A Logic of Authentication

Michael Burrows

Abstract

Authentication protocols are the basis of security in many
distributed systems, and it is thercfore essential to en-
sure that these protocols function correctly. Unfortunately,
their design has been extremely error prone. Most of the
protocols found in the literature contain redundancies or

security flaws.

A simple logic has allowed us to describe the beliefs
of trustworthy parties involved in authentication proto-
cols and the evolution of these beliefs as a consequence
of communication. We Liave been able to explain a variety
of autheuntication protocols formally, to discover subtletics
and crrors in them, and to suggest improvements. In this
paper, we present the logic aund then give the results of
onr analysis of four publishied protocols, chosen either he-
cause of their practical importance or because they serve

to illustrate our method.

1. Introduction

Authientication protocols are the basis of security in many
distributed systems, and it is therefore essential to ensure
that these protocols function correctly ([NS]). Unfortu-
nately, their design has been extremely error prone. Al-
though authentication protocols typically have few mes-
sages, the composition of each message can be subtle,
and the interactions between the messages can be com-
plex. Morcover, protocol designers often misunderstand
the available techmniques, copying features from existing
protocols inappropriately. As a result, many of the pro-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1989 ACM 089791-338-3/89/0012/0001 $1.50

Martin Abadi

Roger Needham

tocols found in the literature contain redundancies or se-
curity flaws. To add to the confusion, protocols use dif-
ferent cryptosystems (e.g., [DES], [RSA]) and cater for a
wide range of applications; it is seldom clear how these

protocols compare in the guarantees they offer.

The goal of authentication can be stated rather sim-
ply, though informally and imprecisely. After authentica-
tion, two principals (people, computers, services) should
be entitled to believe that they are communicating with
each other, and not with intruders. In this paper we define
a logic of authentication to express such beliefs precisely
and to capture the reasoning that leads to them. These
are examples of questions that we would like to he able to

answer with the help of formal methods:

Does this protocol work? Can it be made to

work?
Exactly what does this protocol achieve?

Does this protocol need more assumptions than

another one?
Does this protocol do anything unnecessary?

In later sections, we show Lhow the logic has enabled us to
answer these questions for a nuiber of published protocols.
It is worth noting that we have not tried to answer some
other questions. Since we operate at an abstract level, we
do not consider errors introduced by concrete implemen-
tations of a protocol, errors such as deadlocks, or even
inappropriate use of cryptosystems (as in [VK]}). Further-
more, while we allow for the possibility of hostile intruders,
there is no attempt to deal with the authentication of an

untrustworthy principal, nor to detect weaknesses of en-

Michael Burrows and Martin Abadi are with Digital Equip-
ment Corporation, Systems Research Center, 130 Lytton Av-
enue, Palo Alto, California 94301, USA. Roger Needham is with
the University of Cambridge Computer Laboratory, Corn Ex-
change Street, Cammbridge CB2 3QG, UK. The three authors
completed part of this work at Digital Equipment Corporation
and part at the University of Cambridge.

cryption sclicmes or unauthorized release of secrels (as
[DY] and [MCF]). We focus on the belicls of frustworthy
parties involved in the protocols and on the evolution of
these beliefs as a consequence of communication. This kind
of study seems to he one of the most needed by current pro-
tocol designers—we have often uncovered subtleties and
suggested improvements in existing protocols. We hope
that protocol designers will build on our techniques to suit
their specific needs.

In an earlier paper ([BAN1]) we developed a frag-
ment of the logic and demonstrated its ability to describe
two autheutication protocols: the well-known Needhiani-
Schiroeder protocol ([NS]) and the Otway-Rees protocol
([OR]). The main emphasis there was on testing the sound-
ness ad viability of the approach, We have since extended
the logie to explain a much wider range of protocols and
techniques, In this paper we present the logic (in section
2) and then use it to analyze four protocols, chosen either
because of their practical iinportance or hecause they serve
to illustrate our method. A more extensive report includes
all the material of hoth papers, and we refer thejinterested
reader to it for further examples and details ot the logic
and its semantics ([BAN2]).

2. The Formalism

In this section. we describe the syntax and semantics of
our logic, its rules. and the transforimations that we apply

to protocols hefore their formal analysis.

Basic notation

Owur formalism is built on a many-sorted modal logic. In
thie logie. we distinguish several sorts of objects: principals,
cneryption kevs, and formulas (also called statements). We
identify messages with statements in the logic. Typically,
the sviihols 4. B. and S denote specific principals; R gy,
I, .. and Iy, denote specific shared keys; IV, Iy, and I,

' de-

denote specific public keys, and KN7', I, and A7
note the corresponding secret keys; Nq, Ny, and N, denote
specific statements. The symbols PP, @, and R range over
principals: X and Y range over statements; A ranges over
cueryption keys.

The only propositional counective is conjunction, de-
noted by a comma. Throughout, we treat conjunctions as
setz and take for granted properties such as associativity
and commutativity, In addition to conjunction, we use the

{following constrcets:

P believes X: P belicves X, or P would be entitled to
believe X, In particular, the principal P may act as
though X is true. This construct is central to the
logic.

P sees X: P sces X. Sowmeone lias sent a message con-
taining X to P, who can read and repeat X' (possibly

after doing sowe decryption).

P said X: P once said X. The principal P at some time
sent a message including the statement X. It is not
known whether the message was sent long ago or dur-
ing the current run of the protocol, but it i1s known
that P believed X then.

P controls X: P has jursdiction over X. The priuci-
pal P is an authority on X and should be trusted on
this matter. For example, a server is often trusted to
generate encryption keys properly. This may be ex-
pressed by the assumption that the principals believe
that the scrver has jurisdiction over statements about
the quality of keys.

fresh(X): The formula X is fresh, that is, X has not been
sent in a message at any time before the current run
of the protocol. This is usually true for nonces, that
is, expressions invented for the purpose of being fresh.
Nouces connnonly include a timestamp or a munber

that is used only once.

I -
Pe@): P and @ may use the shared key I to commu-
nicate. The key I is good, in that it will never he
discovered by any principal except P or @), or a prin-

cipal trusted by either P or Q.

AP P las K as a public key. The matching secret key
(denoted IV ™) will never be discovered by any prin-

cipal except P, or a principal trusted by P.

N ..
P =0 The formula X is a seeret known only to P and
(), aud possibly to priucipals trusted by them. Only
P and () may use X to prove their identities to one

another. An example of a secret is a password.

{X} i This represents the forinula X encrypted under the
key L. Formally, {X} is a convenient abbreviation
for an expression of the form {X} - from P. We make
the vealistic assumption that each principal is able to
recognize and ignore his own messages; the oviginator

of cach message is mentioned for this purpose.

(X)) This represents X combined with the formula Y,
it 1s intended that 17 be a secret, and that its pres-
cnce prove the identity of whoever utters (X);.. In

huplementations, X is simply concatenated with the

password 1. Our notation highlights that 17 plays a
special role, as proof of origin for Y, in much the same
way as an euncryption key.
{A different notation is used for some of these constructs
in other works on the logic. The current notation is more
verbose. but perhaps more readable and thus more appro-

priate for a paper with few formulas.)

Logical postulates

In the study of authentication, we ave concerned with the
distinetion between two epochs: the pest and the present.
The present epoch Dbegins at the start of the particular
run of the protocol under consideration. All messages sent
before this time are considered to be in the past, and the
authentication protocol should be careful to prevent any
such messages from being accepted as recent. All beliefs
Lield in the present are stable for the entirety of the protocol
run. However. beliefs held in the past ave not necessarily
carried forward into the present. The simple division of
time nto past and present suffices for owr purposes and
has greatly increased the ease with which the logic can be

manipulated.

[t 1s assumed that encryption guarantees that each en-
crypted section cannot be altered, nor pieced together from
staller encrypted sections. If two sepavate encrypted sec-
tions are included in one message, we treat them as though
they arrived in separate messages. A message cannot be
uniderstood by a principal who does not know the key (or,
in the case of public-key cryptography, by a principal who
does not know the inverse of the key); the kev cannot
be deduced from the encrypted message. Each encrypted
message contains sufficient redundancy to allow a principal
who decrypts it to verify that Lie has used the right key.
In addition. messages contain sufficient information for a
principal to deteet (and ignore) his own messages.

After these informal preliminaries, we are now ready
for discussing the main logical postulates that we use in
proofs.

o The message-meaning rules concern the interpretation
of messages. Two of the three concern the interpre-
tation of encrypted messages, and the third concerns
the interpretation of messages with secrets. They all
explain how to derive heliefs about the origin of mes-
sages.

Fou sharved kevs. we postulate:

P believes () &P P osees {X}n
I believes (¢ said .Y

That is, if P believes that the key I is shared
with @ and sees X encrypted under IV, then P
believes that) once said X. For this rule to be
sound, we must guarantee that P did not send the
message himself; it suffices to recall that {X '}
stands for a formula of the form {X'}; from R,
and to require that R #£ P.

Similarly, for public keys, we postulate:

P believes AQ, P sees {X} -1
P believes () said X

For shared secrets, we postulate:

P believes Q =P, P sees (X),
P believes) said X

That is, if P believes that the secret 17 is shared
with @ and sees ('), then P helieves that @
once sald X. This postulate is sound because
the rules for sees (given below) guarantee that

(X)y was not just uttered by P himself.

o The nonce-verification rule expresses the check that

a message is recent, and hence that the sender still

believes in it:

P believes fresh(.XX), P believes () said X
P believes () believes X

That is, if P helieves that X" could have been uttered
ounly recently (in the present) and that @ once said
X (either in the past or in the preseut), then P be-
lieves that @ believes X. For the sake of simplicity,
X must be “cleartext,” that is, it should not include

any subformula of the form {1} .

The jurisdiction rule states that if P believes that @
has jurisdiction over X then P trusts @ on the truth

of X:)
P believes) controls X,

P believes () believes X
P believes X

If a principal sees a formula then he also sees its com-

pouents, provided he knows the necessary keys:

P sees (X,Y) P sees (X),.
P sees X P sees X

P believes QGI—‘;P, P sees {X}
P sees X

P believes l‘-;P, P sees { X}
P sees X

P believes ¥50Q. P sees {X}-t
P sees X

Recall that {X}, stands for a formula of the form

{X}n from R. Asaside condition, it is required that
R # P.that is. {X}, isnot from P himself. A similar
condition applies to { X} -1.

The fourth rule is justified by the implicit asstunption
that if P believes that L is lus public key, then P
knows the corresponding sceret key, K71

Note that if P sees X aud P sees 17 it does not fol-
low that P sees (.X.17). since this mcans that X and
¥ were uttered at the same time.

If one part of a formula is fresh, then the entirve for-

mula must also be fresh:

P believes fresh(Y)
P believes fresh(X,1")

On quantifiers in delegations

Delegation statements typically wmention one or more
variables. For example, principal 4 may let the server §
generate an arbitrary shared key for 4 and B. We can

express this as
. N
A4 believes S controls 4 <P

Here the key IV is universally quantified, and we can make

explicit this quantification by writing
A4 believes VIV.(S controls A 4’-\->B)

For complex delegation statements, it is generally nec-
essary to write quantifiers explicitly in order to avoid am-
bignities. For exawple, the reader can verify that the two

formmulas

A4 believes VIU'.(S controls B controls 4 «l—‘%B)
A believes § controls VIi'.(B controls 4 4’—‘+B)

convey different meanings.

In our earlier work on the logic. this need was not rec-
ognized. and in fact it does not arise in any of the examples
treated here (there are no nested jurisdiction statements).
Thercfore, we leave quantifiers implicit in this paper.

All we use iz the ability to instantiate variables in

jurisdiction statements. as reflected by the rule

P believes Y17 ...1,.(() controls X)
P believes (' controls X'

where () controls X' is the result of instantiating the
variables V,...,V, in ¢ controls X simultancously. Our
formal manipulation of quantificrs is thus quite straight-

forward.

Idealized protocols

In the literature, authentication protocols are described by
listing their messages; each message is typically written in

the form
P — @ : message

This denotes that the principal P sends message to the
principal @. The message is presented in an informal no-
tation designed to suggest the bit-string that a concrete
immplementation would use. This presentation is often am-
biguous and not an appropriate basis for owr formal anal-
ysis.

Therefore, we transform each protocol step into an
idealized form. A message in the idealized protocol is a

formula. For instance, the protocol step
A—- DB {A Kl

may tell B, who knows the key Ky, that Ky is a key to
communicate witlh A. This step should then be idealized

as

A4—B:{ASB),,

The idealized protocols of the examples given below
do not include cleartext message parts; idealized messages
are of the form {X;}x,,...,{Xa}n,. We have omitted
cleartext connnuuication sinply because it can be forged,
and so its contribution to an authentication protocol is
mostly one of providing hints as to what might be placed

in encrypted messages.

We view the idealized protocols as clearer and more
complete specifications than the traditional deseriptions
found in the literature, which we view merely as implemen-
tation-dependent encodings of the protocols. Therefore,
we recommend the use of the idealized forms when gener-
ating and describing protocols. Though not entirely trivial,
deriving a practical encoding from an idealized protocol is
far less time conswning and error prone than wuderstand-

ing the meaning of a particular informal encoding,.

Nevertheless. in ovder to study protocols from the ex-
isting literature. we must first generate idealized forms for
cacll protocol. Simple guidelines control what transfor-
matious are possible, and these help in determining the
idealized form for a particular protocol step. Rouglhly, a
real message m can be interpreted as a formula XX if when-
ever the recipient gets m he may deduce that the sender
must have believed X when he sent m. Real nonces are
transformed into arbitrary new formulas; throughout, we
assume that the sender believes these formulas. The no-
tation (X)y-. which denotes the use of 17 as a secret, can
be introduced only when the secret is intended as a proof
of ideutity. Most importantly, for the sake of soundness,
we always want to guarantee that each principal believes
the formulas that he generates as messages. These simple
guidelines suffice for our purposes, but further work on
formal transformation rules might be useful.

Protocol analysis

In order to analyze idealized protocaols, we annotate them
with logical formulas. much as in a proof in Hoare logic
([H]). We write formulas before the first message and after
each message. The main rules for deriving legal annota-
tions arc:

o if X holds before the message P — @ : Y then both

X and Q sees 17 hold afterwards;

o if 17 can be derived from X by the logical postulates
then 17 holds whenever X holds.

An annotation of a protocol is like a sequence of com-
ments about the heliefs of prineipals and what they see
in the conrse of authentication, In particular, the fornmla
before the first message represents the beliefs of the prin-
cipals at the start of the protocol. Step by step, we can
follow the evolution from the initial beliefs to the final

ones—ifrom the original asswnptions to the conclusions.

3. The Goals of Authentication, Formalized

Initial asswmptions must invariably be made to guarantee
the success of each protocol. Typically, the assumptions
state what kevs are initially sharved between the principals,
which prineipals have generated fresh nonces and which
principals are trusted in certain ways. In most cases, the
assitmptions are standard and obvious for the type of pro-
tocol being considered. Onee all the asstuptions have
been written. the verification of a protocol amounts to

proving that some forummlas hold as conelusions,

There is room for debate about what should be the
goals of authentication protocols that these conclusions
describe. Often authentication is a precursor to some con-
munication protected by a shared session key, so-we might
desire conclusions that describe the situation at the start
of such a communication. Thus, we might dcem that au-
thentication is complete between A and B if there is a I\
such that:

A Dbelieves A&EB
B believes A 5B

Sowme protocols achieve more than this, for example:

4 believes B believes Af]—‘:»B
B believes A believes 4 & B

Other protocols attain only weaker final states, such as
A believes B believes X, for some X, which reflects
only that 4 believes that B las recently sent messages.

Some public-key protocols are not intended to result
in the exchange of a shared key, but instead transfer some
other piece of data. In these cases, the required goals are
generally obvious from the context.

In the following sections, we examine a number of pro-
tocols and determine the nature of the guarantees they

offer.

4. The Kerberos Protocol

The Kerberos protocol establishes a shared key between
two principals with help from an authentication server
([MNSS]). It is based on the shared-key Needham-Schroeder
protocol ([NS]), but makes use of timestamps as nonces,
both to remove security problems ([DS], [BBF]) and to
reduce the total number of messages required. Kerberos
was developed as part of Project Athena at MIT and is
also used elsewhere.

We give the protocol below, with 4 and B as the two
principals, K, and Ly, as their private keys, and S as the
authentication server. S and A generate the timestamps
T, and T, respectively, and S generates the lifetime L.
The fourth message is used only if mutual authentication

is required.

Messagel A—> S: 4, B

Message 2 S — A {Ts, L, Ko, B,
{Tm L» I\—a.ln -A} Khs } Nas

Message 3 A — B (T, L, Koy A} ryes (A Tod i,

Message + B — A0 {T, + 1}y,

This message sequence is represented in the diagram

helow.

2: {Ts. L. Iiqy, B,
{Tq L. I\'(IIH f{}l\';,,}l\'q,

3: {Tﬂ L. I\-ahn -'l}l\',,,u {“L T(l}l\'ﬂ,/
| N

4 AT, + 1}, .

First. 4 sends a cleartext message to S stating his de-
sivre to communicate with B. The server responds with an
encrypted message containing a timestamp, a lifetime, a
session key for A and B. and a ficket that only B can read.
This ticket also contains the timestamp, the lifetime, and
the kev. A forwards the ticket to B together with an au-
thenticator (a timestamnp encrypted with the session key).
B first decrypts the ticket and checks the timestainp and
lifetime. If the ticket has been created recently enougl, he
uses the enclosed key to decrypt the authenticator. Then,
if the authenticator’s timestam is recent. he uses the ses-
sion key to return the timestamp, which 4 checks. Once
the principals ave satisfied. they can proceed to use the
session key,

We idealize the protocol as follows:

Mossage 2§ — A: {T,. A&'B,
(To. A BY i i,

Message 3 A — B {T,. 4 X } iy,
{T.. 4 12-3"13}1\-" , Jrom A

Message 4 B — A0 {T,, 4 It\'—"shB}/\‘u,, from B

The idealized messages correspond quite closely to the
messages described in the published protocol. For simplic-
ity. the lifetime L has been combined with the timestamp
T.. which is treated just like a nonce. The first message is
omitted. sinee it does not contribute to the logical proper-

ties of the protocol.

A further difference can be seen in the idealized form
of message 2. The concrete protocol mentions the key Ky,
which in this sequence has been replaced by the statement
that A and B can use I{gp to communicate. This interpre-
tation of the nessages is possible only because we know
how the information in the messages should be understood.
Moreover, the idealized forms of the authenticator and of
message 4 contain the explicit statement that i, is a good
session key, while this statement is only implicit in the use
of I, in the concrete protocol. In fact, we could soundly
add B believes A believes 4 %3 B to message 4; we do
uot do so simply because the consequences of this addition
seem of little importance for the subsequent use of the

session key.

Tlere is some potential for confusion between the sec-
ond half of the third message and the last message. In the
idealized protocol, we avoid this confusion by mentioning
the originators explicitly. In the concrete protocol, either
the mention of 4 in the third message or the addition in the
fourth suffice to distinguish the two—Kerberos is slightly
recdundant i this respect.

At this point, we can check that the idealized protocol
corresponds to the concrete one and that the guidelines for

constructing idealized protocols are respected.

The protocol analyzed

To analyze this protocol, we first give the assunptions:

A believes A e

S
B believes B %S
K ‘S

S believes A &
S believes B I«‘—P'»’S

. K,
S believes 4 &%

A believes (S controls A «I—\B)
D believes (S controls 4 4’—‘»]3)

A believes fresh(T,)
B believes fresh(T)
B believes fresh(T,)

—

The first group of four is about shared keys between the
clients and the server. The fifth indicates that the server
initiadlly knows a key for communication between A and B.
The next group of two indicates the trust that A and D
have in the server to generate a good encryption key. The
final three asswuptions show that A and B believe that
timestamps generated elsewhere are fresh; this indicates
that the protocol relies heavily on the use of synchronized

clocks.

We analyze the idealized version of Kerberos by apply-
ing our rules to the asswunptions; the analysis is straightfor-
ward. In the interests of brevity, we give many of the for-
mal details necessary for our machine-assisted proof only
for message 2, and we omit similar details later on. The

main steps of the proof are as follows.

A receives message 2. The annotation rules yield that
N I
A sees {T,. (4 &' B). {T,. A& By,) k..
holds afterwards. Since we have the hypothesis
. Nas
A believes 4'&

the message-meaning rule for shared keys applies, and

vields
A4 believes S said (T, (A E—"»"B), {Te, A ’&”B},\-b‘)

One of owr rules to break conjunctions (omitted here) then

produces
A believes S said (T,. (A Ii—-’—'»"B))
Moreover. we have the hypothesis
A4 believes fresh(T,)
The nonce-verification rule applies, and yields
A believes S believes (T, 4 E—"»"B)
Again. we break a conjunction, to obtain
4 believes S believes 4 'D
Then. we instantiate I to I,y in the hypothesis
A believes S controls A &8
deriving the more coucrete
4 believes S coutrols A 4B
Finally. the jurisdiction rule applics, and yields
1 believes 4%

This concludes the analysis of message 2.
A passes the ticket on to B, together with another
niessage containing a timestamp. Initially, B can decrypt

only the ticket:

. I
B believes 4 &

Logically, this result is obtained in the same way as that for
message 2, via the message-meaning, nonce-verification,

and jurisdiction postulates.

Knowledge of the new key allows B to decrypt the
rest of message 3. Through the message-meaning and the

nonce-verification postulates, we deduce:

B believes A believes A4 '3’

The fourth message simply assures A that B believes
in the key and has received A’s last message. After new ap-
plications of the message-meaning and nonce-verification

postulates to the fourth message, the final result is:

A believes 4
B believes A &
A believes B believes A %'
B believes A believes A 3"

If ouly the first three messages are used, we do not

obtain
A believes B believes AI&»”

That is, the three-message protocol does not convince A

of B’s existence—A observes the sane messages whether

B is running or not.

While the result resembles that for the Needhain-
Schiroeder protocol ([BANZ2]), a major assumption in the
Kerberos protocol is that the principals’ clocks are syn-
chronized with the server’s clock. The effect of totally syn-
chronized clocks can be obtained by synchronizing clocks
to within a few minutes with a secure time server and
then detecting replays within this interval. However, ac-
tual implementations do not always include this check and

so provide only weaker guarantees.

A slight (but potentially expensive) peculiarity is that
S double-encrypts the ticket in the second message. Look-
ing back through the formal analysis, we see that this does
uot affect the properties of the protocol, since A forwards
the ticket to B immediately afterwards without further
cucryption. It has recently been proposed that future ver-
stons of Kerberos remove this unnecessary double encryp-

tion.

5. The Andrew Secure RPC Handshake

An early version of the Andrew secure RPC protocol uses
an authentication handshake hetween two principals when-

ever a client binds to a new server ([S]). The handshake is

!

intended to allow a client A4 to obtain a new session key I,

from a server B, given that they already share a key, Iqy.
This protocol is vuluerable to an attack similar to that
observed in the case of the sharved-key Needham-Schroeder
protocol. We give it here as an illustration of how easily
such problems can be missed. and of how they manifest

themselves in the logic.

A= A AN In.,
Message 2 B — A {No+ 1, Ny},
Message 3 A — B {Ny+ 1}y,
Message + B — A {K(,. Ny,

Message 1

.-1. {.'\‘(, } Nay

{‘\'(, + 1. .N(,} RKas
3: {.N[, -+ 1}1\'“ _

4 {0 Nid i,

Y

N7 o

A

N, and Ny ave nonces: N is an initial sequence number to
be used in subsequent communication. The first message
simply transfers a nonce, which B returns in the sccond
message, If A is satisfied with the reply, he retuns B's
nonce. After B receives and checks the third message, he
sends a new session key to 4. Asin the Kerberos protocol,
nonces are returned incremented by one, even though there
15 no danger of generating identical messages during the
1)1‘(>t()('<.>].

The idealized protocol closely resembles the concrete

O11¢:

Message 1 A — B (N},
Message 2 B — 40 (N, Nydoe,
Message 3 A — B { Ny} p.,
Message 4 B — 40 {4 /:;é’,' VSN

The protocol analyzed

First, we write the asswunptions:

A believes 4 I{—“»"
B believes A &%

A believes (B controls Aell;B)
B believes 4 3B

A believes fresh(N,)

B believes fresh(N,)

B believes fresh(N;)

The first group of two indicates that 4 and B initially
share a key. The next two show that B has invented a new
key and that A trusts B to invent good keys. Finally, each

client is able to generate fresh nonces.

For brevity, we do not describe our deductions, and
simply list the final results:

B believes 4 II—%”B ,

A believes B said (Alt‘—i&"B, N;)
B believes A believes N,

A believes B believes (N,, N,)

Unfortunately, we can go no further. We cannot obtain

M
A believes D believes AI:—"J’B because there is nothing
in the fourth message that 4 believes to be fresh. We must
conclude that the protocol suffers from the weakness that
an intruder can replay an old message as the last message
in the protocol, and convince A to usc an old, possibly
compromised session key. In other words, an intruder may
find an old session key, and he may replay the fourth mes-
sage of the handshake in which that key was established
he can then lmpersonate B, The problem can be fixed
simply by adding the nonce N, to the last message, and
indeed a descendant of the Andrew file systein has adopted

this solution.

In fact, more substantial changes to the protocol can
also reduce the total amount of encryption nceded. Ounly
two messages need be encrypted, one from A and one from
D. First, B sends a key Iv!, (along with a nonce N),

K,

D — A4 {N, A& By,

In a concrete implementation, N, may he a timestamp or
a nonce that 4 sent to B in a recent uncnerypted message.
A must reply with an acknowledgement that 1), has been

accepted,

A—B: {A=Dy

B believes this message is thuely hecause N, is fresh.
Optionally. B can go on to send awn initial sequence nmumber

Ay i clear.

If this neiv protocol is analyzed, we obtain the follow-

g stronger outcome:

A believes -1 2y

D believes -1

4 believes B believes A & o
B believes 4 believes A4 <—“> B

As a concrete realization of the protocol, we proposc:

A4 -0 d N,
Message 2 B — A0 {N,. I, i,
A - B {N,) R,
Message 4 B — A N

AMessage 1

Message 3

In message 3. the use of N, is arbitrary; any predictable
message will assure B that A has encrypted somcthing

with the new key.

6. The Needham-Schroeder Public-Key Protocol

In their original paper. Needham and Schroeder proposed
a protocol hased on public-key cryptography; it allows two
principals to exchange two secret munbers ([NS]). A weak-
ness i the protocol permits a replay attack in the inter-
actions with the certification authority if a key is compro-
mised. as in the shared-key Needhain-Schroeder protocol.

Hereo S0 whose publie key is [V, operates only as a
certification authority between A and B, whose public keys
are Ivy and Iy, vespectively: WV, and Ny are nonces. The
message exchange goes as follows:

Messagel 4 -5 A D

S— A L. B} ym
A - B (N, Ay,
Message d B — S0 DB A
{I. . }1\',"
Message 6 B — 4 {N,. Ni}a,
A= DB {Ny}n,

Message 2

Aessage 3

Message 5 S — Dt

Message 7

1. A, B
{]f(,, B}K-l

4: B, A

3: {N,, A}y,
G: {N(l.a]Vb}l\',,
(R T i

The protocol has two rather independent but interleaved
components. It is expected that, initially, both A and B
hold S's public key Iy, Thevcfore, the principals A and B
can obtain cach other’s public keys from S. Messages 1, 2,
4, and b

i messages 3, 6, and 7, 4 and D use the public keys
é) b b b 1 >

accomplish this prurpose. In a second component,

obtained. They commnrnicate the secret nonce identifiers
N, and Ny. These secrets can be used later, for signing
fiurther messages. For example, if B receives a message
{X, No}n,, then B may deduce that A sent X.

The idealized protocol is as follows:
Message 2§ — A: {3 I\"B}, -1
Message 3 4 — B: {Na}n,
Message 5 S — B: {3 K A}
?AB)M}A—“
A— B: {(A =DB)y, } 1,

Message 6 B — A4: {{4
Message 7

Messages 1 and 4 are deliberately omitted, since they do
not contribute to the logical properties of the protocol.
Messages 2 and 5 are straightforward, but the others re-
quire some explanation. It is interesting to note the differ-
ence between message 3 and messages 6 and 7. In message
3, N, is not known to B, and so is not heing used to prove
the identity of A; message 3 is used simply to convey N,
to B. In messages 6 and 7, N, and N, are used as secrets,
so the (X);- notation is used. These messages also convey
belicfs that have no representation in the concrete proto-
col, because the messages would not be sent if the beliefs
were not held. In fact, just as in the case of IKerberos, we
could soundly add more statements of helief to messages G

and 7.

The protocol analyzed

First we state the assumed initial beliefs of the players:

. N
4 believes ~3.4
"
g
-
258
N,
—
Na
—

"
~B
K,

S

D believes
A believes
D believes
S believes
S believes
S believes

(S controls »A%B)
(S controls niml)
fresh(V,)
fresh{:V,)

4 believes
D believes

4 believes
D believes

A3B
hY
A2B
freshy r’—\;'fB)
fresh(nll—“»,-l)

A believes
B believes

A believes

D believes

Eaclh prineipal knows the public key of the certification
agent S, as well as his own keys. In addition, § knows
the public keys of 4 and B. Each principal trusts the
certification agent to correctly sign certificates giving the
public kev of the other. Also. each principal helieves that
the secret that hie generates is fresli. The last two assup-
tions are surprising. and they represent a weakness in the
protocol. Each principal must asswine that the message
containing the public key of the other principal is fresh.
The difficulty could be resolved by adding timestamps to
wmessages 2 and 5. This is analogous to the way that Ker-
beros™ timestamps overcome the problew with the shared-

key Needham-Schroeder protocol.

We obtain the final beliefs:

iy
B believes £34
A believes I believes A4 QB
D believes 4 believes A A:*'fB

4 believes

Eacly principal knows the publie key of the other and has
knowledge of « shared secret that hie believes the other will
accept as being shared only by the two prineipals. From
this point. 4 and B can continue to exchange messages
using N,. Ny, and public-key eneryption. In this way they

ann fransfer data or other keys securely.

10

11. The CCITT X.509 Protocol

A draft recommendation for the CCITT X.509 standard
contains a set of three protocols using between one and
three messages ([C]). (It is owr understanding thast this has
now become an official recommendation of the CCITT.)
The protocols are intended for signed, secure commnumni-
cation between two principals, assuming that cach knows
the public key of the other. The three-message version
is given below. The two-message and one-message proto-
cols arc formed by removing the last one or two messages
respectively.

The published protocol contains two weakuesses, ei-
ther of which can be exploited by an intruder, as we shall
demonstrate below. We found one of these weaknesses
while idealizing the protocol and the other during the sub-

sequent analysis.

Message 1 A — B: A, {T4, Nay B, Xo, {Ya)r,} o
B— A: B, {T,, My, A, Nu, Xo,

Yo} r, }1\';'
Message 3 A — B: A, {Np} -

Message 2

1: 4, {T(,_, Ng, B, X, {}‘-a}".b}l\-a_l
2:B7 {TbaNIHAaNﬂ.v‘X-[H {)"b}l"a}l\'b—l B

3: A, {N(,}Kn—n

Here, T, and Ty are timestamps, N, and N, are nonces,
and Xy, Yy, Ay, and Yy are user data. The protocol ensures
the integrity of X, and X, assuring the recipient of their
origin, and guarantees the privacy of Y, and 13.

For the idealized protocol, we simply take:

Message 1 A — B: {T,, N, Xo, {Yo}n,} ot
Message 2 B — A: {Ty, Ny, Noy, Xo, {¥b} i, } Ky
Message 3 A — B: {Ny} -

As usual, the timestamps T, and T}, are viewed as

HLOLCEeS,

The protocol analyzed

We assume that ecach principal knows his own secret
kev, the other’s public key, and believes his own nonce and

the other’s timestamp to be fresh.

4 believes 154

B believes

4 believes 14D

B believes 4.4

A believes fresh(iN,)
B believes fresh(\)
A believes fresh(T})
B believes fresh(T,)

Now we can derive:
- believes B believes X
D believes A4 believes X,

This represents an outcome weaker than the authors de-
sired; we do not obtain B believes A believes Y, or
4 believes B believes 1;. Although Y, and Y have
eacli been transferred in a signed message, there is no
evidence to suggest that the sender is actually aware of
the data that he sent in the private part of the message.
This corresponds to a scenario where some third party
intereepts a message and removes the existing signature
while adding his own, blindly copying the encrypted sec-
tion within the sigued message, The simplest fix s to sign

the sceret data Y, and 13 before it is enerypted for privacy.

Some recundancy is noticeable in the second message;
either Ty or 2N, is sufficient to ensure the timeliness of the
message. The protocol description states that the cliecking
of T is optional in the three-message version of the proto-
col. In fact, it is perfectly reasonable to omit Ty altogether,
since it is redundant 1 both the two and three-message

protocols,

Unfortunately, the CCITT X.509 documnent also sug-
gests that T, need not be checked in the three-message
protocol. This is a serious problem hecause the checking
of T, is the only mechanism that establishes the timeliness
of the Arst message. Logically, if T, is not checked, we can-
not perform nonce verification ou the first message, and we
obtain only the weaker outcome B believes 4 said X,
mstead of B believes 4 believes \,.

11

This difficulty explains the intention of the third mes-
sage, which 1s to assure B that A generated his first mes-
sage recently. The authors seem to have hoped that the use
of Ny would suffice to link the third message to the first,
since Ny links the last two moessages and N, links the first
two messages. The error here is that IV, alone does not link
the last two messages, and this may allow an intruder C to

replay one of 4’s old messages, and thereafter impersonate

A.

The following concrete exchange illustrates the flaw.
The intruder first contacts B:

C - B: A> {T,,, Na, B) -Yn: {y}l}h}.}[\'a—‘

This is an old message originally sent by A. Remember
that D is not presnmed to check the timestamp T, in the
three-message protocol, and so will not discover the replay
of A’s original message. B replies as though the message

came from A4, and provides a new nonce, Ny,
B—C: B, {Ty, Ny, A, N, X, {3"1»}1\'.,}1\',,’1

At this point C causes A to initiate authentication with

C', by whatever means.
A-C: 4, {thv Ncln C, ‘Y:n {1’;}l\'c}1\";‘

C replics to A, providing the nonce Ny. (The nonce IV is
not secret, and nothing prevents € from using the same

value in an instance of the protocol between 4 and C.)
C — A: Ca {TCa Nba A7 N¢I|1 ‘Yca {}'-C}I\',.}]"g‘l

A replies to C, signing the exact message needed for C' to
convince B that the first message was sent recently by A,
and is not a replay of an old message—hence, this may
allow C' to impersonate A.

A—-C: A, {Nb}l\’,;'l

Oue solution is to include B’s name in the last mes-
sage. Since B guarantees the uniqueness of his own nonces,
he can be sure that this message is linked to this instance
of the protocol. The idealized version of message 3 could
then include any beliefs transimitted in message 1, assuring

B of their timeliness.

The X.509 protocol actually uses Lashing to reduce
the amount of encryption: in order to sign a message m,
a hash H(mn) of m is computed and sigued. This has
not been shown in the description above. The logic and
the analysis of this particular protocol are changed only
slightly by the introduction of hashing ([BAN2]).

14. Conclusions

Recent literature has emphasized the importance of reason-
ing about knowledge for understanding distributed compu-
tation (e.g.. [HM]). Furthermore, there have been some for-
mal descriptions of cryptographic protocols ([DLM], [MW],
[HMNT]). Although these works are not closely related to
ours, and in particular they have not suggested useful proof
systems. they could serve as a foundation for owr morve

specific analysis of authentication protocols.

In this paper we have described a logic to reason about
authentication protocols and we have treated several ex-
amples. The following table lists protocols studied with the
logic. inclnding some discussed in [BAN2], and scunmarizes
their attributes. The Wide-mouthed-frog and the Yahalom
protocols ave described only in [BAN2]; references for the

othier protocols can be found below.
The table shows some well-known properties:

the goal of each protocol,

the type of cryptosystem used, shared-key or public-

key,

whether secrets (other than keys) are used, and

whether message timeliness is guaranteed with nonces

or synchronized clocks,
In addition, we include aspects that our formalism helped
bring to light:

whether the protocol proves the presence of each party

to the other,

redundancy, and

security problems.

In the table, the principals involved in the protocols are A
and B; the initiator is 4.

The examples show how a simple logic can capture
subtle differences between protocols. For a variety of pro-
tocols, it enables us to exhibit step by step how beliefs
are built up to the point of mutual authentication. For
other protocols, it guides us in identifying mistakes and

suggesting corrections.

Needhaim-| Otway- | Kerberos| Wide- | Yahalom | Andrew [Needham-{CCI'T'T

Schroeder Rees outhed- RPC |Schroeder| X.509

shared key frog publie key
. distribute |distributelcdistribute [distributeldistribute|distribute] establish [transler
Gonl . i i ok i

key key key key key extra key| secrels data

KNeys shared shared shared shared shared shared public | public
[Tses secrets X X
Nonces/clocks] nonces noices clocks clocks nonces noices nouces bolh
Proves B B 1881 i A& B 18 13 B | A%
presence of Al A4 ¢ A s A& A& Dt
Redundancy x x x X
Bugs X X X x}

* In this case, A, rather than a trusted server, generales the key.

1 B's presence is guaranieed to A only il oplional protocol steps are used.

1 Security breaches do not even require key compromise,

12

Acknowledgements

The work was undertaken as the result of a suggestion by
Butler Lampson. Andrew Birrell, Luca Cardelli, Dorothy
Denning. Butler Lampson, Tim Mann, Michacl Schroeder,
Jennifer Steiner. and many referees encouraged the work
and suggested improvements to the paper. Chris Mitchell
provided information on the CCITT protocol. IKathleen
Sedehi typeset an early version of this paper and produced

the figures. and Cynthia Hibbard provided editorial assis-

tance.
References
[BAN1] M. Burrows. M. Abadi, and R.M. Needham. Au-

thentication: A Practical Study in Belief and Action.
Proceedings of the Second Conference on Theoretical
Aspects of Reasoning about Knowledge, M. Vardi, od.,
1988. pp. 325-342,

[BAN2] ML Burrows. M. Abadi, and R.M. Needham. A
Logic of Authentication. Digital Equipment Corpora-
tion Systems Research Center report No. 39, February
1989.

[BBF] R.K. Bauer. T.A. Berson, and R.J. Felertag. A

Key Distribution Protocol using Event Markers. ACM

Transactions on. Computer Systems Vol. 1, No. 3, Au-

gust 1983, pp. 249-255. '

CCITT Draft Recommendation X.509. The Directory-

Gloucestor,

(€]
Authentication Framework, Version 7.
November 1987,

[DES]
Standard. Fed. Inform. Processing Standards Pub. 46.

National Bureau of Standards. Data Encryption

Washington DC, January 1977.

[DLN] R.A. Dellillo. N.A. Lynch, and M.J. Merritt.
Cryptograplic Protocols. Procecdings of the Fowr-
teenth ACM Symposium on the Theory of Computing,
1982, pp. 383-400.

[DS] D.E. Denning and G.\. Sacco. Timestamps in Key
Distribution Protocols. CACM Vol. 24, No. 8, August
1981. pp. 533 -536.

[DY] D. Dolev and A.C. Yao. On the Security of Pub-

lic Key Protocols. JEEE Transactions on Information

13

Theory Vol. [T-29, No. 2, March 1983, pp. 198-208.

C.AR. Hoare. An Axiomatic Basis for Computer

Programming. CACM Vol. 12, No. 10, October 1969,
pp- 576-580.
[HM] J.Y. Halpern and Y.O. Moses.
Comunon Inowledge in a Distributed Environment.
Proceedings of the Third ACM Conference on the Prin-
ciples of Distributed Computing, 1984, pp. 480-490.

[HMT] J.Y. Halpern, Y.O. Moses, and M.R. Tuttle. A
Knowledge-Based Analysis of Zero Knowledge (Pre-
liminary Report). Proceedings of the Twenticth ACM
Symposium on Theory of Computing, 1988, pp. 132-
147.

[MCF] J.K. Millen, S.C. Clark, and S.B. Freedman. The
Interrogator: Protocol Sceurity Analysis. IEEE Trans-

(H]

Knowledge and

actions on Software Engineering Vol. SE-13, No. 2,
February 1987, pp. 274-288.

[MNSS] S.P. Miller, C. Neumaun, J.I. Schiller, and J.H.
Saltzer. Kerberos Authentication and Authorization
System. Project Athena Technical Plan Section E.2.1,

MIT, July 1987.

[MW] M.J. Merritt and P.L. Wolper. States of Knowl-
edge in Cryptographic Protocols. Draft.

[NS]
tion for Authentication in Large Networks of Comput-
ers. CACM Vol. 21, No. 12, December 1978, pp. 993-
999.

[OR} D. Otway and O. Rees. Efficient and Timely Mu-
tual Authentication. Operating Systems Review Vol. 21,
No. 1, January 1987, pp. 8-10.

[RSA] R.L. Rivest, A. Shamir, and L. Adleman. A
Method for Obtaining Digital Signatuwres and Public-

key Cryptosystems. Communications of the ACM
Vol. 21, No. 2, February 1978, pp. 120-126.

R.M. Needhan and M.D. Schroeder. Using Encryp-

[S] M. Satyanarayanan. Integrating Security in a Large
Distributed System. ACM Transactions on Computer

Systemas Vol. 7, No. 3, August 1989,

VK]
in High-Level Network Protocols. Computing Surveys
Vol. 15, No. 2, June 1983, pp. 135-171.

V.L. Voydock and S.T. IKent. Sccurity Mechanisms

