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Abstract: Scalable overlay networks such as Chord,
Pastry, and Tapestry have recently emerged as a flexible
infrastructure for building large peer-to-peer systems. In
practice, two disadvantages of such systems are that it is
difficult to control where data is stored and difficult to guar-
antee that routing paths remain within an administrative
domain. SkipNet is a scalable overlay network that provides
controlled data placement and routing locality guarantees
by organizing data primarily by lexicographic key order-
ing. SkipNet also allows for both fine-grained and coarse-
grained control over data placement, where content can
be placed either on a pre-determined node or distributed
uniformly across the nodes of a hierarchical naming sub-
tree. An additional useful consequence of SkipNet’s locality
properties is that partition failures, in which an entire or-
ganization disconnects from the rest of the system, result in
two disjoint, but well-connected overlay networks.

1 Introduction

Scalable overlay networks, such as Chord [21],
CAN [16], Pastry [18], and Tapestry [26], have re-
cently emerged as flexible infrastructure for building
large peer-to-peer systems. A key function that these
networks enable is a distributed hash table (DHT),
which allows data to be uniformly diffused over all the
participants in a peer-to-peer system.

While DHTs provide nice load balancing proper-
ties, they do so at the price of controlling where data is
stored. This has at least two disadvantages: data may
be stored far from its users and it may be stored out-
side the administrative domain that it belongs to. This
paper introduces SkipNet, a scalable overlay network
that supports both traditional overlay functionality, in-
cluding scalability and load balancing, as well as two
locality properties that we refer to as content locality
and path locality.

Content locality refers to the ability to either explic-
itly place data on specific overlay nodes or distribute it
across nodes within a given organization. Path local-
ity refers to the ability to guarantee that message traffic
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between two overlay nodes within the same organiza-
tion is routed within that organization only.

Content and path locality provide a number of ad-
vantages for data retrieval, including improved avail-
ability, performance, manageability, and security. For
example, an organization can still access and update
important data even when disconnected from the rest
of the Internet. Similarly, data needed for autonomous
activities within a campus or a building can be stored
locally to preserve autonomy. Because data can be
stored near clients that use it, performance and man-
ageability are also enhanced. Explicit content place-
ment onto a specific overlay node also enables pro-
visioning of that node to reflect anticipated popular-
ity. Similarly, content placement ensures administra-
tive control over issues such as scheduling mainte-
nance for machines storing important data.

Content locality also allows one to control which
administrative domain data resides in. Even when en-
crypted and digitally signed, data stored on an arbi-
trary overlay node in a foreign administrative domain
is susceptible to denial of service (DoS) attacks as well
as traffic analysis. Although techniques for making
current DHT schemes resilient against DoS attacks ex-
ist [4], it is not clear whether participating organiza-
tions would feel comfortable about storing important
data on machines outside of their direct control.

Controlling content placement is in direct tension
with the goal of a DHT, which is to uniformly dis-
tribute data across a system in an automated fashion. A
generalization that combines these two notions is con-
strained load balancing, in which data is uniformly
distributed across a well-defined subset of the nodes
in a system, such as all nodes in a single organization,
all nodes residing within a given building, or all nodes
residing within one or more data centers.

Even if the desired content locality could be
achieved, existing overlay networks still forward traf-
fic through intermediary nodes that could be in arbi-
trary administrative domains. Although some over-
lay designs [5] are likely to keep routing messages
localized most of the time, none can guarantee path
locality—that messages between two nodes within the
same organization are routed within that organiza-
tion only. For example, without such a guarantee



the route from explorer.ford.com to mustang.ford.com
could pass through camaro.gm.com, a scenario that
people at ford.com might prefer to prevent. The pro-
vision of path locality is thus important for both avail-
ability and security reasons.

SkipNet employs two address spaces for routing: a
lexicographic space as well as a numeric space. Node
names and content identifier strings are mapped di-
rectly into the lexicographic space, while hashes of the
node names and content identifiers are mapped into
the numeric space. The lexicographic space is a dis-
tributed generalization of Skip Lists [15] and it is used
to support content placement, path locality, and ef-
ficient range queries. The numeric space is used to
support DHT functionality and efficient message rout-
ing between overlay nodes. A combination of the two
spaces is used to support constrained load balancing.

A useful bonus of SkipNet’s locality properties
is resiliency against common Internet failures. Be-
cause SkipNet clusters nodes according to their lexi-
cographic name ordering, names within a single orga-
nization survive failures that disconnect the organiza-
tion from the rest of the Internet. In the case of in-
dependent failures, SkipNet has similar resiliency to
previous overlay networks [21].

The basic SkipNet design, not including its en-
hancements to support constrained load balancing,
network proximity-aware routing, and reduced over-
head for virtual nodes, has been concurrently and in-
dependently invented by Aspnes and Shah [1]. As de-
scribed in Section 2, their work has a substantially dif-
ferent focus than our work and the two efforts can be
viewed as being complementary to each other while
still starting from the same underlying inspiration.

The rest of this paper is organized as follows: Sec-
tion 2 describes related work. Section 3 describes
SkipNet’s basic design, Section 4 discusses SkipNet’s
properties, and Section 5 presents enhancements over
the basic design. Section 6 discusses design alterna-
tives to SkipNet, Section 7 presents an experimental
evaluation, and Section 8 concludes the paper.

2 Related Work

A large number of peer-to-peer overlay network de-
signs have been proposed recently, each making dif-
ferent trade-offs with respect to system scalability, se-
curity, anonymity, retrieval accuracy, fault tolerance,
and content availability. Our focus is on building a
general-purpose, scalable, fault-tolerant overlay that
allows for explicit control over content availability and
placement. In consequence, SkipNet should be viewed
as an alternative to general-purpose overlays such as
CAN [16], Chord [21], Pastry [18], and Tapestry [26].

The key feature of systems such as CAN, Chord,
Pastry, and Tapestry is that they afford scalable routing
paths while maintaining a scalable amount of routing
state at each node. By scalable routing path we mean
that the expected number of forwarding hops between
any two communicating nodes is small with respect
to the total number of nodes in the system. Chord,
Pastry, and Tapestry scale with log N , where N is the
system size, while maintaining log N routing state at
each overlay node. CAN scales with N1/D, where D
is a dimensionality factor with a typical value of 6,
while maintaining an amount of per-node routing state
proportional to D.

A second key feature of these systems is that they
are able to route to destination addresses that do not
equal the address of any existing node. Each message
is routed to the node whose address is “closest” to that
specified in the destination field of a message. This
feature enables them to implement a distributed hash
table (DHT) [14], in which content is stored at an over-
lay node whose node ID is closest to the result of ap-
plying a collision-resistant hash function to that con-
tent’s name, or another property of it. Distributed hash
tables have been used, for instance, in constructing
the Past [19] and CFS [7] distributed filesystems, the
Overlook [23] scalable name service, the Squirrel [10]
cooperative web cache, and scalable application-level
multicast [6, 20, 17].

Our work borrows ideas from the Skip List [15] data
structure, applying them to construct a new kind of
scalable overlay network called SkipNet. We also bor-
row concepts from both Chord and Pastry. The ideas
derived from skip lists enable SkipNet to support ef-
ficient range queries, content placement, and path lo-
cality. The ideas taken from Chord and Pastry enable
DHT functionality and efficient message routing be-
tween overlay nodes. A combination of these ideas is
used to support constrained load balancing.

The fundamental philosophy of systems such as
Chord and Pastry is to diffuse content randomly
throughout an overlay in order to obtain uniform, load-
balanced, peer-to-peer behavior. The fundamental phi-
losophy of SkipNet is to enable systems to preserve
useful content and path locality, while still enabling
load balancing over constrained subsets of participat-
ing nodes.

This paper is not the first to observe that locality
properties are important in peer-to-peer systems. Kele-
her et al. [12] make two main points: DHTs destroy
locality and they discard useful application-specific in-
formation. Vahdat et al. [24] raises the locality issue as
well. Both of these problems are addressed by Skip-
Net. By using names rather than hashed identifiers to



order nodes in the overlay, natural locality based on
the names of objects is preserved. Furthermore, by ar-
ranging content in name order rather than dispersing it,
operations on ranges of names are possible in SkipNet.

Aspnes and Shah have independently invented the
same basic data structure that defines a SkipNet [1].
The focus of their work is primarily on supporting
queries based on key ordering and on describing pre-
cisely how their data structure can be maintained in
the face of concurrent random node joins, departures,
and failures. In contrast, our work is focused pri-
marily on the content and path locality properties of
the design. SkipNet also includes several extensions
beyond the basic design that it shares with Aspnes
and Shah’s work: Constrained load balancing is sup-
ported through a combination of searches in both the
lexicographic and numeric address spaces. Network
proximity-aware routing is obtained by means of two
auxiliary routing tables. Finally, SkipNet is also able
to support hosting virtual nodes on a single physical
node with substantially less overhead than other exist-
ing overlays.

3 Basic Structure

In this section, we introduce the basic design of
SkipNet. We present the SkipNet architecture, includ-
ing how to route in SkipNet, and how to join and leave
a SkipNet.

3.1 Skip Lists

A skip list, first described in Pugh [15], is a dic-
tionary data structure typically stored in-memory. A
skip list is a sorted linked list in which some nodes are
supplemented with pointers that skip over many list el-
ements. A “perfect” skip list is one where the height
of the i’th node is the exponent of the largest power-
of-two that divides i. Figure 1 depicts a perfect skip
list. Note that pointers at level h have length 2h (i.e.
they traverse 2h nodes in the list). A perfect skip list
supports searches in O(log N) time.

Because it is prohibitively expensive to perform
insertions and deletions in a perfect skip list, Pugh
suggests a probabilistic scheme for determining node
heights while maintaining O(log N) searches with
high probability. Briefly, each node chooses a height
so that the probability of choosing height h is 1/2h.
Thus, with probability 1/2 a node has height 1, with
probability 1/4 it has height 2, and so forth. Figure 2
depicts a probabilistic skip list.

3.2 SkipNet Data Structures

Whereas skip lists are an in-memory data struc-
ture that is traversed from its beginning, we want a
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Figure 1. A perfect skip list.
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Figure 2. A probabilistic skip list.

data structure that links together distributed computer
nodes and supports traversals that may start out from
any node in the system. Furthermore, because peers
should have uniform roles and responsibilities in a
peer-to-peer system, we want the state and processing
overhead of all nodes to be roughly the same. In con-
trast, skip lists maintain a variable number of pointers
per data record and consequently experience a sub-
stantially different amount of traversal traffic at each
data record.

3.2.1 Lexicographic Address Space

The key idea we take from skip lists is the notion of
maintaining a sorted list of all data records as well as
pointers that “skip” over varying numbers of records.
We transform the concept of a skip list to a distributed
system setting by replacing data records with com-
puter nodes, using the string names of the nodes as the
data record keys, and forming a ring instead of a list.
The ring must be doubly-linked to enable path locality,
as is explained in Section 3.3.

Rather than having nodes store a variable number
of skip pointers, each node stores 2 · log N pointers,
where N is the number of nodes in the overlay system.
The pointers at level i of a given node’s routing table
point to nodes that are 2i nodes to the left and right of
the given node. Figure 3 depicts a SkipNet containing
8 nodes and shows the routing table pointers that nodes
A and O maintain.

The SkipNet in Figure 3 is a “perfect” SkipNet: its
pointers traverse exactly 2h data records in all cases
and it suffers from the same insertion and deletion
overheads as perfect skip lists. We derive a probabilis-
tic SkipNet design by first observing that the pointers
maintained at each level of a node’s routing table can
be thought of as forming multiple rings of nodes, as
depicted in Figure 4.

Figure 4 shows the routing table pointers of the
overlay network of Figure 3, arranged to show node
interconnections at every level of a node’s routing ta-
ble. All nodes are connected by the ring that is formed
from the level 0 routing table pointer on each node.
Level 1 table entries point to nodes that are 2 nodes
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Figure 3. Lexicographically ordered SkipNet nodes.
Routing tables of nodes A and O are shown.

away and hence divide the overlay nodes into two dis-
joint sets. Similarly, routing table entries at level 2
form 4 disjoint rings of nodes and so forth. Note that
rings at level h + 1 are obtained by splitting a ring at
level h into two disjoint sets, each ring containing ev-
ery second member of the level h ring.

Routing is possible in O(log N) forwarding hops
because the rings at level h skip over 2h nodes. We can
achieve the same routing performance with high prob-
ability as long as ring memberships include roughly
every 2h-th node in each ring at level h.

Consider a node that wishes to join the SkipNet. It
must join the lowest level ring in any case. However,
it does not matter which level 1 ring the node joins, as
long as, on average, half of all nodes join each level 1
ring. Thus, the node randomly decides which level 1
ring to join, and this procedure is then followed recur-
sively for higher level rings. In this manner, we can
probabilistically ensure the desired “skip” characteris-
tics of each ring.

3.2.2 Numeric Address Space

Figure 4 illustrates an important aspect of SkipNet:
Ring membership of a node can be encoded by means
of a unique binary number. The first h bits of the num-
ber determines ring membership at level h. For exam-
ple, node X’s memberships are represented as 010 and
its membership among rings at level 2 is determined
by taking the first 2 bits of 010, which designate ring
01. A node can decide which rings to join by ran-
domly generating a binary number, which we refer to
as the node’s random ID. As described in [21], there
are advantages to using a collision-resistant hash (such
as MD-5) of the node’s DNS name as the random ID.

The uniqueness of these numbers allows us to de-
fine a second address space for SkipNet nodes. This
address space is identical to that used by traditional
overlays, such as Chord and Pastry, and will enable us
to provide the same DHT functionality.

Readers familiar with Chord may have observed
that SkipNet’s routing tables seem very similar to
those maintained by Chord. There is, however, a fun-
damental difference. SkipNet’s routing tables point
into a lexicographic space populated by nodes’ string
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Figure 4. The full SkipNet routing infrastructure for
an 8 node system, including the ring labels.

names whereas Chord’s routing tables point into a nu-
meric space populated by unique hashes derived from
nodes’ string names. Chord obtains its O(log N)
routing and node insertion properties by relying on
hashing string names uniformly throughout its address
space. In SkipNet, node string names are not spread
uniformly throughout its lexicographic address space.
Thus, to maintain efficiency, SkipNet defines an sec-
ondary address space in which nodes are uniformly
dispersed.

3.2.3 Duplicate Pointer Elimination

A node keeps a pointer to its immediate predeces-
sor and successor on every ring. As a result, two
nodes may be neighbors on several rings and, there-
fore, maintain duplicate pointers. However, a dupli-
cate pointer does not add value to a routing table.
Replacing it with a suitable alternative, such as the
following neighbor in the relevant ring, can improve
routing performance by a moderate amount (typically
around 20%). Routing table entries that have been ad-
justed in this fashion can only be used to route lexico-
graphic search queries since they violate the require-
ment that a node point to its closest neighbor on a ring.

3.3 Lexicographic Searching

Lexicographic searches in SkipNet are based on the
same basic principle as searches in skip lists: Follow
pointers that route closest to the intended destination.
At each node, a search message will be routed along
the highest-level pointer that does not point past the
destination value. Routing terminates when the mes-
sage arrives at a node whose lexicographic name is
closest to the destination. Figure 5 illustrates this al-
gorithm.

Since nodes are lexicographically ordered along
each ring and a message is never forwarded past its
destination, the pointers followed are all lexicograph-
ically placed between the source and the destination.
Thus, when a lookup message originates at a node



/ / C a l l e d o n l y a t t h e node t h a t o r i g i n a t e s t h e se arc h
Node Search ( s t r i n g destID ) {

i f ( destID < currNode . LexID ) then
node = SearchClockwise ( destID )

e l s e i f ( destID > currNode . LexID )
node = SearchCounterClockwise ( destID )

re turn node ;
}

/ / C a l l e d a t a l l i n t e r m e d i a t e hops along t h e searc h path
Node SearchClockwise ( s t r i n g destID ) {

h = currNode . maxHeight
whi l e ( h > 0)

nextNode = currNode . ClockwiseFinger [ h ]
/ / Check i f t h e nextNode . LexID l i e s in between currNode
/ / and t h e d e s t i n a t i o n , when t r a v e r s i n g t h e r i n g c l o c k w i s e
i f ( LiesBetweenClockwise ( nextNode . LexID ,

currNode . LexID , destID ) ) then
return SendMessage ( MsgSearchClockwise , nextNode , destID )

h = h − 1
endwhile
/ / At h =0 t h e d e s t i n a t i o n i s be tween currNode and nextNode ,
/ / so we r e t u r n t h e c l o s e s t t o t h e d e s t i n a t i o n
return Closes tNode ( destID , currNode . LexID , nextNode . LexID )

}

Figure 5. The SkipNet lexicographic search algorithm
(clockwise).

whose name shares a common prefix with the desti-
nation, all nodes traversed by the message have names
that share the same prefix as the source and destina-
tion do. Note that, because rings are doubly-linked,
this scheme can route using both right and left point-
ers depending upon whether the source name is lexi-
cographically smaller or greater than the destination,
respectively. The key observation of this scheme is
that a lexicographic search is routed along nodes with
non-decreasing prefix matches with the destination.

If the source name and the destination share no
common prefix, a search message could be routed in
either direction, using right or left pointers. For fair-
ness sake, one could randomly pick a direction to go
so that nodes whose names are in the middle of the
alphabet do not get a disproportionately larger share
of the forwarding traffic than do nodes whose names
are near the beginning and end of the alphabet. For
simplicity however, our current implementation never
wraps around from Z to A or vice-versa.

The expected number of hops traversed by a search
message is O(log N) with high probability. For a rig-
orous and complete proof see Harvey et al. [9].

3.4 Node Join and Departure

As outlined in Section 3.2.2, in order to join a Skip-
Net, a newcomer must first find the top-level ring that
corresponds to the random ID obtained by hashing the
newly-joining node’s name with a collision resistant
hash function. The routing algorithm that finds the
top-level ring for a newcomer applies two simple steps
repeatedly. For each node encountered in SkipNet, it
first determines the highest level ring shared between
the newcomer and the node. It then traverses this ring
until it finds a new node that shares a higher level ring
with the newcomer. This procedure is repeated un-
til the newcomer finds no other node with which it

/ / − The f i r s t phase l o c a t e s t h e h i g h e s t−l e v e l r i n g t h a t
/ / c o n t a i n s t h e newNode and a t l e a s t one o t h e r node .
/ / − The second phase works i t s way from t h a t top−l e v e l r ing ,
/ / i n s e r t i n g i t s e l f on one r i n g a t each h e i g h t .

I n i t ( ) {
phase = upward
currentH = 0

}

I n s e r t ( ) {
i f ( phase = = upward ) then

nextHop = NextHopUp ( )
e l s e

nextHop = NextHopDown ( )
i f ( phase ! = complete ) then

SendMessage ( InsertMsg , nextHop )
}

Node NextHopUp ( ) {
h = LongestCommonPrefix ( currNode . RandID , newNode . RandID ) ;
i f ( h > currentH ) then

currentH = h
r i n g S t a r t = currNode

nextHop = currNode . ClockwiseFinger [ h ]
i f ( r i n g S t a r t = = nextHop ) then

phase = downward
return NextHopDown ( )

e l s e
re turn nextHop

}

Node NextHopDown ( ) {
whi le ( currentH > 0)

nextHop = currNode . ClockwiseFinger [ currentH ]
i f ( LiesBetweenClockwise ( newNode . LexID , currNode . LexID ,

nextHop . LexID ) ) then
Inser tHere ( newNode )

e l s e
re turn nextHop

currentH = currentH − 1
endwhile
phase = complete
re turn n u l l

}

Figure 6. SkipNet node insertion algorithm.

shares a higher level ring. As described in Harvey et
al. [9], finding the top-level ring takes O(log N) mes-
sage steps to complete, with high probability.

This top-level ring is the first one that the newcomer
joins, using a lexicographic sequential search within
this ring only. Once the join is complete, the new node
uses its neighbors to search in the next lower level ring
for its lexicographic position and join it accordingly.
This process is repeated for each level until the new-
comer joins the level-0 ring. For correctness, none of
the existing nodes point to the newcomer until the new
node joins the level-0 ring. Only then does the new-
comer send messages to its neighbors along each ring
to indicate its presence.

The key observation for this algorithm’s efficiency
is that a newcomer joins a ring at a certain level only
after joining a higher level ring. As a result, the se-
quential lexicographic search within the ring to be
joined will typically not traverse all members of the
ring. Instead, the range of nodes traversed is lim-
ited to the range between the newcomer’s neighbors
at the higher level. Therefore, with high probability, a
node join in SkipNet will traverse O(log N) hops (for
a proof see Harvey et al. [9]). Figure 6 shows the in-
sertion algorithm; upward refers to the phase in which
a newcomer finds the top-level ring to join; downward
refers to the phase in which it joins SkipNet rings at



decreasing levels successively.
The basic observation in handling node departures

is that SkipNet can route correctly as long as the bot-
tom level ring is maintained. All pointers but the level-
0 ones can be regarded as routing optimization hints,
and thus not necessary to maintain routing protocol
correctness. Therefore, like Chord and Pastry, Skip-
Net maintains and repairs these rings’ memberships
lazily, by means of a background repair process.

To maintain the bottom ring correctly, each Skip-
Net node maintains a leaf set that points to additional
nodes along the bottom ring. In our current implemen-
tation we use leaf set size of 16, just as Pastry does.

3.5 Numeric Searching

SkipNet can implement DHT-like functionality by
routing messages in its numeric address space. Rout-
ing in the numeric address space is equivalent to the
upward phase of node joins, in which a newcomer
searches for a ring with a particular random ID. Conse-
quently, the message routing cost for numeric searches
is O(log N) [9].

Some intuition for why SkipNet can support both
lexicographic and numeric routing with the same data
structure is illustrated in Figure 4. Since SkipNet is
based on skip lists, the nodes in the bottom ring are
sorted by the lexicographic ordering. Simultaneously,
the SkipNet ring structure also forms a trie [8] of the
random IDs, and thus nodes are ordered by their ran-
dom IDs across the top rings. The rings at interme-
diate levels are partially sorted by both lexicographic
and random IDs.

4 Useful Locality Properties of SkipNet

The previous section described the data structure
and protocol that implement SkipNet. In this section
we discuss the useful locality properties that SkipNet
is able to provide.

4.1 Content and Routing Path Locality

Because SkipNet employs lexicographic search-
ing, it allows for control over data placement.
Incorporating a peer’s address into a content name
guarantees that the content will be hosted on that
respective peer. Although it could use arbitrary
naming conventions for node addresses and content
names, SkipNet’s current implementation uses DNS
names. For user convenience, it also reverses the
order of DNS names, so that john.microsoft.com
will be interpreted as com.microsoft.john. As an
example, when a document, doc-name, should
be stored on john.microsoft.com, naming it

john.microsoft.com/doc-name is sufficient to guaran-
tee that it will be stored onto the desired machine.

SkipNet’s lexicographic ordering of nodes also en-
ables it to guarantee routing locality, as described in
Section 3.3. For example, a message originating from
john.microsoft.com for jane.microsoft.com will never
leave microsoft.com (assuming that only Microsoft
nodes may use that naming prefix).

4.2 Constrained Load Balancing

Because SkipNet intertwines both a lexicographic
space and a numeric space, it is able to provide con-
strained load balancing. That is, it is able to support
the functionality of multiple DHTs of differing scopes
within a single overlay network. This is substantially
cheaper than maintaining a separate overlay network
for each DHT. It is also much simpler in that overlay
nodes do not need to know which DHTs they need to
belong to; the scope and node membership of a DHT is
determined strictly by the choice of data object names
that clients choose.

Constrained Load Balancing (CLB) involves divid-
ing a data object’s name into two parts: a part that
specifies the set of nodes over which DHT load bal-
ancing should be performed and a part that is used
as input to the DHT’s hash function. In SkipNet
the special character ‘!’ is used as a delimiter be-
tween the two parts of the name. For example, the
name msn.com/DataCenter!TopStories.html indicates
load balancing over nodes whose names begin with
the prefix msn.com/DataCenter. The suffix, TopSto-
ries.html, used as input to the load balancer hash func-
tion, determines which node the data object actually
ends up on.

CLB is implemented by searching for the name pre-
fix in lexicographic space and then switching to the
numeric space to search for the hash of the name suf-
fix. The search for the hash of the suffix is constrained
to only consider nodes that have the same name prefix
as the data object’s name.

As described in Section 3, searches in both the lexi-
cographic and numeric spaces take O(log N) message
hops to complete. Placing a lexicographic name prefix
constraint on the numeric address space search does
not change the performance characteristics. This is
because numeric searches involve searching “upward”
through the routing rings and the probability of finding
a node on a ring that will enable upward progress is in-
dependent of the lexicographic name prefix constraint;
that is, it is an independent, random variable. Because
the rings are sorted, all ring members that obey the
constraint are contiguous and hence can be efficiently
traversed until a suitable node is found.



Note that both traditional system-wide DHT se-
mantics as well as explicit content placement are spe-
cial cases of constrained load balancing: system-wide
DHT semantics are obtained by placing the hashing
delimiter at the beginning of a document name. Omis-
sion of the hashing delimiter plus choosing the name
of a data object to have a prefix that matches the name
of a particular overlay node will result in the object
being placed on that overlay node.

Constrained load balancing has its limitations. It
can be performed over any naming subtree of the Skip-
Net but not over an arbitrary subset of the nodes of the
overlay network. In this respect it has flexibility sim-
ilar to a hierarchical file system’s. Another limitation
is that the domain of load balancing is encoded in the
name of a data object. Thus, transparent remapping to
a different load balancing domain is not possible.

4.3 Fault Tolerance

Previous studies [13, 2] have shown that network
connectivity failures in the Internet today are due pri-
marily to Border Gateway Protocol (BGP) misconfig-
urations and faults, as well as hardware, software and
human failures. As a result, node failures in overlay
systems are not independent, but instead, nodes be-
longing to the same organization or AS domain tend
to fail together. In consequence, we have focused the
design of SkipNet’s fault-tolerance to handle two dif-
ferent scenarios: (1) independent failures and (2) fail-
ures occurring along organizational boundaries.

4.3.1 Independent Failures

As with Chord, the key observation in failure recov-
ery is that maintaining correct neighbor pointers in the
level 0 ring is enough to ensure correct functioning of
the overlay. Since each node maintains a leaf set of l
level 0 neighbors, level 0 ring pointers can be repaired
by replacing them with the leaf set entries that point to
the nearest live nodes following the failed node.

Like Chord, SkipNet employs a lazy stabilization
mechanism that gradually updates all necessary rout-
ing table entries in the background to reflect the disap-
pearance of n. Note that during this stabilization pe-
riod, no ongoing queries are disrupted, although they
might be sub-optimally routed.

4.3.2 Failures along Organization Boundaries

In previous peer-to-peer overlay designs [16, 21,
18, 26], node placement in the the overlay topology
is determined by a randomly chosen numeric ID. As
a result, nodes near each other in terms of network
proximity are placed uniformly throughout the address
space of the overlay. While a uniform distribution en-
ables the O(log N) routing performance of the overlay

it makes it difficult to predict the effect of physical link
failures on the overlay network. In particular, the fail-
ure of a network link will manifest itself as multiple,
randomly scattered link failures in the overlay. Taken
to an extreme, it is possible for each node within a
single organization that has lost connectivity to the In-
ternet to become disconnected from the entire overlay
and from all other nodes within the organization.

Since SkipNet preserves node locality within the
overlay, local failures do not fragment the overlay, but
instead result in ring segment partitions. Consequently
in SkipNet a significant fraction of routing table en-
tries of the disconnected nodes still point to live nodes
within the same network partition. This property al-
lows SkipNet to gracefully survive failures along or-
ganization boundaries.

4.4 Range Queries

Since SkipNet’s design is based on and inspired by
skip lists, it inherits their functionality and flexibil-
ity in supporting efficient range queries. In particu-
lar, since keys are stored in lexicographic order, docu-
ments sharing common prefixes are stored over con-
tiguous ring segments. Answering range queries in
SkipNet is therefore equivalent to routing along the
corresponding ring segment. Because our current fo-
cus is on SkipNet’s architecture and locality proper-
ties, we do not discuss range queries further in this
paper.

5 SkipNet Enhancements

This section presents several optimizations to the
basic SkipNet design.

5.1 Efficient Routing in Lexicographic Space

In SkipNet, the neighbors of a node are determined
by the random choice of ring memberships and the
ordering of identifiers in those rings. Accordingly,
the overlay is constructed without considering phys-
ical network topology, potentially hurting routing per-
formance and latency.

To deal with this problem, we introduce a second
routing table called the proximity table, or P-table for
short. P-tables are inspired by Pastry’s proximity-
aware routing tables [5]. As described in Section 3, a
SkipNet node’s basic routing table entries are expected
to point to nodes that are exponentially increasing dis-
tances away. Each P-table routing entry points to a
node chosen from the ring segment whose endpoints
are defined by two consecutive basic routing table en-
tries. This choice gives SkipNet the flexibility of se-
lecting routing entries according to physical network
proximity.



Like Pastry, SkipNet constantly tries to improve the
quality of its P-table entries, as well as adjust to node
joins and departures, by means of a background stabi-
lization algorithm. The details of SkipNet P-table con-
struction and maintenance, along with its complexity
characteristics and routing guarantees, are contained
in Harvey et al. [9].

5.2 Efficient Routing in Numeric Space and Con-
strained Load Balancing

Since SkipNet supports search and routing via two
different spaces and uses both to implement CLB, we
add a third table that optimizes searches in the nu-
meric space, much as the P-table optimizes searches
in the lexicographic space. Since SkipNet’s numeric
space is essentially equivalent to the random ID space
of Pastry, this third table has similar functionality to
the routing table that Pastry maintains. CLB searches
use entries in this proximity table except when they
violate the CLB search constraint. In that case, CLB
reverts to using the basic routing table.

5.3 Virtual Nodes

In Web-hosting scenarios, a single machine often
has multiple names. In SkipNet this can be supported
by allowing a physical node to run multiple SkipNet
virtual nodes.

Without any modifications to the basic SkipNet
structure, each virtual node has a routing table of
O(log N) entries and thus O(k · log N) entries is re-
quired to host k virtual nodes. The periodic routing
table maintenance traffic becomes a scalability bottle-
neck as k becomes large.

The key observation is that SkipNet can reduce this
overhead without imposing disproportionate amounts
of work on any physical node. In particular, the rout-
ing table state for virtual nodes can be distributed in
a manner similar to probabilistic skip lists. Our ap-
proach scales such that k virtual nodes require O(k +
log N) state, with only a constant factor increase in
search performance. For more details see Harvey et
al. [9].

6 Design Alternatives

The locality properties provided by SkipNet can
also be obtained by means of suitable extensions to
existing overlay networks. However, we argue that
SkipNet does so in a more natural and often in a more
efficient manner. In this section we describe design
alternatives to SkipNet and compare them with Skip-
Net’s approach.

DHT-based overlay networks depend on random as-
signment of node IDs in order to obtain a uniform dis-

tribution of nodes within the address space they use.
To support explicit content placement for a single data
object, one may choose a node ID that directly corre-
sponds to the hash ID of that data object. In order to
assign more than one data object to the same node one
could do either of the following:

• One could virtualize the overlay nodes so that
each node joins the overlay once per data object. This
has the disadvantage that one must maintain a separate
routing table for each data object to be assigned to a
given physical overlay node.

• One could employ a two-part naming scheme,
as in SkipNet, wherein data object names consist of a
virtual node name followed by a node-relative name.
The virtual node name is hashed to obtain an ID used
to select a physical node on which to place the virtual
node’s data. The physical node hosting this data as-
signs itself this hashed ID and joins the overlay. As
a result, the DHT will route requests for the virtual
node’s data objects to it.

The cost of the first approach is prohibitive if a sin-
gle node needs to store more than a few hundred data
objects. The second approach is essentially equivalent
to the SkipNet approach for content placement, except
that both node and data object names are translated to
a numeric address space instead of being used directly.

Constrained load balancing can be achieved by
maintaining multiple overlay networks, one per DHT
provided. This imposes a cost in terms of both routing
table state and complexity, since physical nodes must
maintain separate routing tables for each DHT they
join. Furthermore, when a new DHT is created to load
balance data across a set of nodes, all nodes must be
informed about their membership in the new overlay.
Worse yet, these new members will now have to inherit
the burden associated with maintaining routing tables
in the new DHT. In contrast, SkipNet is able to provide
arbitrarily many DHTs using a single set of routing ta-
bles per node and new DHTs can be created simply
by having clients create appropriately structured data
object names.

Path locality could be added to a DHT-based over-
lay by ensuring that specially-marked local messages
are not forwarded outside of a given organizational
boundary. The information would be used to exclude
routing table entries from use that violate the routing
constraint. Unfortunately this approach cannot guar-
antee path locality: There may not be a path to a desti-
nation with the constraint applied. Furthermore, even
if a path is available, it may end up being inefficient.

Overlay networks such as Pastry can partially miti-
gate this problem using their support for network prox-



imity [5]. However, Pastry’s network proximity sup-
port depends on having a “nearby” node to use as a
“seed” node when joining an overlay. If the “nearby”
node is not within the same organization as the joining
node, Pastry might not be able to provide very good
path locality. Furthermore, this problem is exacerbated
for organizations that consist of multiple separate “is-
lands” of nodes that are far apart in terms of network
distance. In contrast, SkipNet is able to guarantee path
locality, even across organizations that consist of sep-
arate clusters of nodes.

Given the naming approach suggested in Sec-
tion 4.1, a simple alternative to lexicographic searches
(but not CLB searches) through a SkipNet overlay
would be to route directly with IP after a DNS lookup.
SkipNet has three key advantages over this approach.
First, in the presence of node failures, overlay rout-
ing provides seamless reassignment of traffic to nearby
nodes within the same organization. Second, higher
level abstractions such as multicast [6, 20, 17] and
load-aware replication [23] are easy to implement.
Third, DNS failures do not impact data availability,
since no explicit name lookups are made.

7 Experimental Evaluation

To understand and evaluate SkipNet’s design and
performance, we used a simple packet-level, discrete
event simulator that counts the number of packets sent
over a physical link and assigns a constant delay to
each link [9]. It does not model either queuing delay
or packet losses because modeling these would prevent
simulation of large networks.

We implemented three overlay network designs:
Pastry, Chord, and SkipNet. The Pastry implementa-
tion is described in Rowstron and Druschel [18]. Our
Chord implementation is the one available on the MIT
Chord web site [11], adapted to operate within our
simulator. For our simulations, we run the Chord sta-
bilization algorithm until no finger pointers need up-
dating after all nodes have joined. We use two differ-
ent implementations of SkipNet: a “basic” implemen-
tation based on the design in Section 3, and a “full”
implementation that uses the enhancements described
in Section 5. For “full” SkipNet, we run two rounds
of stabilization for P-table entries before each experi-
ment.

All our experiments were run both on a Mercator
topology [22] and a GT-ITM topology [25]. The Mer-
cator topology has 102, 639 nodes and 142, 303 links.
Each node is assigned to one of 2, 662 Autonomous
Systems (ASs). There are 4, 851 links between ASs in
the topology. All figures shown in this section are for
the Mercator topology. The experiments based on the

Georgia Tech topology produced similar results.

7.1 Methodology

We measured the performance characteristics of
lookups using the following evaluation criteria:

Relative Delay Penalty (RDP): The ratio of the la-
tency of the overlay network path between two nodes
to the latency of the IP-level path between them.

Physical network hops: The absolute length of the
overlay path between two nodes, measured in IP-level
hops.1

Number of failed lookups: The number of unsuc-
cessful lookup requests in the presence of failures.

We also model the presence of organizations within
the overlay network; each participating node belongs
to a single organization. The number of organizations
is a parameter to the experiment, as is the total number
of nodes in the overlay. For each experiment, the total
number of client lookups is twice the number of nodes
in the overlay.

The format of the names of participating nodes is
org-name/node-name. The format of data object names
is org-name/node-name/random-obj-name. Therefore we
assume that the “owner” of a particular data object will
name it with the owner node’s name followed by a
node-local object name. In SkipNet, this results in a
data object being placed on the owner’s node; in Chord
and Pastry, the object is placed on a node correspond-
ing to the MD-5 hash of the object’s name. For con-
strained load balancing experiments we use data ob-
ject names that include the ‘!’ delimiter following the
name of the organization.

We model organization sizes two ways: a uniform
model and a Zipf-like model. In the Zipf-like model,
the size of an organization is determined according to
a distribution governed by x−1.25+0.5 and normalized
to the total number of overlay nodes in the system. All
other Zipf-like distributions mentioned in this section
are defined in a similar manner.

We model three kinds of node locality: uniform,
clustered, and Zipf-clustered. In the uniform model,
nodes are uniformly spread throughout the overlay. In
the clustered model, the nodes of an organization are
uniformly spread throughout a single randomly cho-
sen autonomous system. We ensure that the selected
AS has at least 1/10-th as many core router nodes as
overlay nodes. For Zipf-clustered, we place organiza-
tions within ASes, as before. However, the nodes of an
organization are spread throughout its AS as follows:
A “root” physical node is randomly placed within the

1Mercator does not provide link latencies.
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Figure 7. RDP as a function of network size. Configu-
ration: 1000 organizations with Zipf-like sizes, nodes
and data names are Zipf-clustered.

Chord Basic SkipNet Full SkipNet Pastry
16.3 41.7 73.5 63.2

Table 1. Average number of unique routing entries per
node in an overlay with 216 nodes.

AS and all overlay nodes are placed relative to this
root, at distances modeled by a Zipf-like distribution.

Data object names, and therefore data placement, is
modelled similarly. In a uniform model, data names
are generated by randomly selecting an organization
and then a random node within that organization. In
a clustered model, data names are generated by se-
lecting an organization according to a Zipf-like dis-
tribution and then a random member node within that
organization. For Zipf-clustered, data names are gen-
erated by randomly selecting an organization accord-
ing to a Zipf-like distribution and then selecting a
member node according to a Zipf-like distribution of
its distance from the “root” node of the organization.
Note that for Chord and Pastry, but not SkipNet, hash-
ing spreads data objects uniformly among all overlay
nodes in all these three models.

We model locality of data access by specifying what
fraction of all data lookups will be forced to request
data local to the requestor’s organization. Finally, we
model system behavior under Internet-like failures and
study document availability within a disconnected or-
ganization. We simulate domain isolation by failing
the links connecting the organization’s AS to the rest
of the network.

Each experiment is run ten different times, with dif-
ferent random seeds, and the average values are pre-
sented. For SkipNet, we used 128-bit random identi-
fiers and a leaf set size of 16 nodes. For Pastry and
Chord, we used their default configurations [11, 18].

7.2 Basic Routing Costs

To understand SkipNet’s routing performance we
simulated overlay networks with N = 2k nodes,
where k ranges from 10 to 16. We ran experiments
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Figure 8. Absolute lookup request latency as a func-
tion of data access locality (percentage of lookup re-
quests forced to be within a single organization). Con-
figuration: 216 nodes, 100 organizations with Zipf-like
sizes, nodes and data names are Zipf-clustered.

with 10, 100, and 1000 organizations and with all the
permutations obtainable for organization size distribu-
tion, node placement, and data placement. The intent
was to see how RDP behaves under various configura-
tions. We were especially curious to see whether the
non-uniform distribution of data object names would
adversely affect the performance of SkipNet lookups,
as compared to Chord and Pastry.

Figure 7 presents the RDPs measured for both im-
plementations of SkipNet, as well as Chord and Pas-
try, for a configuration in which organization sizes,
node placement, and data placement are all governed
by Zipf-like distributions. Table 1 shows the average
number of unique routing table entries per node in an
overlay with 216 nodes. All other configurations, in-
cluding the completely uniform ones, exhibited simi-
lar results to those shown here.

Our conclusion is that basic SkipNet performs sim-
ilarly to Chord and full SkipNet performs similarly to
Pastry. This is not surprising since both basic SkipNet
and Chord do not support network proximity-aware
routing whereas full SkipNet and Pastry do. Since all
our other configurations produced similar results, we
conclude that SkipNet’s performance is not adversely
affected by non-uniform distributions of names.

7.3 Exploiting Locality of Placement

RDP only measures performance relative to IP-
based routing. However, one of SkipNet’s key bene-
fits is that it enables localized placement of data. Fig-
ure 8 shows the average number of physical network
hops for lookup requests for an experiment configu-
ration containing 216 overlay nodes and 100 organiza-
tions, with organization size, node placement, and data
placement all governed by Zipf-like distributions. The
x axis indicates what fraction of lookups were forced
to be to local data (i.e. the data object names that were
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Figure 9. Number of failed lookup requests as a func-
tion of data access locality (percentage of lookup re-
quests forced to be within a single organization) for a
disconnected organization. Configuration: 216 nodes,
100 organizations with Zipf-like sizes, nodes and data
names are Zipf-clustered.

looked up were from the same organization as the re-
questing client). The y axis shows the number of phys-
ical network hops for lookup requests.

As expected, both Chord and Pastry are oblivious
to the locality of data references since they diffuse
data throughout their overlay network. On the other
hand, both versions of SkipNet show significant per-
formance improvements as the locality of data refer-
ences increases. It should be noted that Figure 8 ac-
tually understates the benefits gained by SkipNet be-
cause, in our Mercator topology, inter-domain links
have the same cost as intra-domain links. In an equiv-
alent experiment run on the GT-ITM topology, Skip-
Net end-to-end lookup latencies were over a factor of
seven less than Pastry’s for 100% local lookups.

7.4 Fault Tolerance

Locality of placement also improves fault tolerance.
Figure 9 shows the number of lookup requests that
failed when an organization was disconnected from the
rest of the network.

This (common) Internet-like failure had catas-
trophic consequences for Chord and Pastry. The size
of the isolated organization in this experiment was
roughly 15% of the total nodes in the system. Con-
sequently, Chord and Pastry will both place roughly
85% of the organization’s data on nodes outside the
organization. Furthermore, they must also attempt to
route lookup requests with 85% of the overlay net-
work’s nodes effectively failed (from the disconnected
organization’s point-of-view). At this level of failures,
routing is effectively impossible. The net result is a
failed lookups ratio of very close to 100%.

In contrast, both versions of SkipNet do better the
more locality of reference there is. When no lookups
are forced to be local, SkipNet fails to access the 85%
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Figure 10. RDP of lookups for data that is constrained
load balanced (CLB) as a function of network size.
Configuration: 100 organizations with Zipf-like sizes,
nodes and data names are Zipf-clustered.

of data that is non-local to the organization. As the
percentage of local lookups is increased to 100%, the
percentage of failed lookups goes to 0.

7.5 Constrained Load Balancing

Figure 10 explores the routing performance of two
different CLB configurations, and compares their per-
formance with Pastry. For each system, all lookup traf-
fic is organization-local data. The organization sizes
as well as node and data placement are clustered with
a Zipf-like distribution. The Basic CLB configuration
uses only the numeric routing described in Section 3.5,
whereas Full CLB makes use of the CLB proximity ta-
ble described in Section 5.2.

The Full CLB curve shows a significant perfor-
mance improvement over Basic CLB, justifying the
cost of maintaining extra routing state. However, even
with the additional routing table, the Full CLB per-
formance trails Pastry’s performance. The key obser-
vation, however, is that in order to mimic the CLB
functionality with a traditional peer-to-peer overlay
network, multiple routing tables are required, one for
each domain that you want to load-balance across.

8 Conclusion

To become broadly acceptable application infras-
tructure, peer-to-peer systems need to address two ba-
sic requirements: the ability to control data locality
and the ability to guarantee that routing paths remain
local within an administrative domain whenever pos-
sible. To our knowledge, SkipNet is the first overlay
network design that achieves both content and rout-
ing path locality, by clustering peers and organizing
data according to their lexicographic addresses and
names. At the same time, SkipNet has similar per-
formance guarantees to other peer-to-peer systems, in
that it requires logarithmic state per node and supports
searches, insertions and deletions in logarithmic time.



SkipNet allows for both fine-grained and coarse-
grained control over data placement. Content can be
placed on a specific participating peer, by incorporat-
ing the peer’s address into the content name. Simi-
larly, SkipNet allows for content to be randomly and
uniformly distributed within an arbitrary node naming
subtree, as defined by a document’s name.

The same lexicographic clustering of peers accord-
ing to their addresses allows SkipNet to perform grace-
fully in the face of realistic Internet failures, such as
loss of a domain’s Internet connectivity.

Our evaluation efforts have demonstrated that Skip-
Net has similar performance behavior to other over-
lay networks such as Chord and Pastry. Even under
skewed node and object placement distributions Skip-
Net maintains logarithmic performance behavior. Fi-
nally, our experiments have illustrated the benefits of
content and routing path locality in SkipNet, as com-
pared to systems like Chord and Pastry.

In future work, we plan to deploy a SkipNet across
a testbed cluster of 2000 machines emulating a WAN
in order to understand and analyze its behavior in the
face of dynamic host joins and leaves and its flexibil-
ity as infrastructure for implementing a scalable event
notification service [3].
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