
9

Scheduling: Proportional Share

In this chapter, we’ll examine a different type of scheduler known as a
proportional-share scheduler, also sometimes referred to as a fair-share
scheduler. Proportional-share is based around a simple concept: instead
of optimizing for turnaround or response time, a scheduler might instead
try to guarantee that each job obtain a certain percentage of CPU time.

An excellent early example of proportional-share scheduling is found
in research by Waldspurger and Weihl [WW94], and is known as lottery
scheduling; however, the idea is certainly older [KL88]. The basic idea
is quite simple: every so often, hold a lottery to determine which process
should get to run next; processes that should run more often should be
given more chances to win the lottery. Easy, no? Now, onto the details!
But not before our crux:

CRUX: HOW TO SHARE THE CPU PROPORTIONALLY

How can we design a scheduler to share the CPU in a proportional
manner? What are the key mechanisms for doing so? How effective are
they?

9.1 Basic Concept: Tickets Represent Your Share

Underlying lottery scheduling is one very basic concept: tickets, which
are used to represent the share of a resource that a process (or user or
whatever) should receive. The percent of tickets that a process has repre-
sents its share of the system resource in question.

Let’s look at an example. Imagine two processes, A and B, and further
that A has 75 tickets while B has only 25. Thus, what we would like is for
A to receive 75% of the CPU and B the remaining 25%.

Lottery scheduling achieves this probabilistically (but not determinis-
tically) by holding a lottery every so often (say, every time slice). Holding
a lottery is straightforward: the scheduler must know how many total
tickets there are (in our example, there are 100). The scheduler then picks

1



2 SCHEDULING: PROPORTIONAL SHARE

TIP: USE RANDOMNESS

One of the most beautiful aspects of lottery scheduling is its use of ran-
domness. When you have to make a decision, using such a randomized
approach is often a robust and simple way of doing so.

Random approaches have at least three advantages over more traditional
decisions. First, random often avoids strange corner-case behaviors that
a more traditional algorithm may have trouble handling. For example,
consider the LRU replacement policy (studied in more detail in a future
chapter on virtual memory); while often a good replacement algorithm,
LRU attains worst-case performance for some cyclic-sequential work-
loads. Random, on the other hand, has no such worst case.

Second, random also is lightweight, requiring little state to track alter-
natives. In a traditional fair-share scheduling algorithm, tracking how
much CPU each process has received requires per-process accounting,
which must be updated after running each process. Doing so randomly
necessitates only the most minimal of per-process state (e.g., the number
of tickets each has).

Finally, random can be quite fast. As long as generating a random num-
ber is quick, making the decision is also, and thus random can be used
in a number of places where speed is required. Of course, the faster the
need, the more random tends towards pseudo-random.

a winning ticket, which is a number from 0 to 991. Assuming A holds
tickets 0 through 74 and B 75 through 99, the winning ticket simply de-
termines whether A or B runs. The scheduler then loads the state of that
winning process and runs it.

Here is an example output of a lottery scheduler’s winning tickets:

63 85 70 39 76 17 29 41 36 39 10 99 68 83 63 62 43 0 49 12

Here is the resulting schedule:

A A A A A A A A A A A A A A A A

B B B B

As you can see from the example, the use of randomness in lottery
scheduling leads to a probabilistic correctness in meeting the desired pro-
portion, but no guarantee. In our example above, B only gets to run 4 out
of 20 time slices (20%), instead of the desired 25% allocation. However,
the longer these two jobs compete, the more likely they are to achieve the
desired percentages.

1Computer Scientists always start counting at 0. It is so odd to non-computer-types that
famous people have felt obliged to write about why we do it this way [D82].

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE 3

TIP: USE TICKETS TO REPRESENT SHARES

One of the most powerful (and basic) mechanisms in the design of lottery
(and stride) scheduling is that of the ticket. The ticket is used to represent
a process’s share of the CPU in these examples, but can be applied much
more broadly. For example, in more recent work on virtual memory man-
agement for hypervisors, Waldspurger shows how tickets can be used to
represent a guest operating system’s share of memory [W02]. Thus, if you
are ever in need of a mechanism to represent a proportion of ownership,
this concept just might be ... (wait for it) ... the ticket.

9.2 Ticket Mechanisms

Lottery scheduling also provides a number of mechanisms to manip-
ulate tickets in different and sometimes useful ways. One way is with
the concept of ticket currency. Currency allows a user with a set of tick-
ets to allocate tickets among their own jobs in whatever currency they
would like; the system then automatically converts said currency into the
correct global value.

For example, assume users A and B have each been given 100 tickets.
User A is running two jobs, A1 and A2, and gives them each 500 tickets
(out of 1000 total) in A’s currency. User B is running only 1 job and gives
it 10 tickets (out of 10 total). The system converts A1’s and A2’s allocation
from 500 each in A’s currency to 50 each in the global currency; similarly,
B1’s 10 tickets is converted to 100 tickets. The lottery is then held over the
global ticket currency (200 total) to determine which job runs.

User A -> 500 (A’s currency) to A1 -> 50 (global currency)

-> 500 (A’s currency) to A2 -> 50 (global currency)

User B -> 10 (B’s currency) to B1 -> 100 (global currency)

Another useful mechanism is ticket transfer. With transfers, a process
can temporarily hand off its tickets to another process. This ability is
especially useful in a client/server setting, where a client process sends
a message to a server asking it to do some work on the client’s behalf.
To speed up the work, the client can pass the tickets to the server and
thus try to maximize the performance of the server while the server is
handling the client’s request. When finished, the server then transfers the
tickets back to the client and all is as before.

Finally, ticket inflation can sometimes be a useful technique. With
inflation, a process can temporarily raise or lower the number of tickets
it owns. Of course, in a competitive scenario with processes that do not
trust one another, this makes little sense; one greedy process could give
itself a vast number of tickets and take over the machine. Rather, inflation
can be applied in an environment where a group of processes trust one
another; in such a case, if any one process knows it needs more CPU time,
it can boost its ticket value as a way to reflect that need to the system, all
without communicating with any other processes.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



4 SCHEDULING: PROPORTIONAL SHARE

1 // counter: used to track if we’ve found the winner yet

2 int counter = 0;

3

4 // winner: call some random number generator to

5 // get a value >= 0 and <= (totaltickets - 1)

6 int winner = getrandom(0, totaltickets);

7

8 // current: use this to walk through the list of jobs

9 node_t *current = head;

10 while (current) {

11 counter = counter + current->tickets;

12 if (counter > winner)

13 break; // found the winner

14 current = current->next;

15 }

16 // ’current’ is the winner: schedule it...

Figure 9.1: Lottery Scheduling Decision Code

9.3 Implementation
Probably the most amazing thing about lottery scheduling is the sim-

plicity of its implementation. All you need is a good random number
generator to pick the winning ticket, a data structure to track the pro-
cesses of the system (e.g., a list), and the total number of tickets.

Let’s assume we keep the processes in a list. Here is an example com-
prised of three processes, A, B, and C, each with some number of tickets.

head
Job:A

Tix:100
Job:B
Tix:50

Job:C
Tix:250

NULL

To make a scheduling decision, we first have to pick a random number

(the winner) from the total number of tickets (400)2 Let’s say we pick the
number 300. Then, we simply traverse the list, with a simple counter
used to help us find the winner (Figure 9.1).

The code walks the process list, adding each ticket value to counter

until the value exceeds winner. Once that is the case, the current list el-
ement is the winner. With our example of the winning ticket being 300,
the following takes place. First, counter is incremented to 100 to ac-
count for A’s tickets; because 100 is less than 300, the loop continues.
Then counter would be updated to 150 (B’s tickets), still less than 300
and thus again we continue. Finally, counter is updated to 400 (clearly
greater than 300), and thus we break out of the loop with current point-
ing at C (the winner).

2Surprisingly, as pointed out by Björn Lindberg, this can be challenging to do
correctly; for more details, see http://stackoverflow.com/questions/2509679/

how-to-generate-a-random-number-from-within-a-range.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE 5

1 10 100 1000
0.0

0.2

0.4

0.6

0.8

1.0

Job Length

F
a
ir
n
e
s
s

Figure 9.2: Lottery Fairness Study

To make this process most efficient, it might generally be best to or-
ganize the list in sorted order, from the highest number of tickets to the
lowest. The ordering does not affect the correctness of the algorithm;
however, it does ensure in general that the fewest number of list itera-
tions are taken, especially if there are a few processes that possess most
of the tickets.

9.4 An Example

To make the dynamics of lottery scheduling more understandable, we
now perform a brief study of the completion time of two jobs competing
against one another, each with the same number of tickets (100) and same
run time (R, which we will vary).

In this scenario, we’d like for each job to finish at roughly the same
time, but due to the randomness of lottery scheduling, sometimes one job
finishes before the other. To quantify this difference, we define a simple
fairness metric, F which is simply the time the first job completes divided
by the time that the second job completes. For example, if R = 10, and
the first job finishes at time 10 (and the second job at 20), F = 10

20
= 0.5.

When both jobs finish at nearly the same time, F will be quite close to 1.
In this scenario, that is our goal: a perfectly fair scheduler would achieve
F = 1.

Figure 9.2 plots the average fairness as the length of the two jobs (R)
is varied from 1 to 1000 over thirty trials (results are generated via the
simulator provided at the end of the chapter). As you can see from the
graph, when the job length is not very long, average fairness can be quite
low. Only as the jobs run for a significant number of time slices does the
lottery scheduler approach the desired fair outcome.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



6 SCHEDULING: PROPORTIONAL SHARE

9.5 How To Assign Tickets?

One problem we have not addressed with lottery scheduling is: how
to assign tickets to jobs? This problem is a tough one, because of course
how the system behaves is strongly dependent on how tickets are allo-
cated. One approach is to assume that the users know best; in such a
case, each user is handed some number of tickets, and a user can allocate
tickets to any jobs they run as desired. However, this solution is a non-
solution: it really doesn’t tell you what to do. Thus, given a set of jobs,
the “ticket-assignment problem” remains open.

9.6 Stride Scheduling

You might also be wondering: why use randomness at all? As we saw
above, while randomness gets us a simple (and approximately correct)
scheduler, it occasionally will not deliver the exact right proportions, es-
pecially over short time scales. For this reason, Waldspurger invented
stride scheduling, a deterministic fair-share scheduler [W95].

Stride scheduling is also straightforward. Each job in the system has
a stride, which is inverse in proportion to the number of tickets it has. In
our example above, with jobs A, B, and C, with 100, 50, and 250 tickets,
respectively, we can compute the stride of each by dividing some large
number by the number of tickets each process has been assigned. For
example, if we divide 10,000 by each of those ticket values, we obtain
the following stride values for A, B, and C: 100, 200, and 40. We call
this value the stride of each process; every time a process runs, we will
increment a counter for it (called its pass value) by its stride to track its
global progress.

The scheduler then uses the stride and pass to determine which pro-
cess should run next. The basic idea is simple: at any given time, pick
the process to run that has the lowest pass value so far; when you run
a process, increment its pass counter by its stride. A pseudocode imple-
mentation is provided by Waldspurger [W95]:

curr = remove_min(queue); // pick client with min pass

schedule(curr); // run for quantum

curr->pass += curr->stride; // update pass using stride

insert(queue, curr); // return curr to queue

In our example, we start with three processes (A, B, and C), with stride
values of 100, 200, and 40, and all with pass values initially at 0. Thus, at
first, any of the processes might run, as their pass values are equally low.
Assume we pick A (arbitrarily; any of the processes with equal low pass
values can be chosen). A runs; when finished with the time slice, we
update its pass value to 100. Then we run B, whose pass value is then
set to 200. Finally, we run C, whose pass value is incremented to 40. At
this point, the algorithm will pick the lowest pass value, which is C’s, and
run it, updating its pass to 80 (C’s stride is 40, as you recall). Then C will

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE 7

Pass(A) Pass(B) Pass(C) Who Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200 ...

Figure 9.3: Stride Scheduling: A Trace

run again (still the lowest pass value), raising its pass to 120. A will run
now, updating its pass to 200 (now equal to B’s). Then C will run twice
more, updating its pass to 160 then 200. At this point, all pass values are
equal again, and the process will repeat, ad infinitum. Figure 9.3 traces
the behavior of the scheduler over time.

As we can see from the figure, C ran five times, A twice, and B just
once, exactly in proportion to their ticket values of 250, 100, and 50. Lot-
tery scheduling achieves the proportions probabilistically over time; stride
scheduling gets them exactly right at the end of each scheduling cycle.

So you might be wondering: given the precision of stride scheduling,
why use lottery scheduling at all? Well, lottery scheduling has one nice
property that stride scheduling does not: no global state. Imagine a new
job enters in the middle of our stride scheduling example above; what
should its pass value be? Should it be set to 0? If so, it will monopolize
the CPU. With lottery scheduling, there is no global state per process;
we simply add a new process with whatever tickets it has, update the
single global variable to track how many total tickets we have, and go
from there. In this way, lottery makes it much easier to incorporate new
processes in a sensible manner.

9.7 The Linux Completely Fair Scheduler (CFS)

Despite these earlier works in fair-share scheduling, the current Linux
approach achieves similar goals in an alternate manner. The scheduler,
entitled the Completely Fair Scheduler (or CFS) [J09], implements fair-
share scheduling, but does so in a highly efficient and scalable manner.

To achieve its efficiency goals, CFS aims to spend very little time mak-
ing scheduling decisions, through both its inherent design and its clever
use of data structures well-suited to the task. Recent studies have shown
that scheduler efficiency is surprisingly important; specifically, in a study
of Google datacenters, Kanev et al. show that even after aggressive opti-
mization, scheduling uses about 5% of overall datacenter CPU time [K+15].
Reducing that overhead as much as possible is thus a key goal in modern
scheduler architecture.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



8 SCHEDULING: PROPORTIONAL SHARE

0 50 100 150 200 250

Time

A B C D A B C D A B A B A B

Figure 9.4: CFS Simple Example

Basic Operation

Whereas most schedulers are based around the concept of a fixed time
slice, CFS operates a bit differently. Its goal is simple: to fairly divide a
CPU evenly among all competing processes. It does so through a simple
counting-based technique known as virtual runtime (vruntime).

As each process runs, it accumulates vruntime. In the most basic
case, each process’s vruntime increases at the same rate, in proportion
with physical (real) time. When a scheduling decision occurs, CFS will
pick the process with the lowest vruntime to run next.

This raises a question: how does the scheduler know when to stop
the currently running process, and run the next one? The tension here is
clear: if CFS switches too often, fairness is increased, as CFS will ensure
that each process receives its share of CPU even over miniscule time win-
dows, but at the cost of performance (too much context switching); if CFS
switches less often, performance is increased (reduced context switching),
but at the cost of near-term fairness.

CFS manages this tension through various control parameters. The
first is sched latency. CFS uses this value to determine how long one
process should run before considering a switch (effectively determining
its time slice but in a dynamic fashion). A typical sched latency value
is 48 (milliseconds); CFS divides this value by the number (n) of processes
running on the CPU to determine the time slice for a process, and thus
ensures that over this period of time, CFS will be completely fair.

For example, if there are n = 4 processes running, CFS divides the
value of sched latency by n to arrive at a per-process time slice of 12
ms. CFS then schedules the first job and runs it until it has used 12 ms
of (virtual) runtime, and then checks to see if there is a job with lower
vruntime to run instead. In this case, there is, and CFS would switch
to one of the three other jobs, and so forth. Figure 9.4 shows an example
where the four jobs (A, B, C, D) each run for two time slices in this fashion;
two of them (C, D) then complete, leaving just two remaining, which then
each run for 24 ms in round-robin fashion.

But what if there are “too many” processes running? Wouldn’t that
lead to too small of a time slice, and thus too many context switches?
Good question! And the answer is yes.

To address this issue, CFS adds another parameter, min granularity,
which is usually set to a value like 6 ms. CFS will never set the time slice

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE 9

of a process to less than this value, ensuring that not too much time is
spent in scheduling overhead.

For example, if there are ten processes running, our original calcula-
tion would divide sched latency by ten to determine the time slice
(result: 4.8 ms). However, because of min granularity, CFS will set
the time slice of each process to 6 ms instead. Although CFS won’t (quite)
be perfectly fair over the target scheduling latency (sched latency) of
48 ms, it will be close, while still achieving high CPU efficiency.

Note that CFS utilizes a periodic timer interrupt, which means it can
only make decisions at fixed time intervals. This interrupt goes off fre-
quently (e.g., every 1 ms), giving CFS a chance to wake up and determine
if the current job has reached the end of its run. If a job has a time slice
that is not a perfect multiple of the timer interrupt interval, that is OK;
CFS tracks vruntime precisely, which means that over the long haul, it
will eventually approximate ideal sharing of the CPU.

Weighting (Niceness)

CFS also enables controls over process priority, enabling users or admin-
istrators to give some processes a higher share of the CPU. It does this
not with tickets, but through a classic UNIX mechanism known as the
nice level of a process. The nice parameter can be set anywhere from -20
to +19 for a process, with a default of 0. Positive nice values imply lower
priority and negative values imply higher priority; when you’re too nice,
you just don’t get as much (scheduling) attention, alas.

CFS maps the nice value of each process to a weight, as shown here:

static const int prio_to_weight[40] = {

/* -20 */ 88761, 71755, 56483, 46273, 36291,

/* -15 */ 29154, 23254, 18705, 14949, 11916,

/* -10 */ 9548, 7620, 6100, 4904, 3906,

/* -5 */ 3121, 2501, 1991, 1586, 1277,

/* 0 */ 1024, 820, 655, 526, 423,

/* 5 */ 335, 272, 215, 172, 137,

/* 10 */ 110, 87, 70, 56, 45,

/* 15 */ 36, 29, 23, 18, 15,

};

These weights allow us to compute the effective time slice of each pro-
cess (as we did before), but now accounting for their priority differences.
The formula used to do so is as follows, assuming n processes:

time slicek =
weightk∑
n−1

i=0
weighti

· sched latency (9.1)

Let’s do an example to see how this works. Assume there are two
jobs, A and B. A, because it’s our most precious job, is given a higher pri-

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



10 SCHEDULING: PROPORTIONAL SHARE

ority by assigning it a nice value of -5; B, because we hates it3, just has the
default priority (nice value equal to 0). This means weightA (from the ta-
ble) is 3121, whereas weightB is 1024. If you then compute the time slice
of each job, you’ll find that A’s time slice is about 3

4
of sched latency

(hence, 36 ms), and B’s about 1

4
(hence, 12 ms).

In addition to generalizing the time slice calculation, the way CFS cal-
culates vruntime must also be adapted. Here is the new formula, which
takes the actual run time that process i has accrued (runtimei) and scales
it inversely by the weight of the process, by dividing the default weight
of 1024 (weight0) by its weight, weighti. In our running example, A’s
vruntime will accumulate at one-third the rate of B’s.

vruntimei = vruntimei +
weight0

weighti

· runtimei (9.2)

One smart aspect of the construction of the table of weights above is
that the table preserves CPU proportionality ratios when the difference in
nice values is constant. For example, if process A instead had a nice value
of 5 (not -5), and process B had a nice value of 10 (not 0), CFS would
schedule them in exactly the same manner as before. Run through the
math yourself to see why.

Using Red-Black Trees

One major focus of CFS is efficiency, as stated above. For a scheduler,
there are many facets of efficiency, but one of them is as simple as this:
when the scheduler has to find the next job to run, it should do so as
quickly as possible. Simple data structures like lists don’t scale: modern
systems sometimes are comprised of 1000s of processes, and thus search-
ing through a long-list every so many milliseconds is wasteful.

CFS addresses this by keeping processes in a red-black tree [B72]. A
red-black tree is one of many types of balanced trees; in contrast to a
simple binary tree (which can degenerate to list-like performance un-
der worst-case insertion patterns), balanced trees do a little extra work
to maintain low depths, and thus ensure that operations are logarithmic
(and not linear) in time.

CFS does not keep all processes in this structure; rather, only running
(or runnable) processes are kept therein. If a process goes to sleep (say,
waiting on an I/O to complete, or for a network packet to arrive), it is
removed from the tree and kept track of elsewhere.

Let’s look at an example to make this more clear. Assume there are ten
jobs, and that they have the following values of vruntime: 1, 5, 9, 10, 14,
18, 17, 21, 22, and 24. If we kept these jobs in an ordered list, finding the
next job to run would be simple: just remove the first element. However,

3Yes, yes, we are using bad grammar here on purpose, please don’t send in a bug fix.
Why? Well, just a most mild of references to the Lord of the Rings, and our favorite anti-hero
Gollum, nothing to get too excited about.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE 11

1

5

9

10

14

18

17 22

21 24

Figure 9.5: CFS Red-Black Tree

when placing that job back into the list (in order), we would have to scan
the list, looking for the right spot to insert it, an O(n) operation. Any
search is also quite inefficient, also taking linear time on average.

Keeping the same values in a red-black tree makes most operations
more efficient, as depicted in Figure 9.5. Processes are ordered in the tree
by vruntime, and most operations (such as insertion and deletion) are
logarithmic in time, i.e., O(log n). When n is in the thousands, logarith-
mic is noticeably more efficient than linear.

Dealing With I/O And Sleeping Processes

One problem with picking the lowest vruntime to run next arises with
jobs that have gone to sleep for a long period of time. Imagine two pro-
cesses, A and B, one of which (A) runs continuously, and the other (B)
which has gone to sleep for a long period of time (say, 10 seconds). When
B wakes up, its vruntime will be 10 seconds behind A’s, and thus (if
we’re not careful), B will now monopolize the CPU for the next 10 sec-
onds while it catches up, effectively starving A.

CFS handles this case by altering the vruntime of a job when it wakes
up. Specifically, CFS sets the vruntime of that job to the minimum value
found in the tree (remember, the tree only contains running jobs) [B+18].
In this way, CFS avoids starvation, but not without a cost: jobs that sleep
for short periods of time frequently do not ever get their fair share of the
CPU [AC97].

Other CFS Fun

CFS has many other features, too many to discuss at this point in the
book. It includes numerous heuristics to improve cache performance, has
strategies for handling multiple CPUs effectively (as discussed later in the
book), can schedule across large groups of processes (instead of treating

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



12 SCHEDULING: PROPORTIONAL SHARE

TIP: USE EFFICIENT DATA STRUCTURES WHEN APPROPRIATE

In many cases, a list will do. In many cases, it will not. Knowing which
data structure to use when is a hallmark of good engineering. In the case
discussed herein, simple lists found in earlier schedulers simply do not
work well on modern systems, particular in the heavily loaded servers
found in datacenters. Such systems contain thousands of active pro-
cesses; searching through a long list to find the next job to run on each
core every few milliseconds would waste precious CPU cycles. A better
structure was needed, and CFS provided one by adding an excellent im-
plementation of a red-black tree. More generally, when picking a data
structure for a system you are building, carefully consider its access pat-
terns and its frequency of usage; by understanding these, you will be able
to implement the right structure for the task at hand.

each process as an independent entity), and many other interesting fea-
tures. Read recent research, starting with Bouron [B+18], to learn more.

9.8 Summary

We have introduced the concept of proportional-share scheduling and
briefly discussed three approaches: lottery scheduling, stride scheduling,
and the Completely Fair Scheduler (CFS) of Linux. Lottery uses random-
ness in a clever way to achieve proportional share; stride does so deter-
ministically. CFS, the only “real” scheduler discussed in this chapter, is a
bit like weighted round-robin with dynamic time slices, but built to scale
and perform well under load; to our knowledge, it is the most widely
used fair-share scheduler in existence today.

No scheduler is a panacea, and fair-share schedulers have their fair
share of problems. One issue is that such approaches do not particularly
mesh well with I/O [AC97]; as mentioned above, jobs that perform I/O
occasionally may not get their fair share of CPU. Another issue is that
they leave open the hard problem of ticket or priority assignment, i.e.,
how do you know how many tickets your browser should be allocated, or
to what nice value to set your text editor? Other general-purpose sched-
ulers (such as the MLFQ we discussed previously, and other similar Linux
schedulers) handle these issues automatically and thus may be more eas-
ily deployed.

The good news is that there are many domains in which these prob-
lems are not the dominant concern, and proportional-share schedulers
are used to great effect. For example, in a virtualized data center (or
cloud), where you might like to assign one-quarter of your CPU cycles
to the Windows VM and the rest to your base Linux installation, propor-
tional sharing can be simple and effective. The idea can also be extended
to other resources; see Waldspurger [W02] for further details on how to
proportionally share memory in VMWare’s ESX Server.

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



SCHEDULING: PROPORTIONAL SHARE 13

References

[AC97] “Extending Proportional-Share Scheduling to a Network of Workstations” by Andrea
C. Arpaci-Dusseau and David E. Culler. PDPTA’97, June 1997. A paper by one of the authors on
how to extend proportional-share scheduling to work better in a clustered environment.

[B+18] “The Battle of the Schedulers: FreeBSD ULE vs. Linux CFS” by J. Bouron, S. Chevalley,
B. Lepers, W. Zwaenepoel, R. Gouicem, J. Lawall, G. Muller, J. Sopena. USENIX ATC ’18,
July 2018, Boston, Massachusetts. A recent, detailed work comparing Linux CFS and the FreeBSD
schedulers. An excellent overview of each scheduler is also provided. The result of the comparison:
inconclusive. In some cases CFS was better, and in others, ULE (the BSD scheduler), was. Sometimes
in life there are no easy answers.

[B72] “Symmetric binary B-Trees: Data Structure And Maintenance Algorithms” by Rudolf
Bayer. Acta Informatica, Volume 1, Number 4, December 1972. A cool balanced tree introduced
before you were born (most likely). One of many balanced trees out there; study your algorithms book
for more alternatives!

[D82] “Why Numbering Should Start At Zero” by Edsger Dijkstra, August 1982. Available:
http://www.cs.utexas.edu/users/EWD/ewd08xx/EWD831.PDF. A short note from E.
Dijkstra, one of the pioneers of computer science. We’ll be hearing much more on this guy in the
section on Concurrency. In the meanwhile, enjoy this note, which includes this motivating quote: “One
of my colleagues — not a computing scientist — accused a number of younger computing scientists of
’pedantry’ because they started numbering at zero.” The note explains why doing so is logical.

[K+15] “Profiling A Warehouse-scale Computer” by S. Kanev, P. Ranganathan, J. P. Darago,
K. Hazelwood, T. Moseley, G. Wei, D. Brooks. ISCA ’15, June, 2015, Portland, Oregon. A
fascinating study of where the cycles go in modern data centers, which are increasingly where most of
computing happens. Almost 20% of CPU time is spent in the operating system, 5% in the scheduler
alone!

[J09] “Inside The Linux 2.6 Completely Fair Scheduler” by M. Tim Jones. December 15, 2009.
http://ostep.org/Citations/inside-cfs.pdf. A simple overview of CFS from its ear-
lier days. CFS was created by Ingo Molnar in a short burst of creativity which led to a 100K kernel
patch developed in 62 hours.

[KL88] “A Fair Share Scheduler” by J. Kay and P. Lauder. CACM, Volume 31 Issue 1, January
1988. An early reference to a fair-share scheduler.

[WW94] “Lottery Scheduling: Flexible Proportional-Share Resource Management” by Carl A.
Waldspurger and William E. Weihl. OSDI ’94, November 1994. The landmark paper on lottery
scheduling that got the systems community re-energized about scheduling, fair sharing, and the power
of simple randomized algorithms.

[W95] “Lottery and Stride Scheduling: Flexible Proportional-Share Resource Management” by
Carl A. Waldspurger. Ph.D. Thesis, MIT, 1995. The award-winning thesis of Waldspurger’s that
outlines lottery and stride scheduling. If you’re thinking of writing a Ph.D. dissertation at some point,
you should always have a good example around, to give you something to strive for: this is such a good
one.

[W02] “Memory Resource Management in VMware ESX Server” by Carl A. Waldspurger.
OSDI ’02, Boston, Massachusetts. The paper to read about memory management in VMMs (a.k.a.,
hypervisors). In addition to being relatively easy to read, the paper contains numerous cool ideas about
this new type of VMM-level memory management.

© 2008–23, ARPACI-DUSSEAU
THREE

EASY

PIECES



14 SCHEDULING: PROPORTIONAL SHARE

Homework (Simulation)

This program, lottery.py, allows you to see how a lottery scheduler
works. See the README for details.

Questions

1. Compute the solutions for simulations with 3 jobs and random seeds
of 1, 2, and 3.

2. Now run with two specific jobs: each of length 10, but one (job 0)
with 1 ticket and the other (job 1) with 100 (e.g., -l 10:1,10:100).
What happens when the number of tickets is so imbalanced? Will
job 0 ever run before job 1 completes? How often? In general, what
does such a ticket imbalance do to the behavior of lottery schedul-
ing?

3. When running with two jobs of length 100 and equal ticket alloca-
tions of 100 (-l 100:100,100:100), how unfair is the scheduler?
Run with some different random seeds to determine the (probabilis-
tic) answer; let unfairness be determined by how much earlier one
job finishes than the other.

4. How does your answer to the previous question change as the quan-
tum size (-q) gets larger?

5. Can you make a version of the graph that is found in the chapter?
What else would be worth exploring? How would the graph look
with a stride scheduler?

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG


