, in 

which each node serves as coordinator for the nodes that are its 

children. Though 2-phase commit is simple and efficient, it does 

have failure modes in which nodes participating in a distributed 

transaction must restrict access to some data until other nodes 

recover from a crash. TABS could use one of the other commit 

algorithms that do not have this deficiency. 

As a final point in the implementation of transactions, the 

increased interest in building nested abstractions using 

transactions has led to the investigation and implementation of 

facilities for supporting nesting [Reed 78, Moss 81, Liskov et al. 

83]. These facilities limit the concurrency anomalies that can 

occur within a single transaction that has simultaneous threads 

of control, and they permit portions of a transaction to abort 

independently. 

TABS has a limited subtransaction facility, which was very easy 

to implement. It can be characterized by its synchronization and 

commit policies. With respect to synchronization, a subtrans- 

action behaves as a completely separate transaction. This 

provides protection between simultaneous threads of control, 

but may cause intra-transaction deadlock if two subtransactions 

update the same data. With respect to commit, a subtransaction 
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is not committed until its top-level parent .transaction commits, 

but a subtransaction can abort without causing its parent 

transaction to abort. Subtransactions that can abort 

independently permit their parent to tolerate the failure of some 

operations. 

2.1.4. Summary of Implementation Issues 

The major points of this development can be tersely 

summarized: TABS supports transactions on abstract objects. 

Objects are implemented within server processes, and 

operations on objects are invoked via messages with a remote 

procedure call facility to reduce the programming effort of 

packing, unpacking, and dispatching. Inter-node communi- 

cation uses both sessions and datagrams. Inter.transaction 

synchronization is done via locking, with time-outs used to 

resolve deadlock. Write-ahead logging is the basis of recovery 

and transaction commit is done via the tree structured two.phase 

commit protocol. A limited subtransaction model is imple- 

mented. 

2.2. Use of Transactions 

Currently, transactions are primarily used to support the 

hierarchical, relational, and networked abstract types used in 

database systems. Date surveys these abstract types and 

describes some aspects of their implementation [Date 88]. The 

literature contains many descriptions of more general types, and 

there are some implementations of these. For example, Lomet, 
Weihl and Liskov, and Schwarz and Spector have written about 

buffer, directory, queue, and mailbox types [Lomet 77, Weihl and 

Liskov 83, Schwarz and Spector 84], and there have been a few 

experimental transactional file systems, e.g., one described by 

Paxton [Paxton 79]. 

The properties provided by these transactional types simplify 

abstractions that are built on them. For example, the invariants 

needed for the replicated objects described by Gifford, Bloch et 

al., and Herlihy [Gifford 79, Bloch et al. 84, Herlihy 84] are easier 

to maintain. The availability of distributed transactions make it 

easier to generate R*'s query execution plans [Daniels 82]. The 

integrity guarantees of a mail system, such as one sketched by 

Liskov, are also simplified. More collections of abstract types, 

combined into larger and more diverse applications, will 

undoubtedly be developed as general purpose transactions 

facilities become more prevalent. (See Section 4 for a discussion 

of abstract types that we have built.) 

3. An Experimental  Design - 
The TABS Prototype 

The TABS Prototype is implemented in Pascal on a collection 

of networked Perq workstations [Perq Systems Corporation 84] 
running a modified version of the Accent operating system. At 

each node, there is one instance of the TABS facilities and one 

or more user-programmed data servers and/or applications. 

Data servers are programmed with the aid of system supplied 

libraries for doing synchronization and recovery, and for 

performing a data server's role during two.phase commit. 

Applications initiate transactions and call data servers to perform 

operations on objects. The library interfaces to TABS are 

described in detail in Section 3.1. 

Application J [ A p p l i c a t i o n  

Data Server J 

I Recovery ] 
Manager 

J Ob jec t  I 

l Object J 

Data Server 

Transaction 
Manager 

[C°°unicati°n ] ! Na°e 
Manager Server  

Accent Kernel  

- - R e c o v e r a b l e  
Processes 

--TABS 
System 
Components 

Figure 3-1 : The Basic Components of'a TABS Node 

The TABS facilities are made up of four processes that run on 

Accent (see Figure 3-1). The processes, called Name Server, 

Communication Manager, Recovery Manager, and Transaction 

Manager, perform name dissemination, network communication, 

recovery and log management, and transaction management, 

respectively. Section 3.2 briefly describes the implementation of 

these TABS processes and our modifications to Accent. 

TABS began to operate in the Fall of 1984, and all the facilities 

described in this paper are operational with one exception. 

Operation-based recovery and the necessary type.specific 

locking is not supported in the TABS libraries, though the 

operation-based algorithm has been tested and integrated with 

the value-based algorithm. The system contains about 51,000 

lines of Matchmaker, Pasmac macro language [Lansky 80], and 

Pascal sources. This count includes one data server and 

application that we use in testing releases, but it does not include 

the changes we have made to the Accent kernel. 

3.1. The Tabs Programming Interface 

The interface to TABS is provided by three libraries. The sewer 
library, used only by data servers, supports shared/exclusive 
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Routine Purpose 

InitServer(ServerlD) 

ReadPe rmanent Data(OiskAdd ress) 
returns (VirtualAddress, DataSize) 

RecoverServer 

AcceptRequests(DispatchFunction) 

C reateObjectlD(Virt ualAdd ress, I~ngth) 
retu rns (ObjectlO) 

Conver tObiectlDtoVirt ualAddress(ObjectlD) 
returns (VirtualAddress) 

LockObject(ObjectlD, LockMode) 

ConditionallyLockObject(ObjectlO, LockMode) 
returns (Boolean) 

IsObjectLocked(ObjectlD) 
returns (Boolean) 

PinObject(ObjectlO) 

UnPinObject(ObjectlD) 

UnPinAIIObject$ 

PinAndBuffer(ObjectlD) 

LogAndUnPin(ObjecUD) 

LockAndMa rk(ObjectlD, LockMode) 

PinAndBuffe rMa rkedObjecta 

LogAndUnPinMarkedObjecta 

ExecuteTransaction(TransactionProcedure) 

Startup 

Startup 

Startup 

Startup 

Address Arithmetic 

Address Arithmetic 

Locking 

Locking 

Locking 

Paging Control 

Paging Control 

Paging Control 

Paging Control, Logging 

Logging, Paging Control 

Locking 

Paging Control, Logging 

Paging Control, Logging 

Transaction Management 

Tab le  3-1 : The Complete TABS Server Library 
This table summarizes the library routines used by data servers. The routine names have been made as explicit as possible; a 
description of their function may be found in the accompanying prose. The typos of the parameters and return values are 
shown as well as the general purpose of each routine. Routines used both by data servers and applications are .shown in 
Tables 3-2 and 3-3. 

locking, value logging, and miscellaneous utilities. The 

transaction management library provides routines for controlling 

the execution of transactions. The name server library provides 

access to TABS name dissemination services. The use of many 

routines from these libraries is illustrated in Section 4. 

3.1.1. The Server  L i b r a r y  

The functions that make up t.he server library fall into six broad 

categories. These categories are listed beside the procedure 

headers of the library routines in Table 3-1. 

Four procedures are used to initialize the data server. 

In i tServer  initializes server library data structures, and 

ReadPermanentData  maps the data server's recoverable data 

into virtual memory. (See Section 3.2.1.) RecoverServer  

accepts the log records that the Recovery Manager reads from 

the log. This procedure understands the format of the log 

records written by the server library routines during forward 

processing, and calls the server library's undo/redo code to 

restore the data to a transaction-consistent state. Once the 

virtual memory copy of the recoverable data is consistent, the 

data server calls AcceptRequests .  This routine takes a 

procedure argument that dispatches on operation request 

messages. 

Since a programmer works with virtual addresses but the log 

manager works with disk addresses contained in ObjectlDs, data 

servers must do address translation. The routines 

Crea teOb jec t lD  and Conve r tOb jec t lD toV i r t ua lAdd ress  

perform these conversions. 

Three routines support locking. LockOb jec t  attempts to 

acquire a lock, and waits if the lock is not available. 

Cond i t i ona l l yLockOb jec t  also attempts to acquire a lock, but 

it returns immediately if the lock is unavailable. 

I sOb jec tLocked  returns true if and only if a lock is set. All 

unlocking is done automatically by the server library at commit or 

abort time. 

Paging control operations prevent the kernel from paging an 

object to secondary storage. They are used to ensure that an 

object's permanent representation is not changed before all 

modifications to it have been logged. P inObjec t  prevents the 

kernel from paging an object to secondary storage until 

UnPinObjec t  or UnPinAI IObjects  is called. 
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The paging control operations are usually performed as side 

effects of logging routines. P inAndBuf fer  pins the specified 

object and then copies the existing (old) value of the object into a 

buffer in anticipation of a modification. After the modification is 

made, LogAndUnPin sends the (buffered) old value and the 

existing (new) value to the Recovery Manager and unpins the 

object. 

The checkpoint protocol requires that data servers not wait 

(e.g., for a lock) while objects are pinned. One approach to 

meeting this requirement is to set all locks before any 

modifications are performed. The server library facilitates this by 

providing three routines: LockAndMark  locks the specified 

object and enqueues a reference to the object on a "to be 

modified" queue. P inAndBuf fe rMarkedObjec ts  pins every 

object on the queue and copies each ob.ject's current (old) value 

into buffers. LogAndUnPinMarkedObjec ts  sends to the 

Recovery Manager the (buffered) old value and existing (new) 

value for each object on the queue When all the old and new 

values are logged, LogAndUnPinMarkedObjec ts  unpins all 

the objects and deletes the queue. 

The remaining routine, ExecuteTransact ion,  takes a 

procedure argument and executes that procedure within a new 

top.level transaction. 

Lightweight processes use a coroutine mechanism embedded 

within every data server. The server library treats each incoming 

request as a separate coroutine invocation. A coroutine switch is 

performed only when an operation waits, e.g., for a lock or for 

starting a transaction. The server library contains additional 

code that automates a data server's participation in t ran~ct ion 

commit, abort, and checkpoint. 

3.1.2. The Transaction Management  L ibrary  

The routines in the transaction management library provide a 

standard interface to transaction management functions (see 

Table 3-2). BeginTransact ion creates a eubtransaction of the 

specified transaction. To create a new top.level transaction, a 

special null Transact ion lD is given as the argument. 

EndTransact ion and Abor tTransact ion  initiate commit and 

Routine 

BeginTransaction(TransactionlD) 
retu rns(NewTransactionlD) 

EndT ransaction(TransectionlD) 
returns(Boolean) 

A bo rtTransaction(TransactionlD) 

TranaaotionlsA borted(TransactionlO) 
[exception] 

Table 3-2: The TABS Transaction Management Library 

abort of the specified transaction, respectively. The 

Transac t ion lsAbor ted  exception is raised in the application 

process if the specified transaction has been aborted by some 

other process. 

3.1.3.  The Name Server  L ib rary  

The abstractions represented by data servers are permanent 

entities that must persist despite node failures, even though the 

ports through which they are accessed change. The TABS Name 

Server implements an interface that allows a single name to be 

mapped to one or more <port, Log ica lObject ldent i f ie r>  pairs. 

A data server has the option of servicing operation requests for 

several objects on the same port, and independent data server 

processes can together implement replicated objects. The most 

important routines in the Name Server library are summarized in 

Table 3-3. 

Routine 

Register(Name, Type, Port, ObjectlD) 

DeRegister(Name, Port, ObjectlD) 

LookUp(Name, NodeName, OesiredNumbefOfPortlDs, MaxWait) 
retu rns(A r rayOfPortlDPairs, Retu rnNum berOfPo rtlDs) 

Table 3-3: The TABS Name Server Library 

3.2. Imp lementa t ion  of  TABS 

Most of the operations TABS libraries provide to data servers 

and applications are implemented by the TABS System 

components and the Accent kernel. The modifications to the 

kernel and the TABS system components are summarized in this 

section and described in more detail in a recent paper [Spector 

et al. 85]. 

3.2.1.  The Accent  Kernel 

The failure atomic and/or permanent data stored by data 

servers are stored in disk files that are mapped into virtual 

memory. These files are called recoverable segments. When 

mapped into memory, the kernel's paging system updates a 

recoverable segment directly instead of updating paging 

storage [Eppinger and Spector 85]. 

To support the write-ahead log algorithms used by TABS, the 

kernel sends three types of messages to the Recovery Manager. 

The first message indicates that a page frame that is backed by a 

recoverable segment has been modified for the first time. The 

second message indicates that the kernel wants to copy a 

modified page back to its recoverable segment. The kernel does 

not write the page until it receives a message from the Recovery 

Manager indicating that all log records that apply to this page 
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have been written to non.volatile storage. The third and final 

message indicates whether the contents of a page frame have 

been successfully copied to a recoverable segment. 

In addition to the special messages that support the 

write.ahead log algorithms, the Accent Kernel also implements 

the paging control primitives of the server library. 

A final modification to Accent has been made to support the 

TABS operation logging recovery algorithm. This algorithm 

requires that the kernel atomically write a sequence number 

each time it copies a page of a recoverable segment to 

non-volatile storage. This sequence number (currently, 39 bits) 

is stored in header space that is available on a Perq disk sector. 

The Recovery Manager sends the sequence number to the 

kernel in the message that indicates that the page can be written 

to disk. During crash recovery, the Recovery Manager sends a 

request to the kernel when it wishes to read a page's sequence 

number. 

3.2.2. Recovery Manager 

The Recovery Manager coordinates access to the log. The log 

should be on stab/e storage; but, because of our Perq hardware 

restrictions (only one disk), the non-volatile storage used for the 

log is not stable. Hence, we do not consider disk failures in this 

work. 

The Recovery Manager writes log records in response to 

messages sent by data servers, the Transaction Manager, and 

the Accent kernel. Log records written in response to kernel 

messages help to identify (at recovery time) the pages that were 

in memory at crash time. All log records are written into a volatile 

buffer until the buffer fills or until the buffer is forced to 

non.volatile storage by either the write-ahead-log or commit 

protocols. Upon transaction abort, the r.ecovery manager follows 

the backward chain of log records that were written by the 

transaction and sends messages to the servers instructing them 

to undo their effects. 

After a node crash, the Recovery Manager scans the log one or 

more times. It directly interprets the recovery log records, but it 

must pass transaction management records back to the 

Transaction Manager. The Recovery Manager then queries the 

Transaction Manager to discover the state of the transaction. 

Based on this information, the Recovery Manager gives each 

data server instructions to redo or undo previously performed 

operations. In this way the Recovery Manager assures that 

objects in recoverable segments reflect only the operations of 

committed and prepared transactions. 

The last function of the Recovery Manager is to coordinate 

checkpoints. After a crash, the Recovery Manager must read the 

portion of the log written after the last checkpoint. Depending on 

the contents of the checkpoint record, earlier sections of the log 

may also be read, but the most recent checkpoint record 

contains enough information to determine when crash recovery 

will be complete. In our system, checkpoints are performed at 

intervals determined by the transaction manager or when the 

system is close to running out of log space. In the latter instance, 

the Recovery Manager runs a reclamation algorithm that 

attempts to reclaim log space. Log reclamation may force pages 

back to disk before they would otherwise be written. 

3.2.3. Transact ion Manager  

The Transaction Manager's major responsibilities are imple- 

menting commit protocols and allocating globally unique 

transaction ioentifiers. Application processes and data servers 

send the Transaction Manager messages to begin a transaction, 

to attempt to commit a transaction, or to force a transaction to be 

aborted. The tree-structured two.phase commit protocol used 

by Transaction Manager is based on a spanning tree where a 

node A is a parent of another node B if and only if A were the first 

node to invoke an operation on behalf of the transaction on 

B. The information about a node's relation to the nodes directly 

above and below it in the spanning tree is kept by its 

Communication Manager. 

There are two messages that processes send to inform the 

Transaction Manager of the progress of a transaction. The first 

is sent by a data server the first time it is asked to perform an 

operation on behalf of a particular transaction; doing so enables 

the Transaction Manager to know which servers it must inform 

when the transaction is being terminated. The other message is 

sent by the Communication Manager the first time an inter.node 

message is sent or received on behalf of a particular transaction. 

This message indicates that there are remote sites that have 

servers active on behalf of the given transaction. At this point, 

the Transaction Manager becomes aware that remote sites are 

involved in the transaction, but it cannot yet identify these sites. 

The complete site list is obtained from the Communication 

Manager during commit processing. 

The existence of subtransactions in the TABS model does not 

complicate transaction management. The same messages that 

are used to inform the Transaction Manager about top-level 

transactions are used for subtransactions. The only regard in 

which transaction processing differs is that subtransactions can 

be aborted without requiring the parent transaction to abort. 

Subtransactions, however, may not be committed before their 

parents. When a parent transaction commits or aborts, its 

subtransactions are committed or aborted as well. 

3.2.4. Communication Manager 

The Communication Manager is the only process that has 

access to the network. It implements three forms of network 

communication: datagrams for the distributed two-phase 

commit; reliable session communication for implementing 

remote procedure calls; and broadcasting for name lookup by 

the Name Server. 
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For session communication, two Communication Managers 

cooperate to provide at-most-once, ordered deli~/ery of 

arbitrary-sized messages. The Communication Manager detects 

permanent communication failures and, thereby, aids in the 

detection of remote node crashes. The Communication Manager 

also scans any transaction identifiers included in messages and 

is responsible for constructing the local portion of the spanning 

tree that the Transaction Manager uses during two-phsse 

commit. In particular, the Communication Manager records the 

node's parent, whether the transaction was initiated by a remote 

node, and the list of all the node's children. It also records a 

small amount of additional information that is used for detecting 

some types of node crashes. 

3.2.5. Name Server  

In TABS, the Name Server process on each node maintains a 

mapping of object names to one or more <port, 

log ica l -ob ject - ident i f ie r> pairs for all the objects managed by 

data servers on that node. Whenever the Name Server is asked 

about a name it does not recognize, it broadcasts a name lookup 

request to all other Name Servers. If the broadcast is successful, 

the Communication Managers on the local and the remote 

machine automatically establish a session between the 

requesting node and the data server implementing the named 

object. 

4. The TABS Prototype In Use 

This section presents five of the data servers we have 

implemented with the TABS prototype: The integer array server, 

the weak queue server, the I0 server, the B-tree server, and the 

replicated directory object. The integer array server, B-tree 

server, and replicated directory object all preserve the 

serializability, failure atomicity, and permanence of the 

transactions that invoke them. The I0 server provides a 

permanent, non-failure atomic object, aod the weak queue server 

provides a permanent, failure atomic object that is not 

serializable. 

4.1. The Integer Ar ray  Server  

The integer array server maintains an array of (one word) 

integers, and provides the following abstract operations: 

FUNCTION Get .Cel l (ce l lN.um: i n t e g e r ) :  
i n t e g e r ;  ' 

PROCEDURE Se tCe l l ( ce l ' lNum:  i n t e g e r ;  
va l ue :  i n t e g e r ) ;  

The two operations supported by the integer array server are 

simple enough that the best description is the Pascal code that 

implements one of them. Note that the virtual address of a cell is 

obtained by adding the proper offset to the base of the 

recoverable segment. 

FUNCT%ON SetCell(srreyPort:port: { far RPC } 
transection:rid; 
cetlNum:tnteger: 
value:Integer): 6enerelReturn; 

{ SetCelt sets array[cettNum] to contetn 'vetue' } 

VAR 
ObJ: ObjectZD; { object for the cell  } 
stze: t n t e g e r ; {  the | tzc of a celt  } 

BEGZN 

ZF (ce11Num >- 1) AND (ce11Num <= mexCe!1) THEN 
BEGIN 
stze :o VordStze(tnteger); 
obj :- CreateObJectID(baseOfArray + 

(ce11Num-1) " s t z e .  81ze ); 
LockObJsct(obJ, Vrt te);  
PtnAndSuffer(obJ); 
obJ.ptrt  :- value; ( do the esstgnlllent } 
LogAndUnPtn(obJ); 
SotColl :- Success; 
END 

ELSE SetCell : -  ]ndexOutOfRenge; 

END; 

The implementation of GetCell is very similar, and the 

combined code for both operations requires 50 lines of Pascal. 

The balance of the 140 lines of code in the integer array server 

perform module imports and initialization. The integer array 

server is a very straightforward data server; it uses only the 

two.phase locking, value logging techniques found in many 

transaction-based systems. The data servers described below 

take more advantage of the flexibility of TABS. 

4.2. The Weak Queue  Server  

The weak queue server provides access to a weak queue, 

sometimes called a semi-queue [Weihl and Liskov 83, Schwarz 

and Specter 84]. In a weak queue, items in the queue are not 

guaranteed to be dequeued strictly in the order that they were 

enqueued. Relaxing the strict FIFO nature of the queue allows 

greater concurrency while retaining failure atomicity. The weak 

queue server provides the following abstract operations: 

PROCEDURE Enqueue(data :  i n t e g e r ) ;  
FUNCTION Dequeue: i n t e g e r ;  
FUNCTION IsQueueEmpty: boo lean ;  

The queue is implemented as an array of individually Iockable 

elements, with head and tail pointers bounding the currently 

used section of the array. Because gaps may exist in the range 

between the head and tail pointers, each element in the  array 

contains both its contents and an extra boolean, InUse,  

indicating whether that element actually contains a value that is 

currently stored in the queue. Enqueue and Dequeue set and 

clear this InUse bit, and if they abort, this bit is restored along 

with the previous contents of the element. The head pointer is a 

permanent, failure atomic object. The tail pointer can be 

recomputed after crashes by examining the head pointer and 

InUse bits, so it is kept in volatile storage. 
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To add a new item to the queue, Enqueue places the item in 

the element below the tail pointer, sets that element's InUse bit 

to true, and sets the tail pointer to the new element, if the 

Enqueue later aborts, this will leave a gap in the array when the 

InUse bit is reset to false. Because the tail pointer is not locked, 

the weak queue server relies on the monitor semantics of TABS 

coroutines to ensure that only a single transaction at a time can 

update the tail pointer. 

Dequeue is more complex, because elements in the array may 

not be legally dequeued for either of two reasons: If an element 

is locked, another operation is still manipulating it; If an element's 

InUse bit is False, the Enqueue of that element aborted, or the 

element has already been successfully removed. Dequeue 

scans elements starting at the head pointer, using the 

IsOb jec tLocked primitive, and then testing the InUse bit. 

When an unlocked element whose InUse bit is True is found, 

Dequeue locks it and returns its contents. 

Enqueue and Dequeue both read the head pointer to check 

for a full queue. Dequeue does not alter the head pointer 

because this would restrict concurrency. The head pointer must 

eventually be moved, however, or the queue will fill. Abstractly, 

one imagines a "garbage collection" operation that gets 

randomly invoked and moves the head pointer past any elements 

that are not locked, and whose InUse bits are False, The current. 

implementation does the garbage collection as a side effect of 

Enqueue. 

The weak queue server is 380 lines of Pascal code. Its design 

prompted the addition of the Cond i t i ona l l yLockOb jec t  and 

IsObjec tLocked primitives to the server library. Much of the 

w(/rk that went into creating the weak queue server dealt with 

mapping the logical operations on the queue into manipulations 

of data with the value logging mechanisms. For this reason, we 

believe that certain abstract data types are more suited to 

operation logging than value logging. 

4.3. The Inpu t /Ou tpu t  Server 

The I0 server extends the domain of TABS to include the 

bitmap display by restoring the screen contents after a failure, 

and by giving the user a comfortable model of transaction-based 

input/output The current implementation uses character 

input/output in a standard typescript fashion. Recovering the 

screen is straightforward; TABS runs within a window manager 

that provides overlapping, rectangular windows. Restoring the 

screen requires keeping track of a window's contents and 

location in a recoverable segment. 1 

Providing a good user model of transaction-based I0 is more 

complex. Writing to a terminal is often cited as the caponical 

1The easiest way to test whether windows are restored to the correct location 
is to mark display screens with grease pencils. This leads to research on 
chemicals that remove grease pencil markings from display screens .. 

non-recoverable action. An obvious approach is to buffer all 

output and only display it if the transaction commits, but this 

technique fails for conversational transactions. The I0 server 

displays all output as it occurs, in a style that indicates the 

current state of the transaction that performed the output. While 

a transaction is in progress, the output is displayed in gray, to 

indicate its tentative nature. If the transaction commits, the 

output is redrawn in black, to indicate that the operation really 

occurred. If the transaction aborts, lines are drawn through the 

output. This is preferable to making the output disappear, which 

is disconcerting to the user. Users know that an operation has 

not really happened until its output is displayed in black. 

Figure 4-1: Sample Display Screen 
This is an actual snapshot of the current I0 server running a trivial bank 
implementation. This example exhibits the I0 server; the bank application also 
uses the integer array server to store its information. 

In area one, the user successfully deposited 35 dollars to a checking account. 
The user knew that the action had occurred (committed), because its output was 
displayed in black. In area two. the user attempted to withdraw 80 dollars from a 
checking account, but the node failed during the transaction, causing it to abort. 
The I0 server restored the screen when the system became available, and the 
user is currently trying again in area three, where the transection is still in 
progress. The rectangles drawn around user input indicate that the characters 
have been read by the application. 

Multiple input/output areas are maintained on the screen, to 

allow for concurrent interaction with the user. The abstract 

oper~ionsare:  

FUNCTION O b t a i n I O a r e a :  i o A r e a I D ;  
PROCEDURE D e s t r o y l O a r e a  ( i o A r e a :  i o A r e a I D ) ;  
PROCEDURE Wr i teToArea  ( i o A r e a :  i o A r e a I D ;  

d a t a :  S t r i n g ) ;  
PROCEDURE W r i t e l n T o A r e a  ( i o A r e a :  i o A r e a I D ;  

d a t a : S t r i n g ) ;  
FUNCTION ReadCharFromArea( ioArea :  i o A r e a I D ) :  

Char ;  
FUNCTION ReadL ineF romArea ( i oA rea :  i o A r e a I D ) :  

S t r i n g ;  
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To display output even after a client transaction later aborts, 

the I0 server maintains permanent, non.failure atomic data in an 

array of characters for each area. Rather than having the client 

transaction modify this array, the I0 server uses 

ExecuteTransact ion to invoke a new top-level transaction to 

write the data for each operation. If the client transaction aborts, 

the characters stored via the ExecuteTransact ion will not be 

altered. 

In order to display the output of a transaction, the I0 server 

needs to determine the status (aborted, committed, or in 

progress) of the transaction. The Transaction Manager cannot 

provide this facility, because doing so would require retaining an 

infinite amount of log data. When a transaction establishes 

ownership of an area, the IO server uses ExecuteTransac t ion  

to write aborted into a state object in the data structure for the 

area. The I0 server then has the client transaction lock the state 

object and set it to contain committed. This causes an old 

value/new value pair of aborted/committed to be written in the 

log for the client transaction. The I0 server can now determine 

the transaction's current state by using the IsOb jec tLocked 

primitive. If the state object is locked, the client transaction is 

still in progress, if the object is no longer locked, then the 

transaction has finished. If the state object contains aborted, the 

transaction aborted, and the object was reset by the recovery 

mechanisms. Otherwise, the object contains committed, and the 

I0 server knows that the transaction must have committed. 

The implementation is 2500 lines of Pascal code, and, like the 

weak queue server, uses the ability to test if an object is currently 

locked. The I0 server also provides an example of a data server 

that needs to invoke transactions of its own in order to process 

requests. The I0 server is interesting because it extends the 

domain of the transaction model. 

The B-tree server was originally implemented as a Pascal 

program running outside the TABS environment. By using the 

LockAndMark,  P inAndBuf ferMa rkedObjec ts ,  and 

LogAndUnPinMarkedObjec ts  primitives, we were able to use 

most Of the existing code intact. These routines allowed us to 

avoid bracketing every assignment in the original program with 

P inAndBuf fer  and LogAndUnPin calls, in order to avoid 

having data pinned when requesting other locks. The total 

modifications, including initialization and storage allocation 

changes, increased the size of the B-tree server from 4500 to 

5000 lines of Pascal code. 

4.5. A Replicated Directory Object 

The replicated directory object provides an abstraction 

identical to a conventional directory but stores its data in multiple 

directory representative servers on different nodes. The 

replicated directory uses our variation of Gifford's weighted 

voting algorithm for global coordination [Gifford 79, Daniels and 

Spector 833, Bloch et al. 84]. Each of the directory representative 

servers uses a B.tree server to actually store the data, and 

requires another 2700 lines of code to perform localized 

functions for the voting algorithm. The interface to client 

programs is provided by a module that does global coordination 

of the voting, and is implemented as 1100 lines of code that are 

linked in with the client program. 

The replicated directory object demonstrates many of the 

facilities of the TABS prototype: Aborting transactions that use 

the replicated directory requires recovery on multiple nodes, and 

committing transactions requires the global coordination 

protocols for multiple node commit. Our tests so far involve 3 

nodes, which permits one node to fail and have the data remain 

available. 

4.4. The B-Tree Server 

The B-tree server maintains arbitrary collections of directory 

entries in B-trees, and is being used in an implementation of 

replicated directories. The B-tree server provides the standard 

operations on multi-key directories: add, delete, modify, etc. 

Indices on non-primary keys are implemented as separate 

B-trees, each of which points to the primary key B.tree's leaves 

which contain the data. 

Because the B-tree server dynamically allocates storage within 

the recoverable segment, it was necessary to create a 

recoverable storage allocator. If a transaction uses an operation 

that allocates storage, and the transaction later aborts, the 

memory is made available for re-use. The B.tree server 

maintains a separate storage pool for each size object that it 

allocates, and allocates blocks from the pool using techniques 

similar to the weak queue server. This technique works for fixed 

sized blocks, but cannot be used for variable size block 

allocation, which will be implemented in future data servers using 

operation-based logging. 

4.6. Evaluation of Data Servers 

The data servers that have been created cover a good range of 

the design space, although we have currently restricted our data 

servers to use standard read/write locking and value logging. 

Most of the advantages of the system are easy to overlook 

because they involve simply having a system in the first place. 

For example, recovery, synchronization, and communication 

mechanisms exist as tools that are relatively easy to use. 

Moreover, these tools are not mechanically imposed, which has 

made it possible to to add new primitives easily, and to build 

several data servers that use these tools in novel ways. 

These flexible tools underscore our major claim: Many 

interesting data servers are difficult, if not impossible, to build 

using traditional read/write locking. In support of this claim, we 

note that all the data servers except the integer array server 

required the addition of primitives to circumvent the locking 

mechanism, and that even with these additions, the imple- 

mentors were required to use unnecessarily complex algorithms 
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and/or  unprotected reads of data. We intend to explore the 

type-specific locking capability of TABS with future data servers. 

Our second claim is: Value logging is inconvenient for 

non-array implementations. The implementors of the weak 

queue server, the I0 server, and the B-tree server storage 

allocator initially sketched simple designs that used operation- 

based logging. The eventual implementations were complicated 

by the use of value logging. The use of operation-logging, 

type-specific locking, and value logging where appropriate will 

provide a rich environment for re-implementing existing data 

servers, and creating new ones. 

5. Analysis of TABS Performance 
This section presents analytical and experimental evidence 

supporting our hypothesis that it is possible to implement 

efficient general purpose facilities that support distributed 

transactions. This evaluation permits us to describe the 

performance and limitations of the current implementation, and it 

permits us to predict how well TABS woutd work if it used more 

efficient underlying primitives and were more tightly integrated. 

The analysis presented in this paper is an application of a 

performance evaluation methodology for predicting the cost of 

transaction execution (latency and resource utilization) under 

conditions of no load [Spector and Daniels 85] 2. 

The section continues by describing a collection of 

benchmarks and characterizing them in terms of the repeated 

execution of primitive operations. We use both this 

characterization and an empirical performance study to describe 

the performance of TABS and to predict how it would perform if 

improvements were made. 

5.1. A Microscopic  Approach to Transact ion System 

Performance Evaluation 

The performance of a commercial transaction processing 

system can be described macroscopically by its performance on 

standard work loads [Anonymous et al. 85]. This approach is not 

sufficient for our evaluation of TABS for two reasons. First, the 

work loads encountered by a general purpose facility supporting 

abstract types are not easily characterizabis. Second, 

throughput rates or latencies, by themselves, do not lead to an 

understanding of how individual algorithms and implementation 

decisions have affected system performance. Hence, we need to 

understand more microscopic effects to critique our system and 

to predict the effects of algorithmic or structural changes. 

To describe TABS performance, we have chosen to measure 

the performance of a collection of benchmarks from which it is 

2This methodology does not sddress the effects of concurrent transaction 
execution on pedormance, even though TABS fully supports the necessary 
synchronization. 

possible to deduce the performance of other transactions. To 

illustrate this deduction process, consider two benchmarks: one 

is a read-only transaction that performs one remote read 

operation on data in primary memory, and the other is a similar 

transaction that performs five remote read operations on data in 

primary memory. From these two transactions, it is possible to 

deduce the amount of time to perform an incremental 

non.paging, remote read operation. The benchmarks, which are 

described below, are as simple as possible consistent with their 

forming a basis for estimating the performance of other 
transactions. 

The execution times of benchmarks, while useful for predicting 

the performance of other transactions, do not explain how 

transaction performance changes as a function of algorithmic or 

underlying system changes. Nor do the execution times of 

benchmarks shed light on the resources that they use. To 

provide this additional information requires a more complex 

analysis. The analysis that we propose is based on the notion 

that each benchmark is sqbstantially made up of the repetitious 

execution of a collection of primitive operations, such as disk 

reads or inter-node datagrams. These primitives have 

counterparts in all transaction systems and collectively account 

for much of the execution time of a transaction. 

The primitive operations we use are the following: 

• Data Server  Cal ls in TABS are remote procedure 
calls between applications and data sewers on a 
single node. Servers instantiate a coroutine for each 
call. We measure the time for the.Data Server Call 
primitive by measuring the time for a TABS 
application process to call a null procedure in a 
TABS data server process. 

• In ter -Node Data Server  Cal ls are implemented 
and measured analogously to single node Data. 
Server Calls. These calls use sessions implemented 
by the Communication Manager. 

• Datagrams are used for inter.node transaction 
management messages. 

= Accent inter.process messages are used for 
communication between TABS applications, data 
servers, and TABS system processes on one node. 
Because message performance depends on the size 
of messages and on the method by which data is 
transferred from one process to another, three 
different message types are cour~ted: 

c A  Small Contiguous Message.  Small 
messages typically contain less than 100 
bytes, but in all cases have less than 500 bytes. 

o A Large Cont iguous Message.  We use 1100 
bytes for the average size of these messages. 

o A Po in ter  Message containing a pointer to 
data that is transmitted by copy-on-write 
remapping of processes' virtual memory. 
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Primitive Ave rage Time 

Data Server Call 26.1 

Inter-Node Data Server Call 89. 

Datagram 25. 

Small Contiguous Message 3.0 

Large Contiguous Message 4.4 

Pointer Message 18.3 

Rando/n Access Paged I /0 32. 

Sequential Read 16. 

Stable Storage Write 79. 

Table 5-1 : Primitive Operation Times (in milliseconds) 

These primitive times are used to predict system time in Table 5-4. 

• In TABS, all disk reads and writes, other than those 
for the log, are performed by Accent as part of its 
demand paging of virtual memory. Pages are 51"2 
bytes. In Accent, random accesss reads and writes 
take about the same time, so we report only one 
(combined) Random Access Paged I / 0  primitive. 
Because our Perq's have only a single disk, log 
writing breaks up sequential access disk writes, so 
sequential access writes do not occur. Sequent ia l  
Reads do occur in our benchmarks, and this 
primitive is also reported separately. 

• The Stab le  Storage Wri te primitive is the elapsed 

time required for the Recovery Manager to force a 
page of log data to non.volatile storage. 

The costs of the primitives were estimated by repeatedly calling 

the appropriate Accent and TABS functions. For example, we 

determined demand-paged I / 0  costs by instrumenting a 

program that repeatedly read (or wrote) individual pages in a 

large array that is mapped into virtual memory. This experiment 

measures the average cost of a read (or a reed/write pair). Table 

5.1 shows the measured performance of the primitive operations 

on a Perq T2 computer [Perq Systems Corporation 84], The Data 

Server Call primitive time is high due to an inefficient 

implementation of coroutines. As background, we note that the 

speed of a Perq executing Pascal is approximately 20 tO 25 

percent the speed of a Vax.11/780 executing C [Fitzgerald and 

Rashid 86]. 

After determining the appropriate primitives and measuring 

their performance, the next step in our analysis is to define a set 

of benchmarks and to express the latency of each benchmark as 

a function of primitive operation times. The benchmarks are  

among the simplest that can be designed to produce the desired 

system behavior. There are four dimensions of system behavior 

that the benchmarks exercise. First, some benchmarks are  

read-only while others modify data. Second, benchmarks either 

cause no page faults, cause random page faults, or read pages 

sequentially. Third, benchmarks either perform a single data 

Benchmark 
Remote Small 

Data Server Data Server Local 
Calls Calls Msg 

Large Sequential Random 
Local Page Page 
Msg Reads I /0 

1 Local Read, No Paging 1 4 

5 Local Read, No Paging 5 4 

1 Local Read, Seq. Paging 1 4 

1 Local Read, Random Paging 1 4 

1 Local Write, No Paging 1 6 1 

5 Local Write, No Paging 5 14 5 

1 Local Write, Seq. Paging 1 10 1 

1 Lcl Rd, 1 Rem Rd, No Paging 1 1 8 

1 Lcl Rd, 5 Rein Rd, No Paging 1 S 8 

1 Lcl Rd, 1 Rem Rd, Seq. Paging 1 1 8 

1 L¢I Wr, 1 Rein Wr, No Paging 1 1 12 2 

I Lcl Wr, 1 Rein Wr, Seq. Paging 1 1 20 2 

1 L¢I Rd, 1 Rein Rd, 1 Rem Rd, NP 1 2 11 

1Lcl Wr, 1 Rem Wr, 1 Rem Wr, NP 1 2 17 3 

1 

.86 

Table 5-2: Pre-Commit Primitive Counts 
This table shows the number of primitive operations each benchmark is expected to perform before starting commit. The 
primitive operations are listed in Table 5-1. The number .86 is the measured number of page I/O's per transaction. Blank 
entries denote zero values. 
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server operation on each node or perfoi'm multiple data server 

operations on one of the nodes in the benchmark. Finally, 

benchmarks perform operations on one, two, or three nodes. 

There are four read-only benchmarks in which both the 

application and data server process are located on the same 

machine. The simplest is a transaction that reads an identical 

element of a recoverable array of integers. The second is similar, 

but is a transaction that reads the same array element five times. 

This permits the determination of the costs of individual read 

operations on data servers. The third is similar to the first but is 

modified to measure the gerformance of the demand paging of 

recoverable data. It is a transaction that reads an element from 

successive pages of a large array. This array is 5000 pages, 

which is more than three times the available physical memory on 

a Perq with TABS running. The final test reads random elements 

from the array and demonstrates the effect of random I/O times 

on TABS performance. 

The performance of the system for transactions that modify 

recoverable data is measured by benchmarks that write the array 

instead of reading it. Because there is only one disk on our 

system, there should be no significant difference between the 

random-access case and the sequential-access case because of 

the intervening seeks required by paging writes. Hence, we 

include only a sequential paging test. 

To study the performance effects of inter-node communi- 

cations, there are similar benchmarks that use two data servers, 

one on the same node as the application and one on a remote 

node. Read tests have one local non.paging read and one 

remote non-paging read; one local non.paging read and five 

remote non-paging reads; and one local sequential paging read 

and one remote sequential paging read. Two additional tests 

measure two node write transactions: one test with one local 

non-paging write and one remote non-paging write, and one test 

with one local paging write and one remote paging write. These 

remote write tests reflect the cost of the more complex 

two.phase commit protocol. We do not include a benchmark 

that measures 5-write operations remotely, as this can be 

deduced from other benchmark times. 

To show how the cost of transaction commit increases as a 

function of the number of node s , benchmarks that read or write 

the same cell on three nodes are included. The performance of 

these benchmarks must be adjusted for the number of 

operations to show the incremental commit cost directly. 

The time in each benchmark attributable to primitive operations 

-can be expressed as a function of primitive operation times. 

Potentially, this analysis involves complicated stochastic models, 

but our benchmarks have a simple approximate analysis. In our 

transaction model, all operations prior to commitment execute 

sequentially. Hence the pre.commit latency of a transaction that 

is due to the execution of primitive operations is a sum of the 

primitive operation times weighted by the numbers of primitive 

operations performed. The benchmarks are deterministic in 

steady state, so determining the primitive counts is fairly easy. 

For the random read benchmark, it is simpler to count page 

reads during the test than to measure the available buffer 

memory and estimate what fraction of references will be to pages 

in the buffer. These formulas are reported in Table 5-2, the 

Pre-Commit Primitive Count Table. 

The latency of the commit portion of a transaction is sequential 

in the local case, but involves parallel processing in the 

distributed case. For each type of transaction commit protocol, 

we estimate the execution path of longest duration through the 

distributed system. This path is used as the basis of the 

benchmark counts that are incorporated in Table 5-3, the 

Commit Primitive Count Table. Because different transactions 

use the same commit protocol, there are fewer entries in this 

table than in the Pre.Commit Benchmark Count Table. Commit 

times for the three node benchmarks are longer than commit 

Protocol 
Remote Small Large Local Stable 

Datagram Local Local Pointer Storage 
Msg Msg Msg Msg Writes 

1 Node, Read Only 5 

1 Node, Write 8 1 1 

2 Node, Read Only 2 11 1 1 

2 Node, Write 4 17 5 1 4 

3 Node, Read Only 2.5 11 1 1 

3 Node, Write 5 17 5 1 4 

Table 5-3: Commit Primitive Counts 
This table shows the number of primitive operations in the longest estimated execution path for various commit protocols. The 
one-half datagrem time in the 3 Node, Read Only case is an approximation for the time required to immediately send a 
"Prepare" datagram to the second remote node. The 3 Node, Write case contains 2 one-half datagram times, because there is 
also a "Commit" datagram that is sent to the second remote node. Blank entries denote zero values. 
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Benchmark 
Sys Time Measured Measured Improved New 
Predicted TABS Proc Elapsed TABS Primitive 

by Primitives Time Time Architecture Times 

1 Local Read, No Paging 53 41 110 107 67 

5 Local Read, No Paging 157 41 217 213 80  

1 Local Read, Seq. Paging 71 41 126 123 7 5  

1 Local Read, Random Paging 81 41 140 137 98 

1 Local Write, No Paging 156 83 247 228 136 

5 Local Write, No Paging 302 119 467 424 225 

1 Local Write, Seq. Paging 232 104 371 345 249 

1 Lcl Rd, 1 Rem Rd, No Page 306 223 469 459  228 

1 Lcl Rd, 5 Rein Rd, No Page 662 368 829  819  268 

1 Lcl Rd, 1 Rein Rd, Seq. Page 341 226 514 504  257 

1 Lcl Wr, 1 Rem Wr, No Page 697 407 989 775 442 

1 Lcl Wr, 1 Rein Wr, Seq. Page 864 441 1125 873 539 

1 Lcl Rd, 1 Rem Rd, 1 Rein Rd, NP 416 381 621 611 282 

1 Lcl Wr, 1 Rem Wr, 1 Rein Wr, NP 831 670 1200 968  534 

Table 5-4 :  Benchmark Times (in milliseconds) 
This table shows predicted, average measured, and projected improved times for the benchmarks. The System Time 
Predicted by Primitives is computed by summing the primitive operation times for each benchmark from Tables 5-1, 5-2, 
and 5-3. Measured TABS Process Time is the sum of TABS system process times on all nodes. Measured Elapsed Time 
is the average measured time of the benchmark over a long run including all points except starting and ending transients. For 
the single node tests, Predicted System Time plus Measured TABS Process Time should approximately yield Measured 
Elapsed Time, as they do. As described in the text, the TABS architecture could be improved and the primitive times reduced. 
The Improved TABS Architecture column shows projection of elapsed times based on algorithmic and structural changes 
to TABS. The New PrimiUve.Times column shows how the times in the preceding column would improve if primitive 
operations times were as in Table 5-5. Multi-node write tests used one or two Percl 2 computers, which have average disk seek 
times about 15 milliseconds slower than the Perq T2 used for the primitive time measurements of Table 5-1. The System Time 
Predicted by Primitives for these tests have been increased by 30 or 45 milliseconds. Projected times always assume the 
use of Perq T2 disks. 

times for the two node benchmarks by a one-half datagram time 

for read-only transactions and by 2 one-half datagram times for 

update transactions. This is due to the estimated cost of sending 

datagrams in parallel to different nodes. 

5.2. The Pe r fo rmance  of  TABS 

The sum of the primitive operation times in Table 5.1, as 

weighted by the counts of Tables 5-2 and 5-3, accounts for a 

significant portion of the latency of each benchmark. This sum is 

shown in the first column of Table 5-4, labeled "System Time 

Predicted by Primitives." 

Benchmarks times were measured by counting the number of 

transactions executed in 20 or 30 second time intervals and 

averaging these rates over 20 to 30 minutes of testing. 

Transients at the beginning and ending of tests were discarded. 

The column labeled "Measured Elapsed Time" in Table 5-4 show 

the average elapsed time for each benchmark. The column 

labeled "Measured TABS Process Time" reports the sum of 

average measured CPU time o[ the TABS Communication, 

Recovery, and Transaction Manager Processes on all nodes in 

the test. 

Rather than reiterating numbers in tl~e tables, we instead 

present more details about the performance of the system. We 

account for the latency of a local, singie operation, non-paging 

read transaction. We also show where the additional t ime is 

spent in a single node, non-paging write transaction. Finally, we 

show how to reconcile System Time Predicted by Primitives, 

Measured TABS Process Time, and Measured Elapsed Time for 

two-node transactions. This discussion uses execution time data 

for individual processes, which are not included in Table 5-4. 

The measured elapsed time for processing a transaction that 

performs a single node, non-paging read operation is 110 msec. 

This is 57 msec greater than predicted by primitive operations 

alone. Of this additional time, 41 msec is accounted for by TABS 

system processes: 36 msec in the Transaction Manager and 5 

msec in the Recovery Manager. (TABS system process times 

remain constant in all local read-only transactions.) By a 
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complex deduction, we determined that the application and data 

server require about 3 msec and 4 msec, respectively, to initiate 

and commit a transaction. Our analysis does not account for the 

remaining 9 msec. 

The difference in measured times between the simplest read 

and simplest update transactions is 137 msec, of which 78 msec 

is the time for the Stable Storage Write. The data server uses an 

additional 5 msec to do a write, rather than a read. This time is 

usedto format and send log data to the Recovery Manager. The 

Recovery Manager uses an extra 10 msec to spool this data to 

the log. The more complex commit protocol for an 

update.transaction requires an additional 8 msec in the Recovery 

Manager, 24 msec in the Transaction Manager, and 4 msec in the 

data server. Together, these times with the additional message 

primitives executed (see Tables 5-2 and 5-3) sum to 155 

milliseconds. This is 18 milliseconds more than measured, which 

may be partially due to double counting some Recovery Manager 

time included in the Stable Storage Write time. 

Two-node distributed transactions involve little parallel 

execution, so we might expect System Time Predicted by 

Primitives plus Measured TABS Process Time to equal Measured 

Elapsed Time. This is not true, however, because communi- 

cation time is counted in both the Measured TABS Process Time 

and the System Time Predicted by Primitives. If the 

Communication Manager time were subtracted, the sum of the 

remaining TABS Process time and Predicted times is within 4 

percent of elapsed time for read transactions and within 10 

percent for write transactions. Three node transactions involve 

considerable parallel processing during commit so this simple 

reconciliation is not applicable. 

5.3. Improv ing TABS performance 

In this section, we use the primitive operation analysis to 

project the performance of different implementations of TABS. 

Two projections are given here. The first projection is based on 

the measured times of primitive operations reported above, but 

assumes feasible architectural and implementation changes to 

TABS. The second projection is based on the first, but also 

assumes new primitive operation times, which are described and 

justified below. In neither case are we counting on a faster 

processor or better compiler; thus, projected times are higher 

than measured TABS Process Time except for benchmarks 

having parallelism or high communication costs. 

For the first projection, labeled "Improved TABS Architecture" 

in Table 5-4, we assume that the Recovery Manager and 

Transaction Manager processes are merged with the Accent 

kernel. This eliminates message passing between these three 

components, and also allows one prepare message sent from a 

data server to the modified kernel to perform the function of two 

messages in the current implementation. We have previous 

experience with the integration of functions implemented by 

separate processes into the kernel and believe that this is a 

simple process. Additionally, we assume optimized commit 

algorithms that eliminate unnecessary messages and permit 

some of the processing for commit of distributed write 

transactions to occur in parallel with the execution of succeeding 

transactions. The projections based on these changes are 

derived by reducing the measured elapsed times by the times for 

primitive operations that would not be performed. Remote write 

transactions showthe biggest performance increase, because of 

the elimination of considerable commit processing from the 

critical execution path of the transaction. 

The second performance projection, labeled "New Primitive 

Times" in Table 5.4 is derived from the "Improved TABS 

Architecture" projections by setting the primitive operation times 

to those given in Table 5-5. The costs of these new primitives are 

based on our estimates of the applicability to the Perq/Accent 

environment of published techniques for efficient implementation 

of these primitives. Accent random I/O times already approach 

the performance of the disk, so we do not assume any 

improvement here, though we hypothesize a small improvement 

in sequential read time. 

Primitive Average Time 

Data Server Call 2.5 

Inter-Node Data Server Call 9. 

Oategram 2.0 

Small Contiguous Message 1 .O 

Large Contiguous Message 1.25 

Pointer Message 15. 

Random Access Paged I /0  32. 

Sequential Read 10, 

Stable Storage Write 32. 

Table 5-5: Achievable Primitive Operation Times (in milliseconds) 

-This table shows primitive times achievable by tuning software and adding disks. 

Intra-processor message times have been reported as low as 

0.77 msec on hardware that is (roughly) similar in performance to 

the Perq [Cheriton 84b]. However, Accent processes have 

completely separate virtual address spaces and context 

switching times are greater for Accent than for other operating 

systems, and so we chose times of 1.0 and 1.25 msec for our 

projections. The implementation of pointer messages is fairly 

complex and we therefore assume qnly small improvement. 

Careful implementation or the use of lazy evaluation should 

substantially eliminate to high costs of coroutine allocation in the 

Data Server Call primitive. 

Considerable work has been devoted to efficient inter- 

processor message passing [Birrell and Nelson 84, Spector 82]. 
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We feel that times of 9 msec for remote data server calls, and 2 

msec for datagram messages allow reasonable overheads 

compared with times reported for similar hardware [Nelson 81]. 

If the existence of small (disk track size) quantities of zero 

latency stable storage (e.g. battery backup CMOS primary 

memory) and dedicated logging disks are assumed, then log 

writing costs could approach main memory copy costs. 

However, to lend more credence to our projections we estimate 

that log writing can be performed for the same cost as paged 

disk writes. This estimate assumes dedicated logging disks and 

offline archival of the log. 

With these improvements, the projected performance of local 

transactions range from 67 msec for non-paging, read-only 

transactions to 249 msec for paging write transactions. The 

performance of multi-node benchmark transactions range from 

228 msec to 539 msec. Of course, these numbers could be 

reduced further by improving the code in the TABS system 

components and by using a faster CPU. TABS system process 

times dominate the costs in these projections, and their 

execution time would decrease on a faster CPU. 

6. Relationship to R" and Argus 

TABS is similar in many ways to R ° and Argus [Williams et al. 

81,Lindsay et al. 84, Liskov 84, Liskov et al. 83]. R ° is a 

distributed database management system, developed at IBM San 

Jose Research, that supports transactions on relational database 

servers. Argus is a programming language, developed at the MIT 

Laboratory for Computer Science, that supports transactions and 

user-defined types on which they can operate. 

The transaction facility of R ° is implemented by a combination 

of the underlying operating system, CICS [IBM Corporation 78], 

and a component called TM °. This logically unified facility 

permits servers to register themselves and their operations when 

they are ready to receive requests, and performs routing of 

operation requests to local servers. The facility also issues 

transaction identifiers, oversees transaction commitment and 

aborting, and does deadlock detection. 

Servers in R" have two types of interfaces. The first type 

includes operations specific to a server. The second type 

includes operations required for transaction management, 

deadlock detection/resolution, and remote access by other 

servers. In R °, requests are never directly issued to remote 

servers. Instead, they are passed to local servers, which then 

interact with remote ones. 

Broadly, TABS is very similar to R* in that both systems make 

available transaction facilities for applications and servers. 

However, they differ in many ways. For example, TABS, its 

applications, and its servers are implemented as a collection of 

p[ocesses that communicate via messages, rather than via the 

protected procedure calls, which R" uses. Another major 

difference is that remote servers in TABS can be directly invoked 

in a transparent way. Also, TABS servers retain little context 

between operations and use a common log and recovery 

algorithms provided by the system; servers in R" must utilize the 

same context for each operation within a transaction, and each 

server must provide for its own recovery. Some Of these 

differences are relatively minor, but some affect performance or 

usability. For example, the common log and transparent 

inter-node communicat ion provide efficiency and flexibility 

respectively; but, on the other hand, protected procedure calls 

on the IBM 370 are very fast. 

Internally, Argus contains many facilities that are analogous to 

those of TABS and R °, but it has the more ambitious goal of 

making those facilities very easy to use. Some objects can be 

implemented without the type implementor having to consider 

synchronization or recovery issues. However, types needing 

highly concurrent access require explicit attention paid to 

synchronization and recovery. For these high concurrency 

types, synchronization and recovery are done with the aid of a 

specialized object, called a mutex, rather than via explicit locking 

and logging. 

Argus is certainly easier to use than TABS for constructing 

simple objects. However, it is difficult to compare the amount of 

work needed to use mutex objects versus that of explicitly setting 

locks and writing log records. We have not considered the 

performance differences between the approaches. 

7. Conclusions 

Our use of TABS has convinced us that its facilities for 

supporting transactions and data servers are useful for both local 

and distributed abstractions. Specialized distributed database 

systems, file systems, mail systems, spoolers, editors, etc. could 

be based on the implementation techniques that our existing 

servers use. In our view, the use of location-transparent 

operation invocation, locking within data servers, write.ahead 

logging with a .common log, and the implementation of 

permanent objects in virtual memory were good design choices. 

We must give due credit to the Accent kernel, which implements 

many of the facilities that TABS uses or provides, and which has 

proven invaluable for supporting distributed computation. 

Because TABS uses nearly the minimum number of expensive 

primitive operations such as disk I/O's, log writes, inter-node 

messages, and datagrams, TABS performance is sufficient for 

many applications in an interactive workstation environment. 

Transactions considerably more complex than the benchmarks 

of Section 5 take less than a few seconds of elapsed time. For 

example, our analysis indicates that about two seconds are 

required for a local transaction that invokes five operations, each 

of which updates two pages that are not in memory. The same 

transaction would require about one-half .second if the data were 
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in main memory. If the operations were performed on one or 

more remote nodes, these transactions would take only about 

one second longer. 

Certainly, TABS can be substantially improved. To simplify 

programming simple data servers, the calls to TABS synchro- 

nization and recovery facilities should be hidden in a language 

run-time system, such as that of Argus. For more complex 

servers that need greater flexibility, the server library should 

provide a better set of primitives, including some for operation 

logging and type-specific locking. Thought should also be given 

to providing better debugging support for data servers. 

Functionally, TABS should be extended to permit the recovery 

of a single server without the recovery of the entire node. In 

addition, TABS should use stable storage for the log and support 

media recovery. Finally, TABS should probably have a more 

complete subtransaction model, particularly for the implement. 

ation of replicated objects. 

In its implementation, TABS loses performance because of the 

division of the Recovery Manager, Transaction Manager, and 

Accent into separate processes. The TABS coroutine, logging, 

and inter-node communication facilities need re-implementation 

or tuning. If these changes were made and TABS used more 

modern hardware, one would expect transaction times that are 

four to ten times faster than the currently measured ones. 

We are continuing to enhance the system and study its use. 

For example, we plan to empirically compare the relative merits 

of value and operation logging. We are also continuing to 

investigate architectures and algorithms that will provide 

increased transaction throughput. In addition, we would like to 

develop a performance methodology for measuring and 
predicting throughput. Though much work remains, our 

experiences to date have convinced us that general purpose 

distributed transaction facilities are feasible and useful for a wide 

variety of systems. 
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