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Abstract Frangipaniis a new scalable distributed file systemthat manages
a collection of disks on multiple machines as a single shposd
The ideal distributed file system would provide all its users with co- of storage. The machines are assumed to be under a common
herent, shared access to the same set of files, yet would be arbitrariyadministration and to be able to communicate securely. There have
scalable to provide more storage space and higher performance tdoeen many earlier attempts at building distributed file systems that
a growing user community. It would be highly available in spite of scale well in throughput and capacity [1, 11, 19, 20, 21, 22, 26,
component failures. It would require minimal human administra- 31, 33, 34]. One distinguishing feature of Frangipani is that it has
tion, and administration would not become more complex as more a very simple internal structure—a set of cooperating machines
components were added. use a common store and synchronize access to that store with

Frangipaniis a new file system that approximates this ideal, yet locks. This simple structure enables us to handle system recovery,
was relatively easy to build because of its two-layer structure. The reconfiguration, and load balancing with very little machinery.
lower layer is Petal (described in an earlier paper), a distributed Anotherkey aspect of Frangipaniis thatitcombines a set of features
storage service that provides incrementally scalable, highly avail- that makes it easier to use and administer Frangipani than existing
able, automatically managed virtual disks. In the upper layer, file systems we know of.
multiple machines run the same Frangipani file system code on top
of a shared Petal virtual disk, using a distributed lock service to
ensure coherence.

Frangipaniis meantto run in a cluster of machines thatare under
a common administration and can communicate securely. Thus the
machines trust one another and the shared virtual disk approach is

1. All users are given a consistent view of the same set of files.

2. More servers can easily be added to an existing Frangipani
installation to increase its storage capacity and throughput,
without changing the configuration of existing servers, or
interrupting their operation. The servers can be viewed as

practical. Of course, a Frangipani file system can be exported to
untrusted machines using ordinary network file access protocols.

We have implemented Frangipani on a collection of Alphas
running DIGITAL Unix 4.0. Iritial measurements indicate that
Frangipani has excellent single-server performance and scales well
as servers are added.

1 Introduction

File system administration for a large, growing computer installa-
tion built with today’s technology is a laborious task. To hold more
files and serve more users, one must add more disks, attached to
more machines. Each of these components requires human admin-
istration. Groups of files are often manually assigned to particular

“bricks” that can be stacked incrementally to build as large a
file system as needed.

. A system administrator can add new users without concern

for which machines will manage their data or which disks
will store it.

. A systemadministrator can make a full and consistentbackup

of the entire file system without bringing it down. Backups
can optionally be kept online, allowing users quick access to
accidentally deleted files.

. Thefile systemtolerates and recovers from machine, network,

and disk failures without operator intervention.

Frangipaniis layered on top of Petal [24], an easy-to-administer

disks, then manually moved or replicated when components fill gistributed storage system that providérsual disksto its clients.
up, fail, or become performance hot spots. Joining multiple disk | jke a physical disk, a Petal virtual disk provides storage that can

drives into one unit using RAID technology is only a partial so-

be read or written in blocks. Unlike a physical disk, a virtual

lution; administration problems still arise once the system grows disk provides a sparsé%yte address space, with physical stor-

large enough to require rtiple RAIDs and multiple server ma-
chines.
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age allocated only on demand. Petal optionally replicates data for
high availability. Petal also provides efficient snapshots [7, 10] to
support consistent backup. Frangipani inherits much of its scala-
bility, fault tolerance, and easy administration from thlerlying
storage system, but careful design was required to extend these
properties to the file system level. The next section describes the
structure of Frangipani and its relationship to Petal in greater detail.
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Figure 1: Frangipanilayering. Several interchangeable Frangi-
pani servers provide access to one set of files on one Petal virtual
disk.
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Figure 1 illustrates the layering in the Frangipani system. Multi-

ple interchangeable Frangipani servers provide access to the same Petal server Petal sorver Petal sonver
files by running on top of a shared Petal virtual disk, coordinat- server server server
ing their actions with locks to ensure coherence. The file system
layer can be scaled up by adding Frangipani servers. It achieves
fault tolerance by recovering automatically from server failures
and continuing to operate with the servers that survive. It provides
improved load balancing over a centralized network file server by
splitting up the file system load and shifting it to the machines that
are using the files. Petal and the lock service are also distributed
for scalability, fault tolerance, and load balancing.
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Figure 2: Frangipani structure. In one typical Frangipani con-
q‘iguration, some machines run user programs and the Frangipani
file server module; others run Petal and the distributed lock ser-
vice. In other configurations, the same machines may play both
"roles.

lock service. Frangipani is designed to run well in a cluster of
workstations within a single administrative domain, although a
Frangipani file system may be exported to other domains. Thus
Frangipani can be viewed aghister file system

We have implemented Frangipani under DIGITAL Unix 4.0.

Due to Frangipani's clean layering atop the existing Petal service, are immediately visible on all others. Programs get essentially the
we were able to implement a working systemin only afew months. same semantic guarantees as on a local Unix file system: changes
Frangipaniis targeted for environments with program develop- to file contents are staged through the local kernel buffer pool

ment and engineering workloads. Our tests indicate that on Sucnand are not guaranteed to reach norM&torage until the next
workloads, Frangipani has excellent performance and scales up thppncab]efsynC or sync system call, but metadd‘t&hanges

the limits imposed by the network. are logged and can optionally be guaranteed nontil®lay the

time the system call returns. In a small departure from local file
system semantics, Frangipani maintains a file's last-accessed time
only approximately, to avoid doing a metadata write for every data

Figure 2 depicts one typical assignment of functions to machines. read. L . i
The machines shown at the top run user programs and the Frangi- The Frangipanifile server module on each machine runs within

pani file server module; they can be diskless. Those shown at thethe operating system kernel. It registers itself with the kernel's file
bottom run Petal and th'e distributed lock service. system switch as one of the available file system implementations.

The components of Frangipani do not have to be assigned to The file server module uses the kernel’s buffer pool to cache data

machines in exactly the way shown in Figure 2. The Petal and from recently usedfiles. It reads and writes Petal virtual disks using
Frangipani servers need not be on separate machines; it wouldthe local Petal device driver. All the file servers read and write the

make sense for every Petal machine to run Frangipani as well, S8Me file system data structures on the _shared Petal (_jisk, b_ut_each
server keeps its own redo log of pending changes in a distinct
section of the Petal disk. The logs are kept in Petal so that when
aft Frangipani server crashes, another server can access the log and
run recovery. The Frangipaniservers have no needto communicate
directly with one another; they communicate only with Petal and
the lock service. This keeps server addition, deletion, and recovery
simple.
2.1 Components The Petal device driver hides the distributed nature of Petal,

As shown in Figure 2, user programs access Frangipani throughmaking Pe_tal look like an ord_inary local disI§ to higher Iaye_rs of
the standard operating system call interface. Programs runningthe operating system. The driver is responsible for contacting the
on different maChlneS all see the sa_me flles’ and their views a_re We definemetadataas any on-disk data structure other than the contents of an
coherent; thatis, changesmade to afile or directory on one machineordinary file.

2 System Structure

particularly in an installation where the Petal machines are not
heavily loaded. The distributed lock service is independent of the
restofthe system; we show one lock server as running on each Pet
server machine, but they could just as well run on the Frangipani
hosts or any other available machines.




correct Petal server and failing over to another whenessary. User programs o

Any Digital Unix file system can run on top of Petal, but only Frangipani

Frangipani provides coherentaccessto the same files frdtiptau File system switch | - client.

machines. NFS or DFS client machine
The Petal servers run cooperatively to provide Frangipani with

large, scalable, fault-tolerant virtual disks, implemented on top of Network

the ordinary physical disks connected to each server. Petal can

tolerate one or more disk or server failures, as long as a majority of NFS or DFS server

the Petal servers remain up and in communication and at least one File system switch o

copy of each data block remains physically accessible itésabal Frangipani Eé?\?gpan'

details on Petal are available in a separate paper [24]. file server module | machine
The lock service is a general-purpose service that provides otal

multiple-reader/single-writer locks to clients on the network. Its device driver

implementation is distributed for fault tolerance and scalable per-

formance. Frangipani uses the lock service to coordinate access to ¢T0 lock service

the virtual disk and to keep the buffer caches coherent across the and Petal

multiple servers.

Figure 3: Client/server configuration. A Frangipani server can
provide file access not only for the local machine, but also for re-
mote client machines that connectvia standard network file system

In the configuration shown in Figure 2, every machine that hosts Protocols.

user programs also hosts a Frangipani file server module. This

configuration has the potential for good load balancing and scaling,

but poses security concerns. Any Frangipani machine can read ortocol that supports coherent access (such as DCE/DFS) is best, so
write any block of the shared Petal virtual disk, so Frangipanimust that Frangipani’s coherence across multiple servers is not thrown
run only on machines with trusted operating systems; it would away atthe nextlevel up. Ideally, the protocol should also support
not be sufficient for a Frangipani machine to authenticate itself to failover from one Frangipani server to another. The protocols just
Petal as acting on behalf of a particular user, as is done in remotementioned do not support failover directly, but the technique of
file access protocols like NFS. Full security also requires Petal having a new machine take over the IP address of a failed machine
servers and lock servers to run on trusted operating systems, and'as been used in other systems [3, 25] and could be applied here.
all three types of components to authenticate themselves to one Apart from security, there is a second reason for using this
another. Finally, to ensure file data is kept private, users should beclient/server configuration. Because Frangipani runs in the kernel,
prevented from eavesdropping on the network interconnecting the it is not quickly portable across different operating systems or even
Petal and Frangipani machines. different versions of Unix. Clients can use Frangipani from an

One could fully solve these problems by placing the machines Unsupported system by accessing a supported one remotely.
in an environment that prevents users from booting modified op-
erating system kernels on them, and interconnecting them with 5 3 piscussion
a private network that user processes are not granted access to.

This does not necessarily mean that the machines must be lockedrhe idea of building a file system in two layers—a lower level
in a room with a private physical network; known cryptographic providing a storage repository and a higher level providing names,
techniques for secure booting, authentication, and encrypted links directories, and files—is not unique to Frangipani. The earliest
could be used instead [13, 37]. Also, in many applications, partial example we know of is the Universal File Server [4]. However,
solutions may be acceptable; typical existing NFS installations are the storage facility provided by Petal is substantially different from
not secure against network eavesdropping or even data modifica-earlier systems, leading to a different higher level structure as well.
tion by a user who boots a modified kernel on his workstation. We Section 10 contains detailed comparisons with previous systems.
have not implemented any of these security measures to date, but Frangipani has been designed to work with the storage abstrac-
we could reach roughly the NFS level of security by having the tion provided by Petal. We have not fully considered the de-
Petal servers acceptrequests only from a list of network addressesign changes needed to exploit alternative storage abstractions like
belonging to trusted Frangipani server machines. NASD [13].

Frangipani file systems can be exported to untrusted machines Petal provides highly available storage that can scale in through-
outside an administrative domain using the configurationillustrated put and capacity as resources are addedto it. However, Petal has no
in Figure 3. Here we distinguish between Frangipani client and provision for coordination or sharing the storage among multiple
server machines. Only the trusted Frangipani servers communicateclients. Furthermore, most applications cannot directly use Petal’s
with Petal and the lock service. These can be located in a restrictedclient interface because it is disk-like and not file-like. Frangipani
environment and interconnected by a private network as discussedrovides a file system layer that makes Petal useful to applications
above. Remote, untrusted, clients talk to the Frangipani serverswhile retaining and extending its good properties.
through a separate network and have no direct access to the Petal A strength of Frangipani is that it allows transparent server
servers. addition, deletion, and failure recovery. It is able to do this easily

Clients can talk to a Frangipani server using any file access pro- by combining write-ahead logging and locks with a uniformly
tocol supported by the host operating system, such as DCE/DFS,accessible, highly available store.

NFS, or SMB, because Frangipanilooks just like a local file system  Another strength of Frangipani is its ability to create consis-
on the machine running the Frangipani server. Of course, a pro-tent backups while the system is running. Frangipani's backup

2.2 Security and the Client/Server Configuration
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Figure 4: Disk layout. Frangipani takes advantage of Petal’s large, sparse disk address space tifysitapglata structures. Each server
has its own log and its own blocks of allocation bitmap space.

mechanism is discussed in Section 8. of its data? Symbolic links store their data directly in the inode.

There are three aspects of the Frangipani design that can beWe have made inodes 512 bytes long, the size of a disk block,
problematic. Using Frangipani with a replicated Petal virtual disk thereby avoiding the unnecessary contention (“false sharing”) be-
implies thatlogging sometimes occingce, once to the Frangipani  tween servers that would occur if two servers needed to access
log, and once again within Petal itself. Second, Frangipanidoes notdifferent inodes in the same block. We allocate one TB of inode
use disk location information in placing data—indeed it cannot— space, allowing room for®2 inodes. The mapping between bits in
because Petal virtualizes the disks. Finally, Frangipanilocks entire the allocation bitmap and inodes is fixed, so each Frangipani server
files and directories rather than individual blocks. We do not allocates inodes to new files only from the portions of the inode
have enough usage experience to evaluate these aspects of owspace that correspondsto its portions of the allocation bitmap. But
designin a general setting, but despite them, Frangipani’'s measuredny Frangipani server may read, write, or free any existing file's
performance on the engineering workloads we have tested is goodinode.

The fifth region holds small data blocks, each 4 K& @ytes)
in size. The first 64 KB (16 blocks) of a file are stored in small
3 Disk Layout blocks. If a file grows to more than 64 KB, the rest is stored in one
large block. We allocate*2 bytes for small blocks, thus allowing

Frangipani uses the large, sparse disk address space of Petal t§P t0 Z° of them, 16 times the maximum number of inodes.
simplify its data structures. The general idea is reminiscent of ~ Theremainderofthe Petal address space holds large datablocks.
past work on programming computers with large memory address One TB of address space is reserved for every large block.
spaces [8]. There is so much address space available that it can be Our disk layout policy of using 4 KB blocks can suffer from
parcelled out generously. more fragmentation than a policy that more carefully husbands

APetalvirtual disk hasZbytes of address space. Petal commits diSk space. Also, allocating 512 bytes per inode is somewhat
physical disk space to virtual addresses only when they atiemr ~ Wasteful of space. We could alleviate these problems by storing
Petal also provides decommitprimitive that frees the physical ~ Small files in the inode itself [29]. What we gain with our design
space backing a range of virtual disk addresses. is simplicity, which we believe is a reasonable tradeoff for the cost

To keep its internal data structures small, Petal commits and ©f €xtra physical disk space. S
decommits space in fairly large chunks, currently 64 KB. Thatis, _ 1he current scheme limits Frangipani to slightly less théth 2
each 64 KB range of addresses- 2'°, (a + 1) - 2') in which (16 million) Iarge_flles, where a large file is any file bigger than
some data has been written and not decommitted has 64 KB of 4 KB. Also, no file can be larger than 16 small blocks plus one
physical disk space allocated to it. Thus Petal clients cannot afford 'ar9€ block (64 KB plus 1 TB). If these limits prove too small,
to make their data structuréso sparse, or too much physical disk W€ could easily reduce the size of large blocks, thus making a
space will be wasted through fragmentation. Figure 4 shows how 'arger number available, and permit large files to span more than
Frangipani divides up its virtual disk space. one large block, thus raising the maximum file size. Should the

The first region stores shared configuration parameters and2 byte address space limit prove inadequate, a single Frangipani

housekeeping information. We allow one terabyte (TB) of vir- server can support ritiple Frangipani file systems on multiple

tual space for this region, but in fact only a few kilobytes of it are virtual disks. i
currently used. We have chosenthese file system parameters based on our usage

. o . __experience with earlier file systems. We believe our choices will
The second region stores logs. Each Frangipani server obtains P Y

a portion of this space to hold its private log. We have reserved Zggenuifvl\éfgh biUtaginiZ ;;Q:iebl?a ngn%ia%etﬁzp v&gzgrrTeTIZrin;r:ri
one TB (2° bytes) for this region, partitioned into 256 logs. This 9 gip g P

choice limits our current implementation to 256 servers, but this with different layouts at the cost of a backup and restore of the file

could easily be adjusted. system.
Thethird region is used for allocation bitmaps, to describe which
blocks in thg remaining_regions are free: Each Fr_angipani serverg Logging and Recovery
locks a portion of the bitmap space for its exclusive use. When
a server's bitmap space fills up, it finds and locks another unused Frangipani uses write-ahead redo logging of metadata to simplify

portion. The bitmap region is 3 TB long. failure recovery and improve performance; user data is not logged.
The fourth region holds inodes. Each file needs an inode to

hold its metadata, such as timestamps and pointers to the location 2in this section the wordle includes directories, symbolic links, and the like.




Each Frangipani server has its own private log in Petal. When such as directories, which span multiple blocks, have multiple
a Frangipani file server needs to make a metadata update, it firstversion numbers. For each block that a log record updates, the
creates a record describing the update and appends it to its log inrecord contains a description of the changes and the new version
memory. These log records are periodically written out to Petal number. During recovery, the changes to a block are applied only
in the same ordethat the updates they describe were requested. if the block version number is less than the record version number.
(Optionally, we allow the log records to be written syrmmously. Because user data updates are not logged, only metadata blocks
This offers slightly better failure semantics at the cost of increased have space reserved for version numbers. This creates a compli-
latency for metadata operations.) Only after a log record is written cation. If a block were used for metadata, freed, and then reused
to Petal does the server modify the actual metadata in its perma-for user data, old log records referring to the block might not be
nent locations. The permanent locations are updated periodically skipped properly after the version number was overwritten with ar-
(roughly every 30 seconds) by the Unipdate demon. bitrary user data. Frangipani avoids this problem by reusing freed

Logs are bounded in size—128 KB in the current implementa- metadata blocks only to hold new metadata.
tion. Given Petal’'s allocation policy, a log will be composed of Finally, Frangipani ensures that at any time only one recovery
two 64 KB fragments on two distinct physical disks. The space demon is trying to replay the log region of a specific server. The
allocated for each log is managed as a circular buffer. When the lock service guarantees this by granting the active recovery demon
log fills, Frangipani reclaims the oldest 25% of the log space for an exclusive lock on the log.
new log entries. Ordinarily, all the entries in the reclaimed area  Frangipani’s logging and recovery schemes assume that a disk
will refer to metadata blocks that have already been written to write failure leaves the contents of a single sector in either the old
Petal (in a previousync operation), in which case no additional  state or the new state but never in a combination of both. If a sector
Petal writes need to be done. If there are metadata blocks thatis damaged such that reading it returns a CRC error, Petal’s built-in
have not yet been written, this work is completed before the log is replication can ordinarily recover it. If both copies of a sector were
reclaimed. Given the size of the log and typical sizes of Frangi- to be lost, or if Frangipani's data structures were corrupted by a
pani log records (80-128 bytes), the log can fill up between two software bug, a metadata consistency check and repair tool (like
periodicsync operations if there are about 1000—-1600 operations Unix fsck would be needed. We have notimplemented such a tool
that modify metadata in that interval. to date.

If a Frangipani server crashes, the system eventually detects Frangipani's logging is not intended to provide high-level se-
the failure and rungecoveryon that server's log. Failure may be  mantic guarantees to its users. Its purpose is to improve the per-
detected either by a client of the failed server, or when the lock formance of metadata updates and to speed up failure recovery by
service asks the failed server to return a lock it is holding and gets avoiding the need to run programs lilsekeach time a server fails.
no reply. The recovery demon is implicitly given ownership of Only metadata is logged, not user data, so a user has no guarantee
the failed server's log and locks. The demon finds the log's start that the file system state is consistent from his point of view after
and end, then examines each record in order, carrying out each dej failure. We do not claim these semantics to be ideal, but they
scribed update that is not already complete. After log processing are the same as what standard local Unix file systems provide. In
is finished, the recovery demon releases all its locks and frees thepoth local Unix file systems and Frangipani, a user can get better
log. The other Frangipani servers can then proceed unobstructectonsistency semantics by callifgync  at suitable checkpoints.
by the failed server, and the failed server itself can optionally be  Frangipani's logging is an application of techniques first devel-
restarted (with an empty log). As long as the underlying Petal vol- gped for databases [2] and later used in several tayebasedile
ume remains available, the system tolerates an unlimited numbersystems [9, 11, 16, 18]. Frangipani is ndog-structuredile sys-
of Frangipani server failures. tem [32]; it does not keep all its data in the log, instead maintaining

To ensure thatrecovery can find the end of the log (even when theconventional on-disk data structures, with a small log as an adjunct
disk controllers write data out of order), we attach a monotonically to provide improved performance and failure atomicity. Unlike the
increasing log sequence number to each 512-byte block of the log. other log-based file systems cited above, but like the log-structured
The end of the log can be reliably detected by finding a sequencefile systems Zebra [17] and xFS [1], Frangipani keeps multiple
number that is lower than the preceding one. logs.

Frangipani ensures that logging and recovery work correctly in
the presence of multiple logs. This requires attention to several
details. 5 Synchronization and Cache Coherence

First, Frangipani's locking protocol, described in the next sec-
tion, ensures that updates requested to the same data by differentVith multiple Frangipani servers all modifying shared on-disk data
servers are serialized. A write lock that covers dirty data can changestructures, careful synchronization is needed to give each server a
owners only after the dirty data has been written to Petal, either consistent view of the data, and yet allow enough concurrency
by the original lock holder or by a recovery demon running on its to scale performance as load is increased or servers are added.
behalf. This implies that at most one log can hold an uncompleted Frangipani uses multiple-reader/single-writer locks to implement
update for any given block. the necessary synchronization. When the lock service detects con-

Second, Frangipani ensures that recovery applies only updatedlicting lock requests, the current holder of the lock is asked to
that were logged since the server acquired the locks that coverrelease or downgrade it to remove the conflict.
them, and for which it still holds the locks. This is needed to A read lockallows a server to read the associated data from disk
ensure that the serialization imposed by the locking protocol is and cache it. If a server is asked to release its read lock, it must
not violated. We make this guarantee by enforcing a stronger invalidate its cache entry before complying wite lockallows a
condition: recovery neverreplays a log record describing an update server to read or write the associated data and cache it. A server’s
that has already been completed. To accomplish the latter, we keepcached copy of a disk block can be different from the on-disk
a version number on every 512-byte metadata block. Metadataversion only if it holds the relevant write lock. Thus if a server



is asked to release its write lock or downgrade it to a read lock, it other existing lock services could provide the necessary function-
must write the dirty data to disk before complying. It canretain its ality, perhaps with a thin layer of additional code on top.
cache entry if it is downgrading the lock, but must invalidate it if The lock service provides multiple-reader/single-writer locks.
releasing the lock. Locks are sticky; that is, a client will generally retain a lock until
Instead of flushing the dirty data to disk when a write lock is some other client needs a conflicting one. (Recall that the clients
released or downgraded, we could have chosen to bypass the dislof the lock service are the Frangipani servers.)
and forward the dirty data directly to the requester. We did not  The lock service deals with client failure usitfegseq15, 26].
do this for reasons of simplicity. First, in our design, Frangipani When a client first contacts the lock service, it obtains a lease. All
servers do not need to communicate with each other. They com-locks the client acquires are associated with the lease. Each lease
municate only with Petal and the lock server. Second, our design has an expiration time, currently setto 30 seconds after its creation
ensures that when a server crashes, we need only process the logr last renewal. A client must renew its lease before the expiration
used by that server. If dirty buffers were directly forwarded and the time, or the service will consider it to have failed.
destination server with the dirty buffer crashed, log entries refer-  Network failures can prevent a Frangipani server from renewing
ring to the dirty buffer could be spread out across several machines.its lease even though it has not crashed. When this happens, the
This would pose a problem both for recovery and in reclaiming log server discards all its locks and the data in its cache. If anything in
space as it fills up. the cache was dirty, Frangipani turns on an internal flag that causes
We have divided the on-disk structures into logical segments all subsequentrequests from user programs to return an error. The
with locks for each segment. To avoid false sharing, we ensure file system must be unmounted to clear this error condition. We
that a single disk sector does not hold more than one data structurehave chosen this drastic way of reporting the error to make it
that could be shared. Our division of on-disk data structures into difficult to ignore inadvertently.
lockable segments is designed to keep the number of locks reason- Our initial lock service implementation was a single, centralized
ably small, yet avoid lock contention in the common case, so that server that kept all its lock state in volatile memory. Such a server
the lock service is not a bottleneck in the system. is adequate for Frangipani, becausethe Frangipaniservers and their
Each log is a single lockable segment, because logs are privatelogs hold enough state information to permit recovery even if the
The bitmap space is also divided into segments that are lockedlock service loses all its state in a crash. However, a lock service
exclusively, so that there is no contention when new files are allo- failure would cause a large performance glitch.
cated. A data block or inode that is not currently allocated to afile ~ Our second implementation stored the lock state on a Petal vir-
is protected by the lock on the segment of the allocation bitmap tual disk, writingeach lock state change through to Petal before
that holds the bit marking it as free. Finally, each file, directory, returning to the client. If the primary lock server crashed, a backup
or symbolic link is one segment; that is, one lock protects both the server would read the current state from Petal and take over to pro-
inode and any file data it points to. This per-file lock granularity is vide continued service. With this scheme, failure recovery is more
appropriate for engineering workloads where files rarely undergo transparent, but performance for the common case is poorer than
concurrent write-sharing. Other workloads, however, may require the centralized, in-memory approach. We did not fully implement
finer granularity locking. automatic recovery from all failure modes for this implementation
Some operations require atomically updating several on-disk before going on to the next one.
data structures covered by different locks. We avoid deadlock by ~ Our third and final lock service implementation is fully dis-
globally ordering these locks and acquiring them in two phases. tributed for fault tolerance and scalable performance. It consists
First, a server determines what locks it needs. This may involve of a set of mutually cooperating lock servers, and a clerk module
acquiring and releasing some locks, to look up names in a directory, linked into each Frangipani server.
for example. Second, it sorts the locks by inode address and The lock service organizes locks intablesnamed by ASCII
acquires each lock in turn. The server then checks whether anystrings. Individual locks within tables are named by 64-bit inte-
objects it examined in phase one were modified while their locks gers. Recall that a single Frangipani file system uses only one
were released. If so, it releases the locks and loops back to repeaPetal virtual disk, although nitiple Frangipani file systems can
phase one. Otherwise, it performs the operation, dirtying some be mounted on the same machine. Each file system has a table
blocks in its cache and wing a log record. It retaingach lock associated with it. When a Frangipani file system is mounted, the
until the dirty blocks it covers are written back to disk. Frangipani server calls into the clerk, which opens the lock table
The cache coherence protocol we have just described is similarassociated with that file system. The lock server gives the clerk
to protocols used for client file caches in Echo [26], the Andrew a lease identifieon a successful open, which is used in all sub-
File System [19], DCE/DFS [21], and Sprite [30]. The deadlock sequent communication between them. When the file system is
avoidance technique is similar to Echo’s. Like Frangipani, the unmounted, the clerk closes the lock table.
Oracle data base (Oracle Parallel Server), also writes dirty datato  Clerks and the lock servers communicate via asynchronous mes-
disk instead of using cache-to-cache transfers between successiveages rather than RPC to minimize the amount of memory used and
owners of the write lock. to achieve good flexility and performance. The basic message
types that operate on locks aegjuest, grant, revokandrelease
Therequesandreleasenessage types are sentfrom the clerk to the
6 The Lock Service lock server, whereas ttgrantandrevokemessage types are sent
from the lock server to the clerk. Lock upgrade and downgrade
Frangipani requires only a small, generic set of functions from its operations are also handled using these four message types.
lock service, and we do not expect the service to be a performance The lock service uses a fault-tolerant, distributed failure detec-
bottleneck in normal operation, so many different implementations tion mechanism to detect the crash of lock servers. This is the
could fill its requirements. We have used three different lock ser- same mechanism used by Petal. It is based on the timely exchange
vice implementations in the course of the Frangipani project, and of heartbeat messages between sets of servers. It uses majority



consensus to tolerate network partitions. attempting any write to Petal. Petal, however, does no checking
Locks consume memory at the server and at each clerk. In our whenawrite requestarrives. Thus, if there is a sufficienttime delay
current implementation, the server allocates a block of 112 bytes between Frangipani’s lease check and the arrival of the subsequent
per lock, in addition to 104 bytes per clerk that has an outstanding write request at Petal, we could have a problem: The lease could
or granted lock request. Each client uses up 232 bytes per lock. Tohave expired and the lock been given to a different server. We use
avoid consuming too much memory because of sticky locks, clerks a large enough error margifargin (15 seconds) that under normal
discard locks that have not been used for a long time (1 hour). circumstances this problem would never occur, but we cannot rule
A small amount of global state information that does not change it out absolutely.
often is consistently replicated across all lock servers using Lam-  In the future we would like to eliminate this hazard; one method
port's Paxos algorithm [23]. The lock service reuses an imple- that would work is as follows. We add axpiration timestamp
mentation of Paxos originally written for Petal. The global state on each write requestto Petal. The timestamp is set to the current
information consists of a list of lock servers, a list of locks that each lease expiration time at the moment the write request is generated,
is responsible for serving, and a list of clerks that have opened but Minustmargin. We then have Petal ignore any write request with a
not yet closed each lock table. This information is used to achieve timestamp less than the current time. This method reliably rejects
consensus, to reassign locks across lock servers, to recover lockvrites with expired leases, provided that the clocks on Petal and
state from clerks after a lock server crash, and to facilitate recovery Frangipani servers are synchronized to wittigin.
of Frangipani servers. For efficiency, locks are partitioned into  Another method, which does not required synchronized clocks,
about one hundred distinictck groupsand are assigned to servers  is to integrate the lock server with Petal and include lrese
by group, not individually. identifierobtained from the lock server with every write request to
Locks are occasionally reassigned across lock servers to com-Petal. Petal would then reject any write request with an expired
pensate for a crashed lock server or to take advantage of a newlylease identifier.
recovered lock server. A similar reassignment occurs when a lock
server is permanently added to or removed from the system. In . .
such cases, the locks are always reassigned such that the numbez Addmg and Removing Servers
of locks served by each server is balanced, the number of reassign- A . .
A ; As a Frangipaniinstallation grows and changes, the system admin-
ments is minimized, and each lock is served by exactly one lock . . - -
. ) ) istrator will occasionally need to add or remove server machines.
server. The reassignment occurs in two phases. In the first phase S : .
) - Frangipaniis designed to make this task easy.
lock servers that lose locks discard them from their internal state. . L . .
. Adding another Frangipani server to a running system requires
In the second phase, lock servers that gain locks contact the clerksa minimal amount of administrative work. The new server need
that have the relevant lock tables open. The servers recover theOnI be told which Petal virtual disk to usé and where 1o find the
state of their new locks from the clerks, and the clerks are informed y : . ;
of the new servers for their locks lock service. The new server contacts the lock service to obtain a
When a Frangioani .h the locks that it tIease, determines which portion of the log space to use from the
ber Ie ad ?m? panrl se_rv;ar crashes, f. OC;’ abl ownsr;:annodlease identifier, and goes into operation. The administrator does
ereleaseduntilappropriate recovery ac |o,ns ave been periormed, ,; haaq to touch the other servers; they adapt to the presence of
Specifically, the crashed Frangipani server's log must be processe -
. . i he new one automatically.
and any pending updates must bétten to Petal. When a Frangi- . o . . .
ani server’s lease expires, the lock service will ask the clerk on Removing a Frangipani server is even easier. It is adequate to
gnother Eranaipani mgchin’e to perform recovery and to then re- simply shut the server off. It is preferable for the server to flush
gip . P ryar ._all its dirty data and release its locks before halting, but this is not
lease all locks belonging to the crashed Frangipani server. This

clerk is granted a lock to ensure exclusive access to the lo ThissmctIy needed. If the server halts abruptly, recovery will run on
59 . 9. its log the next time one of its locks is needed, bringing the shared
lock is itself covered by a lease so that the lock service will start

. . disk into a consistent state. Again, the administrator does not need
another recovery process should this one fail.

N » to touch the other servers.
In general, the Frangipani system tolerates nework partitions, Petal servers can also be added and removed transparently, as

continuing to operate when possible and otherwise shutting down described in the Petal paper [24]. Lock servers are added and
cleanly. Specifically, Petal can continue operation in the face of

network partitions, as long as a majority of the Petal servers remain

up and in communication, but parts of the Petal virtual disk will be

inaccessibleifthere is no replicain the majoritytiiam. The lock 8 Backup

service continues operation as long as a majority of lock servers

are up and in communication. If a Frangipani server is partitioned Petal’s snapshotfeature provides us with a convenientway to make

away from the lock service, it will be unable to renew its lease. consistent full dumps of a Frangipani file system. Petal allows a

The lock service will declare such a Frangipani server dead and client to create an exact copy of a virtual disk at any point in

initiate recovery from its log on Petal. If a Frangipani server is time. The snapshot copy appears identical to an ordinary virtual

partitioned away from Petal, it will be unable to read or write the disk, except that it cannot be modified. The implementation uses

virtual disk. In either of these cases, the server will disallow further copy-on-write techniques for efficiency. The snapshotseash-

user access to the affected file system until théitar heals and consistentthat is, a snapshot reflects a coherent state, one that

the file system is remounted. the Petal virtual disk could have been left in if all the Frangipani
There is a small hazard when a Frangipaniserver's lease expiresservers were to crash.

If the server did notreally crash, but was merely out of contactwith  Hence we can backup a Frangipani file system simply by taking

the lock service due to network problems, it may still tnatxess a Petal snapshotand copying it to tape. The snapshotwill include

Petal after its lease has expired. A Frangipani server checksthatitsall the logs, so it can be restored by copying it back to a new

lease is still valid (and will still be valid fotmargin SECONS) before Petal virtual disk and running recovery on each log. Due to the

removed in a similar manner.



crash-consistency, restoring from a snapshot reduces to the sam@erformance of Frangipani in a large configuration. Since this is
problem as recovering from a system-wide power failure. not yet ready, we report numbers from a smaller configuration.

We could improve on this scheme with a minor change to Frangi-  For the measurements reported below, we used seven 333 MHz
pani, creating snapshots that are consistent at the file system leveDEC Alpha 500 5/333 machines as Petal servers. Each machine
and require no recovery. We can accomplish this by having the stores data on 9 DIGITAL RZ29 disks, which are 3.5 inch fast
backup program force all the Frangipani servers into a barrier, SCSI drives storing 4.3 GB each, with 9 ms average seek time
implemented using an ordinary global lock supplied by the lock and 6 MB/s sustained transfer rate. Each machine is connected to
service. The Frangipaniservers acquire this lock in shared mode toa 24 port ATM switch by its own 155 Mbit/s point-to-point link.
do any modification operation, while the backup process requestsPrestoServe cards containing 8 MB of NVRAM were used on these
it in exclusive mode. When a Frangipani server receives a requestservers where indicated below. The seven Petal servers can supply
to release the barrier lock, it enters the barrier by blocking all new data at an aggregate rate of 100 MB/s. With replicated virtual
file system calls that modify data, cleaning all dirty data in its cache disks, Petal servers can sink data at an aggregate rate of 43 MB/s.
and then releasing the lock. When all the Frangipani servers have
entered the barrier, the backup program is able to acquire the ex- . .
clusive lock; it then makes a Petal snapshot and releases the Iock.g'2 Single Machine Performance
At this point the servers reacquire the lock in shared mode, and This subsection compares how well Frangipani’s code path com-
normal operation resumes. pares with another Unix vnode file system, namely DIGITAL's

With the latter scheme, the new snapshot can be mounted as aadvanced File System (AdvFS).

Frangipani volume with no need for recovery. The new volume e used AdvFS for our comparison rather than the more familiar
can be accessed on-line to retrieve individual files, or it can be BSp-derived UFS file system [27] because AdVFS is significantly

dumped to tape in a conventional backup format that does not re- faster than UFS. In particular, AdvFS can stripe files across multiple
quire Frangipanifor restoration. The new volume must be mounted gjisks, thereby achieving nearly double the throughput of UFS on
read-only, however, because Petal snapshots are currently readpyrtest machines. Also, unlike UFS, which synchronously updates
only. In the future we may extend Petal to support writable snap- metadata, AdvFS uses a write-ahead log like Frangipani. This
shots, or we may implement a thin layer on top of Petal to simulate sjgnificantly reduces the latency of operations like file creation.

them. Both AdvFS and UFS have similar performance on reading small
files and directories.
9 Performance We ran AdvFS and Frangipani file systems on two identical

machines with storage subsystems having comparable 1/O perfor-
Frangipani's layered structure has made it easier to build than amance. Each machine has a 225 MHz DEC Alpha 3000/700 CPU
monolithic system, but one might expect the layering to exact a With 192 MB of RAM, which is managed by the unified buffer
cost in performance. In this section we show that Frangipani’s ¢ache (UBC). Each is connected to the ATM switch by its own

performance is good in spite of the layering. point-to-point link. - _
As in other file systems, latency problems in Frangipani can ~ The Frangipanifile system does not use local disks, butaccesses
be solved straightforwardly by adding a non-wdéa memory a replicated Petal virtual disk via the Petal device driver. When

(NVRAM) buffer in front of the disks. The most effective place accessed through the raw device interface using block sizes of
to put NVRAM in our system is directly between the physical 64 KB, the Petal driver can read and write data at about 16 MB/s,
disks and the Petal server software. Ordinary PrestoServe cardgaturating the ATM link to the Petal server. CPU utilization is
and drivers suffice for this purpose, with no changes to Petal or @bout4%. The read latency of a Petal disk is about 11 ms.

Frangipani needed. Failure of the NVRAM on a Petal server is ~ The AdVFS file system uses a storage subsystem that has per-
treated by Petal as equivalent to a server failure. formance roughly equivalent to the Petal configuration we use. It

Several aspects of Frangipani and Petal combine to provide goodconsists of 8 DIGITAL RZ29 disks connected via two 10 MB/s fast

scaling of throughput. There is parallelism at both layers of the SCSIstrings to two backplane controllers. When accessedthrough
system: multiple Frangipani servers, multiple Petal servers, and the raw device interface, the controllers and disks can supply data
multiple disk arms all working in parallel. When many clients are  at about 17 MB/s with 4% CPUtilization. Read latency istzout
using the system, this parallelism increases the aggregate through10 ms. (We could have connected the AdvFS file system to a Petal
put. As compared with a centralized network file server, Frangipani Virtual disk to ensure both file systems were using identical storage
should have less difficulty dealing with hot spots, because file sys- Subsystems. Previous experiments [24] have shown that AdvFS
tem processing is split up and shifted to the machines that are would have been about 4% slower if run on Petal. To present
using the files. Both the Frangipani and Petal logs can commit up- AdVFS in the best light, we chose not to do this.)

dates from many different clients in one log write (group commit),  Itis notour intention to compare Petal's cost/performance with
providing improved log throughput under load. Individual clients that of locally attached disks. Clearly, the hardware resources re-
doing large writes also benefit from parallelism, due to Petal’s quiredto provide the storage subsystemsfor Frangipaniand AdvFS
striping of data across multiple disks and servers. are vastly different. Our goal is to demonstrate that the Frangipani
code path is efficient compared to an existing, well-tuned com-
mercial file system. The hardware resources we use for Petal are
non-trivial, but these resources are amortized amongétpieu

We are planning to build a large storage testbed with about 100 PetalFrangipani servers.

nodes attached to several hundred disks and about 50 Frangipani Tables 1 and 2 compare performance of the two systems on
servers. Petal nodes will be small array controllers attached to standard benchmarks. Each table has four columns. IAdRES
off-the-shelf disks and to the network. Frangipani servers will be Raw column, the benchmark was run with AdvFS directly access-
typical workstations. This testbed would allow us to study the ing the local disks. In théddvFS NVR column, the benchmark

9.1 Experimental Setup



was rerun with NVRAM interposed in front of the local disks. In

- : - . AdvFS Frangipani
thel_:ranglpa_nl Raw colgmn, the b(_anc_hmarkwas run Wlth Fra.ngl- Test | Description Raw | NVR | Raw 9 I?\IVR
pani accessing Petal via the device interface. InRrengipani 1| file and directory creation: | 0.92 | 0.80 | 3.11 | 2.37
NVR column, the Frangipani configuration was retested with the creates 155 files and
addition of an NVRAM buffer between Petal and the disks. All 62 directories.
numbers are averaged over ten runs of the benchmarks. Standar@ 2 | file and directory removal: | 0.62 | 0.62 | 0.43 | 0.43
deviation is less than 12% of the mean in all cases. removes 155 files and 62

62 directories.
3 lookup across mount point] 0.56 | 0.56 | 0.43 | 0.40

AdvFS Frangipani 500 getwd and stat calls.
Phase | Description Raw | NVR | Raw | NVR 4 | setattr, getattr, and lookup] 0.42 | 0.40 | 1.33 | 0.68
1 Create Directories| 0.69 | 0.66 | 0.52 | 0.51 1000 chmods and stats
2 Copy Files 4.3 4.3 58 4.6 on 10 files.
3 Directory Status | 4.7 | 4.4 2.6 25 5a | write: writes a 1048576 220 | 216 | 259 | 1.63
4 Scan Files 4.8 4.8 3.0 2.8 byte file 10 times.
5 Compile 278 | 277 | 31.8| 278 5b | read: reads a 1048576 054 | 045 | 1.81 | 1.83
byte file 10 times.
Table 1. Modified Andrew Benchmark with unmount opera- 6 readdir: reads 20500 058 | 058 | 263 | 2.34
tions. We compare the performance of two file system configura- directory entries, 200 files.
tions: local access (with and without NVRAM) to the DIGITAL 7 | link and rename: 200 0471 0.44 | 0.60 | 0.50
Unix Advanced File System (AdvFS), Frangipani, and Frangipani renames and links
with an NVRAM buffer added between Petal and the disks. We on 10 files.

8 symlink and readlink: 400 | 0.93 | 0.82 | 0.52 | 0.50
symlinks and readlinks
on 10 files.

9 statfs: 1500 statfs calls. 053 | 049 | 023 | 0.22

unmount the file system at the end of each phase. Each table entry
is an average elapsed time in seconds; smaller numbers are better.

Table 1 gives results from the Modified Andrew Benchmark, a
widely used file system benchmark. The first phase of the bench-13p1e 2 Connectathon Benchmark with unmount operations.
mark creates a tree of directories. The second phase copies a 35Qye run the Connectathon Benchmark with a unmount operation
KB collection of C source files into the tree. The third phase jncjyded at the end of each test. Each table entry is an average

traverses the new tree and examines the status of each file angjapsed time in seconds, and smaller numbers are better. Test 5b
directory. The fourth phase reads every file in the new tree. The js anomalous due to a bug in AdVFS.

fifth phase compiles and links the files.

Unfortunately, it is difficult to make comparative measurements
using the Modified Andrew Benchmark in its standard form. This
is becausethe benchmark does not accountfor work thatis deferre
by the file system implementation. The work deferred during one
phase ofthe benchmark can be performed during a later phase an hese latencies are small enough to be ignored by users, sowe have
thus inappropriately charged to that phase, while some work can be . e '
deferred past the end of the benchmark and thus never accountecri]Ot t_”ed "e“_’ hard to optimize them. o
for. File creation takes longer with Frangipani partly because the

Like traditional Unix file systems, both AdvFS and Frangipani 128 I_<B log fil!s up several times during this test. If we double the
defer the cost of writing dirty file data until the nesgnc opera- log size, the times reduce to 0.89 and 0.86 seconds.
tion, which may be explicitly requested by a userortriggeredinthe ~ Frangipani is much slower on the file read test (5b). AdvFS
background by a periodic update demon. However, unlike tradi- does well on the file read test because of a peculiar artifact of its
tional Unix file systems, both AdvFS and Frangipani are log-based implementation. On each iteration of the read test, the benchmark
and do not write metadata updates synchronously to disk. Insteadmakes a system call to invalidate the file from the buffer cache

metadata updates are also deferred until thesyxt , or atleast ~ before reading it in. The current AdvFS implementation appears
until the log wraps. to ignore this invalidation directive. Thus the read test measures

we changed the benchmark to unmount the file system after eachdisk. When we redid this test with a cold AdVFS file cache, the
phase. We choseto unmountratherthanto syea callbecause ~ Performance was similar to Frangipani's (1.80 seconds, with or
on Digital Unix, sync queues the dirty data for writing but does ~ Without NVRAM).
not guarantee it has reached disk before returning. The results, We nextreporton the throughputachieved by asingle Frangipani
shown in Table 1, indicate that Frangipaniis comparable to AdvFS server when reading and writing large files. The file reader sits in
in all phases. a loop reading a set of 10 files. Before each iteration of the loop,
Table 2 shows the results of running the Connectathon Bench- it flushes the contents of the files from the buffer cache. The file
mark. The Connectathon benchmark tests individual operations orwriter sits in aloop repeatedly writing a large (350 MB) private file.
small groups of related operations, providing more insight into the The file is large enough that there is a steady stream of write traffic
sources of the differences that are visible in the Andrew bench- to disk. Both read and write tests were run for several minutes
mark. Like the Andrew benchmark, this benchmark also does not and we observed no significant variation in the throughput. The
account for deferred work, so again we unmounted the file system time-averaged, steady state results are summarized in Table 3. The
at the end of each phase. presence or absence of NVRAM has little effect on the timing.

Frangipani latencies with NVRAM are roughly comparable to A single Frangipani machine can write data at about 15.3 MB/s,

Olthat of AdvFS with four notable exceptions. Tests 1, 4, and 6
indicate that creating files, setting attributes, and reading directories
ke significantly longer with Frangipani. In practice, however,



9.3 Scaling

Throughput (MB/s) CPU Utilization

Frangipani | AdvFS | Frangipani | AdvFS This section studies the scaling characteristics of Frangipani. Ide-
Write 153 133 42% 80% ally, we would like to see operational latencies that are unchanged
Read 103 132 25% 50% and throughput that scales linearly as servers are added.

Table 3. Frangipani Throughput and CPU Utilization. We

show the performance of Frangipani in reading andting large w
files. \% Ve Compile
g 40+— Scan Files
o o ) E 301 Directory Status
which is about 96% of the Ilmlt |mposeq by _the ATM link and -g Copy Files
UDP/IP software on our machine. Frangipani achieves good per- g 4= - Create Directories

formance by clustering writes to Petal into naturally aligned 64
KB blocks. It is difficult make up the last 4% because Frangipani

occasionally (e.g., duringync ) must write part of the data outin 0
smaller blocks. Using smaller block sizes reduces the maximum 1 2 3 4 5 6 7 8
available throughput through the UDP/IP stack. The Frangipani Frangipani Machines

server CPU utilization iskaout 42%, and the Petal server CPUs are Figure 5: Frangipani Scaling on Modified Andrew Benchmark.

nota pottleneck. L . . Several Frangipani servers simultaneously run the Modified An-
A single Frangipani machine can read data at 10.3 MB/s with drew Benchmark on independent data sets. gaeis gives the

25% CPU utiliza_tion. We believe this pe_n‘ormance_ can be_im-_ average elapsedtime taken by one Frangipani machine to complete
proved by changing the read-ahead algorithm used in Franglpanl.the benchmark.

Frangipani currently uses a read-ahead algorithm borrowed from
the BSD-derived file system UFS, which is less effective thanthe  Figure 5 shows the effect of scaling on Frangipani running the
one used by AdvFS. Modified Andrew Benchmark. In this experiment, we measure

Forcomparison,AdVFS canwrite data at about 13.3 MB/s when the average time taken by one Frangipani machine to Comp|ete
accessing large files that are striped over the eight RZ29 disksthe benchmark as the number of machines is increased. This
connected to the two controllers. The CPU utilization it experiment simulates the behavior of several users doing program
80%. The AdVFS read performance is about 13.2 MB/s, at a developmenton a shared data pool. We notice that there is minimal
CPU utilization of 50%. Neither the CPU nor the controllers are negati\/e impact on the |atency as Frangipani machines are added.
bottlenecked, so we believe AdvFS performance could beimproved|n fact, between the single machine and six machine experiment,
a bit with more tuning. the average latency increased by only 8%. This is not surprising

It is interesting to note that although Frangipani uses a simple hecause the benchmark exhibits véityfe write sharing and we
policy to lay out data, its latency and write throughput are compa- would expectlatencies to remain unaffected with increased servers.
rable to those of conventional file systems that use more elaborate
policies.

Frangipani has good write latency because the lateritgatr 2 60
metadata updates are logged asynchronously rather than being pets g
formed synchronously in place. File systems like UFS that syn- =
chronously update metadata have to be more careful about date 40
placement. In separate experiments not described here, we hav® 30
found that even when Frangipani updates its logs synchronously‘g 20
performance is still quitgood becausethe logis allocated inlarge & . | ... .. Linear Scaling
physically contiguous blocks and because the NVRAM absorbs | | | | | |
much of the write latency. o7+

. . . . ! 1 2 3 4 5 6 7 8

Frangipani achieves good write throughput because large files Frangiani Machi
are physically striped in contiguous 64 KB units over many disks rangipani Machines
and machines, and Frangipani can exploit the parallelism inherentFigure 6: Frangipani Scaling on Uncached Read. Several
in this structure. Frangipani has good read throughput for large Frangipani servers simultaneously read the same set of files. The
files for the same reason. dotted line shows the linear speedup curve for comparison.

Recall from Section 3 that individual 4 KB blocks for files
smaller than 64 KB may not be allocated contiguously on disk. Figure 6 illustrates Frangipani’'s read dlighput on uncached
Also, Frangipani does not do read-ahead for small files, so it can- data. In this test, we replicate the reader from the single-server
not always hide the disk seek accesstimes. Thusit is possible thatexperiment on multiple servers. The test runs for several minutes,
Frangipani could have bad read performance on small files. To and we observe negligible variation in the steady-state throughput.
quantify small read performance, we ran an experiment where 30 As indicated in the figure, Frangipani shows excellent scaling in
processes on a single Frangipani machine tried to read separate &his test. We are in the process of installing Frangipani on more
KB files after invalidating the buffer cache. Frangipani throughput machines, and we expect aggregate read performance to increase
was 6.3 MB/s, with the CPU being the bottleneck. Petatessed until it saturates the Petal servers’ capacity.
through the raw device interface using 4 KB blocks, can deliver 8  Figure 7 illustrates Frangipani's write thughput. Here the
MB/s. Thus Frangipani gets about 80% of the maximum through- writer from the single-server experiment is replicated on multiple
put achievable in this case. servers. Each server is given a distinct large file. The experiment

B
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fair in granting locks, and simulations show that this is true of the
implementation. If the single writer and thereaders were to
make lock requests at a uniform rate, they would be serviced in a
round-robin fashion, so successive grants of the write lock to the
writer would be separated bygrants of the read lock to the read-
ers. During the interval between two downgrade callbacks, one

Throughput (MB/s)
D
o

20 Writefile would expect the number of read requests and the aggregate read
104+ e Linear Scaling throughput to increase as readers were added. In the limit when
0 | | | | | | | is large, the scaling would be linear. However, we did not observe
1 2 3 4 5 6 7 8 this behavior in our experiment. Instead, read throughput flattens

out at about 2 MB/s after two readers are running, as shown by the
dashed line in Figure 8. As indicated earlier in Figure 6, this is
Figure 7: Frangipani Scaling on Write. Each Frangipaniserver  only about 10% of what two Frangipani servers can achieve when
writes a large private file. The dotted line shows the linear speedup there is no lock contention.
curve for comparison. Performance tapers off early because the  \we conjectured that this anomalous behavior was caused by
ATM links to the Petal servers become saturated. read-ahead, so we repeated the experiment without read-ahead to
check. Read-ahead is disadvantageous in the presence of heavy
read/write contention because when a reader is called back to re-
lease its lock, it mustinvalidate its cache. If there is any read-ahead
Idata in the cache that has not yet been delivered to the client, it
must be discarded, and the work to read it turns out to have been
wasted. Because the readers are doing extra work, they cannot
make lock requests at the same rate as the writer. Redoing the
experiment with read-ahead disabled yielded the expected scaling
. result, as shown by the solid line in Figure 8.
9.4 Effects of Lock Contention We could make this performance improvement available to users
Since Frangipani uses coarse-grained locking on entire files, it is €ither by letting them explicitly disable read-ahead on specific
important to study the effect of lock contention on performance. files, or by devising a heuristic that would recognize this case and
We report three experiments here. disable read-ahead automatically. The former would be trivial to
The first experiment measures the effect of read/write sharing ImPlement, but would affect parts of the operating system kemel
on files. One or more readers compete against a single writer for 08yond Frangipani itself, making it inconvenient to support across
the same large file. Initially, the file is noaiched by the readers ~ future releases of the kernel. The latter approach seems better, but
or the writer. The readers read the file sequentially, while the We have notyetdevised or tested appropriate heuristics.
writer rewrites the entire file. As a result, the writer repeatedly

Frangipani Machines

runs for several minutes, and we observe little variation in the
steady-state throughput during this interval. Since there is no lock
contention in the experiment, the performance is seen to scale wel
until the ATM links to the Petal servers are saturated. Since the
virtual disk is replicated, each write from a Frangipani server turns
into two writes to the Petal servers.

acquires the write lock, then gets a callback to downgradeitsothat . g
the readers can get the read lock. This callback causes the Writeé 7
to flush data to disk. At the same time, each reader repeatedly= ¢ 8KB
acquires the read lock, then gets a callback to release it so thatthes g 16 KB
writer can get the write lock. This callback causes the reader to £ 4 64 KB
invalidate its cache, so its next read after reacquiring the lock must 3 3
fetch the data from disk. £
= 2
B 1E
7 8 T o0 |
g ; No read-ahead Number of Reeders?
§_ 5 - — —  Withread-ahead
5 4 . . . .
3 3 Figure 9: Effect of Data Size on Reader/Writer Contention.
< One or more Frangipani readers share varying amounts of data
% i - T Tt with a Frangipani writer. Readahead is disabled in this experiment.
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2 3 4 5 6 7 The second experiment is a variation of the first. Here, the
Number of Readers readers run as before, but the writer modifies different amounts of

file data. Since Frangipanilocks entire files, readers will have to
invalidate their entire cache irrespective of the writer’'s behavior.
Figure 8: Frangipani Reader/Writer Contention. One or more However, readers will be able to acquire a lock faster when the
Frangipani servers read a shared file while a single Frangipani - writer is updating fewer blocks of data because the writer must
server writes the same file. We show the effect of read-ahead ONflush only smaller amounts of data to disk. Figure 9 shows the per-
the performance. formance of Frangipani (with read-ahead disabled) when readers
and the writer concurrently share differing amounts of data. As ex-
The first results we observed in this experiment were unex- pected, whenthe shared data is smaller, we get better performance.
pected. Our distributed lock manager has been designed to be The third experiment measures the effects of write/write sharing



on files. As the base case, a Frangipani server writes a file in an internal layering of file service atop disk service, but the Echo
isolation. We then added Frangipani servers that wrote the sameimplementation requires both layers to run in the same address
file and measured the degradation in performance. Writers modify space on the same machine, and experience with Echo showed the
file data in blocks of 64 KB. Since Frangipani does whole-file server CPU to be a bottleneck.

locking, the offsets that the writers use are irrelevant for this test. ~ The VMS Cluster file system [14] offloads file system process-
We found that the aggregate bandwidth seen by all the writers ing to individual machines that are members of a cluster, much as

dropped from 15 MB/s for the single-writer case tbitde over 1 Frangipani does. Each cluster member runs its own instance of the
MB/s with two or more writers. This is not surprising, because file system code ontop of a shared physical disk, with synchroniza-
with multiple writers trying to modify a file, nearly evewyrite tion provided by a distributed lock service. The shared physical

system call will cause a lock revocation request. This revocation disk is accessed either through a special-purpose cluster intercon-
request causes the lock holder to flush its dirty data to Petal. Sincenectto which a disk controller can be directly connected, orthrough
locks are being revoked on evewrite system call and each  an ordinary network such as Ethernet and a machine acting as a
call dirties only 64 KB of data, throughput is quite limited. With  disk server. Frangipaniimproves upon this design in several ways:
smaller block sizes, throughputis even smaller. The shared physical disk is replaced by a shared scalable virtual
We do not have much experience with workloads that exhibit disk provided by Petal, the Frangipanifile system is log-based for
concurrent write sharing. If necessary, we believe it would be quick failure recovery, and Frangipani provides extensive caching
straightforward to extend Frangipani toimplementbyte-range lock- of both data and metadata for better performance.
ing [6] or block locking instead. This would improve the perfor- The Spiralog file system [20] also offloads its file system pro-
mance of workloads that read and write different parts of the same cessing to individual cluster members, which run above a shared
file, making it similar to the performance of writing different files  storage system layer. The interface between layers in Spiralog
in the current system. Workloads in which multiple machines con- differs both from the original VMS Cluster file system and from
currently read and write the same blocks of the same file—where Petal. The lower layer is neither file-like nor simply disk-like;
the filesystem is being used as an interprocess communicationinstead, it provides an array of stably-stored bytes, and permits
channel—would perform as indicated above. Frangipaniis simply atomic actions to update arbitrarily scattered sets of bytes within
not targeted for such workloads. the array. Spiralog’s split between layers simplifies the file system,
but complicates the storage system considerably. At the same time,
Spiralog’s storage system does not share Petal’'s scalability or fault
10 Related Work tolerance; a Spiralog volume can span only the disks connected to
one machine, and becomes unavailable when that machine crashes.
Like Frangipani, the Cambridge (or Universal) File Servertakesa  Though designed as a cluster file system, Calypso [11] is similar
two-layered approach to building a file system [4, 28]. The split to Echo, not to VMS Clusters or Frangipani. Like Echo, Calypso
between layers is quite different from ours, however. CFS, the stores its files on multiported disks. One of the machines directly
lower layer, provides its clients with two abstractiorfides and connected to each disk acts as a file server for data stored on that
indices File systems built above CFS can use these abstractions todisk; if that machine fails, another takes over. Other members ofthe
implement files and directories. A major difference between CFS Calypso cluster access the current server as file system clients. Like
and Petal is that in CFS a single machine manages all the storage both Frangipani and Echo, the clients have caches, kept coherent
NFS [31, 33] is not a file system in itself, but simply a remote with a multiple-reader/single-writer locking protocol.
file access protocol. The NFS protocol provides a weak notion  For comparison purposes, the authors of Calypso also built a
of cache coherence, and its stateless design requires clients tdile system in the shared-disk style, called PJFS [12]. Calypso
access servers frequently to maintain even this level of coherence performed better than PJFS, leading them to abandon the shared-
Frangipani provides a strongly coherent, single system view, using disk approach. PJFS differs from Frangipaniin two main respects.
a protocol that maintains more state but eliminates unnecessaryFirst, its lower layer is a centralized disk server, not a distributed
accessesto servers. virtual disk like Petal. Second, all file server machines in PJFS
The Andrew File System (AFS) [19] and its offshoot share a common log. The shared log proved to be a performance
DCE/DFS [21] provide better cache performance and coherencebottleneck. Like Frangipani, PJFS locks the shared disk at whole-
than NFS. AFS is designed for a different kind of scalability than file granularity. This granularity caused performance problems
Frangipani. Frangipani provides a unified cluster file system that with workloads where large files were concurrently write-shared
draws from a single pool of storage, and can be scaled up to spanamong multiplenodes. We expect the present Frangipani imple-
many disk drives across many machines under a common admin-mentation to have similar problems with such workloads, but as
istration. In contrast, AFS has a global name space and securitynoted in Section 9.4 above, we could adopt byte-range locking
architecture that allows one to plug in many separate file serversinstead.
and clients over a wide area. We believe the AFS and Frangipani  Shillner and Felten have built a distributed file system on top
approaches to scaling are complementary; it would make good of a shared logical disk [34]. The layering in their system is
sense for Frangipani servers to export the file system to wide-areasimilar to ours: In the lower layer, multiple machinesoperate
clients using the AFS or DCE/DFS name space and access protocolto implement a single logical disk. In the upper layer, multiple
Like Frangipani, the Echo file system [5, 18, 26, 35] is log- independentmachines run the same file system code on top of one
based, replicates data for reliability and access paths for availability, logical disk, all providing access to the same files. Unlike Petal,
permits volumes to span multiple disks, and provides coherent their logical disk layer does not provide redundancy. The system
caching. Echo does not share Frangipani's sdiitiakhowever. canrecover when a node fails and restarts, but it cannot dynamically
Each Echo volume can be managed by only one server at a time,configure out failed nodes or configure in #&anhal nodes. Their
with failover to one designated backup. A volume can span only file system uses careful ordering of metadata writes, not logging
as many disks as can be connected to a single machine. There iss Frangipani does. Like logging, their technique avoids the need



for a full metadata scarfigck) to restore consistency after a server leave us optimistic that the system will continue to scale up to many
crash, but unlike logging, it can lose track of free blocks in a crash, more nodes.
necessitating an occasional garbage collection scan to find them Our future plans include deploying Frangipani for our own day-
again. We are unable to compare the performance of their systemto-day use. We hope to gain further experience with the prototype
with ours at present, as performance numbers for their file systemunder load, to validate its scaliéity by testing it in larger configu-
layer are not available. rations, to experiment with finer-grained locking, and to complete
The xFSfile system [1, 36] comes closestin spirit to Frangipani. our work on backup. Finally, of course, we would like to see the
In fact, the goals of the two systems are essentially the same. Bothideas from Frangipani make their way into commercial products.
try to distribute the management respoiigibfor files over mul-
tiple machines and to provide good availdp and performance.
Frangipani is effectively “serverless” in the same sense as xFS—
the service is distributed over all machines, and can be configured
with both a Frangipani server and Petal server on each machine
Frangipani’s locking is coarser-grained that xFS, which supports
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