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Scheduling:
The Multi-Level Feedback Queue

In this chapter, we’ll tackle the problem of developing one of the most
well-known approaches to scheduling, known as the Multi-level Feed-
back Queue (MLFQ). The Multi-level Feedback Queue (MLFQ) sched-
uler was first described by Corbato et al. in 1962 [C+62] in a system
known as the Compatible Time-Sharing System (CTSS), and this work,
along with later work on Multics, led the ACM to award Corbato its
highest honor, the Turing Award. The scheduler has subsequently been
refined throughout the years to the implementations you will encounter
in some modern systems.

The fundamental problem MLFQ tries to address is two-fold. First, it
would like to optimize turnaround time, which, as we saw in the previous
note, is done by running shorter jobs first; unfortunately, the OS doesn’t
generally know how long a job will run for, exactly the knowledge that
algorithms like SJF (or STCF) require. Second, MLFQ would like to make
a system feel responsive to interactive users (i.e., users sitting and staring
at the screen, waiting for a process to finish), and thus minimize response
time; unfortunately, algorithms like Round Robin reduce response time
but are terrible for turnaround time. Thus, our problem: given that we
in general do not know anything about a process, how can we build a
scheduler to achieve these goals? How can the scheduler learn, as the
system runs, the characteristics of the jobs it is running, and thus make
better scheduling decisions?

THE CRUX:
HOW TO SCHEDULE WITHOUT PERFECT KNOWLEDGE?

How can we design a scheduler that both minimizes response time for
interactive jobs while also minimizing turnaround time without a priori
knowledge of job length?
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TIP: LEARN FROM HISTORY

The multi-level feedback queue is an excellent example of a system that
learns from the past to predict the future. Such approaches are com-
mon in operating systems (and many other places in Computer Science,
including hardware branch predictors and caching algorithms). Such
approaches work when jobs have phases of behavior and are thus pre-
dictable; of course, one must be careful with such techniques, as they can
easily be wrong and drive a system to make worse decisions than they
would have with no knowledge at all.

8.1 MLFQ: Basic Rules

To build such a scheduler, in this chapter we will describe the basic
algorithms behind a multi-level feedback queue; although the specifics of
many implemented MLFQs differ [E95], most approaches are similar.

In our treatment, the MLFQ has a number of distinct queues, each
assigned a different priority level. At any given time, a job that is ready
to run is on a single queue. MLFQ uses priorities to decide which job
should run at a given time: a job with higher priority (i.e., a job on a
higher queue) is chosen to run.

Of course, more than one job may be on a given queue, and thus have
the same priority. In this case, we will just use round-robin scheduling
among those jobs.

Thus, we arrive at the first two basic rules for MLFQ:

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in RR.

The key to MLFQ scheduling therefore lies in how the scheduler sets
priorities. Rather than giving a fixed priority to each job, MLFQ varies
the priority of a job based on its observed behavior. If, for example, a job
repeatedly relinquishes the CPU while waiting for input from the key-
board, MLFQ will keep its priority high, as this is how an interactive
process might behave. If, instead, a job uses the CPU intensively for long
periods of time, MLFQ will reduce its priority. In this way, MLFQ will try
to learn about processes as they run, and thus use the history of the job to
predict its future behavior.

If we were to put forth a picture of what the queues might look like at a
given instant, we might see something like the following (Figure 8.1, page
3). In the figure, two jobs (A and B) are at the highest priority level, while
job C is in the middle and Job D is at the lowest priority. Given our current
knowledge of how MLFQ works, the scheduler would just alternate time
slices between A and B because they are the highest priority jobs in the
system; poor jobs C and D would never even get to run — an outrage!

Of course, just showing a static snapshot of some queues does not re-
ally give you an idea of how MLFQ works. What we need is to under-
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Figure 8.1: MLFQ Example

stand how job priority changes over time. And that, in a surprise only
to those who are reading a chapter from this book for the first time, is
exactly what we will do next.

8.2 Attempt #1: How To Change Priority

We now must decide how MLFQ is going to change the priority level
of a job (and thus which queue it is on) over the lifetime of a job. To do
this, we must keep in mind our workload: a mix of interactive jobs that
are short-running (and may frequently relinquish the CPU), and some
longer-running “CPU-bound” jobs that need a lot of CPU time but where
response time isn’t important.

For this, we need a new concept, which we will call the job’s allotment.
The allotment is the amount of time a job can spend at a given priority
level before the scheduler reduces its priority. For simplicity, at first, we
will assume the allotment is equal to a single time slice.

Here is our first attempt at a priority-adjustment algorithm:

• Rule 3: When a job enters the system, it is placed at the highest
priority (the topmost queue).

• Rule 4a: If a job uses up its allotment while running, its priority is
reduced (i.e., it moves down one queue).

• Rule 4b: If a job gives up the CPU (for example, by performing
an I/O operation) before the allotment is up, it stays at the same
priority level (i.e., its allotment is reset).
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Figure 8.2: Long-running Job Over Time

Example 1: A Single Long-Running Job

Let’s look at some examples. First, we’ll look at what happens when there
has been a long running job in the system, with a time slice of 10 ms (and
with the allotment set equal to the time slice). Figure 8.2 shows what
happens to this job over time in a three-queue scheduler.

As you can see in the example, the job enters at the highest priority
(Q2). After a single time slice of 10 ms, the scheduler reduces the job’s
priority by one, and thus the job is on Q1. After running at Q1 for a time
slice, the job is finally lowered to the lowest priority in the system (Q0),
where it remains. Pretty simple, no?

Example 2: Along Came A Short Job

Now let’s look at a more complicated example, and hopefully see how
MLFQ tries to approximate SJF. In this example, there are two jobs: A,
which is a long-running CPU-intensive job, and B, which is a short-running
interactive job. Assume A has been running for some time, and then B ar-
rives. What will happen? Will MLFQ approximate SJF for B?

Figure 8.3 on page 5 (left) plots the results of this scenario. Job A
(shown in black) is running along in the lowest-priority queue (as would
any long-running CPU-intensive jobs); B (shown in gray) arrives at time
T = 100, and thus is inserted into the highest queue; as its run-time is
short (only 20 ms), B completes before reaching the bottom queue, in two
time slices; then A resumes running (at low priority).

From this example, you can hopefully understand one of the major
goals of the algorithm: because it doesn’t know whether a job will be a
short job or a long-running job, it first assumes it might be a short job, thus
giving the job high priority. If it actually is a short job, it will run quickly
and complete; if it is not a short job, it will slowly move down the queues,
and thus soon prove itself to be a long-running more batch-like process.
In this manner, MLFQ approximates SJF.
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Figure 8.3: Along Came An Interactive Job: Two Examples

Example 3: What About I/O?

Let’s now look at an example with some I/O. As Rule 4b states above, if a
process gives up the processor before using up its allotment, we keep it at
the same priority level. The intent of this rule is simple: if an interactive
job, for example, is doing a lot of I/O (say by waiting for user input from
the keyboard or mouse), it will relinquish the CPU before its allotment is
complete; in such case, we don’t wish to penalize the job and thus simply
keep it at the same level.

Figure 8.3 (right) shows an example of how this works, with an in-
teractive job B (shown in gray) that needs the CPU only for 1 ms before
performing an I/O competing for the CPU with a long-running batch job
A (shown in black). The MLFQ approach keeps B at the highest prior-
ity because B keeps releasing the CPU; if B is an interactive job, MLFQ
further achieves its goal of running interactive jobs quickly.

Problems With Our Current MLFQ

We thus have a basic MLFQ. It seems to do a fairly good job, sharing the
CPU fairly between long-running jobs, and letting short or I/O-intensive
interactive jobs run quickly. Unfortunately, the approach we have devel-
oped thus far contains serious flaws. Can you think of any?

(This is where you pause and think as deviously as you can)

First, there is the problem of starvation: if there are “too many” in-
teractive jobs in the system, they will combine to consume all CPU time,
and thus long-running jobs will never receive any CPU time (they starve).
We’d like to make some progress on these jobs even in this scenario.

Second, a smart user could rewrite their program to game the sched-
uler. Gaming the scheduler generally refers to the idea of doing some-
thing sneaky to trick the scheduler into giving you more than your fair
share of the resource. The algorithm we have described is susceptible to
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TIP: SCHEDULING MUST BE SECURE FROM ATTACK

You might think that a scheduling policy, whether inside the OS itself
(as discussed herein), or in a broader context (e.g., in a distributed stor-
age system’s I/O request handling [Y+18]), is not a security concern, but
in increasingly many cases, it is exactly that. Consider the modern dat-
acenter, in which users from around the world share CPUs, memories,
networks, and storage systems; without care in policy design and en-
forcement, a single user may be able to adversely harm others and gain
advantage for itself. Thus, scheduling policy forms an important part of
the security of a system, and should be carefully constructed.

the following attack: before the allotment is used, issue an I/O operation
(e.g., to a file) and thus relinquish the CPU; doing so allows you to remain
in the same queue, and thus gain a higher percentage of CPU time. When
done right (e.g., by running for 99% of the allotment before relinquishing
the CPU), a job could nearly monopolize the CPU.

Finally, a program may change its behavior over time; what was CPU-
bound may transition to a phase of interactivity. With our current ap-
proach, such a job would be out of luck and not be treated like the other
interactive jobs in the system.

8.3 Attempt #2: The Priority Boost

Let’s try to change the rules and see if we can avoid the problem of
starvation. What could we do in order to guarantee that CPU-bound jobs
will make some progress (even if it is not much?).

The simple idea here is to periodically boost the priority of all the jobs
in the system. There are many ways to achieve this, but let’s just do some-
thing simple: throw them all in the topmost queue; hence, a new rule:

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

Our new rule solves two problems at once. First, processes are guar-
anteed not to starve: by sitting in the top queue, a job will share the CPU
with other high-priority jobs in a round-robin fashion, and thus eventu-
ally receive service. Second, if a CPU-bound job has become interactive,
the scheduler treats it properly once it has received the priority boost.

Let’s see an example. In this scenario, we just show the behavior of
a long-running job when competing for the CPU with two short-running
interactive jobs. Two graphs are shown in Figure 8.4 (page 7). On the left,
there is no priority boost, and thus the long-running job gets starved once
the two short jobs arrive; on the right, there is a priority boost every 100
ms (which is likely too small of a value, but used here for the example),
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Figure 8.4: Without (Left) and With (Right) Priority Boost

and thus we at least guarantee that the long-running job will make some
progress, getting boosted to the highest priority every 100 ms and thus
getting to run periodically.

Of course, the addition of the time period S leads to the obvious ques-
tion: what should S be set to? John Ousterhout, a well-regarded systems
researcher [O11], used to call such values in systems voo-doo constants,
because they seemed to require some form of black magic to set them cor-
rectly. Unfortunately, S has that flavor. If it is set too high, long-running
jobs could starve; too low, and interactive jobs may not get a proper share
of the CPU. As such, it is often left to the system administrator to find the
right value – or in the modern world, increasingly, to automatic methods
based on machine learning [A+17].

8.4 Attempt #3: Better Accounting

We now have one more problem to solve: how to prevent gaming of
our scheduler? The real culprit here, as you might have guessed, are
Rules 4a and 4b, which let a job retain its priority by relinquishing the
CPU before its allotment expires. So what should we do?

TIP: AVOID VOO-DOO CONSTANTS (OUSTERHOUT’S LAW)
Avoiding voo-doo constants is a good idea whenever possible. Unfor-
tunately, as in the example above, it is often difficult. One could try to
make the system learn a good value, but that too is not straightforward.
The frequent result: a configuration file filled with default parameter val-
ues that a seasoned administrator can tweak when something isn’t quite
working correctly. As you can imagine, these are often left unmodified,
and thus we are left to hope that the defaults work well in the field. This
tip brought to you by our old OS professor, John Ousterhout, and hence
we call it Ousterhout’s Law.
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Figure 8.5: Without (Left) and With (Right) Gaming Tolerance

The solution here is to perform better accounting of CPU time at each
level of the MLFQ. Instead of forgetting how much of its allotment a pro-
cess used at a given level when it performs I/O, the scheduler should
keep track; once a process has used its allotment, it is demoted to the next
priority queue. Whether it uses its allotment in one long burst or many
small ones should not matter. We thus rewrite Rules 4a and 4b to the
following single rule:

• Rule 4: Once a job uses up its time allotment at a given level (re-
gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

Let’s look at an example. Figure 8.5 shows what happens when a
workload tries to game the scheduler with the old Rules 4a and 4b (on
the left) as well the new anti-gaming Rule 4. Without any protection from
gaming, a process can issue an I/O before its allotment ends, thus stay-
ing at the same priority level, and dominating CPU time. With better
accounting in place (right), regardless of the I/O behavior of the process,
it slowly moves down the queues, and thus cannot gain an unfair share
of the CPU.

8.5 Tuning MLFQ And Other Issues

A few other issues arise with MLFQ scheduling. One big question is
how to parameterize such a scheduler. For example, how many queues
should there be? How big should the time slice be per queue? The al-
lotment? How often should priority be boosted in order to avoid star-
vation and account for changes in behavior? There are no easy answers
to these questions, and thus only some experience with workloads and
subsequent tuning of the scheduler will lead to a satisfactory balance.

For example, most MLFQ variants allow for varying time-slice length
across different queues. The high-priority queues are usually given short
time slices; they are comprised of interactive jobs, after all, and thus
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Figure 8.6: Lower Priority, Longer Quanta

quickly alternating between them makes sense (e.g., 10 or fewer millisec-
onds). The low-priority queues, in contrast, contain long-running jobs
that are CPU-bound; hence, longer time slices work well (e.g., 100s of
ms). Figure 8.6 shows an example in which two jobs run for 20 ms at the
highest queue (with a 10-ms time slice), 40 ms in the middle (20-ms time
slice), and with a 40-ms time slice at the lowest.

The Solaris MLFQ implementation — the Time-Sharing scheduling
class, or TS — is particularly easy to configure; it provides a set of tables
that determine exactly how the priority of a process is altered through-
out its lifetime, how long each time slice is, and how often to boost the
priority of a job [AD00]; an administrator can muck with this table in or-
der to make the scheduler behave in different ways. Default values for
the table are 60 queues, with slowly increasing time-slice lengths from
20 milliseconds (highest priority) to a few hundred milliseconds (lowest),
and priorities boosted around every 1 second or so.

Other MLFQ schedulers don’t use a table or the exact rules described
in this chapter; rather they adjust priorities using mathematical formu-
lae. For example, the FreeBSD scheduler (version 4.3) uses a formula to
calculate the current priority level of a job, basing it on how much CPU
the process has used [LM+89]; in addition, usage is decayed over time,
providing the desired priority boost in a different manner than described
herein. See Epema’s paper for an excellent overview of such decay-usage
algorithms and their properties [E95].

Finally, many schedulers have a few other features that you might en-
counter. For example, some schedulers reserve the highest priority levels
for operating system work; thus typical user jobs can never obtain the
highest levels of priority in the system. Some systems also allow some
user advice to help set priorities; for example, by using the command-line
utility nice you can increase or decrease the priority of a job (somewhat)
and thus increase or decrease its chances of running at any given time.
See the man page for more.
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TIP: USE ADVICE WHERE POSSIBLE

As the operating system rarely knows what is best for each and every
process of the system, it is often useful to provide interfaces to allow users
or administrators to provide some hints to the OS. We often call such
hints advice, as the OS need not necessarily pay attention to it, but rather
might take the advice into account in order to make a better decision.
Such hints are useful in many parts of the OS, including the scheduler
(e.g., with nice), memory manager (e.g., madvise), and file system (e.g.,
informed prefetching and caching [P+95]).

8.6 MLFQ: Summary

We have described a scheduling approach known as the Multi-Level
Feedback Queue (MLFQ). Hopefully you can now see why it is called
that: it has multiple levels of queues, and uses feedback to determine the
priority of a given job. History is its guide: pay attention to how jobs
behave over time and treat them accordingly.

The refined set of MLFQ rules, spread throughout the chapter, are re-
produced here for your viewing pleasure:

• Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
• Rule 2: If Priority(A) = Priority(B), A & B run in round-robin fash-

ion using the time slice (quantum length) of the given queue.
• Rule 3: When a job enters the system, it is placed at the highest

priority (the topmost queue).
• Rule 4: Once a job uses up its time allotment at a given level (re-

gardless of how many times it has given up the CPU), its priority is
reduced (i.e., it moves down one queue).

• Rule 5: After some time period S, move all the jobs in the system
to the topmost queue.

MLFQ is interesting for the following reason: instead of demanding
a priori knowledge of the nature of a job, it observes the execution of a
job and prioritizes it accordingly. In this way, it manages to achieve the
best of both worlds: it can deliver excellent overall performance (similar
to SJF/STCF) for short-running interactive jobs, and is fair and makes
progress for long-running CPU-intensive workloads. For this reason,
many systems, including BSD UNIX derivatives [LM+89, B86], Solaris
[M06], and Windows NT and subsequent Windows operating systems
[CS97] use a form of MLFQ as their base scheduler.
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Homework (Simulation)

This program, mlfq.py, allows you to see how the MLFQ scheduler
presented in this chapter behaves. See the README for details.

Questions

1. Run a few randomly-generated problems with just two jobs and
two queues; compute the MLFQ execution trace for each. Make
your life easier by limiting the length of each job and turning off
I/Os.

2. How would you run the scheduler to reproduce each of the exam-
ples in the chapter?

3. How would you configure the scheduler parameters to behave just
like a round-robin scheduler?

4. Craft a workload with two jobs and scheduler parameters so that
one job takes advantage of the older Rules 4a and 4b (turned on
with the -S flag) to game the scheduler and obtain 99% of the CPU
over a particular time interval.

5. Given a system with a quantum length of 10 ms in its highest queue,
how often would you have to boost jobs back to the highest priority
level (with the -B flag) in order to guarantee that a single long-
running (and potentially-starving) job gets at least 5% of the CPU?

6. One question that arises in scheduling is which end of a queue to
add a job that just finished I/O; the -I flag changes this behavior
for this scheduling simulator. Play around with some workloads
and see if you can see the effect of this flag.
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