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Abstract

We study whether overlays based on the recent dis-
tributed hash tables (DHTs), which have attractive
scaling properties, can deliver performance compa-
rable to that of overlays based on measurements,
which are constructed specifically to provide good
quality paths. Our work is motivated by the use of
DHTs for services such as multicast. We observe
that multicast is already targeted by measurement-
based overlays, and yet despite this convergence of
purpose there is little understanding of how the
two approaches compare. We simulate current and
idealized versions of DHTs to highlight their po-
tential for improvement over time. We compare
three DHT-based overlays, CAN, Chord and Pastry,
with Narada and NICE, which are representatives
of measurement-based overlays, and with power-law
random graphs (PLRGs) representing Gnutella.

We find that when configured with the same average
out-degree, basic versions of DHTs have a latency
stretch that is more than NICE and Narada by at
least a factor of two, but have similar performance
in terms of bandwidth hotspots. PLRGs perform
well in terms of latency stretch but poorly in terms
of bandwidth hotspots. We also find that consid-
erable performance gain can be achieved in DHTs
with routing heuristics and topology-aware overlay
construction. Together, these two techniques have
the potential to bring their performance at par with
NICE, and hence are a promising direction.

1 Introduction

Overlays have become the preferred vehicle for pro-
viding new Internet services (e.g., CDNs [1, 12],
application-level multicast [17, 4, 18, 9, 27, 7, 38,
21, 34], and P2P file sharing [19, 14, 10, 23, 11, 13]
). As such, overlay construction protocols that pro-
vide good levels of performance, scalability, and ro-
bustness are of considerable importance. There has
been a surge of interest in the area, along with rapid
advances that have led to two main approaches for
overlay construction: protocols based on measure-
ments, and protocols based on the recently devel-
oped distributed hash tables (DHTS).

Measurement-based protocols, initially motivated
by application-level multicast, use estimates of net-

work properties such as latency between overlay
nodes to make an informed choice of overlay struc-
ture. Examples include Narada [17], RON [2],
NICE [4], TAG [21] and Gossamer [9]. These al-
gorithms provide good performance via high qual-
ity paths. Recent extensions have allowed them to
scale up to tens of thousands of nodes by using hi-
erarchy [4, 20].

On the other hand, DHT-based protocols begin with
structure in mind, and may fold measurement infor-
mation into that structure. They map the overlay
nodes to a virtual space commonly known as the
node identifier space, typically pseudo-randomly to
achieve a balanced distribution. The overlay topol-
ogy, which determines how the nodes connect to
each other, is governed mainly by these node identi-
fiers. Examples include CAN [25], Chord [32], Pas-
try [29] and Tapestry [37]. These algorithms are ex-
tremely scalable and were motivated by peer-to-peer
(P2P) applications such as distributed file sharing,
where millions of nodes may be involved.

While originally developed for different purposes,
DHT-based overlays are now being targeted at
some of the same applications as measurement-
based overlays, most visibly application-level multi-
cast [27, 7, 31, 38]. Here, efficient use of the network
is a key concern, more so than for earlier DHT appli-
cations such as distributed indexing. Much recent
work thus aims to better the performance of DHT-
based overlays with improved construction heuris-
tics [5, 36, 35, 26, 33]. However, despite this con-
vergence of purpose and plenitude of work, there is
no real understanding of how the two approaches
compare.

In this paper, we study the performance potential of
DHT-based overlays. We seek to determine whether
DHT-based overlays can deliver performance that
is comparable to measurement-based overlays, and
thus whether research on improved heuristics is
likely to be fruitful. Our approach is to side-
step ongoing improvements to DHTs, and rather
than report on many proposed versions of DHT-
based overlays that may quickly become outdated,
we simulate basic and idealized DHT variants that
use global knowledge to understand their potential



for improved performance as better heuristics are
discovered. Through simulation, using the same
topologies, scale and metrics, we compare CAN,
Chord and Pastry with Narada and NICE, which
are representatives of measurement-based overlays.
We also study power-law random graphs (PLRGs)
with flooding-based routing, representing Gnutella,
to provide another point of comparison. Our study
was conducted on a scale of 1000s of nodes, as
against millions of nodes, which is the stated tar-
get of most DHTs. This scale is achievable by all
of measurement-based overlays, DHTs and PLRGs,
and in our experience even this scale provides use-
ful insights into comparative performance of these
overlays. To our knowledge, this is the first “apples
to apples” comparison of these approaches.

We find that when configured with the same aver-
age out-degree, basic versions of CAN, Chord and
Pastry have a latency stretch longer than NICE and
Narada by a factor of two or more, depending on the
scale. Somewhat surprisingly, all these algorithms
showed similar performance in terms of bandwidth
hotspots. PLRGs performed better than the basic
versions of DHTs in terms of latency stretch due
to the use of flooding as the routing mechanism in
PLRGs, but poorly in terms of bandwidth hotspots
due to highly variable node out-degrees. We also
find that considerable latency performance gain can
be achieved in DHTs with better routing heuristics
and topology awareness. Together, these techniques
have the potential to bring DHT performance at par
with NICE, and thus are a promising direction. But
it was more difficult to simultaneously achieve both
good latency and good bandwidth performance for
DHTs. As others [4, 20] we find that the hierar-
chy, which is used in NICE to help it scale, does
not significantly degrade performance compared to
Narada.

The paper proceeds as follows. The next section
briefly describes the overlay algorithms we study.
Section 3 discusses the metrics of interest when eval-
uating overlays, and Section 4 describes our experi-
mental methodology. We present our results in Sec-
tion 5, discuss related work in Section 6, and con-
clude in Section 7.

2 Background

This section provides an overview of the overlay con-
struction algorithms that we study. An overlay is
built by forming virtual links or tunnels between
the participating nodes; a tunnel between a pair of
nodes usually traverses multiple links in the under-
lying network. Given a set of nodes, the goal of an

overlay construction algorithm is to select the vir-
tual links that will be used as the overlay topology,
and to determine how to route over that topology.

2.1 Measurement-based Overlays

Measurement-based overlays are constructed pri-
marily using active measurement of network prop-
erties such as latency between overlay nodes. Sev-
eral algorithms for building these kind of over-
lays exist, most of which target multicast ser-
vices [17, 4, 34, 24, 21, 18, 9]. We study Narada [17]
and NICE [4], both of which are optimized for la-
tency.

In Narada, the goal is to settle into a flat (no hier-
archy) overlay topology that minimizes the latency
between nodes while keeping a small number of tun-
nels per node. This is accomplished by choosing
an initial set of neighbors, and periodically adding
new tunnels and dropping existing ones. The tun-
nel addition and deletion process is governed by its
utility to the two end points. The utility metric is
computed using the reduction in distance to other
nodes the tunnels brings about. This computation
requires periodic exchange of routing tables between
neighbors and every node probing every other node.
This poses a barrier to scalability, but provides all
nodes with near global knowledge leading to a highly
optimized overlay.

To tackle the scalability problem with a flat mea-
surement based overlay, NICE creates a hierarchy of
node clusters. At the bottom of hierarchy, nodes are
partitioned into clusters of fixed size. Each cluster
has a representative node, roughly at the topological
center of the cluster that is determined by nodes in
the cluster probing each other. The representative
node of a lower-level cluster is a member in the next
level of the hierarchy. This process of partitioning
into clusters and adding another level is recursively
repeated, yielding a tree topology. The per node
network bandwidth required for protocol mainte-
nance in NICE is O(log(n)), compared to O(n) in
Narada, where n is the number of nodes in the over-
lay.

For the purpose of our study, Narada provides a
baseline for an overlay with high quality paths at
small scale. NICE provides an indication of the per-
formance that can be maintained when additional
structure is imposed to scale to larger sizes.

2.2 DHT-based Overlays

DHT-based overlays are constructed using algo-
rithms for distributed hash tables (DHTSs) [25, 32,
29, 37]. These were originally developed to pro-
vide highly scalable and fully distributed index-
ing services for peer-to-peer file sharing, but have



since been applied to other services such as multi-
cast [27, 31, 7, 38]. We study CAN [25], Chord [32]
and Pastry [29] in this class of protocols.

In CAN, nodes are mapped pseudo-randomly to a
virtual d-dimensional Cartesian space, which wraps
around at the edges and has no resemblance to the
underlying physical topology. Every node has 2 x d
neighbors, corresponding to the adjacent nodes in
each dimension. Routing is achieved by following a
path through the Cartesian space that increasingly
progresses from source to destination. The average
path length is O(dn'/?), where n is the number of
nodes in the overlay and the per node network band-
width required for protocol maintenance is O(d).

In Chord, every node is pseudo-randomly assigned
an m bit identifier. For simplicity of explanation,
assume n = 2™, where n is the number of nodes in
the overlay. Every node is connected to m neigh-
bors (i.e. log(n) neighbors) with identifiers that
are spaced at distances of 2°,2!,22...2™~! from
its identifier in identifier space using modulo arith-
metic. A packet from node ng to node ng is for-
warded to the neighbor of n, that is arithmetically
closest to ng but less than or equal to ng. The
above process ensures a route with maximum length
log(n) between any two nodes. The per node net-
work bandwidth required for protocol maintenance
for Chord is O(log(n)).

In Pastry, nodes are pseudo-randomly mapped to an
m-bit identifier space in base 2°. The routing table
of a Pastry node is a matrix with m/b rows, and
2% columns. The node in cell (r,c) shares the first
r digits with the local node and has the last digit
equal to c. Routing is accomplished by each node
along the way forwarding a message for key k to the
node in its routing table with the longest matching
prefix; ties are broken using arithmetic closeness to
k. Both the average number of hops required to
route a message and per node bandwidth required
for overlay maintenance in Pastry is O(log(n)).

What we have described above are the basic ver-
sions of CAN, Chord and Pastry. Several mod-
ifications have been proposed for both the algo-
rithms [25, 32, 26, 11, 5. Some of these tar-
get performance, while others target application-
specific aspects such as data availability, resiliency
and hotspot management. Since the primary fo-
cus of our work is performance, we study only the
performance enhancing heuristics (Section 4.1) and
ignore the rest.

CAN, Chord and Pastry represent different families
of algorithms, all of which are being actively devel-
oped [27, 26, 31, 11]. Tapestry [37] is similar to

Pastry, and we believe our results are relevant for
Tapestry as well.

2.3 Random Power-Law Overlays

We study one more class of overlays: power-law ran-
dom graphs (PLRGs). It has been observed that the
topology of “naturally emerging overlays” such as
Gnutella, which are formed when users create links
to other nodes, are characterized by a node out-
degree distribution that obeys a power law. Rout-
ing in such overlays is accomplished through flood-
ing over all links. These overlays are attractive for
their simplicity and high tolerance to random fail-
ures [30]. We study them to provide another point
of comparison in the space.

3 Overlay Performance Metrics

In this section, we describe the metrics used in our
study. Defining appropriate metrics for comparing
overlays is not straightforward because the appli-
cations they are designed for may have conflicting
requirements. However, the performance of an over-
lay with respect to its latency overhead and its use
of network resources is always a concern. For this
reason two criteria have been widely used in overlay
evaluation: relative delay penalty (RDP) and link
stress [17, 4, 27, 31, 18, 5, 7]. We use both of these,
along with a third, Load Balance Ratio, that mea-
sures the distribution of the routing responsibility
in the overlay.

Ideally, an overlay would deliver latencies and band-
widths between nodes that match those of the un-
derlying network. However, there is a penalty for
routing between overlay nodes. If there is no vir-
tual link between two overlay nodes, the path be-
tween them through the overlay will be longer than
the path through the underlying network. If sev-
eral virtual links pass over an underlying physical
link, the link will experience higher load and in case
of multicast the same message may travel over it
multiple times. This latency overhead is measured
using RDP, and the bandwidth penalty using link
stress.

3.1 Relative Delay Penalty

Relative delay penalty (RDP) is a measure of the
additional packet delay introduced by the overlay
on the delivery of a message between two nodes. It
is defined as the ratio of the latency experienced
when sending data using the overlay to the latency
experienced when sending data directly using the
underlying network.

As defined, RDP is measured between a pair of
nodes and thus provides a set of values across vari-
ous pairs. To gauge the level of performance of the
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Figure 1: Example overlay topologies. The physical network is shown in the first pane followed by three possible
overlays. The logical topology in shown on the top, and the paths taken when A sends a message to B, C and D is

shown on the bottom.

entire overlay, we use the 90th percentile from the
RDP distribution. Various authors have used the
same criteria for several reasons [17, 31, 27]. First,
the 90th percentile serves to bound the delay mul-
tiplier that will be seen by most nodes in practice,
whereas the average by itself does not convey any
sense of the variation. Second, choosing the 90th
percentile rather than the worst case RDP hides
sensitivity to simulation parameters. Finally, RDP
can easily be very high when the physical latency is
small, and using the 90th percentile instead of worst
case RDP filters out these outliers [17].

3.2 Link Stress

Link stress is defined as the number of tunnels that
send traffic over a physical link. Links with high
stress are potential bandwidth hotspots in the sys-
tem. In case of unicast, it is a measure of load ex-
perienced by the link; more tunnels means higher
load. In case of multicast, it becomes a measure
of excess bandwidth consumption induced by the
overlay; more tunnels means more duplicate mes-
sages. For multicast, stress is a function of both the
topology and the multicast tree. Two approaches to
implement multicast exist — flooding [27] and tree-
based [31, 7, 38]. For DHTs and measurement-based
overlays, we consider only the latter as it is known
to be more efficient [8]. Here the multicast tree is
the union of the unicast routes from the source to
all destinations. For PLRGs we use flooding, the
default mechanism.

Stress as defined above is a distribution over all
physical links for each multicast tree i.e per source.
To gauge the level of performance of the entire over-
lay, we use the 90th percentile of the distribution
given by the worst stress for each multicast tree. Us-
ing worst case distribution conveys a bound on the

stress seen by any link, and using the 90th percentile
reduces the sensitivity to simulation parameters.

An ideal overlay should have both low RDP and
low stress. Unfortunately, it may be difficult to si-
multaneously achieve both objectives. For instance,
consider the physical network and three possible
overlays topologies shown in Figure 1. Figure 1(b1)
shows a fully connected overlay topology, in which
the RDP between all pairs is 1 but the stress on
links close to the end hosts is high. To communi-
cate with B, C, and D simultaneously, A must send
three packets over its physical access link, leading
to a stress of 3. Next consider the overlay topology
in Figure 1(c1), which has low stress on links close
to the end hosts. In this case, all overlay tunnels go
over the high latency physical link r1-r2, leading to
high RDP between most pairs. Figure 1(d) shows
a good overlay with both acceptably low RDPs and
low stresses.

3.3 Load Balance

In an overlay, nodes also act as routers and for-
ward packets between other nodes. Ideally an over-
lay would not place a much higher forwarding load
on one node compared to other nodes!. Otherwise,
with increasing workload the overloaded node would
soon become a hotspot for the system, leading to
degraded performance. For example, logical topolo-
gies such as a star or a tree are not well balanced
compared to a ring topology because they have key
nodes that are used for most point-to-point commu-
nications.

Here we are assuming homogeneous nodes. Although
this may not be a realistic assumption in practice, existing
protocols are not designed to take into account heterogeneity
of members [28]. Any variation in forwarding load is thus
unintended.



To measure the distribution of the forwarding load,
we define a metric called the Load Balance Ratio,
which is computed as follows. For each node in the
overlay, the routing load is the number of source-
destination pairs between which it forwards mes-
sages. Load balance ratio is the ratio of the maxi-
mum routing load to the median routing load. This
measures how much worse the maximally loaded
node is compared to the halfway loaded node. This
metric is less relevant for multicast (where all nodes
forward one message for a given source). Rather,
it assesses the performance of overlays when used
more generally for multiple point-to-point commu-
nications.

For the purpose of our study, load balance ratio ex-
poses how performance-based routing concentrates
traffic in non-uniform ways. One of the favorable
arguments behind DHT-based approaches is that
they are better load balanced because of their reg-
ular geometric structure and use of randomization.
But heuristics that improve performance can inter-
fere with this. We also note that load balance dis-
tinguishes topologies and routing protocols that are
only suited for multicast from those that are more
widely applicable. For example, protocols such as
NICE that use hierarchy are a good fit for multicast
but would place extremely high load on nodes high
in the tree if used for general unicast communica-
tions.

3.4 Other Considerations

There are several other performance measures that
we do not explore in this paper. We do not mea-
sure the overhead of the overlay protocols, either
in terms of the amount of state or traffic that is
needed to maintain the overlay. It is well known
that pure DHT algorithms make only local mea-
surements and scale extremely well, while schemes
such as Narada perform global measurements and
scale relatively poorly. Our emphasis instead is on
the performance levels that can be achieved at a
given scale for which the overhead of the algorithms
under study has been deemed acceptable. For exam-
ple, NICE is able to scale to 1000s of nodes (because
its overhead is logarithmic with overlay size), while
Narada is not. Thus, for overlays this large, NICE is
our only option among measurement-based overlays
for comparison with DHTSs.

We also do not measure protocol dynamics, such as
maintaining connectivity in face of failures. Over-
lays are expected to operate with members leaving
dynamically, and different overlay construction al-
gorithms may be disrupted in different ways; in the

extreme, partitions are possible. While these dy-
namic properties are important, our first priority is
to understand the static performance potentials of
the different algorithms.

4 Methodology

In this section, we describe our experimental
methodology. We first describe the variations of the
DHT-based algorithms that we compare. We then
describe our simulation set-up.

Recall that our goal is to understand whether DHT-
based overlays will be able to match the level of
performance of measurement-based overlays, which
are constructed specifically to provide good quality
paths. One difficulty is that different heuristics are
being continuously proposed to enhance the perfor-
mance of DHT-based overlays [26, 25, 35, 31, 33, 5],
and we do not wish our results to quickly become
irrelevant by being tied too closely to specific heuris-
tics. Instead, we side-step this race by taking ad-
vantage of simulation as a tool to report on the per-
formance of both the current versions and idealized
versions with performance enhancing heuristics that
use global knowledge.

4.1 DHT Heuristics

We study performance-enhancing variations to
DHTs along two dimensions — those that attempt
to find better paths over a given overlay, and those
that construct the overlay itself in a topology-aware
manner. We describe each in turn.

4.1.1 Routing Heuristics

In the simplest version of DHTSs, routing proceeds
using only the geometric properties of the overlay
algorithm. We refer to this as the Base variant.
It is possible to improve performance by routing
across the overlay in a manner that takes latency
into account. The structure of the overlay itself re-
mains unaffected. We study the heuristic specified
in [25] for CAN and [11] for Chord. Here, the cho-
sen next hop is the one out of all possible neighbors
that results in the maximum progress towards the
destination, where progress is defined as the ratio
of the distance in identifier space to the physical la-
tency. We refer to these versions of CAN and Chord
as Proximity variants. In Pastry, the next hop is
unique and fixed and therefore it does not have a
corresponding Proximity routing variant. Compari-
son between Base and Prozimity shows the value of
the current routing heuristics.

Other heuristics have been proposed, e.g., smallest
physical latency for CAN is described as an im-
provement in [8]. However, rather than simulate



all the different heuristics we can find, we stick with
the above as a yardstick (since it applies to both
CAN and Chord and is the subject of most pub-
lished results) and define a new variant intended
to provide an upper bound on how well any future
heuristic can perform. This variant, Shortest-Path,
comes from the observation that the maximum gain
achievable by any routing heuristic is that of short-
est path routing (implemented using distance vec-
tor or link state algorithm). This algorithm re-
quires global knowledge, unlike proposed heuristics,
and so may not be a good choice at large scales.
However, it can readily be computed in our sim-
ulation setting to provide a bound on the perfor-
mance of better heuristics that will inevitably be
proposed. That is, comparison between Prozimity
and Shortest-Path shows how much room routing
heuristics have for improvement. Another advan-
tage is that the Shortest-Path variant is indepen-
dent of the actual overlay algorithm and therefore
it applies to all three DHTs.

4.1.2 Topology Awareness

In the simplest version of DHTSs, both mapping of
nodes to identifiers and choice of tunnels (when mul-
tiple choices are possible as in Pastry) is pseudo-
random to provide a well-balanced structure. This
overlay construction process, which we refer to as
the Random variant, is unaware of the underlying
topology.

In a topology-aware overlay heuristics are used to
create an overlay that reflects the underlying net-
work topology. The intuition is that if the overlay
and the underlying network topology closely mirror
one another, then the overlay paths will closely fol-
low network paths and good performance will result.
We now describe how to achieve topology awareness
in Pastry, CAN and Chord.

In Pastry topology-awareness can be achieved
through neighbor selection [5]. A routing table entry
can be filled by any node that matches the criteria
for that cell. Topology-aware construction chooses
the closest such node. Achieving perfect aware-
ness using this method requires global knowledge,
though reasonable approximations that rely only on
limited information exchange are possible [5]. In
this paper, we only consider the global knowledge
approach.

The above neighbor-selection approach is not appli-
cable to CAN and Chord because in both these algo-
rithms topology is completely defined once the iden-
tifier assignment is done. Instead topology aware-
ness is achieved through intelligent identifier as-
signment. For instance, identifier assignment based
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Figure 2: Topology awareness in a 2-d CAN. A new
node 5, which is physically closest to 1, joins the over-
lay. X denotes the possible assignments for 5 in case of
random and topology-aware overlay construction. The
topology-aware case yields an assignment in which 5 is
geometrically close to 1.

on proximity to landmarks has been proposed as a
heuristic [26] to achieve a topology aware mapping
in CAN.

However, it is generally the case that heuristics for
topology-aware identifier assignment are not as well
defined nor studied as heuristics for improving rout-
ing. To understand how much topology awareness
itself can improve performance, assuming that good
heuristics will be found we would like to use an ana-
logue to our Shortest-Path variation above, rather
than simulate many possible heuristics. However no
such globally optimal assignment has been defined
for either CAN or Chord. So, we use a greedy as-
signment based on global knowledge to construct
a good assignment. Our greedy assignment? rule
works as follows: the identifier of a new node join-
ing the overlay is chosen so that it is a neighbor of
the node that is closest to it in the underlying net-
work. That is, the rule makes the overlay neighbors
of a node similar to the neighbors of the node in the
underlying topology. Figure 2 illustrates the con-
cept for a 2-dimensional CAN. This also requires
global knowledge (or at least a knowledge of dis-
tances to all nodes in the vicinity) and so may not
be a good implementation choice at large scales. In-
terestingly, a similar heuristic has been proposed in
parallel with our work [33].

4.2 Simulation Setup

Since our primary interest is in understanding per-
formance under static environments, we simulate
overlay construction using centralized algorithms.

2We believe that our approach based on global knowledge
would yield a better mapping than using a fixed number of
landmarks. The performance of the latter is also sensitive to
the choice and number of landmarks.



The only exception is Narada, which we simulated
using an event-driven simulator because Narada
does dynamic evaluations to improve the overlay
over time. To generate PLRGs overlays, we first
generated power-law topologies using Brite [22], and
then randomly mapped the nodes in this graph to
nodes in overlay. For DHTs pseudo-random hash
functions are used to provide a well-balanced struc-
ture. However, since we are using simulation we
created well-balanced structures directly by a priori
partitioning the space uniformly. This is a conser-
vative simplification that is consistent with our goal
of presenting the DHT-based overlays in their best
light.

An important parameter that affects the perfor-
mance is the average out-degree (number of neigh-
boring nodes) of a node. It determines number
of links in the overlay and therefore directly af-
fects performance. For example, an overlay with
more links will have lower RDPs because of shorter
paths but higher stress because more overlay links
traverse a physical link. We study the effect
of out-degree in Section 5.4. The average out-
degree is a configurable parameter in all overlays
we study except Chord. In Chord the outdegree is
loga(overlay_size). In Pastry the average degree de-
pends on b and varies as blogys (overlay_size). We
fixed b as 1 to make Pastry’s average degree com-
parable to that of Chord. The values of degree we
study range from 4 to 12.

We used the transit-stub model of GT-ITM [15] to
generate the physical network topology. GT-ITM
also assigns latencies to links in the physical topol-
ogy. Additional nodes were attached to the stub
nodes to represent hosts connected to lower level
routers. Overlay nodes were picked randomly from
these hosts.

The overlay algorithms that we compare are sum-
marized in Table 1. We study one version of each
of Narada [17], NICE [4], and PLRG. Narada and
NICE build their topologies using latency measure-
ments as described earlier, and they use shortest
path routing using latency as the metric. PLRG
forms a random topology where the node outdegree
distribution follows a power law, and then flood over
this topology; this represents Gnutella-like overlays.

For each parameter setting we ran 9 simulations
— three different physical network topologies, each
with three random seeds. Each topology had 4,040
backbone nodes and 20,200 stub nodes. Simulated
overlay sizes were varied from 64 to 4096.

Topology Routing Degree
Awareness
Naradal|| - Shortest-Path 4-—-12
NICE || - Shortest-Path 4—-12
CAN Topology- Shortest-Path, | 4 — 12
Aware, Prozximity,
Random Base
Chord || Topology- Shortest-Path, | —
Aware, Prozximity,
Random Base
Pastry || Topology- Shortest-Path, | —
Aware, Base
Random
PLRG || - Flooding 4—-12

Table 1: Summary of comparisons performed.

5 Results

We now present the results of comparing different
protocols and their variants on each of our three
performance metrics. We first consider a compari-
son using an out-degree of 10 for all overlays except
Chord and Pastry. An out-degree of 10 was found
to be a good representative by experimenting with
different out-degrees. The effect of changing out-
degree on performance is considered in Section 5.4.

5.1 RDP

This section investigates the latency stretch of var-
ious overlays. We start with studying the impact
of using heuristics in DHT-based overlays, and then
compare all the overlays.

5.1.1 Effect of Heuristics

Figure 3 and 5 shows the impact of routing heuris-
tics in CAN on top of an overlay with random
and with topology-aware overlay construction re-
spectively. They plot the 90th percentile RDP for
the Base version of CAN, CAN with Prozimity rout-
ing, and CAN with Shortest-Path routing (best pos-
sible performance for a given overlay). Figure 4
and 6 shows the same results for Chord. Results
from all 9 simulations are presented to show the
variance and the line is drawn through the average.
This representation is used in all plots unless other-
wise specified.

For both CAN and Chord, improved routing brings
about significant improvement in RDP (similar re-
sults were obtained using 50th percentile and 95th
percentile RDP). Prozimity routing does quite well;
it reduces the RDPs to roughly halfway between
Base and Shortest-Path routing. However, it does
not match the performance of Shortest-Path rout-
ing because while the former is a greedy decision
at each hop, the latter computes globally optimal
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Figure 3: Effect of routing heuristics on RDP in
CAN with random overlay construction.
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Figure 4: Effect of routing heuristics on RDP in
Chord with random overlay construction.

Topology Awareness
Routing Random | topology-aware
Base 8.89 7.05
Proximity 6.87 4.71
Shortest-Path 5.55 3.02

Table 2: Effect of heuristics on 90% RDP for 5-
dimensional CAN with 1024 nodes

paths. The improvement in Chord using Prozimity
routing is slightly greater because as we increase the
overlay size, the number of choices for the next hop
increases, leading to better paths. As a result Prox-
imity routing comes closer to Shortest-Path routing
in Chord than in CAN.

To understand the effect of the composition of the
different heuristics, we tabulate the 90th percentile
RDP for a 5-dimensional CAN with 1024 nodes
in Table 2. Observe that the effect of heuristics
compose and the best performance is achieved by
enabling both Shortest-Path routing and topology-
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Figure 5: Effect of routing heuristics on RDP in
CAN with topology-aware overlay construction.
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Figure 6: Effect of routing heuristics on RDP in
Chord with topology-aware overlay construction.

aware overlay construction. This improvement is
substantial, from 8.89 to 3.02 (almost 70% reduc-
tion), and indicates the potential for improvement
through more practical heuristics. By looking across
columns in the table, one can deduce that being
topology aware by itself brings about a significant
performance gain.

Figure 7 shows the effect of both topology-aware con-
struction and routing heuristics on RDP for Pastry.
As before heuristics lead to substantial improve-
ment.

5.1.2 Comparing All Protocols

We try to answer two questions now. First: How
do DHTs with only scalable heuristics (such as
Prozimity routing) compare to measurement-based
overlays, especially NICE since it has similar scal-
ability? Second: How do DHTSs compare to the
other approaches when Shortest-Path routing along
with topology-aware overlay construction is imple-
mented?
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Figure 7: Effect of heuristics on RDP in Pastry.

14 1
12 + Chord Random, Proximity . |
o) NICE
g Narada o 1
[
E-/ | |
g ° ]
s g
g ° = |
g o R B
2 r ! ! 2 2 B |
0 . ‘
100 1000

Overlay size(nodes)

Figure 8: Variation of RDP with size. Simple prac-
tical versions of DHTs are shown — CAN and Chord
with random overlay construction and Prozimity
routing, and Pastry with random overlay construc-
tion and base routing.
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ous overlays. Idealized versions of DHTs — with

topology-aware overlay construction and shortest-
path routing — are shown.

Figure 8 shows the 90th percentile RDP as a func-
tion of overlay size for different protocols®. Prozim-
ity routing is used for CAN and Chord with random
overlay construction. For Pastry we show random
overlay construction with base routing. These repre-
sent simple, efficient, and practical versions of these
overlays. A distributed implementation of topology-
awareness is shown to be a reasonable approxima-
tion in [6]. We believe that by the same token, sim-
ilar implementations are possible for CAN/Chord
because a new node being able to find the closest
live node is a key assumption in both scenarios. In-
stead of assuming this to be a fact and for fairness
of comparison, we chose to use the random overlay
construction for all DHTs.

This is because as indicated in [6] topology-
awareness in Pastry can be achieved in an efficient
manner without having much affect on performance.

We make the following observations:

e The difference in RDP between NICE and the
DHTs is large and grows with the overlay size. It is
a factor of two for 1024 nodes.

e Flooding over PLRGs performs well, because with
flooding the shortest-path between nodes is taken.
This also indicates that without heuristics DHT
overlays are not better than random overlays from
a latency perspective.

e All DHTSs have similar RDPs. The slightly worse
performance for Pastry stems from the absence of a
Proximity routing equivalent, and the slightly bet-
ter performance of Chord for overlay sizes greater
than 1024 stems from a higher average out-degree
in Chord compared to CAN beyond this size,* which
leads to shorter paths.

e The performance of NICE does not deteriorate
with increasing overlay size even though the levels
of hierarchy increase. Further, it is not much worse
than that of Narada. Our findings agree with those
of the authors of NICE [4].

Note that although Narada has the best RDPs, it is
not scalable and therefore not applicable for larger
overlays.

Figure 9 compares DHTs with topology-aware over-
lay construction and Shortest-Path routing with all
other protocols. This represents the maximum per-
formance one can achieve from a latency perspective

3For Narada, results are not shown for overlay sizes
greater than 1024 nodes because simulation times were on
the order of days.

4Average degree for Chord is log(n) — for 1024 nodes av-
erage degree is 10 which is the same as the average degree
configured for CAN.
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Figure 10: Effect of routing heuristics on link stress
in CAN with random overlay construction.

for these overlays. There is no real qualitative dif-
ference between performance in this case. This is
encouraging because it shows that RDPs compara-
ble to measurement-based overlays can be achieved
using improved versions of DHT-based overlays.

5.2 Stress

We now investigate how the various protocols com-
pare on the metric of the worst case stress, and
the impact on stress of RDP-enhancing heuristics
in DHT-based overlays.

5.2.1 Effect of Heuristics

Figures 10 and 11 show the stress as a function
of overlay size for 5-dimensional CAN with ran-
dom and topology-aware overlay construction re-
spectively. The three lines correspond to the three
routing variants — Base, Proximity and Shortest-
Path. The results for Chord were similar, and have
been omitted due to space constraints.

Somewhat surprisingly, improved routing does not
have much negative impact on stress. With im-
proved routing, we expected stress near few well-
placed nodes to go up. This is evident to some de-
gree in the fact that the worst case stress does go up
slightly. But at the same time, this increase is rea-
sonably countered because improved routing leads
to shorter paths, which means that fewer links are
traversed. By comparing the results across random
(Figure 10) and topology-aware (Figure 11), we can
also see that topology awareness has little impact
on stress.

Figure 12 shows the effect of heuristics on link stress
for Pastry. As for CAN, routing heuristic had
no significant impact on stress. However, topology-
awareness with base routing had much worse (al-
most factor of 2) stress values. A key difference

Shortest-Path +
200 + 1
Basic *
12}
& 150 | 1
o *
5]
3
o 100 |
Iz
o
=
50 r 1
o L ‘
100 1000

Overlay size(nodes)

Figure 11: Effect of routing heuristics on link stress
in CAN with topology-aware overlay construction.
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Figure 12: Effect of heuristics on link stress in Pas-
try.

between the topology-aware overlay construction
mechanisms of Pastry and CAN/Chord is that in
Pastry a few well placed nodes can be the neigh-
bors of many nodes, whereas in CAN/Chord a node
can be a neighbor of only a small number of other
nodes. This has a direct consequence on link stress
and load balancing. Hence, our results should be
interpreted in terms of difference between the two
methods to achieve topology-awareness — choosing
node identifier assignment and choosing neighbors.

5.2.2 Comparing All Protocols

Figure 13 shows how stress varies with size for dif-
ferent algorithms. Since the performance of various
variants of DHTs were largely similar, we show the
stress only for the best version — topology aware over-
lay construction with Shortest-Path routing. The
striking artifact in the graph is that PLRG has
very high stress, more than five times worse than
the other protocols for 1024 nodes. This is due
to its use of flooding as the routing mechanism,
and an uneven out-degree distribution among nodes.
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overlay construction and shortest-path routing are
shown.
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Figure 14: Effect of routing heuristics on load bal-
ancing in CAN with random overlay construction.

All other protocols exhibit similar stress values, al-
though for large overlay sizes (over 2048 nodes)
NICE has slightly smaller values. Large group sizes
have higher density for a fixed topology size, which
has the tendency to increase the stress on the back-
bone links in DHTs. In this situation, clustering of
close nodes in NICE helps in reducing the stress on
the backbone links.

In summary, for similar average out-degrees all pro-
tocols exhibited similar worst case stress properties.
In case of CAN and Chord heuristics have no signif-
icant impact on stress properties. For Pastry how-
ever, topology-awareness with base routing had sig-
nificantly higher stress than other variants.

5.3 Load Balancing

We now study the load balancing properties.

5.3.1 Effect of Heuristics

Figure 14 shows the load balancing ratio for differ-
ent overlay sizes for a 5-d CAN with random overlay
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Figure 15: Effect of heuristics on load balancing in
Pastry.

construction. As before, the three lines corresponds
to the three routing variants. With Base routing,
the load is balanced very evenly, with the ratio be-
tween one and two. This is a direct consequence of
the regular structure and the random overlay con-
struction in the DHT algorithms. With the Proxim-
ity routing, load balancing deteriorates slightly but
grows very slowly with the overlay size. However,
there is a significant degradation with Shortest-Path
routing because there exist well-placed nodes in the
topology that have a low latency to many nodes,
and therefore are used very often independent of
their node-ID. This raises the issue of usefulness of
a routing heuristic that mimics Shortest-Path rout-
ing if balanced load is desired.

Similar behavior was observed for CAN with
topology-aware overlay construction because being
topology aware only changes the relative assign-
ments and does not modify the DHT structure itself.
Results for Chord were also similar; we omit them
due to space constraints.

Figure 15 shows the load balancing ratio for differ-
ent heuristics. As in CAN we find significant degra-
dation with Shortest-Path routing. Also we can see
that in the case of Pastry topology-awareness also
deteriorated load balancing properties. This is for
reasons similar to those for higher link stress men-
tioned in Section 5.2.1.

5.3.2 Comparing All Protocols

Figure 16 shows the load balancing ratio for all the
protocols. The Shortest-Path routing variant for
DHTs is shown as it had the highest load. Note
that the scale of y-axis differs from that in Figure 14.
We can see that NICE has extremely high load bal-
ancing ratio (two orders of magnitude for overlays
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Figure 16: Variation of load balancing ratio with
size for various overlays. Variants of DHTs with
topology-aware overlay construction and shortest-
path routing are shown.

bigger than 1024). This is because in NICE’s hi-
erarchy, the root node is responsible for forward-
ing all packets whose source and destination lie in
different sub-trees. On the other hand Narada, a
measurement-based overlay with no hierarchy, per-
forms similar to CAN and Chord with Shortest-Path
routing. PLRG too has a high load balancing ratio
because of highly uneven degree distribution. Note
that the relatively sharper increase in NICE at some
points (256 and 4096) is due to formation of unbal-
anced trees because of quantization effects.

In summary, our results point at the limitations
of hierarchy for applications involving general uni-
cast communications. DHT routing heuristics that
mimic Shortest-Path routing can have significant
negative impact on load balancing and thus may
not be a suitable choice for some applications. Al-
though topology-aware overlay construction by itself
does not degrade load balancing in CAN/Chord, it
degrades it in the case of Pastry.

5.4 Effect of Out-Degree

In this section we study the effect of increasing the
average out-degree of nodes in various overlays. In-
tuitively, increasing out-degree will decrease RDP
because it shortens the number of overlay hops. But
at the same time, stress could increase because the
number of overlay links per physical link increases.

Node out-degree is controlled in CAN by varying
the number of dimensions. We consider two ver-
sions of CAN: %) Prozimity routing with random
overlay construction; and 1) Shortest-Path routing
with topology-aware overlay construction. Narada
and PLRG algorithms can be specified an average
out-degree, and out-degree in NICE is controlled

30 T T T T
CAN Random, Proximity =
25 | 9 PLRG - 1
— Narada —+——
2 20+t 1
[
8 15 | |
o
X =
g 10 . E
Ko =] 3|
5t o e 1
e e
o . . . .

o] 2 4 6 8 10 12 14
Average Degree

Figure 17: Effect of out-degree in various overlays.
Two variants of CAN are shown — random overlay
construction with Proximity routing and topology-
aware overlay construction with shortest-path rout-

ing.
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through cluster size. Chord and Pastry are not
shown because one can not vary the out-degree of
nodes independent of the overlay size.

The results in this section are presented for fixed
overlay size of 1024 nodes and only averages over 9
simulations are plotted. Figure 17 shows the effect
of increasing average out-degree on RDP for differ-
ent protocols. Two observations can be made. First,
there is a sharp reduction in RDP for CAN variants
as the average degree is increased. For other proto-
cols also, the RDP decreases with increasing degree
but the gain is much less. Second, NICE was able
to achieve good RDPs with a much lower average
out-degree compared to CAN with Proximity rout-
ing over random overlay construction.

We now explore the trade-off between RDP and link
stress. Figure 18 shows the relationship between



stress and RDP. It plots the measured stress for a
given RDP obtained through varying the node out-
degree (Figure 17). The worst case stress for PLRGs
was extremely high, and hence has not been shown
in this graph. All overlays exhibit the basic trade-
off between RDP and link stress, though to varying
degrees. By increasing average out-degree, RDP
can be reduced, but that reduction comes at the
cost of higher stress. However, note that the CAN
variant with Proximity routing over random over-
lay construction lies further away from the origin
than NICE. This means that it is harder to simul-
taneously achieve both low stress and low RDP in
this variant of CAN than in NICE. At the same time
CAN with Shortest-Path routing and topology-aware
overlay construction performs comparably to NICE,
which again points favorably towards the potential
of optimization in DHT-based approaches.

6 Related Work

Many overlay construction schemes have been pro-
posed, both measurement-based [17, 4, 21, 2, 24, 9,
34, 18] and DHT-based [25, 32, 29, 37]. Much ongo-
ing work aims to improve the performance of DHT-
based approaches [5, 36, 35, 26, 33, 31, 11] and the
scalability of measurement-based approaches [4, 21].
At the same time, plenty of work in DHT-based ap-
proaches [27, 7, 38, 31] focuses on providing new ser-
vices such as application-level multicast, for which
the measurement-based overlays were initially in-
tended. In this paper, we started with an observa-
tion of this convergence of purpose and scale, and in-
vestigated whether current and possible future ver-
sions of DHT-based overlays would be able to match
the performance of measurement-based overlays.

Ratnasamy et. al outline the challenges facing
DHT-based overlays [28]. They identify perfor-
mance with respect to latency as a key open issue.
Our work indicates that with good routing heuris-
tics and topology-awareness, DHT-based overlays
can match the performance of measurement-based
overlays.

There has been very little work on studying how
different overlay algorithms compare to each other.
Our work and that of a few other researchers are first
steps in this direction. Banerjee and Bhattachar-
jee [3] provide a survey of various overlay protocols.
Our focus is however on empirical evaluation under
identical environments. Castro et. al compare the
performance of tree-building and flooding on top of
CAN and Pastry [8]. They find that flooding has
high overhead compared to tree-based approaches.
Our results are similar in that we found that flood-
ing on top of PLRGs has much higher overhead com-

pared to all other protocols we considered, which
were tree-based.

7 Conclusions and Future Work

In this paper we studied the performance potential
of DHT-based overlays by comparing their basic and
idealized versions against measurement-based pro-
tocols. Specifically, we compared CAN, Chord and
Pastry with Narada and NICE. Our key findings
are:

e For the same average out-degree, basic versions
of DHTs have a latency stretch that is longer than
NICE and Narada by a factor of two or more, de-
pending on the size of the overlay. The performance
in terms of bandwidth hotspots is similar however.

o Considerable performance gains in latency can be
achieved in DHTs with better routing heuristics and
with topology-aware overlay construction.

e In most cases we observed no substantial effect
of heuristics on link stress properties. The only
case for which this was not true was with topology-
aware overlay construction through latency sensitive
choice of overlay tunnels, as is done in Pastry.

e Heuristics, especially routing heuristics, in DHTs
lead to relatively higher load on nodes.

e Using routing heuristics and topology-aware over-
lay construction, the performance of DHTs can be
brought at par with that of measurement-based
overlays. This implies that DHT algorithms are a
promising direction, with the potential to achieve
not only scale but also performance.

As others [4, 20], we found that hierarchy does not
significantly degrade performance from a latency
perspective.

Our results are more applicable in scenarios where
latency is the key optimization criteria. Compar-
ison with bandwidth-oriented measurement-based
protocols such as Overcast [18] and the enhanced
version of Narada [16] would be required to un-
derstand whether DHTs, enhanced with bandwidth
specific heuristics (we are not aware of any), can
deliver comparable bandwidth performance. Over-
lay performance evaluation is in general sensitive
to the choice of topology. Understanding the ef-
fect of choice of topology on performance from a
comparison perspective is an open issue. Relative
performance of these protocols under realistic dy-
namic environments such as rapid overlay member-
ship changes is another front we hope to explore.
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