Enabling a Marketplace of Clouds: VMware’s vCloud
Director

Orran Krieger
VMware
Cambridge, MA
okrieger@vmware.com

Phil McGachey

VMware
Cambridge, MA
pmcgachey@vmware.com

Arkady Kanevsky
VMware
Cambridge, MA
arkady@vmware.com

The VCD Team'

VMware

ABSTRACT

Cloud computing promises to bring about a fundamental shift in
the computer industry where consumers of IT enjoy on-demand ac-
cess to massive compute capacity and producers of IT benefit from
economies of scale and automation. We believe that the advantages
of cloud computing will be best realized if there is a highly com-
petitive marketplace. We describe our vision of a marketplace of
clouds, discuss what is needed to make this vision a reality, and
then describe what VMware is doing to help enable this market-
place model of cloud computing.

1. INTRODUCTION

Cloud computing has the potential to bring about a paradigm
shift in the way that we think about computing infrastructure. Con-
sumers of IT will no longer have to purchase and maintain private
data-centers, with the associated administrative and physical over-
heads that they entail. Rather, computing will be provided as a util-
ity, with dedicated providers benefitting from large economies of
scale, and consumers enjoying on-demand access to massive com-
pute capacity.

Cloud computing means very different things to different people.
There are three major categories that differ in the level at which
services are provided:

Software as a Service (SaaS). Customers of an SaaS solution pay
to use an application that is hosted on a remote provider. The
service provider manages the software and underlying infras-
tructure for all tenants, who can simply pay for their usage
rather than purchasing the software outright. SaaS covers an
enormous and growing set of applications, including connec-
tivity tools (such as Yahoo or Google mail, social networking
sites like Facebook, and sites for matching buyers and sellers
like Amazon, Ebay and Craigslist), productivity tools (such
as Google Docs and Microsoft Office Web Apps) and spe-
cial services tools like CRM applications, online banking, or
travel reservation.

Platform as a Service (PaaS). PaaS clouds offer a common en-
vironment for application developers to deploy their code.
The provider supplies a scalable managed execution environ-
ment while the developer writes the software that exploits it.
Examples of Paa$ solutions include Salesforce’s Force.com,
Google’s App Engine, and parts of the Microsoft Azure and
Amazon AWS services.

*See Acknowledgements section for details.

103

Infrastructure as a Service (IaaS). In an IaaS cloud, the provider
sells access to computers upon which the customer can run
any software or platform. These resources, which are fre-
quently virtual, are expressed in terms of processing power,
memory, storage and network access much as a physical com-
puter would be, but their purchase and maintenance are per-
formed centrally by the service provider. The dominant pro-
vider of IaaS today is Amazon [1], although Google, IBM,
Microsoft and others have services in this area.

In this paper, we will focus on IaaS. We believe that this space
has great potential to revolutionize the way in which compute re-
sources are provisioned and consumed; laaS allows the consumer
to avoid much of the massive expense in maintaining a data center,
and allows for rapid expansion to account for peak usage. It also
benefits the producer, who can run a large economical data center
that caters to many clients. Finally, unlike either SaaS or PaaS,
an laaS solution has the flexibility to support the full gamut of ap-
plications, from productivity tools and web services to resource-
intensive HPC or enterprise workloads.

IaaS cloud computing has the potential to bring enterprise-class
performance and features to a wide range of customers to whom
they were previously unavailable. Small businesses will have ac-
cess to geographic distribution and disaster recovery in a way that
was previously practical only to large companies. Ready, self-
service access to on-demand bursts of computing capacity will en-
able researchers to perform high-performance computation when
their work requires it, bringing such facilities within the reach of
even small projects. And organizations of all sizes can dabble with
cloud computing before committing fully, scaling their workloads
in the cloud as their confidence grows.

We focus our efforts on general purpose cloud computing —
making laaS a feasible prospect for all possible workloads, in-
cluding academia, small and medium businesses (SMB), scientific
workloads and academic research. Historically, laaS providers have
focused only on a subset of this range. For example, Amazon’s
cloud offerings have emerged from their experience in providing
highly-scalable, elastic web services. This has led to special pur-
pose cloud solutions that are designed mainly with the web ap-
plication domain in mind, and with other use cases added as an
afterthought. For cloud computing to be a viable option within
the enterprise or High Performance Computing (HPC) spaces, the
cloud infrastructure must be designed from the bottom up with the
performance, connectivity, and reliability that such customers de-
mand.

An additional issue with the current IaaS market is that it has

formed an oligopoly in which a small number of providers dom-
inate. These vendors offer tightly-integrated vertical stacks with
rich, highly-differentiated interfaces. Consumers of these cloud
services are locked into a particular vendor’s product and, as a
consequence, cannot switch providers when their needs change.
While these vertically-integrated clouds have proved successful in
the early days of cloud computing, we believe that a wider market-
place of cloud providers will ultimately lead to a richer ecosystem,
with greater consumer choice and opportunity for many providers
to innovate.

We envisage a standardized set of interfaces and abstractions
supported by laaS providers that will allow applications that in-
teract programatically with clouds to work on multiple clouds, and
enable computers hosted on a cloud to be moved from one IaaS
provider to another. Enabling cross-cloud compatibility and mobil-
ity opens up new options that are not currently available — con-
sumers can choose the ideal provider based on the services that are
offered, and will have the ability to migrate between clouds to ad-
dress changes in their requirements or in the providers’ prices or
services.

A common cloud interface will also benefit providers, who can
tailor their products to the market: a small provider whose scale
prohibits competition on price alone can offer a higher service guar-
antee or additional features such as high availability or regulatory
compliance. Independent software vendors (ISVs) can build tools
that work with the standard cloud model, encouraging research and
innovation that is not hampered by a single provider’s business
model, as well as driving costs down and supporting competition.
Finally, a broad landscape with many implementations of a com-
mon standard will avoid the dangers of a mono-culture, where a
security bug or misconfiguration can affect the world’s IT infras-
tructure.

In this paper we argue that a highly-competitive marketplace for
clouds is possible, is preferable, and has major advantages for both
producers and consumers. We first motivate the reasoning behind
these assertions, and discuss what is required to make such a mar-
ketplace a reality. We then describe the fundamental abstractions
and the open-source API that we have proposed as a common in-
terface for cloud computing. Finally, we introduce the recently-
released VMware vCloud Director (VCD) product that allows pro-
ducers to easily deploy general purpose clouds adhering to this in-
terface.

VCD builds upon VMware’s vSphere virtualization stack, lever-
aging its powerful capabilities in configuring, managing and run-
ning virtual machines. It expands on vSphere’s functionality to
apply to the cloud space in several ways. It implements our pro-
posed cloud entity model and API allowing standardized access to
cloud resources. It permits multi-tenancy for providers, allowing
many customers to be hosted within a single cloud with strong iso-
lation between them. It add self-service access to cloud resources,
enabling individual users within customer organizations to provi-
sion and manage virtual machines. And, finally, VCD can work
with many instances of the vSphere platform, making it possible
for service providers to scale beyond the capacity offered by a sin-
gle vCenter server.

2. THE IAAS MARKETPLACE

We believe that a wide marketplace of compatible clouds would
offer significant advantages over the current market, where a small
number of vertically-integrated clouds dominate. In this section
we will discuss why this approach would benefit both providers
and consumers, and detail some of the challenges associated with
moving to this model.

104

2.1 Why a Marketplace?

Cloud computing will thrive if many providers, including in-
ternal corporate providers such as IT departments, can instantiate
compatible clouds with diverse implementations. There are a num-
ber of basic motivations for such a marketplace:

Avoiding vendor lock-in: Customers will embrace cloud comput-
ing only if they are not tied to a particular service provider
and can switch between vendors as their requirements, or a
provider’s offerings, change. Today’s cloud vendors provide
highly differentiated products, making the prospect of transi-
tioning any non-trivial workload between clouds a daunting
one, with large costs incurred when migrating data and re-
working applications to use a new APL

Enabling internal clouds: Not all workloads are immediately ap-
plicable to the cloud computing model; systems may access
data that must remain internal for business or regulatory rea-
sons, some processes may take advantage of custom hard-
ware or internal resources, and so forth. However there is
great value in presenting a single interface to a company’s
internal computing infrastructure and their externally-con-
tracted cloud resources. A standard cloud implementation
means that an organization can use those abstractions within
a secure, internal cloud, and migrate workloads to the exter-
nal cloud when appropriate. Indeed, in the case of very large
enterprises, a cloud maintained by the company’s internal IT
department may obviate the need for an external provider en-
tirely.

Empowering small producers: A marketplace of clouds will en-
able many small service providers to participate. This is im-
portant to target smaller customers with specialized needs
who are best addressed in a retail rather than a wholesale
fashion. A multitude of small providers will, in aggregate,
provide a cloud with a greater geographical distribution than
even the largest single provider could support. This will ad-
dress local markets that require low-latency access to inter-
acting customers or devices. We have seen this model suc-
ceed already: Akamai, for example, does not build its own
data centers to serve each territory. Rather, it hosts its con-
tent distribution system by purchasing computation capacity
in ISPs around the world [21].

Avoiding a mono-culture: Housing the world’s IT resources on
a small number of providers increases the risk that a sin-
gle product bug, a software misconfiguration, or a security
breach will have a huge impact on the operations of many
customers [24, 14, 32]. A competitive landscape of indepen-
dent implementations greatly reduces this danger, both by
containing the exposure of such an incident to the customers
of a single provider, and by encouraging more widespread
development of security measures.

Enabling infrastructure innovation: One of the strongest reasons
for a marketplace model is that it will harness the innovation
of a large community of computer vendors selling to many
different service providers. Today’s vertical clouds are dif-
ficult for infrastructure vendors to target with differentiated
products, obscuring the value of their products and limiting
innovation to a small number of cloud providers.

Enabling application and platform innovation: IaaS clouds have
great potential to serve as the underlying infrastructure for

scalable PaaS and SaaS products. Having a standard inter-
face across all clouds will allow these services to be writ-
ten once and then deployed on multiple clouds. In today’s
highly-differentiated market, such solutions must be rewrit-
ten to the unique interface of each cloud offering.

In addition, current IaaS cloud providers compete with the
very application developers that could be enriching their plat-
forms. For example, Amazon provides a message bus that
competes with Platform Computing and a database service
that competes with Oracle’s Platform for SaaS [22]. The
provider has huge advantages in this competition, stifling in-
novation. Adding a standard interface common to all clouds
may shift the advantage to application developers whose prod-
ucts could be available on all clouds, opening the market to
a much larger community of software developers.

One critical source of innovation is the academic community
who, until now, have faced major challenges when researching the
design and implementation of IaaS clouds. The current model of
large clouds with sophisticated interfaces is not conducive to aca-
demic research. A marketplace model with simple interfaces will
enable researchers to instantiate their own clouds and investigate
tough problems that are immediately relevant to this fast-changing
field. We can easily imagine a scenario where researchers can in-
novate on internal clouds, while evaluating the impact of their work
on real and even production workloads.

2.2 Challenges in Creating a Marketplace

While we believe that the marketplace model is essential if cloud
computing is to have a fundamental impact, there are enormous
challenges in this approach. Developing software that can be con-
sumed by many different providers is much more difficult than the
task faced by large cloud vendors today who develop and deploy
their solutions in-house. Software developed for multiple providers
must:

e Scale up to massive deployments, but also scale down to be
manageable for small providers or research groups with only
a few machines. Today’s cloud solutions are designed only
to scale up; developing an environment that can handle both
extremes poses additional challenges.

e Have a simple installation model that allows thousands of
providers to be able to set up the software. There are very
few examples in the industry of shrink wrapped distributed
systems, and we have found providing a simple and manage-
able installation experience to be a major part of the effort in
developing our cloud offering.

e Support a broad hardware compatibility list (HCL) that will
enable a diverse community of hardware partners to sell to
internal and external providers. For example, our laaS soft-
ware must support both high performance storage accessed
over a local SAN, and lower performance NFS storage that
can be accessed over more scalable networks.

It is impossible for software that is delivered to many different
vendors to have the same innate agility as that which is developed,
deployed and refined within a single organization. To compensate,
the software must be sufficiently extensible to allow partners, ap-
plication vendors and service providers to build upon the platform.

Within a broad ecosystem of providers, we expect different pro-
viders to sell their capacity in very different ways. For exam-
ple, some may want to charge per-VM, while others may provide
pools of capacity, and others direct consumption of resources. This

105

means that we must enable providers to define their own offerings
and pricing structure within the framework that we provide. Since
we do not aim to be prescriptive on either the HCL or on the offer-
ings it becomes very difficult to automate the provision of resources
within the software. This is a major challenge since the efficiency
of a large cloud depends on end-user self-service and massive au-
tomation from the cloud provider.

Perhaps the greatest challenge in creating a marketplace of clouds
is that they must be compatible for a consumer to be able to move
from one provider to another. This means that the clouds must
have the same basic abstractions and interfaces. Enabling an inter-
face that can be standardized across many different providers with
different types of offerings and with software implemented by dif-
ferent vendors is a huge challenge.

3. THE VCLOUD MODEL

In this section we discuss the requirements, abstractions and in-
terfaces that we propose as a foundation for the marketplace of
clouds. We will begin by outlining the fundamental abstractions
that we believe are needed by an laaS offering to support the en-
terprise computing market. We then describe in more detail the
specifics of the entities that make up our vCloud model. Finally,
we discuss the open-source API that we have proposed for stan-
dardization and that will enable programmatic access to the cloud.

3.1 Fundamental Abstractions

We have found the following five characteristics to be fundamen-
tal for any general-purpose laaS offering that supports enterprise,
SMB, academic and HPC workloads, as well as the web applica-
tions traditionally supported by cloud vendors:

e Virtual machines (VMs) with persistent storage and con-
nection to networks.

e Layer 2 (Ethernet) networks connecting multiple virtual
machines that can be bridged or routed to other networks.

e A container that defines locality and resource mapping for
a group of VMs. We refer to this abstraction as a vCloud
Data-Center (vDC).

e A model of an individual tenant that contains multiple users
and role-based access control. We call this abstraction an
Organization.

e A vendor-independent way to author, transport, and easily
control complex multi-VM applications. We refer to these
as vApps when instantiated, and vApp Templates when unin-
stantiated.

The first three abstractions represent direct analogies to the phys-
ical world; compute provisioning is expressed in computers with
attached disks, ethernet networks and data centers. We therefore
have strong evidence from the physical world that all applications
can be supporting on top of those three primitives.

The fourth abstraction is necessary for cloud providers in order
to maintain a business that supports multiple customers, but is also
vital if organizations are to manage their own users and policies.
To support enterprise users the cloud provider must cede some de-
gree of control over user management and access control within the
resources allocated to that client. Existing clouds that support only
a single user per tenant make it difficult to, for example, revoke the
privileges of users that have left the organization.

The final abstraction (a logical grouping of complex applica-
tions) is arguably non-essential for standing up a single cloud, since

it has no direct analogy in the physical world. However, grouping
logically-related VMs together affords us powerful functionality
when managing and operating over large workloads. For exam-
ple we can deploy all the virtual machines that form an application
together, and can manage and reason about them as a unit. More
importantly, this abstraction is critical to enable a marketplace of
clouds, where we be able to move applications from one cloud to
another. In this context there must be a means to serialize com-
plicated and interconnected applications, maintaining the relation-
ships between component parts.

3.1.1 General-Purpose Cloud Computing

While we have argued that our first three primitives are sufficient
to support many applications, other IaaS clouds differ in their prim-
itives, so it seems clear that they are not necessary. However, we
believe that these primitives are necessary for a general-purpose
cloud; i.e., a cloud that efficiently supports enterprise, SMB and
HPC use cases.

Machines with persistent state are necessary for enterprise ap-
plications that use dedicated machines to perform specific roles.
While stateless web applications can tolerate ephemeral storage
that disappears when a VM is powered off, most applications have
been designed with the assumption that storage is persistent and
reliable.

Layer 2 networking is required to support broadcast or other
Layer 3 protocols. This is essential for many enterprise workloads.
Moreover, as HPC workloads become more important to clouds,
we expect that capabilities like RDMA, that depend on Layer 2
connectivity, will be critical.

The container construct allows a provider and consumer to agree
on a contract for the connectivity between machines. While such a
contract is of less importance for web applications (which are pri-
marily external facing) it is critical for many enterprise and HPC
applications to have some guaranteed bandwidth and latency be-
tween frequently communicating machines. In fact, Amazon have
recently introduced a clustering concept to support HPC users in
EC2.

A more subtle requirement for these abstractions is that they en-
able overprovisioning, both at the provider and the consumer level.
Overprovisioning is fundamental to supporting enterprise applica-
tions efficiently. Existing cloud providers such as Amazon offer
elasticity at the machine level, allowing the user to add or remove
EC2 instances from their application. This works well for state-
less web applications where an additional server can be easily inte-
grated into an existing application. However, it is less appropriate
for complex enterprise applications that may change in resource use
over time, but cannot easily adjust to new machines being added or
removed

The model of fully allocating physical machines without over-
provisioning is essentially the same model that enterprises faced
prior to virtualization. Traditional enterprise data centers when de-
ploying a new application would provision a computer large enough
to meet the performance demands under the worst case load. Of
course, it is very rare that an application actually runs at peak load;
the average utilization in an enterprise data center used to be on the
order of 10%. With virtualization and the ability to overprovision
resources, enterprises have moved to 80% or even 90% average
utilization while still meeting individual applications’ service level
agreements.

To support overprovisioning in the cloud, the notion of a con-
tainer (such as a vDC) is critical. A container allows the service
provider to sell the customer a fixed capacity and then the consumer
can overprovision VMs in that capacity. Without a container, the

106

service provider could overprovision resources, but could not over-
provision aggressively. Only the user has an understanding of the
relative priority of different work, and so only the user can specify
what resources must be reserved for particular applications in order
for them to meet their service level requirements.

To overprovision the resources of a data center, we must be able
to move VMs from one physical machine to another as load on the
different machines change [30]. Layer 2 networks are critical for
this, allowing us to move VMs between hosts without updating in-
dividual routing tables. Persistent storage is also a natural outcome
of this. Other clouds introduced ephemeral storage so that they
can exploit locally attached disks. Since storage must be shared
for overprovisioning and VM mobility, it makes sense to make all
storage persistent in our model.

3.1.2 Scalability and Elasticity

As we will see in Section 4, we have built a highly-scalable [aaS
cloud infrastructure using these basic abstractions; a single cloud
installation can support many thousands of vDCs, VMs, and con-
current users. However, by introducing abstractions that better sup-
port enterprise and HPC workloads, we encounter different scala-
bility challenges than those faced by clouds that focus on web ap-
plications. In particular, the notion of a vDC imposes scalability
limitations that must be addressed.

Our vDC concept allows related VMs to be collocated with the
appropriate resources in order to exploit fast local networking and
shared storage. While this clustering is essential for high perfor-
mance or closely-connected applications, it introduces a contain-
ment boundary where the scalability of a vDC is limited by the
network and network-accessible storage capacity. This results in a
bin-packing problem, where the contents of an individual vDC is
limited to those VMs that can be supported by the local resources.
Note that the cloud installation as a whole can still scale by adding
vDCs, but this issue does eliminate the possibility of a single mas-
sive and flat vDC.

We believe that this scalability limitation will decrease and even-
tually disappear with the innovations that are currently emerging
from the storage and networking industries. For example, compa-
nies such as LeftHand Network (recently acquired by HP) provide
scale-out NAS solutions that are competitive in price to locally-
attached storage. Similarly, there are huge ongoing innovations in
L2 network implementations; technologies such as TRILL [27] and
ECMP [25] will allow thousands of hosts (with hundreds of thou-
sands of VMs) to co-exist within a flat L2 network bin without the
need for expensive aggregation layers.

3.1.3 Simplicity

Finally, a model for general purpose cloud computing must be
sufficiently simple as to allow multiple implementations. This way,
different providers can specialize in their underlying infrastructure,
taking advantage of different hardware and software stacks to pro-
duce very different implementations of the standard. It will allow
producers to compete on the range and quality of their services,
while allowing consumers to move between clouds based on their
needs.

To this end, the abstractions that we present are significantly sim-
pler than those offered by other IaaS vendors. All we provide is a
model for virtual hardware, while existing external IaaS clouds pro-
vide much richer services such as blob storage, content distribution,
messaging or databases. Ultimately, however, all such services are
implemented on top of physical hardware. Since we have strong
evidence that virtual hardware can be as efficient as physical hard-
ware, we see no reason why these other services can’t be built on

top of the basic virtual hardware services we offer.

3.2 Abstractions

Figure 1 presents the entity model that we have designed to fulfill
these requirements. It shows the components and relationships that
define a consumer’s view of its cloud computing resources. We
have taken care when defining the model to avoid dependencies
on any particular hypervisor or technology; the entities combine to
produce a pure virtual view which divorces the use of resources
from the physical hardware and software stack on which they are
deployed.

The central abstraction in Figure 1 is the organization (Org),
which represents a cloud customer. The organization contains cat-
alogs (in which media and vApp templates are stored), virtual data
centers (vDCs) and networks. An organization can have zero or
more catalogs and networks, but must have at least one virtual data
center upon which its virtual machines run. VMs themselves are
grouped into vApps which contain (possibly recursive) definitions
of interacting components of a single logical application. VMs
within a VApp are connected using vApp networks that can them-
selves connect to the organization’s main networks. In the remain-
der of this section, we will discuss these abstractions in greater
detail.

3.2.1 Organization

The organization represents a single customer in the cloud, and
is that client’s interface to their cloud resources. It serves as a
container for user management, access control, VM quotas, stor-
age limits and so forth while sandboxing the customer within the
provider’s infrastructure. A provider may host many organizations,
so long as they are strictly isolated from one another.

It is expected that customers will allow individual users access
to cloud resources; as is currently the case, an organization will
have an administrator who mediates access to IT for the rest of
the company. We therefore provide a role-based access control
model within an organization that allows elevated privileges for
those in an administration role while restricting the activities of
regular users. Further, we control access to virtual machines based
on ownership and sharing settings, enabling isolation between indi-
vidual users. The model allows user management to be performed
directly through the organization entity (by adding and removing
user entities) or through a company-specific directory mechanism
such as LDAP.

The organization administrator can also define policies that con-
trol the resource usage of virtual machines within the organization.
Storage limits prevent users from provisioning too many VMs, while
leases allows old VMs to be cleaned up when they are no longer re-
quired. Resource limits prevent runaway processes from exhaust-
ing the available CPU and memory which could affect the per-
formance of other VMs as well as running up huge service bills.
Finally, flexibility in setting storage and resource policies allow
an organization to overprovision the resources allocated to it by
a provider, supporting a large population of users at a lower cost.

3.2.2 VMs

Virtual machines with associated storage are the basic unit of
provisioning within the cloud. VMs can be manipulated either
across the network or through console access. Customers can spec-
ify complex VM configurations by uploading disk images that have
an operating system and any necessary software pre-installed. Such
images can be stored as templates, allowing rapid deployment of
new resources and providing the ability to grow a virtual cluster
based on demand. Similarly, a user can undeploy or delete VMs

107

in order to shrink the cluster when demand has subsided. Our VM
representation includes the processor speed and memory capacity,
as well as the available hard disk size. These capabilities are tun-
able when creating a VM, up to a maximum allowed by the service
provider.

Using the VM as our basic abstraction supports the IaaS model;
we place no restrictions on the software or PaaS solutions that can
run on a given VM. We are also intentionally abstract when defin-
ing the characteristics of a VM. Beyond the most basic processor,
memory and disk capacities we leave the specification of a VM’s
capabilities to be determined by the service provider. This allows
flexibility in the cloud offerings that can be supported, but does not
insist on a particular hypervisor or technology stack.

3.2.3 VvApp

A single VM is often insufficient for large enterprise applica-
tions, which require multiple interconnected machines that com-
bine to form a single system. We use the abstraction of a vApp
to encapsulate the VMs and the networks that make up a single
logically-connected virtual application. The VMs in such a config-
uration can be deployed en-masse with a single operation, and can
be managed as a unit. Cloning vApps and instantiating vApp tem-
plates gives a powerful mechanism by which complex applications
can be rapidly deployed.

vApps provide an isolated workspace in which virtual machines
can be deployed, modified or removed without affecting the con-
figuration of other vApps. They can be created and deployed by
non-administrative users, allowing the members of an organization
to consume virtual resources in a self-service manner, conforming
to the organization’s policies but without direct intervention from
an administrator. Access controls can be assigned on a per-vApp
basis, isolating the workspace of one user from another, while al-
lowing sharing when configured by the vApp owner.

Networking in a vApp is provided by internal L2 networks which
are assigned from a pool of underlying network resources. A vApp
network can be connected to the organization network either di-
rectly or through an edge router (which can also provide firewalling
or DHCP services). By isolating the network behind a DHCP-en-
abled router, a vVApp configuration can connect to the outside world
while referring only to internal addresses. As well as the obvious
benefit when migrating a vApp between data centers, this isolation
allows vApps to be cloned without reconfiguring the internal net-
work for each copy.

Much of the desirable functionality of a vApp relies on a consis-
tent means of serializing the VMs and network configuration that
make up its state. We represent serialized vApps using the OVF
format, an open standard that represents a collection of virtual ma-
chines. Using a widely-implemented standard ensures interoper-
ability between our cloud model and VMs created using other ap-
plications.

3.2.4 Catalogs

Fast, self-service vApp deployment requires that pre-configured
VM images be made available to users, eliminating the need to in-
stall an operating system and applications on every VM in a vApp.
Further, uploading the media images (floppy disks and CD ISO
files) that may be required by an application can be a slow pro-
cess, and should be performed only once. We store these common
resources in an organization’s catalogs.

Each catalog has its own access control, allowing individual cat-
alogs to be shared with some users and not with others. Catalogs
can also be published, making them accessible outside the organi-
zation. This allows providers to supply tailored vApps that take

Catalog -
Catalog Entity
e { Entity] ABD
Template
ResourceUse Resource -
oso [Media b——
ntity
CDROM
Floppy
Ijrg:}—‘ vDC | «abstract» MediaCgnnection
Abstract ’_L
vApp VApp
AvalablgNetwork
0.*
NetworkAssociation vA
1 PP
——{Networi}— Neturk

Figure 1: Cloud model entities

advantage of their hardware to all organizations, or for third-party
organizations to sell access to useful templates.

3.2.5 vDC

Cloud computing customers have non-functional requirements
that can make a significant impact on their applications. For ex-
ample, a high-performance computing infrastructure may require a
high degree of locality and fast network connections in the underly-
ing hardware. A business-critical application may demand uptime
guarantees and the option for off-site disaster recovery should a
cluster fail, while a university contracting to a service provider for
student projects may value cost savings over guaranteed availabil-
ity. Modeling all possible use cases would necessarily be incom-
plete, and would limit the flexibility for customers and providers
to determine the best service agreements. Instead, we provide the
concept of a Virtual Data Center (vDC) that can encapsulate the
rich variety of possible service offerings.

A vDC is assigned to an organization by a provider, and is backed
by a set of physical resources. The vDC serves to group together
vApps that require a given set of features, allowing the provider to
provision the appropriate hardware and software configuration to
support their needs. vDCs can be created that offer different under-
lying hardware, enabling specialized applications. An organization
can contain multiple vDCs, each of which can come with a dif-
ferent service level. Thus the organization may allocate its critical
vApps in an expensive “Gold level” vDC that guarantees availabil-
ity, while placing its non-essential functions in a separate “Bronze
level” vDC that does not have the same features, but costs less per
VM.

Organizations can also use vDCs as a means of resource manage-
ment. Different entities within a company can be assigned separate
vDCs, preventing any one from exceeding their share of resources
to the detriment of others. Additionally, an organization admin-
istrator can perform overprovisioning at the vDC level, allocating
resources based on anticipated need on the assumption that some

108

percentage of VMs will be idle at any given time.

3.2.6 Networks

In keeping with the purely-virtual nature of our model, we assign
logical networks to organizations in order to connect their VMs. A
logical network can be thought of as an isolated L2 network that can
connected to another network, either through bridging (forming a
direct connection) or routing. Logical networks can have three dif-
ferent scopes: a vApp network connects the VMs in a single vApp;
an organization network connects the vApps within a single organi-
zation; and an external network connects an organization with the
rest of the world.

A vApp network can be bridged to an existing organization net-
work, or can be isolated by fencing. A fenced network is purely in-
ternal to the vApp, and is backed by an isolated network resource.
Such fenced networks are useful, for example, to allow a vApp to
be cloned without updating the individual VMs IP addresses.

We generally expect that service providers will create isolated or-
ganization networks for each organization that they host, thus guar-
anteeing isolation in multi-tenant clouds. The provider can also
bridge or route an organization network to an external network in
order to provide Internet connectivity or to route back to an enter-
prise via VPN.

There are a limited number of networking services built into the
vCloud model today:

L3 subnet configuration. We associate IP subnet information with
a network, which is used when statically configuring a VM’s
connection.

IP address management. We track the static IP addresses allo-
cated on a network, and can configure a pool of IP addresses
to be used.

Edge router configuration. A logical network can be configured
with an edge manager that can provide DHCP service, net-
work address translation and firewall functionality.

We expect that providers will expand beyond these services when
configuring organization networks, making network features an area
in which providers can differentiate their services. For example,
we would expect service providers to allocate a small number of [P
addresses from the public address space to an organization. The or-
ganization administrator can then set NAT rules for packets going
in and out of the organization network.

3.3 vCloud API

The second major aspect of our cloud model is the vCloud API
through which the abstractions can be manipulated programatically.
The API enables third party software developers to produce appli-
cations that operate against any cloud provider that supports it. End
users are able to create new tools and interfaces to manipulate the
cloud objects available to them, while organization administrators
can script the deployment and control functionality to simplify their
routine operations. API interactions may also be embedded within
applications themselves, allowing cloud-aware systems to manipu-
late the platform on which they run. For example a web service
could detect a spike in traffic and automatically deploy new re-
sources to compensate. Thus, the API is critical for self scaling
PaaS or SaaS offerings on top of the IaaS offering.

The vCloud API is closely linked to the cloud abstractions that
we have discussed, allowing users to programatically manipulate
the cloud entities that they control. It therefore inherits many of the
desirable properties that exist in the model: it is purely virtual and
simple to use, while supporting legacy applications and enterprise
users. It is limited in scope to the functionality needed by cloud
resource consumers, rather than producers. The producer API nec-
essarily depends on the implementation of the cloud, and we want
the same standard to be supported on top of different cloud imple-
mentations.

Building upon the entity model described in Section 3, we ex-
pose virtual resources that can be manipulated using a REST-based
protocol. We chose REST for several reasons. REST is fast be-
coming a standard by which web services can be consumed progra-
matically, and it works well with existing web infrastructure (such
as firewalls and proxies). It is platform-independent, allowing the
maximum flexibility when implementing both the provider instal-
lation and the client application, it is simple to use and has wide
support both in clients and libraries. Finally, a REST API is built
around a resource-oriented interface, with objects manipulated us-
ing explicit actions. This ties in well with our purely-virtual view
of cloud resources, where the implementation of a given action is
the purview of the provider rather than the client.

The basic operations in the vCloud API are shown in Figure 2.
The API allows users to programatically instantiate, configure and
control vApps, as well as query the inventory of an organization.
It also allows for catalog management and monitoring of long-
running, asynchronous, tasks that execute on behalf of a customer
(such as powering on a VApp).

The vCloud API is designed to be extensible, allowing it to serve
as a base for new research and development. To this end, all the
schemas that it offers are extensible, giving a means to specify new
metadata or commands. We enable security in the vCloud API us-
ing standard password-based or LDAP authentication, and manage
sessions using cookies. This ensures that every operation that oc-
curs through the API is restricted according the the rights of the
user executing it.

The major source of complexity in dealing with the API is in the
serialization of vApps for transfer between clouds, and in the au-
thoring of vApps. This is not actually a part of the vCloud API; we
use an existing standard, OVF, removing this complexity from the

109

VApp operations
POST <vapp-uri>/action/{deploy, undeploy }
POST <vapp-uri>/power/action/{ powerOn, powerOff }
POST <vapp-uri>/power/action/{reset, suspend }
POST <vapp-uri>/power/action/{shutdown, reboot }
GET <vapp-uri>/screen
POST <vapp-uri>/screen/action/acquireTicket

vApp Configuration Operations
POST <vapp-parent-element-uri>
DELETE <vapp-element-uri>
PUT <vapp-element-uri>

Inventory Listing
GET <vapp-uri>
GET <vdc-uri>
GET <vAppTemplate-uri>
GET <media-uri>
GET <network-uri>

Catalog Management
GET <catalog-uri>
POST <catalog-uri>/catalogltems

Upload/Download/Provisioning Operations
POST <vdc-uri>/action/compose VApp
POST <vdc-uri>/action/instantiate VAppTemplate
POST <vdc-uri>/action/instantiateOvf
POST <vdc-uri>/action/annotate
POST <vdc-uri>/action/upload VAppTemplate
POST <vdc-uri>/media
PUT <upload-uri>
GET <download-uri>
DELETE <resourceEntity-uri>

Task Management

GET <tasks-list-uri>
GET <task-uri>
POST <task-uri>/action/cancel

Figure 2: vCloud API: basic operations

user (or implementor) of the API. Instead we can depend on rich
tooling available in existing virtualization platforms and in other
authoring tools to create and serialize the vApps that we use. For
example, vCloud applications can be extracted from existing in-
ternal clouds or individual hypervisors, giving a simple means to
move computation to the cloud.

OVF is an extensible format which, combined with the exten-
sibility of the REST API, allows for end-to-end support for new
features in the system. We expect that, over time, required SLAs
will be specified in the OVF format and passed through the API to
particular cloud implementations. For example, a VM may have
have a requirement for high availability. One cloud may implement
this using highly available hardware, while another cloud may ex-
ploit VMware’s fault tolerant product to achieve the same goal.

We have released the vCloud API open source, and submitted it
to the DMTF for standardization. There are already several imple-
mentations we are aware of, and several more in the works. For
more information on the API see [28, 29]

3.4 Standardization

To create an effective standard, the cloud computing model must
satisty a wide set of use cases, must be simple and common enough
to afford multiple implementations, and must obscure the tech-
nology of any given vendor. We have argued that the features
we present are critical to support enterprise and HPC workloads.
Clouds built upon those abstractions will be useful for a far larger
set of workloads than are catered to by current web-focused clouds.

The fundamental abstractions needed are simple enough that we
have been able to provide a small, easily-implemented interface

TS
=
8 § vDC Provider vDC
>0
A % i x

A\ / AN
2 Sub-
2 Resource Resource Datastore
& Pool
D Pool

A

SAN

Physical

Figure 3: vCloud Director and the vSphere Stack

that supports them. The complexity of the model exists not in the
control of vApps but in their specification. For this we rely on
an existing standard, the Open Virtualization Format (OVF). This
DMTF standard is widely-supported and is available on all virtual-
ization platforms, with authoring tools from multiple vendors.

We have also made the conscious decision to remain agnostic
in the model to any specific technology choices. As a result, a
provider’s use of VMware technologies such as High Availability,
Fault Tolerance or Distributed Virtual Switches are not visible to
the consumer. The exploitation of such services are implicit in the
type of vDC that the provider establishes for a customer. In the fu-
ture we expect to use OVF to specify the requirements of an appli-
cation from the platform. However we expect these requirements
to be general (e.g., that a high degree of availability is required)
rather than specifically demanding a particular technology.

4. VMWARE VCLOUD DIRECTOR

VMware vCloud Director (VCD) is an implementation of the
vCloud model described in the previous section. It is a layer of
software above VMware’s vSphere product [9], which includes the
vCenter (VC) Server and the ESX Hypervisor [31].

A VC Server provides the administrator with the ability to man-
age a large number of ESX hosts and VMs. VMs can be deployed
to a cluster without specifying the host upon which the VM will
run; the VC server will automatically move the VMs between dif-
ferent hosts to meet its resource requirements. The platform pro-
vides a very rich API and UI targeted at system administrators and
at partners extending the platform.

VCD provides the following functionality on top of the core
vSphere platform:

Model support. VCD supports the pure virtual entity model and
API described in Section 3. It enables the consumer to use
virtual resources without knowledge of how the provider has
provisioned that capacity.

Multi-tenant. Providers running VCD can securely host multiple
customers on the same physical infrastructure, ensuring that
they remain isolated from one another.

Scalability. VCD consolidates multiple vSphere resources, allow-
ing scalability beyond that offered by a single vCenter server.

Self-service. Consumers can control the creation and deployment
of virtual resources (within limits set by the organization)
through a rich self-service UL

110

In this section we first describe how VCD implements the vCloud
abstractions on top of vSphere abstractions, and then we describe
briefly some implementation details of VCD.

4.1 Layering of Abstractions

VCD forms a thin layer above the existing vSphere stack, orches-
trating the activities of multiple VCs while deferring resource man-
agement, load balancing, VM execution and so forth to vSphere.
Implementing VCD on top of vSphere gave us many benefits: we
are able to take advantage of the rich functionality of the underlying
infrastructure, significantly reducing our development cost; we al-
low cloud providers to continue to use the vSphere UI and API tools
to administer their physical capacity; we exploit the vast ecosys-
tem of storage, networking and management partners that target
the vSphere API, as well as the very broad hardware compatibil-
ity list that it supports; and we enable existing vSphere enterprise
and service provider customers to introduce VCD incrementally by
gradually migrating their capacity.

Figure 3 shows the relationship between physical objects, vSphere
abstractions, and vCloud abstractions. The physical layer consists
of compute hardware (ESX hosts), network resources (VLANS pro-
vided by networking switches) and storage (typically SAN). vSphere
builds on top of these resources, creating resource pools that con-
solidate the memory and CPU power required to run a VM, port-
groups that create logical L2 networks between VMs, and datas-
tores that contains a file system on which many virtual disks and
associated metadata can be stored.

At the VCD level, the compute and storage resources of a site
are represented by one or more Provider vDCs. Just as an organiza-
tion uses a VDC to present resources to its users, a service provider
configures a Provider vDC that encapsulates its physical resources.
This way a provider can establish a single large provider vDC with
a particular service offering, and can sell access to it to many dif-
ferent customers (assigning a vSphere-level sub-resource pool to
each in order to maintain separation between organizations). In the
same way as an organization administrator may overprovision the
resources in a vDC, so a system administrator can overprovision
vDCs to a provider vDC.

As can be seen from this figure, all vCloud abstractions have a
simple one-to-one mapping to an underlying vSphere abstraction.
This allows seasoned vSphere administrators to view VCD’s ab-
stractions in their familiar and powerful Ul, and can manage ca-
pacity and allocate resources between customers as they would
have within vSphere. We expect that other vendors that implement
the vCloud API will similarly build it on top of an existing virtual
and/or physical management system.

The creation of a new vDC is not done in a self service fash-
ion. The provider must create the vDC based on an understanding
of the customers need, a pricing model, and the physical capacity
available. For example, a provider might create several vDCs with
different service levels:

e A bronze elastic vDC on low-powered compute resources
with low-end NAS storage, a 1 GB switch, and an expand-
able resource pools with a low reservation of resources,

e A gold vDC with VMware’s High Availability product en-
abled on a high-end SAN with 10 GB Switch, and a ex-
pandable resource pool with a high reservation of backing
resources,

e A fixed-size vDC with dedicated resources that an enterprise
customer can overprovision themselves,

e A highly-secure vDC that is allocated on a dedicated provider
vDC with private hosts and datastores to minimize covert
channels.

We expect that there will be a great deal of experimentation in
how cloud resources are backed by virtual and physical infrastruc-
ture, as well as the charging models associated with various ser-
vices. The vCloud API and entity model allow for this large range
of offerings while presenting a single interface for customer tools
and interactions.

The unfortunate side of the flexibility we provide for VCD is that
it is impossible for us to fully automate a cloud in the same way that
special purpose public clouds, with an extremely prescriptive HCL
and types of offerings, can. The vCloud API that we described in
Section 3.3 targets only the user-level operations within the cloud.
This is intentional; we aim for the API to become standardized, and
so it does not rely explicitly on the vSphere stack. However, we un-
derstand that administrators will wish to automate the maintenance
of their cloud. To enable this we have developed vSphere-specific
extensions to the vCloud API which allows scripting of cluster ad-
ministration. The combination of this and the the vSphere APIs lets
third parties with a prescriptive offering do this automation. Large
providers and partners have already started delivering this kind of
automation, but we believe that this topic will be a rich area of re-
search for a long time.

4.2 Implementation

Figure 4 illustrates the implementation of VCD. The majority of
the system is implemented by one or more cells that run the VCD
software. Cells are stateless; all state is stored in a shared (possibly
clustered) database. This means that the system will continue oper-
ating if any cells fail, and that new cells can be easily added behind
a load balancer if the demands on the system increase.

A single VCD site can orchestrate the activities of multiple vCen-
ter servers, allowing a unified management interface to a massive
pool of computational resources. Alternatively, a site can be as
small as a single VCD cell managing one vCenter server with a
single host. This way an organization can stand up a small pri-
vate cloud, using the same technologies and model as they would
see from a large cloud provider, at minimal cost. In the small
scale deployment the installation is simple, with few external de-
pendencies. On a large deployment the provider can use complex
database clustering technologies and a sophisticated load balancer
to achieve scale and performance. Such a range of scales has many
advantages, including the ability for enterprises to experiment with
the technology before making a larger investment, isolating part of
an organization’s computation that must remain in-house, and en-
abling specialized small- to medium-sized providers to enter the
market and compete with larger operations. Additionally, the abil-
ity to create a small VCD site may encourage academic institutions
to experiment with and extend the technology within the limited
resources commonly available to researchers.

Cells communicate through three shared media: the VCD data-
base, a message bus and a shared file transfer area. The first of
these approaches is the most common, with status messages and
shared data written to the database where it can be read by all other
cells. The message bus is used primarily for event broadcast, alert-
ing other cells about a change in the database or vCenter state. Fi-
nally, the shared transfer area is used as a staging point when up-
loading or downloading files to the cloud, isolating external clients
from the vCenter servers.

Cell liveness is determined by a heartbeat service running on
each cell that periodically checks the database for a signal from
each other cell. Any cell that detects a late signal can declare the

111

VMs 10,000
Users 10,000
Hosts 1,000
vCenter Servers 25

Figure 5: Supported Scalability of VMware vCloud Director

relevant cell to be failed, at which point the remaining cells will
take over its workload. Cells balance workload by writing long-
running tasks to the database, allowing another cell with spare ca-
pacity to execute a given task. This also provides a mechanism by
which the tasks running on a failed cell can be restarted or cleaned
up by the remaining cells.

VCD manages the vCenter servers under its control using the
published vSphere VIM APIL. While VCD oversees the allocation
and configuration of virtual machines, vCenter remains the source
of truth for many VM operations (such as power state or mounted
media). Since VIM calls are relatively expensive, we cache the
state of each vCenter server’s inventory in the database. One mon-
itoring process per vCenter server is run on a cell in the system
(the cell running the process is irrelevant, although we attempt to
spread them between cells when a new vCenter is attached or when
a cell fails). This process copies the inventory information to the
VCD database, and monitors for event notifications that indicate
state changes. Relevant events are forwarded to the message bus,
allowing all cells to act upon vCenter events. This caching offers a
significant performance increase, since inventory queries occur fre-
quently and can be serviced by the database rather than the vCenter
server.

VCD cells are generally controllers for the underlying vSphere
resources, and are not on the data path. There are few situations
where data moves through the VCD layer: during the upload and
download of vApps and media; enabling console access to a VM;
and when copying vApps between VC servers. The limited use
of our cells for data intensive operations has greatly simplified im-
plementing a scalable system. Figure 5 gives published supported
scalability numbers for a single VCD site. These numbers are con-
servative, and are based on a fairly extreme assumption of customer
operations. Greater scale can be achieved in practice, although de-
pending on the the nature of the interactions from VCD consumers,
performance may suffer.

S. RELATED WORK

John McCarthy’s 1961 MIT centennial talk first formulated the
idea of utility computing, and Nicholas Carr’s book "The Big Switch:
Rewiring the World, from Edison to Google" [7] gives a non-tech-
nical discussion of the trend toward outsourcing computing infras-
tructure. Both provided high-level inspiration for this work.

Of the three cloud service types discussed in Section 1, laaS is
both the newest and the most loosely-defined. A detailed ontology
of this view of cloud, demonstrating a dissection into five main lay-
ers as well as the inter-relations and inter-dependencies on preced-
ing technologies was performed by researchers at IBM [33]. This
comprehensive work identified several layers and abstractions that
make up Cloud Software Infrastructure: IaaS for computational re-
sources; Daa$ for data (or storage); CaaS for communication; and
HaaS$ for the hardware and firmware that underlies them. We view
these separate layers as part of the larger classification of [aaS. Cus-
tomers should not have to handle these discrete abstractions explic-
itly, rather they should delegate that to the IaaS provider. This al-
lows for a simpler consumer model and for far greater economies

Image
Transfer

Remote
Console

vCloud

Firewall |

l\;\ /1‘/’

VMware vCloud

Load Balancer |

Director
Cell H Cell

Cell Cell

l—[, ,

Message Bus

| Database|

CCluster> CCluster
IRV

CCluster >
i

CCluster> CCluster
) (E

Figure 4: VCD System Diagram

of scale for the provider. In VCD these issues are handled in the
vSphere layer, but for completeness we will address them.

Computational services and various virtualization technologies
(IaaS by the IBM ontology) include bare metal virtualization [6],
paravirtualization [6], hardware-assisted virtualization. These have
commonly been used on individual nodes in order to improve lower-
level resource sharing, utilization, isolation and SLA guarantees.
However, there are several examples where computational infras-
tructure is offered on its own, with the other components required
for a true laaS offering provided separately. Examples of this model
include Amazon’s EC2 [1] and Enomaly [8].

Communication or networking as a service (CaaS) is a clear re-
quirement for providing the quality of service that many applica-
tions need. Not surprisingly, most of the work in this area has
occurred in commercial clouds [13, 10, 12, 17]. We believe that
it is ultimately better to let customers manage their own virtual
networks as stated in section 3.2.6, specifying their networking re-
quirements in the vApp. This enables [aaS service providers to
deploy it as they see best on their hardware in order to meet these
requirements.

Storage or data as a service (DaaS) is provided in different ways
by several vendors. Some provide a simple backup and restore so-
lution, with others offering a large archival cloud-based blob store.
While this model provides a means of storing data, customers quick-
ly find that they want to do more — to run applications such as data
analytics on their stored data. Thus, DaaS storage must be closely
co-located with compute facilities, as in the case of Amazon’s S3
service or AT&T Synaptic. Unfortunately, simple storage is not
sufficient for many applications, so laaS Providers must add more
data services (databases, block storage or messaging), and tools for
importing and exporting the data to them.

Ultimately, DaaS is attempting to solve two separate problems.
The first is provisioning local storage for VMs to run on, to use
for scratch space and to store applications. The second is sharing

112

data between VM applications, or storing it for later accesses. We
believe that the first requirement should be the purview of the IaaS
provider rather than the customer. Providers can match the VM
application to storage that will meet customer requirements (pos-
sibly providing the storage as a VM application [11]). The second
issue may require specialized underlying hardware resources (for
example HPC applications in the cloud [18] which may require
low latency networks and some special capabilities like RDMA).
Such storage solutions can be provided by several products. Ulti-
mately this case can be thought of as any other specialized market
where individual providers can tailor an offering to their customers’
needs. The marketplace of clouds model that we advocate will sim-
plify the deployment of such offerings.

Hardware as a Service (HaaS) has some appeal to enterprises
who want to set up an internal cloud. The key part of the solution
becomes its management. IBM’s project Kittyhawk [4] is based
on the highly-integrated architecture of the Blue Gene supercom-
puter, and explores how to provide a platform that is an order of
magnitude more efficient than those built on commodity servers.
Similarly, CMU’s Fast Array of Wimpy Nodes (FAWN) [3] uses
many small, energy-efficient servers to produce a fast and scalable
architecture.

Ultimately, we believe that the added burden of dealing with sep-
arate component services exposes users to extra cost, hassle and er-
rors. These layers are better handled by laaS service providers who
can present a single integrated solution to their customers.

Armbrust et al. is a great overview from a set of researchers at
Berkeley on cloud computing, showing its promise, reality, prod-
ucts, cost models, largest opportunities and obstacles [5]. While
we share the long term vision of massive shared utilities, we be-
lieve that small internal clouds will offer value to many customers
even in the short term.

The threat of cloud mono-culture had been discussed in various
papers and blogs [20, 15]. The impact of even a small problem for

major laaS service providers has been front page news [23, 14, 32],
such as the "#Googlemayharm" bug which caused Google search
problems for several hours [26], and Amazon’s S3 outage due to
a single bit error that lead to gossip protocol blowout [24]. While
most of the examples seen so far have been PaaS$ failures, they il-
lustrate the danger of vendor lock-in for all types of cloud comput-
ing: customers had no way to get these services from other service
providers, or to move their applications to another service provider.
While the reliability of major service providers is still much better
then most individual IT shops, enabling customers to move their
virtualized applications between providers or to run on multiple
sites will allow higher availability and resilience to such failures.

The Tashi cluster management software [16] is an open-source
platform that divides the resources of a single physical cluster be-
tween many virtual clusters that consist of VMs with differing re-
source requirements. Tashi is focused on high-performance com-
puting, and aims to efficiently manage the common set of physi-
cal resources among its various virtual clusters. Eucalyptus [19]
provides an open-source software platform that implements IaaS-
style cloud computing using the existing Linux-based infrastruc-
ture found in a modern data center. It is interface-compatible with
Amazon’s AWS [2] making it possible to move workloads between
AWS and the data center without modifying the code that imple-
ments them. This allows users to setup a private cloud or another
provider to setup a public cloud based on Eucalyptus and provide
some of the same services as AWS. These research projects, and
many industry efforts, have focused on the implementation of a
cloud. While these projects are competitive with our VDC imple-
mentation, they are complementary to our goal of establishing a
competitive marketplace of clouds with many different implemen-
tations. We have been actively discussing the vCloud API with
many vendors of cloud infrastructure in the DMTF and are making
substantial progress on establishing a standard interface for IaaS
cloud computing.

6. CONCLUDING REMARKS

General purpose cloud computing has the potential to revolu-
tionize how IT services are produced and consumed. In this paper
we have argued that a wide marketplace of IaaS providers will en-
able flexibility and innovation in the services offered, and avoid the
dangers of a provider mono-culture. A marketplace of providers
running different implementations of a common interface will en-
able innovation and strongly-differentiated services, while allowing
customers to choose the provider and offering that best suits the
customer’s needs. As well as enumerating the advantages of such
an ecosystem we have discussed the challenges involved in build-
ing and promoting cross-compatibility between cloud providers.
We have described the fundamental set of abstractions that we be-
lieve all IaaS cloud providers must support, and extrapolated from
them a purely-virtual model that will provide a common interface
while leaving the flexibility needed for providers to innovate and
differentiate their services. We also discuss an open-source REST-
based API that manipulates these abstract entities. Finally, we have
presented VMware’s vCloud Director: a currently-available imple-
mentation of our model that allows providers to quickly and easily
set up cloud offerings that can scale from a handful of machines to
massive data centers.

The model, API and implementation that we have presented of-
fer a deliberately minimal interface to cloud services. One of the
major advantages of a wide marketplace is the opportunity for re-
search and experimentation into new techniques and approaches to
cloud computing. We have been encouraged so far to have seen
VCD installed in several research institutions, as well as in com-

113

mercial enterprises, and we would encourage other researchers to
build upon the platform. In the remainder of this section, we will
elaborate on some of the open research questions that our infras-
tructure could support.

Automation at scale. The vCloud API gives a simple and stan-
dardized means for third-party developers to create rich tool
suites that operate against cloud installations. This will en-
able research into the automation, instrumentation and mon-
itoring of large cloud instances, as well as the security impli-
cations of such tools.

Federation between clouds. We propose a standardized approach
for cloud producers to offer computing resources, allowing
consumers to pick and choose the services that they require.
However, organizations may want to span multiple clouds in
order to take advantage of varying prices, services and so on.
There is interesting work to be done on the abstractions that
can be built on top of those in the current version of VCD
to address the security, scalability and performance issues of
merging multiple clouds.

Fungible computing. While our abstract, purely-virtual model en-
ables customers to compare and reason about cloud offer-
ings, the reality is that all computing resources are not equal.
Our extensible interfaces leave room for new representations
of the underlying infrastructure to be communicated to users,
allowing a more informed choice regarding cloud services.
The questions of how to present metrics, physical capacity
and requirements remains to be addressed. There may also
be research opportunities into more market-driven concerns
such as pricing models, as well as the implications of com-
puting as a resource including trading, futures and arbitrage.

Enabling HPC. The requirements of the HPC community are very
different from those developing web or enterprise applica-
tions. However, cloud computing has the potential to revolu-
tionize the HPC market, providing the affordable short-term
access to massive computing resources that will enable indi-
vidual researchers to perform experiments that would previ-
ously have required an unreasonable hardware outlay. Opti-
mizing provider and organization vDCs for the needs of high
performance computing will represent a major step towards
this goal.

Augmented desktops. While much of the discussion in this paper
has focused on commercial use of the cloud, there are also
potential benefits for the individual user. The most apparent
is a cloud-enabled desktop, where a profile can follow the
user between work sites. Realizing such functionality will
cover a wide range of research topics, from security and ad-
ministration concerns to efficient protocols for streaming 3-D
graphics across the network.

Replacing the OS. Finally, while we have based much of the pre-
sentation of our cloud vision around the traditional model of
a virtual machine (including CPU, memory, operating sys-
tem and applications), there is no reason why a component
VM within a vApp must include the overhead of a traditional
OS. Lightweight, custom operating systems that serve a sin-
gle function within an enterprise system have the potential
to improve performance, and better exploit underlying re-
sources for the specific needs of the application.

7.

ACKNOWLEDGEMENTS

The work described in this paper is the end result of several years
worth of effort by a large team, with significant contributions made
by far too many individuals to list. The authors listed should be
recognized simply as those who wrote the text of the paper, and not
as the intellectual source of its content.

8.
(1]

(2]
(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

Amazon elastic compute cloud.
http://aws.amazon.com/ec2/.

Amazon web services. http://aws.amazon.com.

D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. Fawn: a fast array of wimpy
nodes. In SOSP ’09: Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 1-14,
New York, NY, USA, 2009. ACM.

J. Appavoo, V. Uhlig, A. Waterland, B. Rosenburg,

D. Da Silva, and J. E. Moreira. Kittyhawk: enabling
cooperation and competition in a global, shared
computational system. IBM J. Res. Dev., 53(4):598-612,
2009.

M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. A view of cloud computing. Commun. ACM,
53(4):50-58, 2010.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, 1. Pratt, and A. Warfield. Xen and the art of
virtualization. In SOSP "03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages
164-177, New York, NY, USA, 2003. ACM.

N. Carr. The Big Switch: Rewiring the World, from Edison to
Google. W.W. Norton & Company, 2009.

Enomalism elastic computing infrastructure.
http://www.enomaly.com.

K. Govil and R. Soundararajan. Challenges in building
scalable virtualized datacenter management. SIGOPS Oper.
Syst. Rev., 44(4), 2010.

A. H and et al. Network communication as a service-oriented
capability. In High Performance Computing and Grids in
Action, High Performance Computing and Grids in Action,
March 2008.

J. G. Hansen and E. Jul. Lithium: virtual machine storage for
the cloud. In SoCC ’10: Proceedings of the 1st ACM
symposium on Cloud computing, pages 15-26. ACM, 2010.
J. Hofstader. Communications as a service.
http://msdn.microsoft.com/en-us/library/
bb896003.aspx.

W. J and et al. Perfsonar: A service oriented architecture for
multi-domain network monitoring. In B. B and et al, editors,
ICSOC Series Lecture Notes in Computer Science, volume
3826, pages 241-254. Springer-Verlog, 2005.

T. Jackson. We feel your pain, and we’re sorry.
http://gmailblog.blogspot.com/2008/08/
we—feel-your-pain-and-were-sorry.html,
August 2008.

M. Juneja. Security in the cloud.
http://www.expresscomputeronline.com/
20100208/coverstory01.shtml, 2010.

M. A. Kozuch, M. P. Ryan, R. Gass, S. W. Schlosser,

D. O’Hallaron, J. Cipar, E. Krevat, J. Lopez, M. Stroucken,
and G. R. Ganger. Tashi: location-aware cluster

114

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

management. In ACDC ’09: Proceedings of the 1st workshop
on Automated control for datacenters and clouds, pages
43-48, New York, NY, USA, 2009. ACM.

Microsoft connected service framework.
http://www.microsoft.com/
serviceproviders/solutions/
connectedservicesframework.mspx.

M. E. Mergen, V. Uhlig, O. Krieger, and J. Xenidis.
Virtualization for high-performance computing. SIGOPS
Oper. Syst. Rev., 40(2):8-11, 2006.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,

S. Soman, L. Youseff, and D. Zagorodnov. The eucalyptus
open-source cloud-computing system. In CCGRID ’09:
Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, pages
124-131. IEEE Computer Society, 2009.

A. Nusca. What if there were no google? a lesson in
monoculture. http://www.zdnet .com/blog/btl/
what-if-there-were-no-google-a-lesson-
in-monoculture/12106, 2009.

E. Nygren, R. K. Sitaraman, and J. Sun. The akamai
network: a platform for high-performance internet
applications. SIGOPS Oper. Syst. Rev., 44(3):2-19, 2010.
Oracle platform for saas. http://www.oracle.com/
us/technologies/saas/index.html.

A. Stern. Update from amazon regarding friday’s s3
downtime. http://www.centernetworks.com/
amazon-s3-downt ime—update, February 2008.

T. A. S. Team. Amazon s3 availability event: July 20, 2008.
http://status.aws.amazon.com/
3-20080720.html, July 2008.

D. Thaler and C. Hopps. Multipath Issues in Unicast and
Multicast Next-Hop Selection. RFC 2991 (Informational),
Nov. 2000.

K. Thomas. Thoughts on google monoculture and the cloud.
http://www.realstorygroup.com/Blog/
1490-Thoughts—-on-Google—Monoculture—
and-the-Cloud, 2009.

J. Touch and R. Perlman. Transparent Interconnection of
Lots of Links (TRILL): Problem and Applicability
Statement. RFC 5556 (Informational), May 2009.

VMware. The vCloud API.
http://communities.vmware.com/community/
developer/forums/vcloudapi.

VMware Inc. vCloud API programming guide, 2009, 2010.
VMware, Inc. vSphere Resource Management Guide: ESX
4.1, ESXi 4.1, vCenter Server 4.1.2010.

C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th ACM
Symposium on Operating System Design and Implementation
(OSDI-02), Operating Systems Review, pages 181-194, New
York, Dec. 9-11 2002. ACM Press.

S. Wilson. Appengine outage.
http://www.cio-weblog.com/50226711/
appengine_outage.php, June 2008.

L. Youseff, M. Butrico, and D. Da Silva. Toward a unified
ontology of cloud computing. In GCE '08: Grid Computing
Environments Workshop, pages 1 — 10, Austin, TX, Nov
2008.

