
4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 1/11

On this World Health Day, make a difference with your code and the chance to win $200,000

Find out how

TUTORIAL

Inside the Linux 2.6 Completely
Fair Scheduler
Providing fair access to CPUs since 2.6.23

M. Jones | Updated September 19, 2018 - Published December 15, 2009

Linux Systems

The Linux scheduler is an interesting study in competing pressures. On one side are the

use models in which Linux is applied. Although Linux was originally developed as a

desktop operating system experiment, you’ll now find it on servers, tiny embedded de-

vices, mainframes, and supercomputers. Not surprisingly, the scheduling loads for

these domains differ. On the other side are the technological advances made in the plat-

form, including architectures (multiprocessing, symmetric multithreading, non-uniform

memory access [NUMA]) and virtualization. Also embedded here is the balance be-

tween interactivity (user responsiveness) and overall fairness. From this perspective,

it’s easy to see how difficult the scheduling problem can be within Linux.

A short history of Linux schedulers

Early Linux schedulers used minimal designs, obviously not focused on massive archi-

tectures with many processors or even hyperthreading. The 1.2 Linux scheduler used a

circular queue for runnable task management that operated with a round-robin sched-

uling policy. This scheduler was efficient for adding and removing processes (with a lock

IBM Developer

Linux

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 2/11

Processes vs. threads

Linux incorporates process

and thread scheduling by

treating them as one in the

same. A process can be

viewed as a single thread,

but a process can contain

to protect the structure). In short, the scheduler wasn’t complex but was simple and

fast.

Linux version 2.2 introduced the idea of scheduling classes, permitting scheduling poli-

cies for real-time tasks, non-preemptible tasks, and non-real-time tasks. The 2.2

scheduler also included support for symmetric multiprocessing (SMP).

The 2.4 kernel included a relatively simple scheduler that operated in O(N) time (as it

iterated over every task during a scheduling event). The 2.4 scheduler divided time into

epochs, and within each epoch, every task was allowed to execute up to its time slice. If

a task did not use all of its time slice, then half of the remaining time slice was added to

the new time slice to allow it to execute longer in the next epoch. The scheduler would

simply iterate over the tasks, applying a goodness function (metric) to determine which

task to execute next. Although this approach was relatively simple, it was relatively inef-

ficient, lacked scalability, and was weak for real-time systems. It also lacked features to

exploit new hardware architectures such as multi-core processors.

The early 2.6 scheduler, called the O(1) scheduler, was designed to solve many of the

problems with the 2.4 scheduler—namely, the scheduler was not required to iterate the

entire task list to identify the next task to schedule (resulting in its name, O(1), which

meant that it was much more efficient and much more scalable). The O(1) scheduler

kept track of runnable tasks in a run queue (actually, two run queues for each priority

level—one for active and one for expired tasks), which meant that to identify the task to

execute next, the scheduler simply needed to dequeue the next task off the specific ac-

tive per-priority run queue. The O(1) scheduler was much more scalable and incorporat-

ed interactivity metrics with numerous heuristics to determine whether tasks were I/O-

bound or processor-bound. But the O(1) scheduler became unwieldy in the kernel. The

large mass of code needed to calculate heuristics was fundamentally difficult to man-

age and, for the purist, lacked algorithmic substance.

Given the issues facing the O(1) scheduler and other ex-

ternal pressures, something needed to change. That

change came in the way of a kernel patch from Con Koli-

vas, with his Rotating Staircase Deadline Scheduler

(RSDL), which included his earlier work on the staircase

scheduler. The result of this work was a simply designed

scheduler that incorporated fairness with bounded la-

tency. Kolivas’ scheduler impressed many (with calls to

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 3/11

multiple threads that share

some number of resources

(code and/or data).

incorporate it into the current 2.6.21 mainline kernel), so

it was clear that a scheduler change was on the way.

Ingo Molnar, the creator of the O(1) scheduler, then de-

veloped the CFS based around some of the ideas from

Kolivas’ work. Let’s dig into the CFS to see how it operates at a high level.

An overview of CFS

The main idea behind the CFS is to maintain balance (fairness) in providing processor

time to tasks. This means processes should be given a fair amount of the processor.

When the time for tasks is out of balance (meaning that one or more tasks are not given

a fair amount of time relative to others), then those out-of-balance tasks should be giv-

en time to execute.

To determine the balance, the CFS maintains the amount of time provided to a given

task in what’s called the virtual runtime. The smaller a task’s virtual runtime—meaning

the smaller amount of time a task has been permitted access to the processor—the

higher its need for the processor. The CFS also includes the concept of sleeper fairness

to ensure that tasks that are not currently runnable (for example, waiting for I/O) re-

ceive a comparable share of the processor when they eventually need it.

But rather than maintain the tasks in a run queue, as has been done in prior Linux

schedulers, the CFS maintains a time-ordered red-black tree (see Figure 1). A red-black

tree is a tree with a couple of interesting and useful properties. First, it’s self-balancing,

which means that no path in the tree will ever be more than twice as long as any other.

Second, operations on the tree occur in O(log n) time (where n is the number of nodes in

the tree). This means that you can insert or delete a task quickly and efficiently.

Figure 1. Example of a red-black tree

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 4/11

With tasks (represented by sched_entity objects) stored in the time-ordered red-black

tree, tasks with the gravest need for the processor (lowest virtual runtime) are stored

toward the left side of the tree, and tasks with the least need of the processor (highest

virtual runtimes) are stored toward the right side of the tree. The scheduler then, to be

fair, picks the left-most node of the red-black tree to schedule next to maintain fairness.

The task accounts for its time with the CPU by adding its execution time to the virtual

runtime and is then inserted back into the tree if runnable. In this way, tasks on the left

side of the tree are given time to execute, and the contents of the tree migrate from the

right to the left to maintain fairness. Therefore, each runnable task chases the other to

maintain a balance of execution across the set of runnable tasks.

CFS internals

All tasks within Linux are represented by a task structure called task_struct. This struc-

ture (along with others associated with it) fully describes the task and includes the

task’s current state, its stack, process flags, priority (both static and dynamic), and

much more. You can find this and many of the related structures in

./linux/include/linux/sched.h. But because not all tasks are runnable, you won’t find any

CFS-related fields in task_struct. Instead, a new structure called sched_entity was cre-

ated to track scheduling information (see Figure 2).

Figure 2. Structure hierarchy for tasks and the red-black tree

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 5/11

The relationships of the various structures are shown in Figure 2. The root of the tree is

referenced via the rb_root element from the cfs_rq structure (in ./kernel/sched.c).

Leaves in a red-black tree contain no information, but internal nodes represent one or

more tasks that are runnable. Each node in the red-black tree is represented by an

rb_node, which contains nothing more than the child references and the color of the par-

ent. The rb_node is contained within the sched_entity structure, which includes the

rb_node reference, load weight, and a variety of statistics data. Most importantly, the

sched_entity contains the vruntime (64-bit field), which indicates the amount of time

the task has run and serves as the index for the red-black tree. Finally, the task_struct

sits at the top, which fully describes the task and includes the sched_entity structure.

The scheduling function is quite simple when it comes to the CFS portion. In

./kernel/sched.c, you’ll find the generic schedule() function, which preempts the cur-

rently running task (unless it preempts itself with yield()). Note that CFS has no real

notion of time slices for preemption, because the preemption time is variable. The cur-

rently running task (now preempted) is returned to the red-black tree through a call to

put_prev_task (via the scheduling class). When the schedule function comes to identify-

ing the next task to schedule, it calls the pick_next_task function. This function is also

generic (within ./kernel/sched.c), but it calls the CFS scheduler through the scheduler

class. The pick_next_task function in CFS can be found in ./kernel/sched_fair.c (called

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 6/11

pick_next_task_fair()). This function simply picks the left-most task from the red-

black tree and returns the associated sched_entity. With this reference, a simple call to

task_of() identifies the task_struct reference returned. The generic scheduler finally

provides the processor to this task.

Priorities and CFS

CFS doesn’t use priorities directly but instead uses them as a decay factor for the time a

task is permitted to execute. Lower-priority tasks have higher factors of decay, where

higher-priority tasks have lower factors of delay. This means that the time a task is per-

mitted to execute dissipates more quickly for a lower-priority task than for a higher-pri-

ority task. That’s an elegant solution to avoid maintaining run queues per priority.

CFS group scheduling

Another interesting aspect of CFS is the concept of group scheduling (introduced with

the 2.6.24 kernel). Group scheduling is another way to bring fairness to scheduling, par-

ticularly in the face of tasks that spawn many other tasks. Consider a server that

spawns many tasks to parallelize incoming connections (a typical architecture for HTTP

servers). Instead of all tasks being treated fairly uniformly, CFS introduces groups to ac-

count for this behavior. The server process that spawns tasks share their virtual run-

times across the group (in a hierarchy), while the single task maintains its own indepen-

dent virtual runtime. In this way, the single task receives roughly the same scheduling

time as the group. You’ll find a /proc interface to manage the process hierarchies, giving

you full control over how groups are formed. Using this configuration, you can assign

fairness across users, across processes, or a variation of each.

Scheduling classes and domains

Also introduced with CFS is the idea of scheduling classes (recall from Figure 2). Each

task belongs to a scheduling class, which determines how a task will be scheduled. A

scheduling class defines a common set of functions (via sched_class) that define the be-

havior of the scheduler. For example, each scheduler provides a way to add a task to be

scheduled, pull the next task to be run, yield to the scheduler, and so on. Each sched-

uler class is linked with one another in a singly linked list, allowing the classes to be it-

erated (for example, for the purposes of enablement of disablement on a given proces-

sor). The general structure is shown in Figure 3. Note here that enqueue and dequeue

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 7/11

task functions simply add or remove a task from the particular scheduling structures.

The function pick_next_task chooses the next task to execute (depending upon the par-

ticular policy of the scheduling class).

Figure 3. Graphical view of scheduling classes

But recall that the scheduling classes are part of the task structure itself (see Figure 2).

This simplifies operations on tasks, regardless of their scheduling class. For example,

the following function preempts the currently running task with a new task (where curr

defines the currently running task, rq represents the red-black tree for CFS, and p is the

next task to schedule) from ./kernel/sched.c:

If this task were using the fair scheduling class, check_preempt_curr() would resolve to

check_preempt_wakeup(). You can see these relationships in ./kernel/sched_rt.c, ./ker-

nel/sched_fair.c and ./kernel/sched_idle.c.

Scheduling classes are yet another interesting aspect of the scheduling changes, but

the functionality grows with the addition of scheduling domains. These domains allow

you to group one or more processors hierarchically for purposes load balancing and

segregation. One or more processors can share scheduling policies (and load balance

between them) or implement independent scheduling policies to intentionally segre-

gate tasks.

static inline void check_preempt(struct rq rq, struct task_struct p)
{
 rq‑>curr‑>sched_class‑>check_preempt_curr(rq, p);

}

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 8/11

Other schedulers

Work on scheduling continues, and you’ll find schedulers under development that push

the boundaries of performance and scaling. Con Kolivas was not deterred by his Linux

experience and has developed another scheduler for Linux with a provocative acronym:

BFS. The scheduler was reported to have better performance on NUMA systems as well

as mobile devices and was introduced into a derivative of the Android operating system.

Going further

If there’s one constant with Linux, it’s that change is inevitable. Today, the CFS is the 2.6

Linux scheduler; but tomorrow, it could be another new scheduler or a suite of sched-

ulers that can be statically or dynamically invoked. There’s also a certain amount of

mystery in the process behind the CFS, RSDL, and kernel inclusion, but thanks to both

Kolivas’ and Molnar’s work, we have a new level of fairness in 2.6 task scheduling.

SOCIAL

CONTENTS

A short history of Linux schedulers

An overview of CFS

CFS internals

Priorities and CFS

CFS group scheduling

Scheduling classes and domains

Other schedulers

Going further

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 9/11

RESOURCES

Red-black tree
A Red-black tree (or symmetric binary B-tree) is a self-balancing binary tree invented by Rudolf Bayer. It's
a very useful tree representation that has good worst-case time for operations such as insert, search, and
delete. You can find red-black trees used in a variety of applications, including the construction of
associative arrays.

Martin C. Rinard's operating systems lecture
Task scheduling is an important aspect to operating system design, from desktop operating system
schedulers to real-time schedulers and embedded operating system schedulers. These notes from Martin
C. Rinard's operating systems lecture provide a great condensed summary of processor scheduling.

Big O notation
The big O notation is useful in describing the limiting behavior of a function. This Wikipedia entry includes
great information as well as a useful list of function classes.

Rotating Staircase Deadline Scheduler
Con Kolivas has been working on new experimental Linux schedulers for some time. You can learn more
about his schedulers, including the Staircase Process Scheduler and the Rotating Staircase Deadline
Scheduler, which ultimately proved that fair share scheduling was possible.

BFS scheduler
An alternative, BFS scheduler from Con Kolivas is available as a patch for Linux desktop systems as well as
small mobile devices. Kolivas chose this acronym (whose name shall not be spoken), because he wanted
to raise attention to the fact that having a scheduler support a massive number of tasks is great but
shouldn't penalize a desktop scheduler built on more modest hardware.

Linux on IBM Developer
In the developerWorks Linux zone, find more resources for Linux developers, and scan our most popular
articles and tutorials.

Related content

TUTORIAL | APR 02, 2019

PostgreSQL: Experiences and tuning
recommendations on Linux on IBM Z
Learn how you can optimize an open source PostgreSQL database when imple-
menting on Linux on IBM Z.

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 10/11

Databases IBM LinuxONE +

TUTORIAL | APR 01, 2019

Learn Linux, 101: Fundamentals of internet protocols
In this tutorial, learn about TCP/IP network fundamentals for your Linux system.

Linux Systems

WORKSHOP

How to Modernize your WebSphere App
Deployments

 March 22, 2019
 New York

IBM Power Systems Java +

4/8/2019 Inside the Linux 2.6 Completely Fair Scheduler – IBM Developer

https://developer.ibm.com/tutorials/l-completely-fair-scheduler/ 11/11

Community Privacy Terms of use Accessibility Cookie Preferences

Follow us

IBM Developer

About

Site Feedback & FAQ

Submit content

Report abuse

Third-party notice

Select a language

English

Русский

Português

Español

Code Patterns

Articles

Tutorials

Recipes

Open Source Projects

Videos

Newsletters

Events

Cities

Answers

