
1

The Case for Cooperative Networking
Venkata N. Padmanabhan∗ Kunwadee Sripanidkulchai†

Microsoft Research Carnegie Mellon University

Abstract—
In this paper, we make the case for Cooperative Network-

ing (CoopNet) where end-hosts cooperate to improve net-
work performance perceived by all. In CoopNet, coopera-
tion among peers complements traditional client-server com-
munication rather than replacing it. We focus on the Web
flash crowd problem and argue that CoopNet offers an ef-
fective solution. We present an evaluation of the CoopNet
approach using simulations driven by traffic traces gathered
at the MSNBC website during the flash crowd that occurred
on September 11, 2001.

I. I NTRODUCTION

There has been much interest in peer-to-peer comput-
ing and communication in recent years. Efforts in this
space have included file swapping services (e.g., Napster,
Gnutella), serverless file systems (e.g., Farsite [2], PAST
[11]), and overlay routing (e.g., Detour [13], RON [1]).
Peer-to-peer communication is the dominant mode of com-
munication in these systems and is central to the value pro-
vided by the system, be it improved performance, greater
robustness, or anonymity.

In this paper, we make the case for Cooperative Net-
working (CoopNet), where end-hosts cooperate to improve
network performance perceived by all. In CoopNet, coop-
eration among peers complements traditional client-server
communication rather than replace it. Specifically, Coop-
Net addresses the problem cases of client-server commu-
nication. It kicks in when needed and gets out of the way
when normal client-server communication is working fine.
Unlike some of the peer-to-peer systems, CoopNet does
not assume that peer nodes remain available and willing
to cooperate for an extended length of time. For instance,
peer nodes may only be willing to cooperate for a few min-
utes. Hence, sole dependence on peer-to-peer communica-
tion is not an option.

The specific problem case of client-server communica-
tion we focus on isflash crowdsat Web sites. A flash
crowd refers to a rapid and dramatic surge in the volume
of requests arriving at a server, often resulting in the server
being overwhelmed and response times shooting up. For
instance, the flash crowds caused by the September 11 ter-
rorist attacks in the U.S. overwhelmed major news sites
such as CNN and MSNBC, pushing site availability down
close to 0% and response times to over 45 seconds [18].

∗http://www.research.microsoft.com/p̃admanab/
†http://www.andrew.cmu.edu/k̃unwadee/. The author was an intern

at Microsoft Research through much of this work.

Flash crowds are typically triggered by events of great in-
terest — whether planned ones such as a sports event or
unplanned ones such as an earthquake or a plane crash.
However, the trigger need not necessarily be an event of
widespread global interest. Depending on the capacity of a
server and the size of the files served, even a modest flash
crowd can overwhelm the server.

The CoopNet approach to addressing the flash crowd
problem is to have clients that have already downloaded
content to turn around and serve the content to other
clients, thereby relieving the server of this task. This co-
operation among clients is only invoked for the duration
of the flash crowd. The participation of individual clients
could be for an even shorter duration — say just a few min-
utes. We argue that the CoopNet approach is self-scaling
and cost-effective.

The rest of this paper is organized as follows. In Section
II, we present our initial design of CoopNet and discuss
several research issues. In Section III, we analyze the fea-
sibility of CoopNet using traces gathered at MSNBC [20],
one of the busiest news sites in the Web, during the flash
crowd that occurred on September 11, 2001. We conclude
in Section IV by comparing CoopNet with alternative ap-
proaches to addressing the flash crowd problem.

II. COOPERATIVENETWORKING (COOPNET)

In this section, we present our initial design of CoopNet.
We begin by taking a closer look at the impact of a flash
crowd on server performance.

A. Where is the bottleneck?

A key question is what the most constrained resource
is during a flash crowd: CPU, disk or network bandwidth
at the server, or bandwidth elsewhere in the network. It
is unlikely that disk bandwidth is a bottleneck because the
set of popular documents during a flash crowd tends to be
small, so few requests would require the server to access
the disk. For instance, the MSNBC traces from September
11 show that 141 files (0.37%) accounted for 90% of the
accesses and 1086 files (2.87%) accounted for 99% of the
accesses. It is quite likely that this relatively small number
of files would have fit in the server’s main memory buffer
cache.

The CPU can be a bottleneck if the server is serving
dynamically generated content. For instance, Web pages
on MSNBC are by default implemented as active server
pages (ASPs), which include code that is executed upon
each access. (ASPs are used primarily to enable ad ro-



2

tation and customization of Web pages based on HTTP
cookie information.) So when the flash crowd hit in the
morning of September 11, the CPU on the server nodes
quickly became a bottleneck. For instance, the fraction of
server responses with a 500 series HTTP status code (er-
ror codes such as “server busy”) was 49.4%. However,
MSNBC quickly switched to serving static HTML and the
percentage of error status codes dropped to 6.7%. Our con-
versations with the Web site operators have revealed that
network bandwidth became the primary constraint at this
stage.

Since Web sites typically turn off features such as cus-
tomization during a flash crowd and only serve static files,
it is not surprising that network bandwidth rather than
server CPU is the bottleneck. A modern PC can pump
out hundreds of megabits of data per second (if not more)
over the network. For instance, [4] reports that a single
450 MHz Pentium II Xeon-based system1 with a highly
tuned Web server implementation could sustain a network
throughput of well over 1 Gbps when serving static files 32
KB in size.

On the other hand, the network bandwidth of a Web site
is typically much lower. In an experiment conducted re-
cently [12], the bottleneck bandwidth between the Univer-
sity of Washington (UW) and a set of 13,656 Web servers
drawn from [21] was estimated using the Nettimer tool [7].
The bottleneck bandwidth (server to UW) was less than 1.5
Mbps (T1 speed) for 65% of the servers and less than 10
Mbps for 90% of the servers2. So it is clear that in the vast
majority of cases network bandwidth will be the constraint
during a flash crowd, not server CPU resources.

While it is possible that there may be bottleneck links at
multiple locations in the network, it is likely that the links
close to the server are worst affected by the flash crowd.
So our focus is on alleviating the bandwidth bottleneck at
the server.

B. Basic Operation of CoopNet

As mentioned in Section I, the basic idea in CoopNet is
to have clients serve content to others clients, thereby alle-
viating load on the server. Since network bandwidth tends
to be the bottleneck rather than server CPU, CoopNet is
tailored to drastically reducing bandwidth demands at the
server. HTTP requests from clients arrive at the server as
usual. During a flash crowd, the server redirects some or
all of the requesting clients (depending on how constrained
the server’s network bandwidth is) to others clients that
have downloaded the URL in the recent past. The clients
then resend the request to one or more of these peers. Fig-
ure 1 illustrates the operation of CoopNet.

1The system had 4 processors, but only one CPU was used for the
experiments reported in [4].

2Given the good network connectivity of UW, is likely that the bot-
tleneck link in most cases was close to the server. While the bottle-
neck could have been “in the middle” for some distant servers (e.g.,
servers overseas), it is still likely to constrain communication between

SERVER

CLIENT A

CLIENT B CLIENT C

CLIENT D

(1) G
ET page.htm

l

(2) R
EDIR

ECT <B,C
>

(3) GET page.html

(4) REPLY <page.html>

(5) GET page.html

(6) REDIRECT <A,C>

(7) G
ET page.html

(8) REPLY <page.html>

Fig. 1. The basic operation of CoopNet. The numbers in
parentheses indicate the ordering of the steps. Note that
the list of peers returned by the server is updated as new
requests arrive.

Clients indicate their willingness to participate in Coop-
Net by including a new HTTPpragma field in the request
header. We call these the “CoopNet clients” and the rest
as the “non-CoopNet clients”. The server remembers the
IP addresses of CoopNet clients that have requested each
file in the recent past. For each file, it may be sufficient for
the server to remember a relatively small number — say
a few tens — of client addresses. The server then picks
between 5 and 50 addresses at random from this set and
includes this in the redirection message. It is quite likely
that at least one of these peers is able and willing to serve
the requested file. Since the server’s list of addresses is
constantly being updated as new requests arrive, the redi-
rection procedure would tend to spread load rather evenly
across the set of CoopNet clients.

The redirection response, which is a generalization of
HTTP redirection, is quite small in size — 200-300 bytes
including all protocol headers and the list of peer IP ad-
dresses. In contrast, even the slimmed down version of the
MSNBC front page during the flash crowd of September 11
was 18-22 KB in size. Thus request redirection saves the
server nearly two orders of magnitude in bandwidth. This
alone may often be sufficient to help the server tide over
the flash crowd problem. Furthermore, server-based redi-
rection often enables a client to locate the desired content
within two hops3 — one to the server and another to a peer.
In contrast, a distributed lookup scheme like Chord [15] or
Pastry [11] has a lookup cost ofO(log(N)) hops, where
N is the number of nodes in the system. Thus server-based
redirection is advantageous in many cases. In some situ-
ations, however, it may be desirable to avoid server-based
redirection, as we discuss in Section II-E.

We have built a prototype implementation of CoopNet.
The server piece is implemented as an extension to the Mi-
crosoft IIS server using the ISAPI interface. The client
piece is implemented as a client-side proxy that serves re-
quests both from the local browser and from peers.

the server and the large number of clients in the U.S.
3We mean end-to-end hops between hosts, not network hops.



3

C. Peer Selection

An important question is how a client, upon receiving a
redirection message from the server, decides which peer(s)
to download a file from. Clearly, it would be desirable to
find nearby peers that are well-connected without resorting
to expensive network measurements. We employ a multi-
pronged approach to the peer selection problem:
1. We use the scheme proposed in [6] to find peers that are
topologically close to the client that issued a request. The
basic idea is to use address prefix information derived from
BGP routing tables. Two peers are deemed to be topolog-
ically close if their IP addresses share a common address
prefix. The server uses this algorithm to find topologically
close peers to include in its redirection response. There ex-
ist ways of doing such prefix matching operations very ef-
ficiently without imposing much of a burden on the server
(e.g., [16]). If it is unable to find any peers with a matching
prefix, the server just responds with a random list of peers.
However, as we discuss in Section III-C, the September
11 traces suggest that the server may often be able to find
topologically close peers.
2. A match in address prefix does not necessarily mean
that two peers are close to one another. For instance, an
address prefix may correspond to a large network such as
a national or global ISP. Therefore, it may be desirable to
have the peers do a quick check to confirm their proximity.
Our approach is to have each peer determine its “coordi-
nates” by measuring the network delay to a small number
(say 10) of “landmark” hosts. The intuition is that peers
that are close to each other would tend to have similar delay
coordinates. Similar approaches have been used in a num-
ber of contexts recently: network delay estimation [8], ge-
ographic location estimation [9], overlay construction [10],
and finding nearby hosts [5].
3. For large file transfers, network bandwidth may be a
critical metric for peer selection. The last-mile link is of-
ten the bottleneck. As in Napster, our approach is to have
clients report their bandwidth (suitably quantized — e.g.,
dialup modem, DSL, T1, etc.) to the server as part of the
requests they send. (Clients estimate their last-mile band-
width by passively monitoring their network traffic in nor-
mal course.) The key distinction compared to the Napster
approach is that in its redirection messages the server tries
to only include peers whose reported bandwidth matches
that of the requesting client. The motivation for this is two-
fold. First, low-bandwidth clients are anyway constrained
by their thin pipes, so they may not gain much from con-
necting to high-bandwidth peers. Second, clients do not
have an incentive to under-report their bandwidth (a prob-
lem that afflicts Napster) because that would lead the server
to redirect them to peers with a similar low bandwidth.
4. Even after applying the preceding steps, a client may
still have a choice of say 2-3 peers to pick from. In such
a case, the client could request non-overlapping pieces of
data from multiple peers (say using the HTTP byte-range
option [3]), determine which connection is the fastest, and

then pick the corresponding peer for the remainder of the
data transfer. Clearly, this procedure is likely to be worth-
while only in the case of large file transfers. In Section
II-D, we discuss the case of streaming media files where
it may be desirable to persist with multiple peers for the
entire duration of data transfer.

D. Streaming Media Content

Streaming media content presents some interesting is-
sues in the context of a flash crowd. First, due to the large
size of streaming media files and the relatively high band-
width needed for streaming, even a small flash crowd can
easily overwhelm the server or its network. For instance,
a server behind a T1 link would be able to pump out no
more than a dozen 128 Kbps streams simultaneously. Sec-
ond, unlike static Web content, streaming media content is
not normally cached at clients. Third, the burden of serv-
ing an entire stream to another client may be too much for
a client, which is after all not engineered to be a server.

Our approach is to have clients save a local copy of
streams during a flash crowd so that it can be streamed to
other clients if needed. Where possible, a group of peers
transmits non-overlapping portions of a stream (i.e., a set
of “sub-streams”) to the requesting client. The client com-
bines these sub-streams on the fly to reconstruct the orig-
inal stream. Distributed streaming reduces the burden on
individual peers and also provides robustness in the face of
congestion or packet loss suffered by a subset of the sub-
streams.

E. Avoiding Server-based Redirection

In some cases, it may be desirable to avoid having all
requests be redirected by the server. First, in an extreme
case, the bandwidth and/or processing needed to send the
redirection messages may itself overwhelm the server. Sec-
ond, it may be that only a small fraction of all clients are
willing to participate in CoopNet. So cooperation among
the CoopNet clients may not help reduce server load no-
ticeably during the flash crowd. While CoopNet clients
may still benefit significantly from their mutual coopera-
tion (since they can download most of the bytes from one
other instead of from the congested server), even getting
the (small) initial redirection message from the congested
server may take a long time (because of packet loss and the
resulting TCP timeouts). So the total latency for CoopNet
clients may remain large.

For these reasons, it may be desirable for CoopNet
clients to check with their peers first before turning to the
server. How to do this checking efficiently is an interesting
and open research question. We present our initial thoughts
here. We term the set of peers among which a client
searches for content as itspeer group. (The peer group
could, in principle, include all CoopNet clients.) On the
face of it, the problem of searching for content in the peer
group is similar to recent work on distributed key searching
(e.g., CAN [10], Chord [15], Pastry [11], Tapestry [17]).



4

However, we believe that these schemes may be too heavy-
weight for the flash crowd problem because (a) individual
clients may not participate in the peer-to-peer network for
very long, necessitating constant updates of the distributed
data structures, (b) as we show in Section III-A, much
of the benefit of cooperation can be obtained even if the
peer group size for each client is relatively small (say 30-
50 peers), so there is not really the need for a distributed
search mechanism that scales to millions of peers, and (c)
the search for content in the peer group need not always
be successful since there is always the fallback option of
going back to the server.

Our approach exploits the observation that the peer
group size for each client is relatively small. It may well
be feasible for each member of a peer group to know about
all other members. For each URL, there would be a desig-
nated “root” node within each peer group that would keep
track of all copies of the file within the peer group. The
assignment of the root node for a URL can be made us-
ing a hash function so that any member of the peer group
can locate content in just two steps: first finding the root
node by hashing on the URL and then finding a node that
has the desired content. Redirection via the server can be
used both to discover other clients and form a peer group
initially, and also as a fallback option in the event that the
desired content is not found within the peer group.

F. Security Issues

There are two security-related issues to consider: en-
suring the integrity of content and ensuring the privacy of
peers (i.e., not revealing to a client’s peers what content it
has accessed).

The integrity of the server’s content can easily be en-
sured by having the server digitally sign the content. A
client can obtain the signature either directly from the
server (as part of the redirection message) or from a peer.
The client can then verify the authenticity of the content it
receives from its peers. For the sake of computational effi-
ciency, the server could sign a 160-bit SHA-1 hash of the
content rather than the content itself. In any case, since the
signature need only be computed once for each version of
a file, the burden placed on the server is minimal.

Ensuring privacy is much harder. While there exist pro-
posals for enabling anonymous communication between
hosts (e.g., [14]), anonymity comes at the cost of perfor-
mance. This trade-off may not be appropriate in a flash
crowd situation since performance is the key issue. In fact,
clients may not care about privacy during a flash crowd be-
cause the content served during such times is, in any case,
likely to be of widespread interest.

III. E XPERIMENTAL EVALUATION

In this section, we evaluate the feasibility and potential
performance of end-host cooperation during a flash crowd.
The goals of the evaluation are to answer the following
questions:

• How often can a client retrieve content from its peer
group and avoid accessing the server?
• How much additional load do peers incur by participat-
ing in CoopNet?
• How often can cooperating peers be found nearby?
• What is the duration of time for which peers are active?

The cooperation protocol used in our simulations is
based on the one described in Sections II-B and II-E.
A client who is willing to cooperate initially contacts the
server to get IP addresses of other CoopNet clients. The
server maintains a fixed size list of the CoopNet clients’ IP
addresses, and includes the most recentn clients in its redi-
rection message. In our simulations,n ranges from 5 to 50
clients. Once the client has a list, it always contacts peers
on the list to ask for content. If content cannot be found
at these peers, the client returns to the server to request the
full content and an updated peer list.

We use traces collected at the MSNBC website during
the flash crowd of September 11, 2001 for our analysis.
The flash crowd started at around 6am PDT, and lasted for
the rest of the day. The peak load was ten times the typical
load. Due to computing limitations, we focus our analysis
on the first hour of the flash crowd, between 6:00 am to
7:00 am PDT, containing over 40 million requests.

A. Finding Content

In order for cooperation to be effective, clients need to
avoid retrieving content from the loaded server to the ex-
tent possible. We define two metrics that capture how of-
ten content can be retrieved from one’s peer group. The
first metric is new content hit rate, which is the fraction
of requests for new files that can be served by hosts in the
peer group. The second metric is fresher content hit rate,
which is the fraction of time that a fresher copy of a file
can be found within the peer group. Fresher content hit
rate only applies to the case when clients are looking for
updated versions of files that they had downloaded in the
past. If these two hit rates are high, that would indicate that
CoopNet is providing an effective mechanism for improv-
ing client performance.

Figure 2(a) depicts the hit rates observed when the num-
ber of CoopNet clients is 200 (i.e., only 200 of the many
hundreds of thousands of clients are willing to cooperate).
The peer list returned by the server, which determines the
peer group used by a client, is drawn from this set of 200
CoopNet clients. The peer list size ranges from 5 to 50
clients. The vertical axis in Figure 2 is the observed rate,
and the horizontal axis is observation times at every 5 min-
utes after the beginning of the trace at 6:00am. Each line
represents the rate observed for a particular peer list size.

We present two analyses — optimistic and pessimistic.
In the optimistic analysis, we assume that files are not mod-
ified between accesses. So an access is either a repeated re-
quest (i.e., a request for a URL that a client has previously
accessed) or a request for a new (i.e., previously unseen)
URL. The solid line in the middle of Figure 2(a) is the rate



5

06:00 06:15 06:30 06:45 07:00
40

50

60

70

80

90

100

Time of Day

Ra
te

 O
ve

r A
ll R

eq
ue

sts
 (%

)
100% Minus Compulsory Miss Rate
Repeated Request Rate
New Hit Rate 5 Peers
Fresh Hit Rate 5 Peers
New Hit Rate 10 Peers
Fresh Hit Rate 10 Peers
New Hit Rate 30 Peers
Fresh Hit Rate 30 Peers
New Hit Rate 50 Peers
Fresh Hit Rate 50 Peers

(a) Average hit rates observed at peers for each peer list size.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Load (Files/Sec)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
of

 L
oa

d

(b) Load at peers during busy periods.

Fig. 2. Hit rates and load observed at peers.

of repeated requests. The solid lines at the top show the
sum of the repeated request rate and the hit rate for new
content. This sum represents the overall hit rate in the op-
timistic setting. The upper bound for the overall hit rate
is the difference between 100% and the compulsory miss
rate (which corresponds to the case when content must be
retrieved directly from the server because none of the 200
CoopNet clients has a copy of that content). This upper
bound is the line at the top of the figure. We observe that
for all peer list sizes, the overall hit rate is close to the upper
bound, with less than 5% of requests ending up in a miss.
We also observe that hit rates increase with time because
of cache warming effects similar to those reported for Web
proxies.

In the pessimistic analysis, we assume that a file is up-
dated each second it is retrieved from the server. So in the
case of a repeated request, a client would actually look for a
fresher copy of the content than it has. The rate for finding
fresher content from cooperating peers is represented by
the dotted lines in Figure 2(a). Clearly, the upper bound for
finding fresher content is the repeated request rate. After
5 minutes of cooperation, peers find fresher content 46%
of the time out of the maximum achievable 56%, using a
peer list size of 30. After an hour of cooperation, peers
find fresher content 65% of the time out of the maximum
achievable 77%, using a list size of 30. Increasing the list
size from 30 to 50 peers does not significantly improve hit
rates.

In summary, we find that cooperation among a small
group of peers is effective. Clients need to retrieve con-
tent from the server only 15% of the time when using a
peer list size of 30.

B. Load on Peers

CoopNet clients contribute resources, such as network
bandwidth, to the system. To maintain good performance,
it is important not to completely exhaust those resources.
Here we examine the network bandwidth overhead in-
curred by clients serving content.

Over 80% of the time, peers are idle and do not serve
content. Figure 2(b) depicts the cumulative distribution of

load, measured as the rate at which peers serve files, during
the remaining 20% of time for a peer list size of 30. This
distribution is representative of the load observed across
all simulations of different peer list sizes. For the most
part, peers can sustain the bandwidth requirement for serv-
ing content. Over half of the time during busy periods,
peers serve at most 2 files in a second. However, in a few
cases, load may be unevenly distributed, leading to a flash
crowd at peers. The load can be as high as 57 files/second.
Although the load is much less than that observed at the
server, it may be enough to cause an overload at peers. We
are presently investigating load distribution and peak band-
width requirement for peers.

C. Finding Nearby Peers

Finding nearby peers can greatly improve the efficiency
of peer-to-peer interaction. For example, a peer at CMU
can retrieve content more quickly from another peer at
CMU than it can from a peer in Europe. In some cases,
the peer-to-peer performance could be comparable or bet-
ter than client-server performance.

We use the following metric to determine network prox-
imity. Peers that are in the same BGP prefix cluster are
considered to be “close” to each other. Although this met-
ric does not express closeness of peers that are in differ-
ent BGP prefix clusters, it provides an approximation to
whether or not it is possible to find a nearby peer.

We look at the IP addresses of clients in the trace in
the initial 30-minute period. There were 563,284 unique
clients, and 69,778 unique BGP prefix clusters. The proba-
bility of there being another client in the same prefix cluster
during the first 2 minutes of the trace is 80%. The proba-
bility grows to 90% for the entire 30-minute period. There-
fore, it is likely that peers will cooperate with nearby peers.

D. Duration of Activity Period for Peers

The duration of time for which peers are active affects
how well CoopNet performs. If peers are active at a web-
site for very short periods of time, peer lists must also be
updated frequently.

To determine the period of activity, we consider the in-



6

terarrival time between requests in the initial 30 minutes
of the trace4. We treat an interarrival period that is longer
than a threshold as representing the end of an activity pe-
riod (and the start of the next). We consider two values
of the threshold — 1 minute and 5 minutes. We find that
the average activity period is 1.5 minutes and 4.5 minutes,
respectively, in the two cases. This indicates that peer lists
may become stale on the order of a few minutes and should
be updated frequently.

IV. COMPARISON WITH ALTERNATIVE APPROACHES

We now discuss two alternative approaches to solving
the flash crowd problem: proxy caching and infrastructure-
based content distribution networks (CDNs). An advan-
tage that both of these approaches have over CoopNet is
that they can be deployed transparently to clients.

Proxy caching can help alleviate server load during a
flash crowd by filtering out repeated requests from groups
of clients that share a proxy cache. However, the effective-
ness of proxy caching is limited for a few reasons. First,
for them to be really effective in the context of a flash
crowd, proxy caches need to be deployed widely. Since
this requires substantial infrastructural investments by a
large number of organizations, a widespread deployment
of proxy caches is only likely if it results in significant
performance improvement during “normal” (i.e., non-flash
crowd) times as well. However, cache hit rates have re-
mained quite low, and the growing share of dynamic and
customized content will only make matters worse.

A second issue is that even a universal deployment of
proxy caches may not be sufficient to alleviate a flash
crowd in certain situations. For instance, the small Web site
for a high school alumni association may be overwhelmed
by the flash crowd caused when a link to the video clip of
a recent football game is sent out to all members via email.
The clients interested in this content are likely to be dis-
persed across the Internet, so proxy caches at the local or
organizational level may not filter out much of the load.

An alternative approach is to depend on an infrastructure-
based CDNs (e.g., Akamai [19]) to distribute content. This
may be an effective approach for ensuring high availabil-
ity and good performance both during a flash crowd and in
normal times. However, it is unlikely that a small Web site
would be in a position to afford the services of a commer-
cial CDN. Moreover, the absolute volume of traffic at such
a site even during a flash crowd may not be large enough
to be of interest to a commercial CDN.

In summary, we believe that CoopNet offers advantages
compared to both proxy caching and infrastructure-based
CDNs. CoopNet offers a low-cost but effective solution
to the flash crowd problem, which is likely to be espe-
cially attractive to small Web sites with limited resources.
That said, we donot view CoopNet as a replacement
for infrastructure-based CDNs. As noted on Section I,
CoopNet’s peer-to-peer content distribution kicks in when

4Clearly, the limited length of the trace could bias our results.

needed during a flash crowd but lies dormant during nor-
mal times. In contrast, an infrastructure-based CDN is en-
gineered to provide a wide range of services (e.g., hit me-
tering, high availability, performance guarantees, etc.) dur-
ing all times. Thus we believe that there is a role for both
CoopNet and infrastructure-based solutions.

ACKNOWLEDGEMENTS

We are grateful to Jason Bender, Steven Lautenschlager,
Perry Stoll, and Ted Thoma for providing us the MSNBC
Web logs from September 11. We would like to thank Ste-
fan Saroiu for making his Web server bandwidth measure-
ments available to us. We would also like to thank Lili
Qiu for early discussions on CoopNet and the anonymous
IPTPS reviewers for their insightful comments.

ADDENDUM

Subsequent to the publication of this paper, we became
aware of the pioneering work on “pseudoserving” to miti-
gate server congestion [22], [23]. As in CoopNet, the pseu-
doserving system redirects clients to other clients (termed
“pseudoservers”) during times when the server is over-
loaded. However, there are some differences with respect
to CoopNet. First, the server establishes “contracts” with
pseudoservers for use of their resources, whereas Coop-
Net uses a looser, randomized approach to spread the load.
Second, unlike CoopNet, pseudoserving does not enable
clients to avoid server-based redirection altogether. Third,
while the pseudoserving work discusses network cluster-
ing in general terms, CoopNet leverages specific recent
advances, such as BGP prefix-based clustering and delay-
based coordinates, to do proximity-aware peer selection.
Finally, the evaluation of pseudoserving is done using us-
ing an artificial workload whereas our evaluation is based
on traces from an actual Web flash crowd.

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek and R. Morris.
“Resilient Overlay Networks”,ACM SOSP, October 2001.

[2] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer. “Feasibility
of a Serverless Distributed File System Deployed on an Existing
Set of Desktop PCs”,ACM SIGMETRICS, June 2000.

[3] R. Fielding et al. “Hypertext Transfer Protocol – HTTP/1.1”,
RFC-2616, IETF, June 1999.

[4] P. Joubert, R. King, R. Neves, M. Russinovich, and J. Tracey.
“High-Performance Memory-Based Web Servers: Kernel and
User-Space Performance”,Usenix 2001, June 2001.

[5] C. Kommareddy, N. Shankar, and B. Bhattacharjee. “Finding
Close Friends on the Internet”,IEEE ICNP, November 2001.

[6] B. Krishnamurthy and J. Wang. “On Network-Aware Clustering
of Web Clients”,ACM SIGCOMM, August 2001.

[7] K. Lai and M. Baker. “Nettimer: A Tool for Measuring Bottleneck
Link Bandwidth”, USENIX Symposium on Internet Technologies
and Systems, March 2001.

[8] T. S. E. Ng and H. Zhang. “Towards Global Network Position-
ing”, ACM SIGCOMM Internet Measurement Workshop, Novem-
ber 2001.

[9] V. N. Padmanabhan and L. Subramanian. “An Investigation of
Geographic Mapping Techniques for Internet Hosts”,ACM SIG-
COMM, August 2001.



7

[10] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. “A
Scalable Content-Addressable Network”,ACM SIGCOMM, Au-
gust 2001.

[11] A. Rowstron and P. Druschel. “Storage Management and Caching
in PAST, A Large-scale, Persistent Peer-to-peer Storage Utility”,
ACM SOSP, October 2001.

[12] S. Saroiu. “Bottleneck Bandwidths”, October 2001.
http://www.cs.washington.edu/homes/tzoompy/sprobe/webb.htm

[13] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson. “The
End-to-End Effects of Internet Path Selection”,ACM SIGCOMM,
August 1999.

[14] C. Shields and B. N. Levine. “A Protocol for Anonymous Com-
munication Over the Internet”,ACM Conference on Computer and
Communication Security, November 2000.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan.
“Chord: A Scalable Peer-To-Peer Lookup Service for Internet Ap-
plications”,ACM SIGCOMM, August 2001.

[16] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner. “Scalable
High Speed IP Routing Lookups”,ACM SIGCOMM, September
1997.

[17] B. Zhao, J. Kubiatowicz, and A. Joseph. “Tapestry: An Infras-
tructure for Fault-Tolerant Wide-Area Location and Routing”,U.
C. Berkeley Technical Report UCB//CSD-01-1141, April 2001.

[18] “Web acts as hub for info on at-
tacks”, http://news.cnet.com/news/0-1005-200-
7129241.html?tag=rltdnws, 11 September 2001.

[19] Akamai.http://www.akamai.com/
[20] MSNBC Web site.http://www.msnbc.com/
[21] List of Web servers.http://www.icir.org/tbit/daxlist.txt
[22] K. Kong and D. Ghosal, “Pseudo-Serving: A User-Responsible

Paradigm for Internet Access”,6th International World Wide Web
Conference, April 1997.

[23] K. Kong and D. Ghosal, “Mitigating Server-Side Congestion on
the Internet Through Pseudo-Serving”,IEEE/ACM Transactions
on Networking, August 1999.


