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A Dialogue on Security

Chapter by Peter Reiher (UCLA)

Professor: Hello again, student!

Student: I thought we were done with all this. We’ve already had three pillars,
and I even stuck around for a few appendices. Will I never be done with this
class?

Professor: That depends on who I am. Some professors want to talk about
security and some don’t. Unfortunately for you, given that you’re here, I’m one
of those who want to.

Student: OK, I suppose we’d better just get on with it.

Professor: That’s the spirit! Soonest begun, soonest done. So, let’s say you
have a peach...

Student: You told me we were at least done with peaches!

Professor: When one is discussing security, lies will always be a part of the
discussion. Anyway, you’ve got a peach. You certainly wouldn’t want to turn
around and find someone had stolen your peach, would you?

Student: Well, if it isn’t as rotten as the one you ended up with, I suppose not.

Professor: And you probably wouldn’t be any happier if you turned around
and discovered someone had swapped out your peach for a turnip, either, would
you?

Student: I guess not, though I do know a couple of good recipes for turnips.

Professor: And you also wouldn’t want somebody slapping your hand away
every time you reached for your peach, right?

Student: No, that would be pretty rude.

Professor: You wouldn’t want that happening to any of the resources your com-
puter controls, either. You might be even unhappier, if they’re really important
resources. You wouldn’t want the love letter you’re in the middle of composing
to leak out, you wouldn’t want someone to reset the saved state in your favorite
game to take you back to the very beginning, and you would be mighty upset if,
at midnight the evening before your project was due, you weren’t allowed to log
into your computer.
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Student: True, those would all pretty much suck.

Professor: Let’s try to keep a professional tone here. After all, this is a class-
room. Kind of. That’s what operating system security is all about, and that’s
what I’m here to tell you about. How can you ensure that secrets remain con-
fidential? How can you guarantee the integrity of your important data? How
can you ensure that you can use your computer resources when you want to?
And these questions apply to all of the resources in your computer, all the time,
forever.

Student: All this sounds a little like reliability stuff we talked about before...

Professor: Yes and no. Bad things can happen more or less by accident or
through poor planning, and reliability is about those sorts of things. But we’re
going a step further. SOMEBODY WANTS YOUR PEACH!!!!

Student: Stop shouting! You were the one asking for a professional tone.

Professor: My apologies, I get excited about this stuff sometimes. The point
I was trying to make is that when we talk about security, we’re talking about
genuine adversaries, human adversaries who are trying to make things go wrong
for you. That has some big implications. They’re likely to be clever, malevolent,
persistent, flexible, and sneaky. You may already feel like the universe has it in
for you (most students feel that way, at any rate), but these folks really, truly are
out to get you. You’re going to have to protect your assets despite anything they
try.

Student: This sounds challenging.

Professor: You have no idea... But you will! YOU WILL!! (maniacal laughter)
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Introduction to Operating System Security

Chapter by Peter Reiher (UCLA)

53.1 Introduction

Security of computing systems is a vital topic whose importance only
keeps increasing. Much money has been lost and many people’s lives
have been harmed when computer security has failed. Attacks on com-
puter systems are so common as to be inevitable in almost any scenario
where you perform computing. Generally, all elements of a computer sys-
tem can be subject to attack, and flaws in any of them can give an attacker
an opportunity to do something you want to prevent. But operating sys-
tems are particularly important from a security perspective. Why?

To begin with, pretty much everything runs on top of an operating
system. As a rule, if the software you are running on top of, whether it
be an operating system, a piece of middleware, or something else, is in-
secure, what’s above it is going to also be insecure. It’s like building a
house on sand. You may build a nice solid structure, but a flood can still
wash away the base underneath your home, totally destroying it despite
the care you took in its construction. Similarly, your application might
perhaps have no security flaws of its own, but if the attacker can misuse
the software underneath you to steal your information, crash your pro-
gram, or otherwise cause you harm, your own efforts to secure your code
might be for naught.

This point is especially important for operating systems. You might
not care about the security of a particular web server or database system
if you don’t run that software, and you might not care about the security
of some middleware platform that you don’t use, but everyone runs an
operating system, and there are relatively few choices of which to run.
Thus, security flaws in an operating system, especially a widely used one,
have an immense impact on many users and many pieces of software.

Another reason that operating system security is so important is that
ultimately all of our software relies on proper behavior of the underlying
hardware: the processor, the memory, and the peripheral devices. What
has ultimate control of those hardware resources? The operating system.
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Thinking about what you have already studied concerning memory
management, scheduling, file systems, synchronization, and so forth, what
would happen with each of these components of your operating system
if an adversary could force it to behave in some arbitrarily bad way? If
you understand what you’ve learned so far, you should find this prospect

deeply disturbing1. Our computing lives depend on our operating sys-
tems behaving as they have been defined to behave, and particularly on
them not behaving in ways that benefit our adversaries, rather than us.

The task of securing an operating system is not an easy one, since mod-
ern operating systems are large and complex. Your experience in writing
code should have already pointed out to you that the more code you’ve
got, and the more complex the algorithms are, the more likely your code
is to contain flaws. Failures in software security generally arise from these
kinds of flaws. Large, complex programs are likely to be harder to secure
than small, simple programs. Not many other programs are as large and
complex as a modern operating system.

Another challenge in securing operating systems is that they are, for
the most part, meant to support multiple processes simultaneously. As
you’ve learned, there are many mechanisms in an operating system meant
to segregate processes from each other, and to protect shared pieces of
hardware from being used in ways that interfere with other processes. If
every process could be trusted to do anything it wants with any hard-
ware resource and any piece of data on the machine without harming
any other process, securing the system would be a lot easier. However,
we typically don’t trust everything equally. When you download and run
a script from a web site you haven’t visited before, do you really want it
to be able to wipe every file from your disk, kill all your other processes,
and start using your network interface to send spam email to other ma-
chines? Probably not, but if you are the owner of your computer, you
have the right to do all those things, if that’s what you want to do. And
unless the operating system is careful, any process it runs, including the
one running that script you downloaded, can do anything you can do.

Consider the issue of operating system security from a different per-
spective. One role of an operating system is to provide useful abstractions
for application programs to build on. These applications must rely on the
OS implementations of the abstractions to work as they are defined. Of-
ten, one part of the definition of such abstractions is their security behav-
ior. For example, we expect that the operating system’s file system will
enforce the access restrictions it is supposed to enforce. Applications can
then build on this expectation to achieve the security goals they require,
such as counting on the file system access guarantees to ensure that a file
they have specified as unwriteable does not get altered. If the applica-
tions cannot rely on proper implementation of security guarantees for OS
abstractions, then they cannot use these abstractions to achieve their own
security goals. At the minimum, that implies a great deal more work on

1If you don’t understand it, you have a lot of re-reading to do. A lot.
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INTRODUCTION TO OPERATING SYSTEM SECURITY 5

the part of the application developers, since they will need to take extra
measures to achieve their desired security goals. Taking into account our
earlier discussion, they will often be unable to achieve these goals if the
abstractions they must rely on (such as virtual memory or a well-defined
scheduling policy) cannot be trusted.

Obviously, operating system security is vital, yet hard to achieve. So
what do we do to secure our operating system? Addressing that question
has been a challenge for generations of computer scientists, and there is
as yet no complete answer. But there are some important principles and
tools we can use to secure operating systems. These are generally built
into any general-purpose operating system you are likely to work with,
and they alter what can be done with that system and how you go about
doing it. So you might not think you’re interested in security, but you
need to understand what your OS does to secure itself to also understand
how to get the system to do what you want.

CRUX: HOW TO SECURE OS RESOURCES

In the face of multiple possibly concurrent and interacting processes
running on the same machine, how can we ensure that the resources each
process is permitted to access are exactly those it should access, in exactly
the ways we desire? What primitives are needed from the OS? What
mechanisms should be provided by the hardware? How can we use them
to solve the problems of security?

53.2 What Are We Protecting?

We aren’t likely to achieve good protection unless we have a fairly
comprehensive view of what we’re trying to protect when we say our
operating system should be secure. Fortunately, that question is easy to
answer for an operating system, at least at the high level: everything.
That answer isn’t very comforting, but it is best to have a realistic under-
standing of the broad implications of operating system security.

A typical commodity operating system has complete control of all (or
almost all) hardware on the machine and is able to do literally anything
the hardware permits. That means it can control the processor, read and
write all registers, examine any main memory location, and perform any
operation one of its peripherals supports. As a result, among the things
the OS can do are:

• examine or alter any process’s memory
• read, write, delete or corrupt any file on any writeable persistent

storage medium, including hard disks and flash drives
• change the scheduling or even halt execution of any process
• send any message to anywhere, including altered versions of those

a process wished to send
• enable or disable any peripheral device
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6 INTRODUCTION TO OPERATING SYSTEM SECURITY

ASIDE: SECURITY ENCLAVES

A little bit back, we said the operating system controls “almost all” the
hardware on the machine. That kind of caveat should have gotten you
asking, “well, what parts of the hardware doesn’t it control?” Originally,
it really was all the hardware. But starting in the 1990s, hardware de-
veloper began to see a need to keep some hardware isolated, to a de-
gree, from the operating system. The first such hardware was primar-
ily intended to protect the boot process of the operating system. TPM,
or Trusted Platform Module, provided assurance that you were booting
the version of the operating system you intended to, protecting you from
attacks that tried to boot compromised versions of the system. More re-
cently, more general hardware elements have tried to control what can
be done on the machine, typically with some particularly important data,
often data that is related to cryptography. Such hardware elements are
called security enclaves, since they are meant to allow only safe use of
this data, even by the most powerful, trusted code in the system – the
operating system itself. They are often used to support operations in a
cloud computing environment, where multiple operating systems might
be running under virtual machines sharing the same physical hardware.

This turns out to be a harder trick than anyone expected. Security tricks
usually are. Security enclaves often prove not to provide quite as much
isolation as their designers hoped. But the attacks on them tend to be so-
phisticated and difficult, and usually require the ability to run privileged
code on the system already. So even if they don’t achieve their full goals,
they do put an extra protective barrier against compromised operating
system code.

• give any process access to any other process’s resources
• arbitrarily take away any resource a process controls
• respond to any system call with a maximally harmful lie

In essence, processes are at the mercy of the operating system. It is
nearly impossible for a process to ’protect’ any part of itself from a mali-
cious operating system. We typically assume our operating system is not

actually malicious2, but a flaw that allows a malicious process to cause the
operating system to misbehave is nearly as bad, since it could potentially
allow that process to gain any of the powers of the operating system itself.
This point should make you think very seriously about the importance of
designing secure operating systems and, more commonly, applying secu-
rity patches to any operating system you are running. Security flaws in
your operating system can completely compromise everything about the
machine the system runs on, so preventing them and patching any that
are found is vitally important.

2If you suspect your operating system is malicious, it’s time to get a new operating system.
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INTRODUCTION TO OPERATING SYSTEM SECURITY 7

53.3 Security Goals and Policies

What do we mean when we say we want an operating system, or any
system, to be secure? That’s a rather vague statement. What we really
mean is that there are things we would like to happen in the system and
things we don’t want to happen, and we’d like a high degree of assurance
that we get what we want. As in most other aspects of life, we usually end
up paying for what we get, so it’s worthwhile to think about exactly what
security properties and effects we actually need and then pay only for
those, not for other things we don’t need. What this boils down to is that
we want to specify the goals we have for the security-relevant behavior of
our system and choose defense approaches likely to achieve those goals
at a reasonable cost.

Researchers in security have thought about this issue in broad terms
for a long time. At a high conceptual level, they have defined three big
security-related goals that are common to many systems, including oper-
ating systems. They are:

• Confidentiality – If some piece of information is supposed to be
hidden from others, don’t allow them to find it out. For example,
you don’t want someone to learn what your credit card number is
– you want that number kept confidential.

• Integrity – If some piece of information or component of a system
is supposed to be in a particular state, don’t allow an adversary to
change it. For example, if you’ve placed an online order for delivery
of one pepperoni pizza, you don’t want a malicious prankster to
change your order to 1000 anchovy pizzas. One important aspect of
integrity is authenticity. It’s often important to be sure not only that
information has not changed, but that it was created by a particular
party and not by an adversary.

• Availability – If some information or service is supposed to be avail-
able for your own or others’ use, make sure an attacker cannot pre-
vent its use. For example, if your business is having a big sale,
you don’t want your competitors to be able to block off the streets
around your store, preventing your customers from reaching you.

An important extra dimension of all three of these goals is that we
want controlled sharing in our systems. We share our secrets with some
people and not with others. We allow some people to change our enter-
prise’s databases, but not just anyone. Some systems need to be made
available to a particular set of preferred users (such as those who have
paid to play your on-line game) and not to others (who have not). Who’s
doing the asking matters a lot, in computers as in everyday life.

Another important aspect of security for computer systems is we often
want to be sure that when someone told us something, they cannot later
deny that they did so. This aspect is often called non-repudiation. The
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8 INTRODUCTION TO OPERATING SYSTEM SECURITY

harder and more expensive it is for someone to repudiate their actions,
the easier it is to hold them to account for those actions, and thus the less
likely people are to perform malicious actions. After all, they might well
get caught and will have trouble denying they did it.

These are big, general goals. For a real system, you need to drill down
to more detailed, specific goals. In a typical operating system, for exam-
ple, we might have a confidentiality goal stating that a process’s memory
space cannot be arbitrarily read by another process. We might have an
integrity goal stating that if a user writes a record to a particular file,
another user who should not be able to write that file can’t change the
record. We might have an availability goal stating that one process run-
ning on the system cannot hog the CPU and prevent other processes from
getting their share of the CPU. If you think back on what you’ve learned
about the process abstraction, memory management, scheduling, file sys-
tems, IPC, and other topics from this class, you should be able to think
of some other obvious confidentiality, integrity, and availability goals we
are likely to want in our operating systems.

For any particular system, even goals at this level are not sufficiently
specific. The integrity goal alluded to above, where a user’s file should
not be overwritten by another user not permitted to do so, gives you a
hint about the extra specificity we need in our security goals for a partic-
ular system. Maybe there is some user who should be able to overwrite
the file, as might be the case when two people are collaborating on writ-
ing a report. But that doesn’t mean an unrelated third user should be able
to write that file, if he is not collaborating on the report stored there. We
need to be able to specify such detail in our security goals. Operating
systems are written to be used by many different people with many dif-
ferent needs, and operating system security should reflect that generality.
What we want in security mechanisms for operating systems is flexibility
in describing our detailed security goals.

Ultimately, of course, the operating system software must do its best to
enforce those flexible security goals, which implies we’ll need to encode
those goals in forms that software can understand. We typically must
convert our vague understandings of our security goals into highly spe-
cific security policies. For example, in the case of the file described above,
we might want to specify a policy like ’users A and B may write to file X,
but no other user can write it.’ With that degree of specificity, backed
by carefully designed and implemented mechanisms, we can hope to
achieve our security goals.

Note an important implication for operating system security: in many
cases, an operating system will have the mechanisms necessary to im-
plement a desired security policy with a high degree of assurance in its
proper application, but only if someone tells the operating system pre-
cisely what that policy is. With some important exceptions (like main-
taining a process’s address space private unless specifically directed oth-
erwise), the operating system merely supplies general mechanisms that
can implement many specific policies. Without intelligent design of poli-
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INTRODUCTION TO OPERATING SYSTEM SECURITY 9

ASIDE: SECURITY VS. FAULT TOLERANCE

When discussing the process abstraction, we talked about how virtual-
ization protected a process from actions of other processes. For instance,
we did not want our process’s memory to be accidentally overwritten by
another process, so our virtualization mechanisms had to prevent such
behavior. Then we were talking primarily about flaws or mistakes in
processes. Is this actually any different than worrying about malicious
behavior, which is more commonly the context in which we discuss se-
curity? Have we already solved all our problems by virtualizing our re-
sources?
Yes and no. (Isn’t that a helpful phrase?) Yes, if we perfectly virtual-
ized everything and allowed no interactions between anything, we very
likely would have solved most problems of malice. However, most virtu-
alization mechanisms are not totally bulletproof. They work well when
no one tries to subvert them, but may not be perfect against all possible
forms of misbehavior. Second, and perhaps more important, we don’t
really want to totally isolate processes from each other. Processes share
some OS resources by default (such as file systems) and can optionally
choose to share others. These intentional relaxations of virtualization are
not problematic when used properly, but the possibilities of legitimate
sharing they open are also potential channels for malicious attacks. Fi-
nally, the OS does not always have complete control of the hardware...

cies and careful application of the mechanisms, however, what the oper-
ating system should or could do may not be what your operating system
will do.

53.4 Designing Secure Systems

Few of you will ever build your own operating system, nor even make
serious changes to any existing operating system, but we expect many of
you will build large software systems of some kind. Experience of many
computer scientists with system design has shown that there are certain
design principles that are helpful in building systems with security re-
quirements. These principles were originally laid out by Jerome Saltzer
and Michael Schroeder in an influential paper [SS75], though some of
them come from earlier observations by others. While neither the origi-
nal authors nor later commentators would claim that following them will
guarantee that your system is secure, paying attention to them has proven
to lead to more secure systems, while you ignore them at your own peril.
We’ll discuss them briefly here. If you are actually building a large soft-
ware system, it would be worth your while to look up this paper (or more
detailed commentaries on it) and study the concepts carefully.
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10 INTRODUCTION TO OPERATING SYSTEM SECURITY

1. Economy of mechanism – This basically means keep your system
as small and simple as possible. Simple systems have fewer bugs
and it’s easier to understand their behavior. If you don’t under-
stand your system’s behavior, you’re not likely to know if it achieves
its security goals.

2. Fail-safe defaults – Default to security, not insecurity. If policies
can be set to determine the behavior of a system, have the default
for those policies be more secure, not less.

3. Complete mediation – This is a security term meaning that you
should check if an action to be performed meets security policies

every single time the action is taken3.

4. Open design – Assume your adversary knows every detail of your
design. If the system can achieve its security goals anyway, you’re
in good shape. This principle does not necessarily mean that you
actually tell everyone all the details, but base your security on the
assumption that the attacker has learned everything. He often has,
in practice.

5. Separation of privilege – Require separate parties or credentials
to perform critical actions. For example, two-factor authentication,
where you use both a password and possession of a piece of hard-
ware to determine identity, is more secure than using either one of
those methods alone.

6. Least privilege – Give a user or a process the minimum privileges
required to perform the actions you wish to allow. The more privi-
leges you give to a party, the greater the danger that they will abuse
those privileges. Even if you are confident that the party is not mali-
cious, if they make a mistake, an adversary can leverage their error
to use their superfluous privileges in harmful ways.

7. Least common mechanism – For different users or processes, use
separate data structures or mechanisms to handle them. For ex-
ample, each process gets its own page table in a virtual memory
system, ensuring that one process cannot access another’s pages.

8. Acceptability – A critical property not dear to the hearts of many
programmers. If your users won’t use it, your system is worthless.
Far too many promising secure systems have been abandoned be-
cause they asked too much of their users.

3This particular principle is often ignored in many systems, in favor of lower overhead or
usability. An overriding characteristic of all engineering design is that you often must balance
conflicting goals, as we saw earlier in the course, such as in the scheduling chapters. We’ll say
more about that in the context of security later.
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INTRODUCTION TO OPERATING SYSTEM SECURITY 11

These are not the only useful pieces of advice on designing secure sys-
tems out there. There is also lots of good material on taking the next
step, converting a good design into code that achieves the security you
intended, and other material on how to evaluate whether the system you
have built does indeed meet those goals. These issues are beyond the
scope of this course, but are extremely important when the time comes for
you to build large, complex systems. For discussion of approaches to se-
cure programming, you might start with Seacord [SE13], if you are work-
ing in C. If you are working in another language, you should seek out a
similar text specific to that language, since many secure coding problem
are related to details of the language. For a comprehensive treatment on
how to evaluate if your system is secure, start with Dowd et al.’s work
[D+07].

53.5 The Basics of OS Security

In a typical operating system, then, we have some set of security goals,
centered around various aspects of confidentiality, integrity, and avail-
ability. Some of these goals tend to be built in to the operating system
model, while others are controlled by the owners or users of the system.
The built-in goals are those that are extremely common, or must be en-
sured to make the more specific goals achievable. Most of these built-in
goals relate to controlling process access to pieces of the hardware. That’s
because the hardware is shared by all the processes on a system, and un-
less the sharing is carefully controlled, one process can interfere with the
security goals of another process. Other built-in goals relate to services
that the operating system offers, such as file systems, memory manage-
ment, and interprocess communications. If these services are not care-
fully controlled, processes can subvert the system’s security goals.

Clearly, a lot of system security is going to be related to process han-
dling. If the operating system can maintain a clean separation of pro-
cesses that can only be broken with the operating system’s help, then
neither shared hardware nor operating system services can be used to
subvert our security goals. That requirement implies that the operating
system needs to be careful about allowing use of hardware and of its ser-
vices. In many cases, the operating system has good opportunities to
apply such caution. For example, the operating system controls virtual
memory, which in turn completely controls which physical memory ad-
dresses each process can access. Hardware support prevents a process
from even naming a physical memory address that is not mapped into its
virtual memory space. (The software folks among us should remember
to regularly thank the hardware folks for all the great stuff they’ve given
us to work with.)

System calls offer the operating system another opportunity to pro-
vide protection. In most operating systems, processes access system ser-
vices by making an explicit system call, as was discussed in earlier chap-
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12 INTRODUCTION TO OPERATING SYSTEM SECURITY

TIP: BE CAREFUL OF THE WEAKEST LINK

It’s worthwhile to remember that the people attacking your systems share
many characteristics with you. In particular, they’re probably pretty
smart and they probably are kind of lazy, in the positive sense that they
don’t do work that they don’t need to do. That implies that attackers
tend to go for the easiest possible way to overcome your system’s secu-
rity. They’re not going to search for a zero-day buffer overflow if you’ve
chosen “password” as your password to access the system.

The practical implication for you is that you should spend most of the
time you devote to securing your system to identifying and strengthen-
ing your weakest link. Your weakest link is the least protected part of
your system, the one that’s easiest to attack, the one you can’t hide away
or augment with some external security system. Often, a running sys-
tem’s weakest link is actually its human users, not its software. You will
have a hard time changing the behavior of people, but you can design
the software bearing in mind that attackers may try to fool the legitimate
users into misusing it. Remember that principle of least privilege? If an
attacker can fool a user who has complete privileges into misusing the
system, it will be a lot worse than fooling a user who can only damage
his own assets.

Generally, thinking about security is a bit different than thinking about
many other system design issues. It’s more adversarial. If you want to
learn more about good ways to think about security of the systems you
build, check out Schneier’s book “Secrets and Lies” [SC00].

ters. As you have learned, system calls switch the execution mode from
the processor’s user mode to its supervisor mode, invoking an appropri-
ate piece of operating system code as they do so. That code can deter-
mine which process made the system call and what service the process
requested. Earlier, we only talked about how this could allow the operat-
ing system to call the proper piece of system code to perform the service,
and to keep track of who to return control to when the service had been
completed. But the same mechanism gives the operating system the op-
portunity to check if the requested service should be allowed under the
system’s security policy. Since access to peripheral devices is through de-
vice drivers, which are usually also accessed via system call, the same
mechanism can ensure proper application of security policies for hard-
ware access.

When a process performs a system call, then, the operating system will
use the process identifier in the process control block or similar structure
to determine the identity of the process. The OS can then use access con-
trol mechanisms to decide if the identified process is authorized to per-
form the requested action. If so, the OS either performs the action itself
on behalf of the process or arranges for the process to perform it without

OPERATING

SYSTEMS

[VERSION 1.10]
WWW.OSTEP.ORG



INTRODUCTION TO OPERATING SYSTEM SECURITY 13

further system intervention. If the process is not authorized, the OS can
simply generate an error code for the system call and return control to the
process, if the scheduling algorithm permits.

53.6 Summary

The security of the operating system is vital for both its own and its
applications’ sakes. Security failures in this software allow essentially
limitless bad consequences. While achieving system security is challeng-
ing, there are known design principles that can help. These principles
are useful not only in designing operating systems, but in designing any
large software system.

Achieving security in operating systems depends on the security goals
one has. These goals will typically include goals related to confidentiality,
integrity, and availability. In any given system, the more detailed particu-
lars of these security goals vary, which implies that different systems will
have different security policies intended to help them meet their specific
security goals. As in other areas of operating system design, we handle
these varying needs by separating the specific policies used by any partic-
ular system from the general mechanisms used to implement the policies
for all systems.

The next question to address is, what mechanisms should our oper-
ating system provide to help us support general security policies? The
virtualization of processes and memory is one helpful mechanism, since
it allows us to control the behavior of processes to a large extent. We will
describe several other useful operating system security mechanisms in
the upcoming chapters.
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Authentication

Chapter by Peter Reiher (UCLA)

54.1 Introduction

Given that we need to deal with a wide range of security goals and
security policies that are meant to achieve those goals, what do we need
from our operating system? Operating systems provide services for pro-
cesses, and some of those services have security implications. Clearly, the
operating system needs to be careful in such cases to do the right thing,
security-wise. But the reason operating system services are allowed at all
is that sometimes they need to be done, so any service that the operating
system might be able to perform probably should be performed – under
the right circumstances.

Context will be everything in operating system decisions on whether
to perform some service or to refuse to do so because it will compro-
mise security goals. Perhaps the most important element of that context
is who’s doing the asking. In the real world, if your significant other
asks you to pick up a gallon of milk at the store on the way home, you’ll
probably do so, while if a stranger on the street asks the same thing, you
probably won’t. In an operating system context, if the system admin-
istrator asks the operating system to install a new program, it probably
should, while if a script downloaded from a random web page asks to in-
stall a new program, the operating system should take more care before
performing the installation. In computer security discussions, we often
refer to the party asking for something as the principal. Principals are
security-meaningful entities that can request access to resources, such as
human users, groups of users, or complex software systems.

So knowing who is requesting an operating system service is crucial in
meeting your security goals. How does the operating system know that?
Let’s work a bit backwards here to figure it out.

Operating system services are most commonly requested by system
calls made by particular processes, which trap from user code into the
operating system. The operating system then takes control and performs
some service in response to the system call. Associated with the calling
process is the OS-controlled data structure that describes the process, so
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16 AUTHENTICATION

the operating system can check that data structure to determine the iden-
tity of the process. Based on that identity, the operating system now has
the opportunity to make a policy-based decision on whether to perform
the requested operation. In computer security discussions, the process
or other active computing entity performing the request on behalf of a
principal is often called its agent.

The request is for access to some particular resource, which we fre-

quently refer to as the object of the access request1. Either the operating
system has already determined this agent process can access the object or
it hasn’t. If it has determined that the process is permitted access, the OS
can remember that decision and it’s merely a matter of keeping track, pre-
sumably in some per-process data structure like the PCB, of that fact. For
example, as we discovered when investigating virtualization of memory,
per-process data structures like page tables show which pages and page
frames can be accessed by a process at any given time. Any form of data
created and managed by the operating system that keeps track of such
access decisions for future reference is often called a credential.

If the operating system has not already produced a credential showing
that an agent process can access a particular object, however, it needs in-
formation about the identity of the process’s principal to determine if its
request should be granted. Different operating systems have used differ-
ent types of identity for principals. For instance, most operating systems
have a notion of a user identity, where the user is, typically, some hu-
man being. (The concept of a user has been expanded over the years to
increase its power, as we’ll see later.) So perhaps all processes run by a
particular person will have the same identity associated with them. An-
other common type of identity is a group of users. In a manufacturing
company, you might want to give all your salespersons access to your
inventory information, so they can determine how many widgets and
whizz-bangs you have in the warehouse, while it wouldn’t be necessary

for your human resources personnel to have access to that information2.
Yet another form of identity is the program that the process is running.
Recall that a process is a running version of a program. In some systems
(such as the Android Operating System), you can grant certain privileges
to particular programs. Whenever they run, they can use these privileges,
but other programs cannot.

Regardless of the kind of identity we use to make our security deci-
sions, we must have some way of attaching that identity to a particu-
lar process. Clearly, this attachment is a crucial security issue. If you

1Another computer science overloading of the word “object.” Here, it does not refer to
“object oriented,” but to the more general concept of a specific resource with boundaries and
behaviors, such as a file or an IPC channel.

2Remember the principle of least privilege from the previous chapter? Here’s an example
of using it. A rogue human services employee won’t be able to order your warehouse emptied
of pop-doodles if you haven’t given such employees the right to do so. As you read through
the security chapters of this book, keep your eyes out for other applications of the security
principles we discussed earlier.
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AUTHENTICATION 17

misidentify a programmer employee process as an accounting depart-
ment employee process, you could end up with an empty bank account.
(Not to mention needing to hire a new programmer.) Or if you fail to
identify your company president correctly when he or she is trying to
give an important presentation to investors, you may find yourself out
of a job once the company determines that you’re the one who derailed
the next round of startup capital, because the system didn’t allow the
president to access the presentation that would have bowled over some
potential investors.

On the other hand, since everything except the operating system’s
own activities are performed by some process, if we can get this right for
processes, we can be pretty sure we will have the opportunity to check
our policy on every important action. But we need to bear in mind one
other important characteristic of operating systems’ usual approach to
authentication: once a principal has been authenticated, systems will al-
most always rely on that authentication decision for at least the lifetime
of the process. This characteristic puts a high premium on getting it right.
Mistakes won’t be readily corrected. Which leads to the crux:

CRUX: HOW TO SECURELY IDENTIFY PROCESSES

For systems that support processes belonging to multiple principals,
how can we be sure that each process has the correct identity attached?
As new processes are created, how can we be sure the new process has
the correct identity? How can we be sure that malicious entities cannot
improperly change the identity of a process?

54.2 Attaching Identities To Processes
Where do processes come from? Usually they are created by other

processes. One simple way to attach an identity to a new process, then,
is to copy the identity of the process that created it. The child inherits
the parent’s identity. Mechanically, when the operating system services
a call from old process A to create new process B (fork, for example), it
consults A’s process control block to determine A’s identity, creates a new
process control block for B, and copies in A’s identity. Simple, no?

That’s all well and good if all processes always have the same identity.
We can create a primal process when our operating system boots, perhaps
assigning it some special system identity not assigned to any human user.
All other processes are its descendants and all of them inherit that single
identity. But if there really is only one identity, we’re not going to be able
to implement any policy that differentiates the privileges of one process
versus another.

We must arrange that some processes have different identities and use
those differences to manage our security policies. Consider a multi-user
system. We can assign identities to processes based on which human user
they belong to. If our security policies are primarily about some people
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18 AUTHENTICATION

being allowed to do some things and others not being allowed to, we now
have an idea of how we can go about making our decisions.

If processes have a security-relevant identity, like a user ID, we’re go-
ing to have to set the proper user ID for a new process. In most systems,
a user has a process that he or she works with ordinarily: the shell pro-
cess in command line systems, the window manager process in window-
oriented system – you had figured out that both of these had to be pro-
cesses themselves, right? So when you type a command into a shell or
double click on an icon to start a process in a windowing system, you are
asking the operating system to start a new process under your identity.

Great! But we do have another issue to deal with. How did that shell
or window manager get your identity attached to itself? Here’s where a
little operating system privilege comes in handy. When a user first starts
interacting with a system, the operating system can start a process up for
that user. Since the operating system can fiddle with its own data struc-
tures, like the process control block, it can set the new process’s owner-
ship to the user who just joined the system.

Again, well and good, but how did the operating system determine
the user’s identity so it could set process ownership properly? You prob-
ably can guess the answer - the user logged in, implying that the user pro-
vided identity information to the OS proving who the user was. We’ve
now identified a new requirement for the operating system: it must be
able to query identity from human users and verify that they are who
they claim to be, so we can attach reliable identities to processes, so we
can use those identities to implement our security policies. One thing
tends to lead to another in operating systems.

So how does the OS do that? As should be clear, we’re building a tow-
ering security structure with unforeseeable implications based on the OS
making the right decision here, so it’s important. What are our options?

54.3 How To Authenticate Users?

So this human being walks up to a computer...
Assuming we leave aside the possibilities for jokes, what can be done

to allow the system to determine who this person is, with reasonable ac-
curacy? First, if the person is not an authorized user of the system at all,
we should totally reject this attempt to sneak in. Second, if he or she is an
authorized user, we need to determine, which one?

Classically, authenticating the identity of human beings has worked in
one of three ways:

• Authentication based on what you know
• Authentication based on what you have
• Authentication based on what you are

When we say “classically” here, we mean “classically” in the, well,
classical sense. Classically as in going back to the ancient Greeks and
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AUTHENTICATION 19

Romans. For example, Polybius, writing in the second century B.C., de-
scribes how the Roman army used “watchwords” to distinguish friends
from foes [P-46], an example of authentication based on what you know.
A Roman architect named Celer wrote a letter of recommendation (which
still survives) for one of his slaves to be given to an imperial procurator at
some time in the 2nd century AD [C100] – authentication based on what
the slave had. Even further back, in (literally) Biblical times, the Gilea-
dites required refugees after a battle to say the word “shibboleth,” since
the enemies they sought (the Ephraimites) could not properly pronounce
that word [JB-500]. This was a form of authentication by what you are: a
native speaker of the Gileadites’ dialect or of the Ephraimite dialect.

Having established the antiquity of these methods of authentication,
let’s leap past several centuries of history to the Computer Era to discuss
how we use them in the context of computer authentication.

54.4 Authentication By What You Know

Authentication by what you know is most commonly performed by
using passwords. Passwords have a long (and largely inglorious) history
in computer security, going back at least to the CTSS system at MIT in
the early 1960s [MT79]. A password is a secret known only to the party
to be authenticated. By divulging the secret to the computer’s operating
system when attempting to log in, the party proves their identity. (You
should be wondering about whether that implies that the system must
also know the password, and what further implications that might have.
We’ll get to that.) The effectiveness of this form of authentication de-
pends, obviously, on several factors. We’re assuming other people don’t
know the party’s password. If they do, the system gets fooled. We’re as-
suming that no one else can guess it, either. And, of course, that the party
in question must know (and remember) it.

Let’s deal with the problem of other people knowing a password first.
Leaving aside guessing, how could they know it? Someone who already
knows it might let it slip, so the fewer parties who have to know it, the
fewer parties we have to worry about. The person we’re trying to au-
thenticate has to know it, of course, since we’re authenticating this person
based on the person knowing it. We really don’t want anyone else to be
able to authenticate as that person to our system, so we’d prefer no third
parties know the password. Thinking broadly about what a “third party”
means here, that also implies the user shouldn’t write the password down
on a slip of paper, since anyone who steals the paper now knows the pass-
word. But there’s one more party who would seem to need to know the
password: our system itself. That suggests another possible vulnerability,

since the system’s copy of our password might leak out3.

3 “Might” is too weak a word. The first known incident of such stored passwords leaking
is from 1962 [MT79]; such leaks happen to this day with depressing regularity and much larger
scope. [KA16] discusses a leak of over 100 million passwords stored in usable form.
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20 AUTHENTICATION

TIP: AVOID STORING SECRETS

Storing secrets like plaintext passwords or cryptographic keys is a haz-
ardous business, since the secrets usually leak out. Protect your system
by not storing them if you don’t need to. If you do need to, store them
in a hashed form using a strong cryptographic hash. If you can’t do that,
encrypt them with a secure cipher. (Perhaps you’re complaining to your-
self that we haven’t told you about those yet. Be patient.) Store them in
as few places, with as few copies, as possible. Don’t forget temporary ed-
itor files, backups, logs, and the like, since the secrets may be there, too.
Remember that anything you embed into an executable you give to oth-
ers will not remain secret, so it’s particularly dangerous to store secrets in
executables. In some cases, even secrets only kept in the heap of an exe-
cuting program have been divulged, so avoid storing and keeping secrets
even in running programs.

Interestingly enough, though, our system does not actually need to
know the password. Think carefully about what the system is doing
when it checks the password the user provides. It’s checking to see if
the user knows it, not what that password actually is. So if the user pro-
vides us the password, but we don’t know the password, how on earth
could our system do that?

You already know the answer, or at least you’ll slap your forehead
and say “I should have thought of that” once you hear it. Store a hash of
the password, not the password itself. When the user provides you with
what he or she claims to be the password, hash the claim and compare
it to the stored hashed value. If it matches, you believe he or she knows
the password. If it doesn’t, you don’t. Simple, no? And now your system
doesn’t need to store the actual password. That means if you’re not too
careful with how you store the authentication information, you haven’t
actually lost the passwords, just their hashes. By their nature, you can’t
reverse hashing algorithms, so the adversary can’t use the stolen hash
to obtain the password. If the attacker provides the hash, instead of the
password, the hash itself gets hashed by the system, and a hash of a hash
won’t match the hash.

There is a little more to it than that. The benefit we’re getting by stor-
ing a hash of the password is that if the stored copy is leaked to an at-
tacker, the attacker doesn’t know the passwords themselves. But it’s not
quite enough just to store something different from the password. We
also want to ensure that whatever we store offers an attacker no help in
guessing what the password is. If an attacker steals the hashed password,
he or she should not be able to analyze the hash to get any clues about
the password itself. There is a special class of hashing algorithms called
cryptographic hashes that make it infeasible to use the hash to figure
out what the password is, other than by actually passing a guess at the
password through the hashing algorithm. One unfortunate characteris-
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tic of cryptographic hashes is that they’re hard to design, so even smart
people shouldn’t try. They use ones created by experts. That’s what mod-
ern systems should do with password hashing: use a cryptographic hash
that has been thoroughly studied and has no known flaws. At any given
time, which cryptographic hashing algorithms meet those requirements
may vary. At the time of this writing, SHA-3 [B+09] is the US standard
for cryptographic hash algorithms, and is a good choice.

Let’s move on to the other problem: guessing. Can an attacker who
wants to pose as a user simply guess the password? Consider the sim-
plest possible password: a single bit, valued 0 or 1. If your password is
a single bit long, then an attacker can try guessing “0” and have a 50/50
chances of being right. Even if wrong, if a second guess is allowed, the at-
tacker now knows that the password is “1” and will correctly guess that.

Obviously, a one bit password is too easy to guess. How about an 8
bit password? Now there are 256 possible passwords you could choose.
If the attacker guesses 256 times, sooner or later the guess will be right,
taking 128 guesses (on average). Better than only having to guess twice,
but still not good enough. It should be clear to you, at this point, that
the length of the password is critical in being resistant to guessing. The
longer the password, the harder to guess.

But there’s another important factor, since we normally expect hu-
man beings to type in their passwords from keyboards or something
similar. And given that we’ve already ruled out writing the password
down somewhere as insecure, the person has to remember it. Early uses
of passwords addressed this issue by restricting passwords to letters of
the alphabet. While this made them easier to type and remember, it also
cut down heavily on the number of bit patterns an attacker needed to
guess to find someone’s password, since all of the bit patterns that did
not represent alphabetic characters would not appear in passwords. Over
time, password systems have tended to expand the possible characters in
a password, including upper and lower case letters, numbers, and special
characters. The more possibilities, the harder to guess.

So we want long passwords composed of many different types of char-
acters. But attackers know that people don’t choose random strings of
these types of characters as their passwords. They often choose names
or familiar words, because those are easy to remember. Attackers trying
to guess passwords will thus try lists of names and words before trying
random strings of characters. This form of password guessing is called a
dictionary attack, and it can be highly effective. The dictionary here isn’t
Websters (or even the Oxford English Dictionary), but rather is a special-
ized list of words, names, meaningful strings of numbers (like “123456”),
and other character patterns people tend to use for passwords, ordered
by the probability that they will be chosen as the password. A good dic-
tionary attack can figure out 90% of the passwords for a typical site [G13].

If you’re smart in setting up your system, an attacker really should not
be able to run a dictionary attack on a login process remotely. With any
care at all, the attacker will not guess a user’s password in the first five or
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ASIDE: PASSWORD VAULTS

One way you can avoid the problem of choosing passwords is to use
what’s called a password vault or key chain. This is an encrypted file
kept on your computer that stores passwords. It’s encrypted with a pass-
word of its own. To get passwords out of the vault, you must provide the
password for the vault, reducing the problem of remembering a different
password for every site to remembering one password. Also, it ensures
that attackers can only use your passwords if they not only have the spe-
cial password that opens the vault, but they have access to the vault it-
self. Of course, the benefits of securely storing passwords this way are
limited to the strength of the passwords stored in the vault, since guess-
ing and dictionary attacks will still work. Some password vaults will
generate strong passwords for you – not very memorable ones, but that
doesn’t matter, since it’s the vault that needs to remember it, not you. You
can also find password vaults that store your passwords in the cloud. If
you provide them with cleartext versions of your password to store them,
however, you are sharing a password with another entity that doesn’t re-
ally need to know it, thus taking a risk that perhaps you shouldn’t take. If
the cloud stores only your encrypted passwords, the risk is much lower.

six guesses (alas, sometimes no care is taken and the attacker will), and
there’s no good reason your system should allow a remote user to make
15,000 guesses at an account’s password without getting it right. So by
either shutting off access to an account when too many wrong guesses are
made at its password, or (better) by drastically slowing down the process
of password checking after a few wrong guesses (which makes a long
dictionary attack take an infeasible amount of time), you can protect the
account against such attacks.

But what if the attacker stole your password file? Since we assume
you’ve been paying attention, it contains hashes of passwords, not pass-
words itself. But we also assume you paid attention when we told you
to use a widely known cryptographic hash, and if you know it, so does
the person who stole your password file. If the attacker obtained your
hashed passwords, the hashing algorithm, a dictionary, and some com-
pute power, the attacker can crank away at guessing your passwords at
their leisure. Worse, if everyone used the same cryptographic hashing al-
gorithm (which, in practice, they probably will), the attacker only needs
to run each possible password through the hash once and store the re-
sults (essentially, the dictionary has been translated into hashed form).
So when the attacker steals your password file, he or she would just need
to do string comparisons to your hashed passwords and the newly cre-
ated dictionary of hashed passwords, which is much faster.

There’s a simple fix: before hashing a new password and storing it
in your password file, generate a big random number (say 32 or 64 bits)
and concatenate it to the password. Hash the result and store that. You
also need to store that random number, since when the user tries to log
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in and provides the correct password, you’ll need to take what the user
provided, concatenate the stored random number, and run that through
the hashing algorithm. Otherwise, the password hashed by itself won’t
match what you stored. You typically store the random number (which
is called a salt) in the password file right next to the hashed password.
This concept was introduced in Robert Morris and Ken Thompson’s early
paper on password security [MT79].

Why does this help? The attacker can no longer create one transla-
tion of passwords in the dictionary to their hashes. What is needed is
one translation for every possible salt, since the password files that were
stolen are likely to have a different salt for every password. If the salt is
32 bits, that’s 232 different translations for each word in the dictionary,
which makes the approach of pre-computing the translations infeasible.
Instead, for each entry in the stolen password file, the dictionary attack
must freshly hash each guess with the password’s salt. The attack is still
feasible if you have chosen passwords badly, but it’s not nearly as cheap.
Any good system that uses passwords and cares about security stores
cryptographically hashed and salted passwords. If yours doesn’t, you’re
putting your users at risk.

There are other troubling issues for the use of passwords, but many of
those are not particular to the OS, so we won’t fling further mud at them
here. Suffice it to say that there is a widely held belief in the computer
security community that passwords are a technology of the past, and are
no longer sufficiently secure for today’s environments. At best, they can
serve as one of several authentication mechanisms used in concert. This
idea is called multi-factor authentication, with two-factor authentica-
tion being the version that gets the most publicity. You’re perhaps already
familiar with the concept: to get money out of an ATM, you need to know
your personal identification number (PIN). That’s essentially a password.
But you also need to provide further evidence of your identity...

54.5 Authentication by What You Have

Most of us have probably been in some situation where we had an
identity card that we needed to show to get us into somewhere. At least,
we’ve probably all attended some event where admission depended on
having a ticket for the event. Those are both examples of authentication
based on what you have, an ID card or a ticket, in these cases.

When authenticating yourself to an operating system, things are a bit
different. In special cases, like the ATM mentioned above, the device
(which has, after all, a computer inside – you knew that, right?) has spe-
cial hardware to read our ATM card. That hardware allows it to deter-
mine that, yes, we have that card, thus providing the further proof to go
along with your PIN. Most desktop computers, laptops, tablets, smart
phones, and the like do not have that special hardware. So how can they
tell what we have?
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ASIDE: LINUX LOGIN PROCEDURES

Linux, in the tradition of earlier Unix systems, authenticates users based on pass-
words and then ties that identity to an initial process associated with the newly
logged in user, much as described above. Here we will provide a more detailed
step-by-step description of what actually goes on when a user steps up to a key-
board and tries to log in to a Unix system, as a solid example of how a real operat-
ing system handles this vital security issue.

1. A special login process running under a privileged system identity displays
a prompt asking for the user to type in his or her identity, in the form of a
generally short user name. The user types in a user name and hits carriage
return. The name is echoed to the terminal.

2. The login process prompts for the user’s password. The user types in the
password, which is not echoed.

3. The login process looks up the name the user provided in the password file.
If it is not found, the login process rejects the login attempt. If it is found,
the login process determines the internal user identifier (a unique user ID
number), the group (another unique ID number) that the user belongs to,
the initial command shell that should be provided to this user once login
is complete, and the home directory that shell should be started in. Also,
the login process finds the salt and the salted, hashed version of the correct
password for this user, which are permanently stored in a secure place in
the system.

4. The login process combines the salt for the user’s password and the pass-
word provided by the user and performs the hash on the combination. It
compares the result to the stored version obtained in the previous step. If
they do not match, the login process rejects the login attempt.

5. If they do match, fork a process. Set the user and group of the forked process
to the values determined earlier, which the privileged identity of the login
process is permitted to do. Change directory to the user’s home directory
and exec the shell process associated with this user (both the directory name
and the type of shell were determined in step 3).

There are some other details associated with ensuring that we can log in another
user on the same terminal after this one logs out that we don’t go into here.

Note that in steps 3 and 4, login can fail either because the user name is not present
in the system or because the password does not match the user name. Linux and
most other systems do not indicate which condition failed, if one of them did. This
choice prevents attackers from learning the names of legitimate users of the system
just by typing in guesses, since they cannot know if they guessed a non-existent
name or guessed the wrong password for a legitimate user name. Not providing
useful information to non-authenticated users is generally a good security idea
that has applicability in other types of systems.

Think a bit about why Linux’s login procedure chooses to echo the typed user
name when it doesn’t echo the password. Is there no security disadvantage to
echoing the user name, is it absolutely necessary to echo the user name, or is it a
tradeoff of security for convenience? Why not echo the password?
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If we have something that plugs into one of the ports on a computer,
such as a hardware token that uses USB, then, with suitable software sup-
port, the operating system can tell whether the user trying to log in has
the proper device or not. Some security tokens (sometimes called don-
gles, an unfortunate choice of name) are designed to work that way.

In other cases, since we’re trying to authenticate a human user any-
way, we make use of the person’s capabilities to transfer information from
whatever it is he or she has to the system where the authentication is re-
quired. For example, some smart tokens display a number or character
string on a tiny built-in screen. The human user types the information
read off that screen into the computer’s keyboard. The operating system
does not get direct proof that the user has the device, but if only someone
with access to the device could know what information was supposed to
be typed in, the evidence is nearly as good.

These kinds of devices rely on frequent changes of whatever infor-
mation the device passes (directly or indirectly) to the operating system,
perhaps every few seconds, perhaps every time the user tries to authenti-
cate himself or herself. Why? Well, if it doesn’t, anyone who can learn the
static information from the device no longer needs the device to pose as
the user. The authentication mechanism has been converted from “some-
thing you have” to “something you know,” and its security now depends
on how hard it is for an attacker to learn that secret.

One weak point for all forms of authentication based on what you
have is, what if you don’t have it? What if you left your smartphone
on your dresser bureau this morning? What if your dongle slipped out
of your pocket on your commute to work? What if a subtle pickpocket
brushed up against you at the coffee shop and made off with your se-
cret authentication device? You now have a two-fold problem. First, you
don’t have the magic item you need to authenticate yourself to the op-
erating system. You can whine at your computer all you want, but it
won’t care. It will continue to insist that you produce the magic item you
lost. Second, someone else has your magic item, and possibly they can
pretend to be you, fooling the operating system that was relying on au-
thentication by what you have. Note that the multi-factor authentication
we mentioned earlier can save your bacon here, too. If the thief stole your
security token, but doesn’t know your password, the thief will still have

to guess that before they can pose as you4.
If you study system security in practice for very long, you’ll find that

there’s a significant gap between what academics (like me) tell you is safe
and what happens in the real world. Part of this gap is because the real
world needs to deal with real issues, like user convenience. Part of it is
because security academics have a tendency to denigrate anything where
they can think of a way to subvert it, even if that way is not itself partic-
ularly practical. One example in the realm of authentication mechanisms

4Assuming, of course, you haven’t written the password with a Sharpie onto the back of
the smart card the thief stole. Well, it seemed like a good idea at the time...
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based on what you have is authenticating a user to a system by sending
a text message to the user’s cell phone. The user then types a message
into the computer. Thinking about this in theory, it sounds very weak.
In addition to the danger of losing the phone, security experts like to
think about exotic attacks where the text message is misdirected to the
attacker’s phone, allowing the attacker to provide the secret information
from the text message to the computer.

In practice, people usually have their phone with them and take rea-
sonable care not to lose it. If they do lose it, they notice that quickly and
take equally quick action to fix their problem. So there is likely to be a
relatively small window of time between when your phone is lost and
when systems learn that they can’t authenticate you using that phone.
Also in practice, redirecting text messages sent to cell phones is possible,
but far from trivial. The effort involved is likely to outweigh any benefit
the attacker would get from fooling the authentication system, at least in
the vast majority of cases. So a mechanism that causes security purists to
avert their gazes in horror in actual use provides quite reasonable secu-

rity5. Keep this lesson in mind. Even if it isn’t on the test6, it may come in
handy some time in your later career.

54.6 Authentication by What You Are

If you don’t like methods like passwords and you don’t like having
to hand out smart cards or security tokens to your users, there is another
option. Human beings (who are what we’re talking about authenticating
here) are unique creatures with physical characteristics that differ from all
others, sometimes in subtle ways, sometimes in obvious ones. In addition
to properties of the human body (from DNA at the base up to the appear-
ance of our face at the top), there are characteristics of human behavior
that are unique, or at least not shared by very many others. This obser-
vation suggests that if our operating system can only accurately measure
these properties or characteristics, it can distinguish one person from an-
other, solving our authentication problem.

This approach is very attractive to many people, most especially to
those who have never tried to make it work. Going from the basic obser-
vation to a working, reliable authentication system is far from easy. But it
can be made to work, to much the same extent as the other authentication
mechanisms. We can use it, but it won’t be perfect, and has its own set of
problems and challenges.

5However, in 2016 the United States National Institute of Standards and Technology is-
sued draft guidance deprecating the use of this technique for two-factor authentication, at
least in some circumstances. Here’s another security lesson: what works today might not
work tomorrow.

6We don’t know about you, but every time the word “test” or “quiz” or “exam” comes
up, our heart skips a beat or two. Too many years of being a student will do this to a person.
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Remember that we’re talking about a computer program (either the OS
itself or some separate program it invokes for the purpose) measuring a
human characteristic and determining if it belongs to a particular person.
Think about what that entails. What if we plan to use facial recognition
with the camera on a smart phone to authenticate the owner of the phone?
If we decide it’s the right person, we allow whoever we took the picture
of to use the phone. If not, we give them the raspberry (in the cyber sense)
and keep them out.

You should have identified a few challenges here. First, the camera
is going to take a picture of someone who is, presumably, holding the
phone. Maybe it’s the owner, maybe it isn’t. That’s the point of taking
the picture. If it isn’t, we should assume whoever it is would like to fool
us into thinking that they are the actual owner. What if it’s someone who
looks a lot like the right user, but isn’t? What if the person is wearing a
mask? What if the person holds up a photo of the right user, instead of
their own face? What if the lighting is dim, or the person isn’t fully facing
the camera? Alternately, what if it is the right user and the person is not
facing the camera, or the lighting is dim, or something else has changed
about the person’s look? (e.g., hairstyle)

Computer programs don’t recognize faces the way people do. They
do what programs always do with data: they convert it to zeros and ones
and process it using some algorithm. So that “photo” you took is actually
a collection of numbers, indicating shadow and light, shades of color,
contrasts, and the like. OK, now what? Time to decide if it’s the right
person’s photo or not! How?

If it were a password, we could have stored the right password (or,
better, a hash of the right password) and done a comparison of what got
typed in (or its hash) to what we stored. If it’s a perfect match, authenti-
cate. Otherwise, don’t. Can we do the same with this collection of zeros
and ones that represent the picture we just took? Can we have a picture
of the right user stored permanently in some file (also in the form of zeros
and ones) and compare the data from the camera to that file?

Probably not in the same way we compared the passwords. Consider
one of those factors we just mentioned above: lighting. If the picture we
stored in the file was taken under bright lights and the picture coming out
of the camera was taken under dim lights, the two sets of zeros and ones
are most certainly not going to match. In fact, it’s quite unlikely that two
pictures of the same person, taken a second apart under identical condi-
tions, would be represented by exactly the same set of bits. So clearly we
can’t do a comparison based on bit-for-bit equivalence.

Instead, we need to compare based on a higher-level analysis of the
two photos, the stored one of the right user and the just-taken one of the
person who claims to be that user. Generally this will involve extracting
higher-level features from the photos and comparing those. We might,
for example, try to calculate the length of the nose, or determine the color
of the eyes, or make some kind of model of the shape of the mouth. Then
we would compare the same feature set from the two photos.
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Figure 54.1: Crossover Error Rate

Even here, though, an exact match is not too likely. The lighting, for
example, might slightly alter the perceived eye color. So we’ll need to
allow some sloppiness in our comparison. If the feature match is “close
enough,” we authenticate. If not, we don’t. We will look for close matches,
not perfect matches, which brings the nose of the camel of tolerances into
our authentication tent. If we are intolerant of all but the closest matches,
on some days we will fail to match the real user’s picture to the stored
version. That’s called a false negative, since we incorrectly decided not
to authenticate. If we are too tolerant of differences in measured versus
stored data, we will authenticate a user whom is not who they claim to
be. That’s a false positive, since we incorrectly decided to authenticate.

The nature of biometrics is that any implementation will have a char-
acteristic false positive and false negative rate. Both are bad, so you’d like
both to be low. For any given implementation of some biometric authen-
tication technique, you can typically tune it to achieve some false positive
rate, or tune it to achieve some false negative rate. But you usually can’t
minimize both. As the false positive rate goes down, the false negative
rate goes up, and vice versa. The sensitivity describes how close the
match must be.

Figure 54.1 shows the typical relationship between these error rates.
Note the circle at the point where the two curves cross. That point repre-
sents the crossover error rate, a common metric for describing the accu-
racy of a biometric. It represents an equal tradeoff between the two kinds
of errors. It’s not always the case that one tunes a biometric system to
hit the crossover error rate, since you might care more about one kind of
error than the other. For example, a smart phone that frequently locks its
legitimate user out because it doesn’t like today’s fingerprint reading is
not going to be popular, while the chances of a thief who stole the phone
having a similar fingerprint are low. Perhaps low false negatives matter
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more here. On the other hand, if you’re opening a bank vault with a reti-
nal scan, requiring the bank manager to occasionally provide a second
scan isn’t too bad, while allowing a robber to open the vault with a bogus
fake eye would be a disaster. Low false positives might be better here.

Leaving aside the issues of reliability of authentication using biomet-
rics, another big issue for using human characteristics to authenticate is
that many of the techniques for measuring them require special hardware
not likely to be present on most machines. Many computers (including
smart phones, tablets, and laptops) are likely to have cameras, but em-
bedded devices and server machines probably don’t. Relatively few ma-
chines have fingerprint readers, and even fewer are able to measure more
exotic biometrics. While a few biometric techniques (such as measuring
typing patterns) require relatively common hardware that is likely to be
present on many machines anyway, there aren’t many such techniques.
Even if a special hardware device is available, the convenience of using
them for this purpose can be limiting.

One further issue you want to think about when considering using
biometric authentication is whether there is any physical gap between
where the biometric quantity is measured and where it is checked. In par-
ticular, checking biometric readings provided by an untrusted machine
across the network is hazardous. What comes in across the network is
simply a pattern of bits spread across one or more messages, whether it
represents a piece of a web page, a phoneme in a VoIP conversation, or
part of a scanned fingerprint. Bits are bits, and anyone can create any
bit pattern they want. If a remote adversary knows what the bit pattern
representing your fingerprint looks like, they may not need your finger,
or even a fingerprint scanner, to create it and feed it to your machine.
When the hardware performing the scanning is physically attached to
your machine, there is less opportunity to slip in a spurious bit pattern
that didn’t come from the device. When the hardware is on the other side
of the world on a machine you have no control over, there is a lot more
opportunity. The point here is to be careful with biometric authentication
information provided to you remotely.

In all, it sort of sounds like biometrics are pretty terrible for authen-
tication, but that’s the wrong lesson. For that matter, previous sections
probably made it sound like all methods of authentication are terrible.
Certainly none of them are perfect, but your task as a system designer
is not to find the perfect authentication mechanism, but to use mecha-
nisms that are well suited to your system and its environment. A good
fingerprint reader built in to a smart phone might do its job quite well.
A long, unguessable password can provide a decent amount of security.
Well-designed smart cards can make it nearly impossible to authenticate
yourself without having them in your hand. And where each type of
mechanism fails, you can perhaps correct for that failure by using a sec-
ond or third authentication mechanism that doesn’t fail in the same cases.
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54.7 Authenticating Non-Humans

No, we’re not talking about aliens or extra-dimensional beings, or
even your cat. If you think broadly about how computers are used to-
day, you’ll see that there are many circumstances in which no human
user is associated with a process that’s running. Consider a web server.
There really isn’t some human user logged in whose identity should be
attached to the web server. Or think about embedded devices, such as
a smart light bulb. Nobody logs in to a light bulb, but there is certainly
code running there, and quite likely it is process-oriented code.

Mechanically, the operating system need not have a problem with the
identities of such processes. Simply set up a user called webserver or
lightbulb on the system in question and attach the identity of that
“user” to the processes that are associated with running the web server or
turning the light bulb on and off. But that does lead to the question of how
you make sure that only real web server processes are tagged with that
identity. We wouldn’t want some arbitrary user on the web server ma-
chine creating processes that appear to belong to the server, rather than
to that user.

One approach is to use passwords for these non-human users, as well.
Simply assign a password to the web server user. When does it get used?
When it’s needed, which is when you want to create a process belonging
to the web server, but you don’t already have one in existence. The system
administrator could log in as the web server user, creating a command
shell and using it to generate the actual processes the server needs to do
its business. As usual, the processes created by this shell process would
inherit their parent’s identity, webserver, in this case. More commonly,
we skip the go-between (here, the login) and provide some mechanism
whereby the privileged user is permitted to create processes that belongs
not to that user, but to some other user such as webserver. Alternately,
we can provide a mechanism that allows a process to change its owner-
ship, so the web server processes would start off under some other user’s
identity (such as the system administrator’s) and change their ownership
to webserver. Yet another approach is to allow a temporary change
of process identity, while still remembering the original identity. (We’ll
say more about this last approach in a future chapter.) Obviously, any
of these approaches require strong controls, since they allow one user to
create processes belonging to another user.

As mentioned above, passwords are the most common authentication
method used to determine if a process can be assigned to one of these
non-human users. Sometimes no authentication of the non-human user
is required at all, though. Instead, certain other users (like trusted sys-
tem administrators) are given the right to assign new identities to the
processes they create, without providing any further authentication in-
formation than their own. In Linux and other Unix systems, the sudo
command offers this capability. For example, if you type the following:

sudo -u webserver apache2
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ASIDE: OTHER AUTHENTICATION POSSIBILITIES

Usually, what you know, what you have, and what you are cover the
useful authentication possibilities, but sometimes there are other options.
Consider going into the Department of Motor Vehicles to apply for a
driver’s license. You probably go up to a counter and talk to some em-
ployee behind that counter, perhaps giving the person a bunch of per-
sonal information, maybe even money to cover a fee for the license. Why
on earth did you believe that person was actually a DMV employee who
was able to get you a legitimate driver’s license? You probably didn’t
know the person; you weren’t shown an official ID card; the person didn’t
recite the secret DMV mantra that proved he or she was an initiate of that
agency. You believed it because the person was standing behind a par-
ticular counter, which is the counter DMV employees stand behind. You
authenticated the person based on location.

Once in a while, that approach can be handy in computer systems, most
frequently in mobile or pervasive computing. If you’re tempted to use it,
think carefully about how you’re obtaining the evidence that the subject
really is in a particular place. It’s actually fairly tricky.

What else? Perhaps you can sometimes authenticate based on what some-
one does. If you’re looking for personally characteristic behavior, like
their typing pattern or delays between commands, that’s a type of bio-
metric. (Google introduced multi-factor authentication of this kind in its
Android phones, for example.) But you might be less interested in au-
thenticating exactly who they are versus authenticating that they belong
to the set of Well Behaved Users. Many web sites, for example, care less
about who their visitors are and more about whether they use the web
site properly. In this case, you might authenticate their membership in
the set by their ongoing interactions with your system.

This would indicate that the apache2 program should be started un-
der the identity of webserver, rather than under the identity of whoever
ran the sudo command. This command might require the user running
it to provide their own authentication credentials (for extra certainty that
it really is the privileged user asking for it, and not some random visi-
tor accessing the computer during the privileged user’s coffee break), but
would not require authentication information associated with webserver.
Any sub-processes created by apache2 would, of course, inherit the iden-
tity of webserver. We’ll say more about sudo in the chapter on access
control.

One final identity issue we alluded to earlier is that sometimes we
wish to identify not just individual users, but groups of users who share
common characteristics, usually security-related characteristics. For ex-
ample, we might have four or five system administrators, any one of
whom is allowed to start up the web server. Instead of associating the
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privilege with each one individually, it’s advantageous to create a system-
meaningful group of users with that privilege. We would then indicate
that the four or five administrators are members of that group. This kind
of group is another example of a security-relevant principal, since we will
make our decisions on the basis of group membership, rather than indi-
vidual identity. When one of the system administrators wished to do
something requiring group membership, we would check that he or she
was a member. We can either associate a group membership with each
process, or use the process’s individual identity information as an index
into a list of groups that people belong to. The latter is more flexible, since
it allows us to put each user into an arbitrary number of groups.

Most modern operating systems, including Linux and Windows, sup-
port these kinds of groups, since they provide ease and flexibility in deal-
ing with application of security policies. They handle group membership
and group privileges in manners largely analogous to those for individu-
als. For example, a child process will usually have the same group-related
privileges as its parent. When working with such systems, it’s important
to remember that group membership provides a second path by which a
user can obtain access to a resource, which has its benefits and its dangers.

54.8 Summary

If we want to apply security policies to actions taken by processes in
our system, we need to know the identity of the processes, so we can
make proper decisions. We start the entire chain of processes by creating
a process at boot time belonging to some system user whose purpose is
to authenticate users. They log in, providing authentication information
in one or more forms to prove their identity. The system verifies their
identity using this information and assigns their identity to a new process
that allows the user to go about their business, which typically involves
running other processes. Those other processes will inherit the user’s
identity from their parent process. Special secure mechanisms can allow
identities of processes to be changed or to be set to something other than
the parent’s identity. The system can then be sure that processes belong
to the proper user and can make security decisions accordingly.

Historically and practically, the authentication information provided
to the system is either something the authenticating user knows (like a
password or PIN), something the user has (like a smart card or proof of
possession of a smart phone), or something the user is (like the user’s
fingerprint or voice scan). Each of these approaches has its strengths and
weaknesses. A higher degree of security can be obtained by using multi-
factor authentication, which requires a user to provide evidence of more
than one form, such as requiring both a password and a one-time code
that was texted to the user’s smart phone.
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Access Control

Chapter by Peter Reiher (UCLA)

55.1 Introduction

So we know what our security goals are, we have at least a general
sense of the security policies we’d like to enforce, and we have some ev-
idence about who is requesting various system services that might (or
might not) violate our policies. Now we need to take that information
and turn it into something actionable, something that a piece of software
can perform for us.

There are two important steps here:

1. Figure out if the request fits within our security policy.
2. If it does, perform the operation. If not, make sure it isn’t done.

The first step is generally referred to as access control. We will deter-
mine which system resources or services can be accessed by which par-
ties in which ways under which circumstances. Basically, it boils down
to another of those binary decisions that fit so well into our computing
paradigms: yes or no. But how to make that decision? To make the prob-
lem more concrete, consider this case. User X wishes to read and write
file /var/foo. Under the covers, this case probably implies that a process
being run under the identity of User X issued a system call such as:

open(”/var/foo”, O RDWR)

Note here that we’re not talking about the Linux open() call, which
is a specific implementation that handles access control a specific way.
We’re talking about the general idea of how you might be able to control
access to a file open system call. Hence the different font, to remind you.

How should the system handle this request from the process, making
sure that the file is not opened if the security policy to be enforced forbids
it, but equally making sure that the file is opened if the policy allows it?
We know that the system call will trap to the operating system, giving
it the opportunity to do something to make this decision. Mechanically
speaking, what should that “something” be?
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THE CRUX OF THE PROBLEM:
HOW TO DETERMINE IF AN ACCESS REQUEST SHOULD BE GRANTED?

How can the operating system decide if a particular request made by
a particular process belonging to a particular user at some given moment
should or should not be granted? What information will be used to make
this decision? How can we set this information to encode the security
policies we want to enforce for our system?

55.2 Important Aspects Of The Access Control Problem

As usual, the system will run some kind of algorithm to make this
decision. It will take certain inputs and produce a binary output, a yes-or-
no decision on granting access. At the high level, access control is usually
spoken of in terms of subjects, objects, and access. A subject is the entity
that wants to perform the access, perhaps a user or a process. An object
is the thing the subject wants to access, perhaps a file or a device. Access
is some particular mode of dealing with the object, such as reading it or
writing it. So an access control decision is about whether a particular
subject is allowed to perform a particular mode of access on a particular
object. We sometimes refer to the process of determining if a particular

subject is allowed to perform a particular form of access on a particular1

object as authorization.
One relevant issue is when will access control decisions be made? The

system must run whatever algorithm it uses every time it makes such a
decision. The code that implements this algorithm is called a reference
monitor, and there is an obvious incentive to make sure it is implemented
both correctly and efficiently. If it’s not correct, you make the wrong ac-
cess decisions – obviously bad. Its efficiency is important because it will
inject some overhead whenever it is used. Perhaps we wish to minimize
these overheads by not checking access control on every possible oppor-
tunity. On the other hand, remember that principle of complete medi-
ation we introduced a couple of chapters back? That principle said we
should check security conditions every time someone asked for some-
thing.

Clearly, we’ll need to balance costs against security benefits. But if
we can find some beneficial special cases where we can achieve low cost
without compromising security, we can possibly manage to avoid trading
off one for the other, at least in those cases.

One way to do so is to give subjects objects that belong only to them.
If the object is inherently theirs, by its very nature and unchangeably so,
the system can let the subject (a process, in the operating system case) ac-

1Wow. You know how hard it is to get so many instances of the word “particular” to line
up like this? It’s a column of particulars! But, perhaps, not particularly interesting.
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cess it freely. Virtualization allows us to create virtual objects of this kind.
Virtual memory is an excellent example. A process is allowed to access its

virtual memory freely2, with no special operating system access control
check at the moment the process tries to use it. A good thing, too, since
otherwise we would need to run our access control algorithm on every
process memory reference, which would lead to a ridiculously slow sys-
tem. We can play similar virtualization tricks with peripheral devices. If
a process is given access to some virtual device, which is actually backed
up by a real physical device controlled by the OS, and if no other process
is allowed to use that device, the operating system need not check for
access control every time the process wants to use it. For example, a pro-
cess might be granted control of a GPU based on an initial access control
decision, after which the process can write to the GPU’s memory or issue
instructions directly to it without further intervention by the OS.

Of course, as discussed earlier, virtualization is mostly an operating-
system provided illusion. Processes share memory, devices, and other
computing resources. What appears to be theirs alone is actually shared,
with the operating system running around behind the scenes to keep the
illusion going, sometimes assisted by special hardware. That means the
operating system, without the direct knowledge and participation of the
applications using the virtualized resource, still has to make sure that
only proper forms of access to it are allowed. So merely relying on vir-
tualization to ensure proper access just pushes the problem down to pro-
tecting the virtualization functionality of the OS. Even if we leave that
issue aside, sooner or later we have to move past cheap special cases and
deal with the general problem. Subject X wants to read and write object
/tmp/foo. Maybe it’s allowable, maybe it isn’t. Now what?

Computer scientists have come up with two basic approaches to solv-
ing this question, relying on different data structures and different meth-
ods of making the decision. One is called access control lists and the
other is called capabilities. It’s actually a little inaccurate to claim that
computer scientists came up with these approaches, since they’ve been in
use in non-computer contexts for millennia. Let’s look at them in a more
general perspective before we consider operating system implementa-
tions.

Let’s say we want to start an exclusive nightclub (called, perhaps,

Chez Andrea3) restricted to only the best operating system researchers
and developers. We don’t want to let any of those database or program-
ming language people slip in, so we’ll need to make sure only our ap-
proved customers get through the door. How might we do that? One

2Almost. Remember the bits in the page table that determine whether a particular page
can be read, written, or executed? But it’s not the operating system doing the runtime check
here, it’s the virtual memory hardware.

3The authors Arpaci-Dusseau would like to note that author Reiher is in charge of these
name choices for the security chapters, and did not strong-arm him into using their names
throughout this and other examples. We now return you to your regular reading...
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way would be to hire a massive intimidating bouncer who has a list of
all the approved members. When someone wants to enter the club, they
would prove their identity to the bouncer, and the bouncer would see
if they were on the list. If it was Linus Torvalds or Barbara Liskov, the
bouncer would let them in, but would keep out the hoi polloi networking
folks who had failed to distinguish themselves in operating systems.

Another approach would be to put a really great lock on the door of
the club and hand out keys to that lock to all of our OS buddies. If Jerome
Saltzer wanted to get in to Chez Andrea, he’d merely pull out his key and
unlock the door. If some computer architects with no OS chops wanted
to get in, they wouldn’t have a key and thus would be stuck outside.
Compared to the other approach, we’d save on the salary of the bouncer,

though we would have to pay for the locks and keys4. As new luminaries
in the OS field emerge who we want to admit, we’ll need new keys for
them, and once in a while we may make a mistake and hand out a key to
someone who doesn’t deserve it, or a member might lose a key, in which
case we need to make sure that key no longer opens the club door.

The same ideas can be used in computer systems. Early computer sci-
entists decided to call the approach that’s kind of like locks and keys a
capability-based system, while the approach based on the bouncer and
the list of those to admit was called an access control list system. Ca-
pabilities are thus like keys, or tickets to a movie, or tokens that let you
ride a subway. Access control lists are thus like, well, lists. How does this
work in an operating system? If you’re using capabilities, when a pro-
cess belonging to user X wants to read and write file /tmp/foo, it hands
a capability specific to that file to the system. (And precisely what, you
may ask, is a capability in this context? Good question! We’ll get to that.)
If you’re using access control lists (ACLs, for short), the system looks up
user X on an ACL associated with /tmp/foo, only allowing the access if
the user is on the list. In either case, the check can be made at the moment
the access (an open() call, in our example) is requested. The check is
made after trapping to the operating system, but before the access is ac-
tually permitted, with an early exit and error code returned if the access
control check fails.

At a high level, these two options may not sound very different, but
when you start thinking about the algorithm you’ll need to run and the
data structures required to support that algorithm, you’ll quickly see that
there are major differences. Let’s walk through each in turn.

4Note that for both access control lists and capabilities, we are assuming we’ve already
authenticated the person trying to enter the club. If some nobody wearing a Linus Torvalds or
Barbara Liskov mask gets past our bouncer, or if we aren’t careful to determine that it really
is Jerome Saltzer before handing a random person the key, we’re not going to keep the riffraff
out. Abandoning the cute analogy, absolutely the same issue applies in real computer systems,
which is why the previous chapter discussed authentication in detail.
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55.3 Using ACLs For Access Control

What if, in the tradition of old British clubs, Chez Andrea gives each
member his own private room, in addition to access to the library, the
dining room, the billiard parlor, and other shared spaces? In this case,
we need to ensure not just that only members get into the club at all, but
that Ken Thompson (known to be a bit of a scamp [T84]) can’t slip into
Whitfield Diffie’s room and short-sheet his bed. We could have one big
access control list that specifies allowable access to every room, but that
would get unmanageable. Instead, why not have one ACL for each room
in the club?

We do the same thing with files in a typical OS that relies on ACLs
for access control. Each file has its own access control list, resulting in
simpler, shorter lists and quicker access control checks. So our open()
call in an ACL system will examine a list for /tmp/foo, not an ACL
encoding all accesses for every file in the system.

When this open() call traps to the operating system, the OS consults
the running process’s PCB to determine who owns the process. That data
structure indicates that user X owns the process. The system then must
get hold of the access control list for /tmp/foo. This ACL is more file
metadata, akin to the things we discussed in the chapter titled ”Files and
Directories.” So it’s likely to be stored with or near the rest of the metadata
for this file. Somehow, we obtain that list from persistent storage. We now
look up X on the list. Either X is there or isn’t. If not, no access for X. If
yes, we’ll typically go a step further to determine if the ACL entry for X
allows the type of access being requested. In our example, X wanted to
open /tmp/foo for read and write. Perhaps the ACL allows X to open
that file for read, but not for write. In that case, the system will deny the
access and return an error to the process.

In principle, this isn’t too complicated, but remember the devil being
in the details? He’s still there. Consider some of those details. For ex-
ample, where exactly is the ACL persistently stored? It really does need
to be persistent for most resources, since the ACLs effectively encode our
chosen security policy, which is probably not changing very often. So it’s
somewhere on the flash drive or disk. Unless it’s cached, we’ll need to
read it off that device every time someone tries to open the file. In most
file systems, as was discussed in the sections on persistence, you already
need to perform several device reads to actually obtain any information
from a file. Are we going to require another read to also get the ACL for
the file? If so, where on the device do we put the ACL to ensure that it’s
quick to access? It would be best if it was close to, or even part of, some-
thing we’re already reading, which suggests a few possible locations: the
file’s directory entry, the file’s inode, or perhaps the first data block of the
file. At the minimum, we want to have the ACL close to one of those
locations, and it might be better if it was actually in one of them, such as
the inode.

That leads to another vexing detail: how big is this list? If we do the

© 2008–23, ARPACI-DUSSEAU (OSTEP)
© 2019–23, REIHER (SECURITY)

THREE

EASY

PIECES



40 ACCESS CONTROL

obvious thing and create a list of actual user IDs and access modes, in
principle the list could be of arbitrary size, up to the number of users
known to the system. For some systems, that could be thousands of en-
tries. But typically files belong to one user and are often available only to
that user and perhaps a couple friends. So we wouldn’t want to reserve
enough space in every ACL for every possible user to be listed, since most
users wouldn’t appear in most ACLs. With some exceptions, of course:
a lot of files should be available in some mode (perhaps read or execute)
to all users. After all, commonly used executables (like ls and mv) are
stored in files, and we’ll be applying access control to them, just like any
other file. Our users will share the same font files, configuration files for
networking, and so forth. We have to allow all users to access these files
or they won’t be able to do much of anything on the system.

So the obvious implementation would reserve a big per-file list that
would be totally filled for some files and nearly empty for others. That’s
clearly wasteful. For the totally filled lists, there’s another worrying de-
tail: every time we want to check access in the list, we’ll need to search it.
Modern computers can search a list of a thousand entries rather quickly,
but if we need to perform such searches all the time, we’ll add a lot of
undesirable overhead to our system. We could solve the problem with
variable-sized access control lists, only allocating the space required for
each list. Spend a few moments thinking about how you would fit that
kind of metadata into the types of file systems we’ve studied, and the
implications for performance.

Fortunately, in most circumstances we can benefit from a bit of legacy
handed down to us from the original Bell Labs Unix system. Back in
those primeval days when computer science giants roamed the Earth (or
at least certain parts of New Jersey), persistent storage was in short sup-
ply and pretty expensive. There was simply no way they could afford to
store large ACLs for each file. In fact, when they worked it out, they fig-
ured they could afford about nine bits for each file’s ACL. Nine bits don’t
go far, but fortunately those early Unix designers had plenty of clever-
ness to make up for their lack of hardware. They thought about their
problem and figured out that there were effectively three modes of access
they cared about (read, write, and execute, for most files), and they could
handle most security policies with only three entries on each access con-
trol list. Of course, if they were going to use one bit per access mode per
entry, they would have already used up their nine bits, leaving no bits
to specify who the entry pertained to. So they cleverly partitioned the
entries on their access control list into three groups. One is the owner of
the file, whose identity they had already stored in the inode. One is the
members of a particular group or users; this group ID was also stored in
the inode. The final one is everybody else, i.e., everybody who wasn’t the
owner or a member of his group. No need to use any bits to store that,
since it was just the complement of the user and group.

This solution not only solved the problem of the amount of storage
eaten up by ACLs, but also solved the problem of the cost of accessing
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and checking them. You already needed to access a file’s inode to do
almost anything with it, so if the ACL was embedded in the inode, there
would be no extra seeks and reads to obtain it. And instead of a search
of an arbitrary sized list, a little simple logic on a few bits would provide
the answer to the access control question. And that logic is still providing
the answer in most systems that use Posix-compliant file systems to this
very day. Of course, the approach has limitations, since it cannot express
complex access modes and sharing relationships. For that reason, some
modern systems (such as Windows) allow extensions that permit the use
of more general ACLs, but many rely on the tried-and-true Unix-style

nine-bit ACLs5.
There are some good features of ACLs and some limiting features.

Good points first. First, what if you want to figure out who is allowed
to access a resource? If you’re using ACLs, that’s an easy question to an-
swer, since you can simply look at the ACL itself. Second, if you want to
change the set of subjects who can access an object, you merely need to
change the ACL, since nothing else can give the user access. Third, since
the ACL is typically kept either with or near the file itself, if you can get
to the file, you can get to all relevant access control information. This is
particularly important in distributed systems, but it also has good perfor-
mance implications for all systems, as long as your design keeps the ACL
near the file or its inode.

Now for the less desirable features. First, ACLs require you to solve
problems we mentioned earlier: having to store the access control infor-
mation somewhere near the file and dealing with potentially expensive
searches of long lists. We described some practical solutions that work
pretty well in most systems, but these solutions limit what ACLs can do.
Second, what if you want to figure out the entire set of resources some
principal (a process or a user) is permitted to access? You’ll need to check
every single ACL in the system, since that principal might be on any of
them. Third, in a distributed environment, you need to have a common
view of identity across all the machines for ACLs to be effective. If a user
on cs.ucla.edu wants to access a file stored on cs.wisconsin.edu,
the Wisconsin machine is going to check some identity provided by UCLA
against an access control list stored at Wisconsin. Does user remzi at
UCLA actually refer to the same principal as user remzi at Wisconsin?
If not, you may allow a remote user to access something he shouldn’t.
But trying to maintain a consistent name space of users across multiple
different computing domains is challenging.

5The history is a bit more complicated than this. The CTSS system offered a more limited
form of condensed ACL than Unix did [C+63], and the Multics system included the concept of
groups in a more general access control list consisting of character string names of users and
groups [S74]. Thus, the Unix approach was a cross-breeding of these even earlier systems.
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ASIDE: NAME SPACES

We just encountered one of the interesting and difficult problems in dis-
tributed systems: what do names mean on different machines? This name
space problem is relatively easy on a single computer. If the name chosen
for a new thing is already in use, don’t allow it to be assigned. So when a
particular name is issued on that system by any user or process, it means
the same thing. /etc/password is the same file for you and for all the
other users on your computer.

But what about distributed systems composed of multiple computers?
If you want the same guarantee about unique names understood by all,
you need to make sure someone on a machine at UCLA does not create a
name already being used at the University of Wisconsin. How to do that?

Different answers have different pluses and minuses. One approach is
not to bother and to understand that the namespaces are different – that’s
what we do with process IDs, for example. Another approach is to require
an authority to approve name selection – that’s more or less how AFS
handles file name creation. Another approach is to hand out portions of
the name space to each participant and allow them to assign any name
from that portion, but not any other name – that’s how the World Wide
Web and the IPv4 address space handle the issue. None of these answers
are universally right or wrong. Design your name space for your needs,
but understand the implications.

55.4 Using Capabilities For Access Control

Access control lists are not your only option for controlling access in
computer systems. Almost, but not quite. You can also use capabilities,
the option that’s more like keys or tickets. Chez Andrea could give keys
to its members to allow admission. Different rooms could have different
keys, preventing the more mischievous members from leaving little sur-
prises in other members’ rooms. Each member would carry around a set
of keys that would admit him or her to the particular areas of the club
she should have access to. Like ACLs, capabilities have a long history of
use in computer systems, with Dennis and van Horn [DV64] being per-
haps the earliest example. Wulf et al. [W+74] describe the Hydra Operat-
ing System, which used capabilities as a fundamental control mechanism.
Levy [L84] gives a book-length summary of the use of capabilities in early
hardware and software systems. In capability systems, a running process
has some set of capabilities that specify its access permissions. If you’re
using a pure capability system, there is no ACL anywhere, and this set
is the entire encoding of the access permissions for this process. That’s
not how Linux or Windows work, but other operating systems, such as
Hydra, examined this approach to handling access control.

How would we perform that open() call in this kind of pure capabil-
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ity system? When the call is made, either your application would provide
a capability permitting your process to open the file in question as a pa-
rameter, or the operating system would find the capability for you. In
either case, the operating system would check that the capability does or
does not allow you to perform a read/write open on file /tmp/foo. If
it does, the OS opens it for you. If not, back comes an error to your pro-
cess, chiding it for trying to open a file it does not have a capability for.
(Remember, we’re not talking about Linux here. Linux uses ACLs, not
capabilities, to determine if an open() call should be allowed.)

There are some obvious questions here. What, precisely, is a capabil-
ity? Clearly we’re not talking about metal keys or paper tickets. Also,
how does the OS check the validity of capability? And where do capa-
bilities come from, in the first place? Just like all other information in
a computer, capabilities are bunches of bits. They are data. Given that
there are probably lots of resources to protect, and capabilities must be
specific to a resource, capabilities are likely to be fairly long, and perhaps
fairly complex. But, ultimately, they’re just bits. Anything composed of a
bunch of bits has certain properties we must bear in mind. For example,
anyone can create any bunch of bits they want. There are no proprietary
or reserved bit patterns that processes cannot create. Also, if a process
has one copy of a particular set of bits, it’s trivial to create more copies of
it. The first characteristic implies that it’s possible for anyone at all to cre-
ate any capability they want. The second characteristic implies that once
someone has a working capability, they can make as many copies of it as
they want, and can potentially store them anywhere they want, including
on an entirely different machine.

That doesn’t sound so good from a security perspective. If a process
needs a capability with a particular bit pattern to open /tmp/foo for read
and write, maybe it can just generate that bit pattern and successfully
give itself the desired access to the file. That’s not what we’re looking for
in an access control mechanism. We want capabilities to be unforgeable.
Even if we can get around that problem, the ability to copy a capability
would suggest we can’t take access permission away, once granted, since

the process might have copies of the capability stashed away elsewhere6.
Further, perhaps the process can grant access to another process merely
by using IPC to transfer a copy of the capability to that other process.

We typically deal with these issues when using capabilities for access
control by never letting a process get its metaphoric hands on any ca-
pability. The operating system controls and maintains capabilities, stor-
ing them somewhere in its protected memory space. Processes can per-
form various operations on capabilities, but only with the mediation of
the operating system. If, for example, process A wishes to give process
B read/write access to file /tmp/foo using capabilities, A can’t merely

6This ability is commonly called revocation. Revocation is easy with ACLs, since you
just go to the ACL and change it. Depending on implementation, it can be easy or hard for
capabilities.
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send B the appropriate bit pattern. Instead, A must make a system call
requesting the operating system to give the appropriate capability to B.
That gives the OS a chance to decide whether its security policy permits
B to access /tmp/foo and deny the capability transfer if it does not.

So if we want to rely on capabilities for access control, the operating
system will need to maintain its own protected capability list for each pro-
cess. That’s simple enough, since the OS already has a per-process pro-
tected data structure, the PCB. Slap a pointer to the capability list (stored
in kernel memory) into the process’ PCB and you’re all set. Now when
the process attempts to open /tmp/foo for read/write, the call traps to
the OS, the OS consults the capability list for that process to see if there is a
relevant capability for the operation on the list and proceeds accordingly.

In a general system, keeping an on-line capability list of literally every-
thing some principal is permitted to access would incur high overheads.
If we used capabilities for file-based access control, a user might have
thousands of capabilities, one for each file the user was allowed to access
in any way. Generally, if one is using capabilities, the system persistently
stores the capabilities somewhere safe, and imports them as needed. So a
capability list attached to a process is not necessarily very long, but there
is an issue of deciding which capabilities of the immense set users have
at their discretion to give to each process they run.

There is another option. Capabilities need not be stored in the oper-
ating system. Instead, they can be cryptographically protected. If capa-
bilities are relatively long and are created with strong cryptography, they
cannot be guessed in a practical way and can be left in the user’s hands.
Cryptographic capabilities make most sense in a distributed system, so
we’ll talk about them in the chapter on distributed system security.

There are good and bad points about capabilities, just as there were for
access control lists. With capabilities, it’s easy to determine which system
resources a given principal can access. Just look through the principal’s
capability list. Revoking access merely requires removing the capability
from the list, which is easy enough if the OS has exclusive access to the ca-
pability (but much more difficult if it does not). If you have the capability
readily available in memory, it can be quite cheap to check it, particularly
since the capability can itself contain a pointer to the data or software
associated with the resource it protects. Perhaps merely having such a
pointer is the system’s core implementation of capabilities.

On the other hand, determining the entire set of principals who can
access a resource becomes more expensive. Any principal might have a
capability for the resource, so you must check all principals’ capability
lists to tell. Simple methods for making capability lists short and man-
ageable have not been as well developed as the Unix method of providing
short ACLs. Also, the system must be able to create, store, and retrieve
capabilities in a way that overcomes the forgery problem, which can be
challenging.

One neat aspect of capabilities is that they offer a good way to create
processes with limited privileges. With access control lists, a process in-
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herits the identity of its parent process, also inheriting all of the privileges
of that principal. It’s hard to give the process just a subset of the parent’s
privileges. Either you need to create a new principal with those limited
privileges, change a bunch of access control lists, and set the new pro-
cess’s identity to that new principal, or you need some extension to your
access control model that doesn’t behave quite the way access control lists
ordinarily do. With capabilities, it’s easy. If the parent has capabilities for
X, Y, and Z, but only wants the child process to have the X and Y capabil-
ities, when the child is created, the parent transfers X and Y, not Z.

In practice, user-visible access control mechanisms tend to use access
control lists, not capabilities, for a number of reasons. However, under
the covers operating systems make extensive use of capabilities. For ex-
ample, in a typical Linux system, that open() call we were discussing
uses ACLs for access control. However, assuming the Linux open() was
successful, as long as the process keeps the file open, the ACL is not ex-
amined on subsequent reads and writes. Instead, Linux creates a data
structure that amounts to a capability indicating that the process has read
and write privileges for that file. This structure is attached to the process’s
PCB. On each read or write operation, the OS can simply consult this data
structure to determine if reading and writing are allowed, without hav-
ing to find the file’s access control list. If the file is closed, this capability-
like structure is deleted from the PCB and the process can no longer access
the file without performing another open() which goes back to the ACL.
Similar techniques can be used to control access to hardware devices and
IPC channels, especially since UNIX-like systems treat these resources as
if they were files. This combined use of ACLs and capabilities allows the
system to avoid some of the problems associated with each mechanism.
The cost of checking an access control list on every operation is saved be-
cause this form of capability is easy to check, being merely the presence
or absence of a pointer in an operating system data structure. The cost of
managing capabilities for all accessible objects is avoided because the ca-
pability is only set up after a successful ACL check. If the object is never
accessed by a process, the ACL is never checked and no capability is re-
quired. Since any given process typically opens only a tiny fraction of all
the files it is permitted to open, the scaling issue doesn’t usually arise.

55.5 Mandatory And Discretionary Access Control

Who gets to decide what the access control on a computer resource
should be? For most people, the answer seems obvious: whoever owns
the resource. In the case of a user’s file, the user should determine access
control settings. In the case of a system resource, the system administra-
tor, or perhaps the owner of the computer, should determine them. How-
ever, for some systems and some security policies, that’s not the right an-
swer. In particular, the parties who care most about information security
sometimes want tighter controls than that.
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The military is the most obvious example. We’ve all heard of Top Se-
cret information, and probably all understand that even if you are al-
lowed to see Top Secret information, you’re not supposed to let other
people see it, too. And that’s true even if the information in question is in
a file that you created yourself, such as a report that contains statistics or
quotations from some other Top Secret document. In these cases, the sim-
ple answer of the creator controlling access permissions isn’t right. Who-
ever is in overall charge of information security in the organization needs
to make those decisions, which implies that principal has the power to
set the access controls for information created by and belonging to other
users, and that those users can’t override his decisions. The more com-
mon case is called discretionary access control. Whether almost anyone
or almost no one is given access to a resource is at the discretion of the
owning user. The more restrictive case is called mandatory access con-
trol. At least some elements of the access control decisions in such sys-
tems are mandated by an authority, who can override the desires of the
owner of the information. The choice of discretionary or mandatory ac-
cess control is orthogonal to whether you use ACLs or capabilities, and
is often independent of other aspects of the access control mechanism,
such as how access information is stored and handled. A mandatory ac-
cess control system can also include discretionary elements, which allow
further restriction (but not loosening) of mandatory controls.

Many people will never work with a system running mandatory ac-
cess controls, so we won’t go further into how they work, beyond ob-
serving that clearly the operating system is going to be involved in en-
forcing them. Should you ever need to work in an environment where
mandatory access control is important, you can be sure you will hear
about it. You should learn more about it at that point, since when some-
one cares enough to use mandatory access control mechanisms, they also
care enough to punish users who don’t follow the rules. Loscocco [L01]
describes a special version of Linux that incorporates mandatory access
control. This is a good paper to start with if you want to learn more about
the characteristics of such systems.

55.6 Practicalities Of Access Control Mechanisms

Most systems expose either a simple or more powerful access control
list mechanism to their users, and most of them use discretionary access
control. However, given that a modern computer can easily have hun-
dreds of thousands, or even millions of files, having human users indi-
vidually set access control permissions on them is infeasible. Generally,
the system allows each user to establish a default access permission that
is used for every file he creates. If one uses the Linux open() call to cre-
ate a file, one can specify which access permissions to initially assign to
that file. Access permissions on newly created files in Unix/Linux sys-
tems can be further controlled by the umask() call, which applies to all
new file creations by the process that performed it.
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ASIDE: THE ANDROID ACCESS CONTROL MODEL

The Android system is one of the leading software platforms for today’s mobile
computing devices, especially smart phones. These devices pose different access
control challenges than classic server computers, or even personal desktop com-
puters or laptops. Their functionality is based on the use of many relatively small
independent applications, commonly called apps, that are downloaded, installed,
and run on a device belonging to only a single user. Thus, there is no issue of
protecting multiple users on one machine from each other. If one used a standard
access control model, these apps would run under that user’s identity. But apps
are developed by many entities, and some may be malicious. Further, most apps
have no legitimate need for most of the resources on the device. If they are granted
too many privileges, a malicious app can access the phone owner’s contacts, make
phone calls, or buy things over the network, among many other undesirable be-
haviors. The principle of least privilege implies that we should not give apps the
full privileges belonging to owner, but they must have some privileges if they are
to do anything interesting.

Android runs on top of a version of Linux, and an application’s access limitations
are achieved in part by generating a new user ID for each installed app. The app
runs under that ID and its accesses can be controlled on that basis. However, the
Android middleware offers additional facilities for controlling access. Application
developers define accesses required by their app. When a user considers installing
an app on their device, they are shown what permissions it requires. The user can
either grant the app those permissions, not install the app, or limit its permissions,
though the latter choice may also limit app utility. Also, the developer specifies
ways in which other apps can communicate with the new app. The data structure
used to encode this access information is called a permission label. An app’s
permission labels (both what it can access and what it provides to others) are set
at app design time, and encoded into a particular Android system at the moment
the app is installed on that machine.

Permission labels are thus like capabilities, since possession of them by the app
allows the app to do something, while lacking a label prevents the app from doing
that thing. An app’s set of permission labels is set statically at install time. The user
can subsequently change those permissions, although limiting them may damage
app functionality. Permission labels are a form of mandatory access control. The
Android security model is discussed in detail by Enck et al. [E+09].

The Android security approach is interesting, but not perfect. In particular, users
are not always aware of the implications of granting an application access to some-
thing, and, faced with the choice of granting the access or not being able to effec-
tively use the app, they will often grant it. This behavior can be problematic, if the
app is malicious.

If desired, the owner can alter that initial ACL, but experience shows
that users rarely do. This tendency demonstrates the importance of prop-
erly chosen defaults. Here, as in many other places in an operating sys-
tem, a theoretically changeable or tunable setting will, in practice, be used
unaltered by almost everyone almost always.
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However, while many will never touch access controls on their re-
sources, for an important set of users and systems these controls are of
vital importance to achieve their security goals. Even if you mostly rely
on defaults, many software installation packages use some degree of care
in setting access controls on executables and configuration files they cre-
ate. Generally, you should exercise caution in fiddling around with access
controls in your system. If you don’t know what you’re doing, you might
expose sensitive information or allow attackers to alter critical system set-
tings. If you tighten existing access controls, you might suddenly cause a
bunch of daemon programs running in the background to stop working.

One practical issue that many large institutions discovered when try-
ing to use standard access control methods to implement their security
policies is that people performing different roles within the organization
require different privileges. For example, in a hospital, all doctors might
have a set of privileges not given to all pharmacists, who themselves have
privileges not given to the doctors. Organizing access control on the ba-
sis of such roles and then assigning particular users to the roles they are
allowed to perform makes implementation of many security policies eas-
ier. This approach is particularly valuable if certain users are permitted to
switch roles depending on the task they are currently performing, since
then one need not worry about setting or changing the individual’s access
permissions on the fly, but simply switch their role from one to another.
Usually they will hold the role’s permission only as long as they maintain
that role. Once they exit the particular role (perhaps to enter a different
role with different privileges), they lose the privileges of the role they exit.

This observation led to the development of Role-Based Access Con-
trol, or RBAC. The core ideas had been around for some time before
they were more formally laid out in a research paper by Ferraiolo and
Kuhn [FK92]. Now RBAC is in common use in many organizations, par-
ticularly large ones. Large organizations face more serious management
challenges than small ones, so approaches like RBAC that allow groups of
users to be dealt with in one operation can significantly ease the manage-
ment task. For example, if a company determines that all programmers
should be granted access to a new library that has been developed, but
accountants should not, RBAC would achieve this effect with a single op-
eration that assigns the necessary privilege to the Programmer role. If a
programmer is promoted to a management position for which access to
the library is unnecessary, the company can merely remove the Program-
mer role from the set of roles the manager could take on.

Such restrictions do not necessarily imply that you suspect your ac-
countants of being dishonest and prone to selling your secret library code

to competitors7. Remember the principle of least privilege: when you
give someone access to something, you are relying not just on their hon-
esty, but on their caution. If accountants can’t access the library at all,

7Dishonest accountants are generally good to avoid, so you probably did your best to hire
honest ones, after all. Unless you’re Bernie Madoff [W20], perhaps...
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then neither malice nor carelessness on their part can lead to an accoun-
tant’s privileges leaking your library code. Least privilege is not just a
theoretically good idea, but a vital part of building secure systems in the
real world.

RBAC sounds a bit like using groups in access control lists, and there
is some similarity, but RBAC systems are a good deal more powerful than
mere group access permissions; RBAC systems allow a particular user to
take on multiple disjoint roles. Perhaps our programmer was promoted
to a management position, but still needs access to the library, for exam-
ple when another team member’s code needs to be tested. An RBAC sys-
tem would allow our programmer to switch between the role of manager
and programmer, temporarily leaving behind rights associated with the
manager and gaining rights associated with the programmer role. When
the manager tested someone else’s new code, the manager would have
permission to access the library, but would not have permission to ac-
cess team member performance reviews. Thus, if a sneaky programmer
slipped malicious code into the library (e.g., that tried to read other team
members’ performance reviews, or learn their salaries), the manager run-
ning that code would not unintentionally leak that information; using the
proper role at the proper time prevents it.

These systems often require a new authentication step to take on an
RBAC role, and usually taking on Role A requires relinquishing priv-
ileges associated with one’s previous role, say Role B. The manager’s
switch to the code testing role would result in temporarily relinquish-
ing privileges to examine the performance reviews. On completing the
testing, the manager would switch back to the role allowing access to the
reviews, losing privilege to access the library. RBAC systems may also
offer finer granularity than merely being able to read or write a file. A
particular role (Salesperson, for instance) might be permitted to add a pur-
chase record for a particular product to a file, but would not be permitted
to add a re-stocking record for the same product to the same file, since
salespeople don’t do re-stocking. This degree of control is sometimes
called type enforcement. It associates detailed access rules to particular
objects using what is commonly called a security context for that object.
How exactly this is done has implications for performance, storage of the
security context information, and authentication.

One can build a very minimal RBAC system under Linux and similar
OSes using ACLs and groups. These systems have a feature in their ac-
cess control mechanism called privilege escalation. Privilege escalation
allows careful extension of privileges, typically by allowing a particular
program to run with a set of privileges beyond those of the user who in-
vokes them. In Unix and Linux systems, this feature is called setuid,
and it allows a program to run with privileges associated with a different
user, generally a user who has privileges not normally available to the
user who runs the program. However, those privileges are only granted
during the run of that program and are lost when the program exits. A
carefully written setuid program will only perform a limited set of oper-
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TIP: PRIVILEGE ESCALATION CONSIDERED DANGEROUS

We just finished talking about how we could use privilege escalation to
temporarily change what one of our users can do, and how this offers us
new security options. But there’s a dangerous side to privilege escalation.
An attacker who breaks into your system frequently compromises a pro-
gram running under an identity with very limited privileges. Perhaps all
it’s supposed to be able to do is work with a few simple informational
files and provide remote users with their content, and maybe run stan-
dard utilities on those files. It might not even have write access to its files.
You might think that this type of compromise has done little harm to the
system, since the attacker cannot use the access to do very much.

This is where the danger of privilege escalation comes into play. Attack-
ers who have gained any kind of a foothold on a system will then look
around for ways to escalate their privileges. Even a fairly unprivileged
application can do a lot of things that an outsider cannot directly do, so at-
tackers look for flaws in the code or configuration that the compromised
application can access. Such attempts to escalate privilege are usually an
attacker’s first order of business upon successful compromise of a system.

In many systems, there is a special user, often called the superuser or
root user. This user has a lot more privilege than any other user on the
system, since its purpose is to allow for the most vital and far-reaching
system administration changes on that system. The paramount goal of
an attacker with a foothold on your system is to use privilege escalation
to become the root user. An attacker who can do that will effectively
have total control of your system. Such an attacker can look at any file,
alter any program, change any configuration, and perhaps even install a
different operating system. This danger should point out how critical it
is to be careful in allowing any path that permits privilege escalation up
to superuser privilege.

ations using those privileges, ensuring that privileges cannot be abused8.
One could create a simple RBAC system by defining an artificial user for
each role and associating desired privileges with that user. Programs us-
ing those privileges could be designated as setuid to that user.

The Linux sudo command, which we encountered in the authentica-
tion chapter, offers this kind of functionality, allowing some designated
users to run certain programs under another identity. For example,

sudo -u Programmer install newprogram

would run this install command under the identity of user Programmer,
rather than the identity of the user who ran the command, assuming that
user was on a system-maintained list of users allowed to take on the iden-
tity Programmer. Secure use of this approach requires careful configura-

8Unfortunately, not all programs run with the setuid feature are carefully written, which
has led to many security problems over the years. Perhaps true for all security features, alas?
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tion of system files controlling who is allowed to execute which programs
under which identities. Usually the sudo command requires a new au-
thentication step, as with other RBAC systems.

For more advanced purposes, RBAC systems typically support finer
granularity and more careful tracking of role assignment than setuid

and sudo operations allow. Such an RBAC system might be part of the
operating system or might be some form of add-on to the system, or per-
haps a programming environment. Often, if you’re using RBAC, you
also run some degree of mandatory access control. If not, in the example
of sudo above, the user running under the Programmer identity could
run a command to change the access permissions on files, making the
install command available to non- programmers. With mandatory ac-
cess control, a user could take on the role of Programmer to do the in-
stallation, but could not use that role to allow salespeople or accountants
to perform the installation.

55.7 Summary

Implementing most security policies requires controlling which users
can access which resources in which ways. Access control mechanisms
built in to the operating system provide the necessary functionality. A
good access control mechanism will provide complete mediation (or close
to it) of security-relevant accesses through use of a carefully designed and
implemented reference monitor.

Access control lists and capabilities are the two fundamental mecha-
nisms used by most access control systems. Access control lists specify
precisely which subjects can access which objects in which ways. Pres-
ence or absence on the relevant list determines if access is granted. Ca-
pabilities work more like keys in a lock. Possession of the correct ca-
pability is sufficient proof that access to a resource should be permitted.
User-visible access control is more commonly achieved with a form of
access control list, but capabilities are often built in to the operating sys-
tem at a level below what the user sees. Neither of these access control
mechanisms is inherently better or worse than the other. Rather, like so
many options in system design, they have properties that are well suited
to some situations and uses and poorly suited to others. You need to
understand how to choose which one to use in which circumstance.

Access control mechanisms can be discretionary or mandatory. Some
systems include both. Enhancements like type enforcement and role-
based access control can make it easier to achieve the security policy you
require.

Even if the access control mechanism is completely correct and ex-
tremely efficient, it can do no more than implement the security policies
that it is given. Security failures due to faulty access control mechanisms
are rare. Security failures due to poorly designed policies implemented
by those mechanisms are not.
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Protecting Information With Cryptography

Chapter by Peter Reiher (UCLA)

56.1 Introduction

In previous chapters, we’ve discussed clarifying your security goals,
determining your security policies, using authentication mechanisms to
identify principals, and using access control mechanisms to enforce poli-
cies concerning which principals can access which computer resources in
which ways. While we identified a number of shortcomings and prob-
lems inherent in all of these elements of securing your system, if we re-
gard those topics as covered, what’s left for the operating system to worry
about, from a security perspective? Why isn’t that everything?

There are a number of reasons why we need more. Of particular im-
portance: not everything is controlled by the operating system. But per-
haps you respond, you told me the operating system is all-powerful! Not
really. It has substantial control over a limited domain – the hardware on
which it runs, using the interfaces of which it is given control. It has no
real control over what happens on other machines, nor what happens if
one of its pieces of hardware is accessed via some mechanism outside the
operating system’s control.

But how can we expect the operating system to protect something
when the system does not itself control access to that resource? The an-
swer is to prepare the resource for trouble in advance. In essence, we
assume that we are going to lose the data, or that an opponent will try to
alter it improperly. And we take steps to ensure that such actions don’t
cause us problems. The key observation is that if an opponent cannot un-
derstand the data in the form it is obtained, our secrets are safe. Further, if
the attacker cannot understand it, it probably can’t be altered, at least not
in a controllable way. If the attacker doesn’t know what the data means,
how can it be changed into something the attacker prefers?

The core technology we’ll use is cryptography, a set of techniques to
convert data from one form to another, in controlled ways with expected
outcomes. We will convert the data from its ordinary form into another
form using cryptography. If we do it right, the opponent will not be able
to determine what the original data was by examining the protected form.
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Of course, if we ever want to use it again ourselves, we must be able
to reverse that transformation and return the data to its ordinary form.
That must be hard for the opponent to do, as well. If we can get to that
point, we can also provide some protection for the data from alteration,
or, more precisely, prevent opponents from altering the data to suit their
desires, and even know when opponents have tampered with our data.
All through the joys of cryptography!

But using cryptography properly is not easy, and many uses of cryp-
tography are computationally expensive. So we need to be selective about
where and when we use cryptography, and careful in how we implement
it and integrate it into our systems. Well chosen uses that are properly
performed will tremendously increase security. Poorly chosen uses that
are badly implemented won’t help at all, and may even hurt.

THE CRUX OF THE PROBLEM:
HOW TO PROTECT INFORMATION OUTSIDE THE OS’S DOMAIN

How can we use cryptography to ensure that, even if others gain ac-
cess to critical data outside the control of the operating system, they will
be unable to either use or alter it? What cryptographic technologies are
available to assist in this problem? How do we properly use those tech-
nologies? What are the limitations on what we can do with them?

56.2 Cryptography

Many books have been written about cryptography, but we’re only
going to spend a chapter on it. We’ll still be able to say useful things
about it because, fortunately, there are important and complex issues of
cryptography that we can mostly ignore. That’s because we aren’t going
to become cryptographers ourselves. We’re merely going to be users of
the technology, relying on experts in that esoteric field to provide us with
tools that we can use without having full understanding of their work-

ings1. That sounds kind of questionable, but you are already doing just
that. Relatively few of us really understand the deep details of how our
computer hardware works, yet we are able to make successful use of it,
because we have good interfaces and know that smart people have taken
great care in building the hardware for us. Similarly, cryptography pro-
vides us with strong interfaces, well-defined behaviors, and better than
usual assurance that there is a lot of brain power behind the tools we use.

That said, cryptography is no magic wand, and there is a lot you need
to understand merely to use it correctly. That, particularly in the context
of operating system use, is what we’re going to concentrate on here.

1If you’d like to learn more about the fascinating history of cryptography, check out Kahn
[K96]. If more technical detail is your desire, Schneier [S96] is a good start.
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The basic idea behind cryptography is to take a piece of data and use
an algorithm (often called a cipher), usually augmented with a second
piece of information (which is called a key), to convert the data into a
different form. The new form should look nothing like the old one, but,
typically, we want to be able to run another algorithm, again augmented
with a second piece of information, to convert the data back to its original
form.

Let’s formalize that just a little bit. We start with data P (which we
usually call the plaintext), a key K, and an encryption algorithm E(). We
end up with C, the altered form of P , which we usually call the cipher-
text:

C = E(P,K) (56.1)

For example, we might take the plaintext “Transfer $100 to my savings
account” and convert it into ciphertext “Sqzmredq #099 sn lx rzuhmfr
zbbntms.” This example actually uses a pretty poor encryption algorithm
called a Caesar cipher. Spend a minute or two studying the plaintext and
ciphertext and see if you can figure out what the encryption algorithm
was in this case.

The reverse transformation takes C, which we just produced, a de-
cryption algorithm D(), and the key K:

P = D(C,K) (56.2)

So we can decrypt “Sqzmredq #099 sn lx rzuhmfr zbbntms” back into
“Transfer $100 to my savings account.” If you figured out how we en-
crypted the data in the first place, it should be easy to figure out how to
decrypt it.

We use cryptography for a lot of things, but when discussing it gener-
ally, it’s common to talk about messages being sent and received. In such
discussions, the plaintext P is the message we want to send and the ci-
phertext C is the protected version of that message that we send out into
the cold, cruel world.

For the encryption process to be useful, it must be deterministic, so
the first transformation always converts a particular P using a particu-
lar K to a particular C, and the second transformation always converts a
particular C using a particular K to the original P . In many cases, E()
and D() are actually the same algorithm, but that is not required. Also, it
should be very hard to figure out P from C without knowing K. Impossi-
ble would be nice, but we’ll usually settle for computationally infeasible.
If we have that property, we can show C to the most hostile, smartest
opponent in the world and they still won’t be able to learn what P is.

Provided, of course, that ...
This is where cleanly theoretical papers and messy reality start to col-

lide. We only get that pleasant assurance of secrecy if the opponent does
not know both D() and our key K. If they are known, the opponent will
apply D() and K to C and extract the same information P that we can.
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It turns out that we usually can’t keep E() and D() secret. Since we’re
not trying to be cryptographers, we won’t get into the why of the matter,
but it is extremely hard to design good ciphers. If the cipher has weak-
nesses, then an opponent can extract the plaintext P even without K. So
we need to have a really good cipher, which is hard to come by. Most
of us don’t have a world-class cryptographer at our fingertips to design a
new one, so we have to rely on one of a relatively small number of known
strong ciphers. AES, a standard cipher that was carefully designed and
thoroughly studied, is one good example that you should think about
using.

It sounds like we’ve thrown away half our protection, since now the
cryptography’s benefit relies entirely on the secrecy of the key. Precisely.
Let’s say that again in all caps, since it’s so important that you really
need to remember it: THE CRYPTOGRAPHY’S BENEFIT RELIES EN-
TIRELY ON THE SECRECY OF THE KEY. It probably wouldn’t hurt
for you to re-read that statement a few dozen times, since the landscape
is littered with insecure systems that did not take that lesson to heart.

The good news is that if you’re using a strong cipher and are careful
about maintaining key secrecy, your cryptography is strong. You don’t
need to worry about anything else. The bad news is that maintaining key
secrecy in practical systems for real uses of cryptography isn’t easy. We’ll
talk more about that later.

For the moment, revel in the protection we have achieved, and re-
joice to learn that we’ve gotten more than secrecy from our proper use
of cryptography! Consider the properties of the transformations we’ve
performed. If our opponent gets access to our encrypted data, it can’t be
understood. But what if the opponent can alter it? What’s being altered
is the encrypted form, i.e., making some changes in C to convert it to, say,
C′. What will happen when we try to decrypt C? Well, it won’t decrypt
to P . It will decrypt to something else, say P ′. For a good cipher of the
type you should be using, it will be difficult to determine what a piece of
ciphertext C′ will decrypt to, unless you know K. That means it will be
hard to predict which ciphertext you need to have to decrypt to a partic-
ular plaintext. Which in turn means that the attacker will have no idea
what the altered ciphertext C′ will decrypt to.

Out of all possible bit patterns it could decrypt to, the chances are good
that P ′ will turn out to be garbage, when considered in the context of
what we expected to see: ASCII text, a proper PDF file, or whatever. If
we’re careful, we can detect that P ′ isn’t what we started with, which
would tell us that our opponent tampered with our encrypted data. If we
want to be really sure, we can perform a hashing function on the plaintext
and include the hash with the message or encrypted file. If the plaintext
we get out doesn’t produce the same hash, we will have a strong indica-
tion that something is amiss.

So we can use cryptography to help us protect the integrity of our data,
as well.
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TIP: DEVELOPING YOUR OWN CIPHERS: DON’T DO IT

Don’t.

It’s tempting to leave it at that, since it’s really important that you
follow this guidance. But you may not believe it, so we’ll expand a little.
The world’s best cryptographers often produce flawed ciphers. Are you
one of the world’s best cryptographers? If you aren’t, and the top experts
often fail to build strong ciphers, what makes you think you’ll do better,
or even as well?

We know what you’ll say next: “but the cipher I wrote is so strong that
I can’t even break it myself.” Well, pretty much anyone who puts their
mind to it can create a cipher they can’t break themselves. But remember
those world-class cryptographers we talked about? How did they get to
be world class? By careful study of the underpinnings of cryptography
and by breaking other people’s ciphers. They’re very good at it, and if it’s
worth their trouble, they will break yours. They might ignore it if you just
go around bragging about your wonderful cipher (since they hear that all
the time), but if you actually use it for something important, you will
unfortunately draw their attention. Following which your secrets will be
revealed, following which you will look foolish for designing your own
cipher instead of using something standard like AES, which is easier to
do, anyway.

So, don’t.

Wait, there’s more! What if someone hands you a piece of data that
has been encrypted with a key K that is known only to you and your
buddy Remzi? You know you didn’t create it, so if it decrypts properly
using key K, you know that Remzi must have created it. After all, he’s the
only other person who knew key K, so only he could have performed the
encryption. Voila, we have used cryptography for authentication! Unfor-
tunately, cryptography will not clean your room, do your homework for
you, or make thousands of julienne fries in seconds, but it’s a mighty fine
tool, anyway.

The form of cryptography we just described is often called symmet-
ric cryptography, because the same key is used to encrypt and decrypt
the data. For a long time, everyone believed that was the only form of
cryptography possible. It turns out everyone was wrong.

56.3 Public Key Cryptography

When we discussed using cryptography for authentication, you might
have noticed a little problem. In order to verify the authenticity of a piece
of encrypted information, you need to know the key used to encrypt it. If
we only care about using cryptography for authentication, that’s incon-
venient. It means that we need to communicate the key we’re using for
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that purpose to whoever might need to authenticate us. What if we’re
Microsoft, and we want to authenticate ourselves to every user who has
purchased our software? We can’t use just one key to do this, because
we’d need to send that key to hundreds of millions of users and, once
they had that key, they could pretend to be Microsoft by using it to en-
crypt information. Alternately, Microsoft could generate a different key
for each of those hundreds of millions of users, but that would require
secretly delivering a unique key to hundreds of millions of users, not to
mention keeping track of all those keys. Bummer.

Fortunately, our good friends, the cryptographic wizards, came up
with a solution. What if we use two different keys for cryptography, one
to encrypt and one to decrypt? Our encryption operation becomes

C = E(P,Kencrypt) (56.3)

And our decryption operation becomes

P = D(C,Kdecrypt) (56.4)

Life has just become a lot easier for Microsoft. They can tell every-
one their decryption key Kdecrypt, but keep their encryption key Kencrypt

secret. They can now authenticate their data by encrypting it with their
secret key, while their hundreds of millions of users can check the authen-
ticity using the key Microsoft made public. For example, Microsoft could
encrypt an update to their operating system with Kencrypt and send it out
to all their users. Each user could decrypt it with Kdecrypt. If it decrypted
into a properly formatted software update, the user could be sure it was
created by Microsoft. Since no one else knows that private key, no one
else could have created the update.

Sounds like magic, but it isn’t. It’s actually mathematics coming to our
rescue, as it so frequently does. We won’t get into the details here, but you
have to admit it’s pretty neat. This form of cryptography is called public
key cryptography, since one of the two keys can be widely known to the
entire public, while still achieving desirable results. The key everyone
knows is called the public key, and the key that only the owner knows
is called the private key. Public key cryptography (often abbreviated as
PK) has a complicated invention history, which, while interesting, is not
really germane to our discussion. Check out a paper by a pioneer in the
field, Whitfield Diffie, for details [D88].

Public key cryptography avoids one hard issue that faced earlier forms
of cryptography: securely distributing a secret key. Here, the private key
is created by one party and kept secret by him. It’s never distributed to
anyone else. The public key must be distributed, but generally we don’t
care if some third party learns this key, since they can’t use it to sign
messages. Distributing a public key is an easier problem than distributing
a secret key, though, alas, it’s harder than it sounds. We’ll get to that.

Public key cryptography is actually even neater, since it works the
other way around. You can use the decryption key Kdecrypt to encrypt,
in which case you need the encryption key Kencrypt to decrypt. We still
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expect the encryption key to be kept secret and the decryption key to be
publicly known, so doing things in this order no longer allows authenti-
cation. Anyone could encrypt with Kdecrypt, after all. But only the owner
of the key can decrypt such messages using Kencrypt. So that allows any-
one to send an encrypted message to someone who has a private key,
provided you know their public key. Thus, PK allows authentication if
you encrypt with the private key and secret communication if you en-
crypt with the public key.

What if you want both, as you very well might? You’ll need two differ-
ent key pairs to do that. Let’s say Alice wants to use PK to communicate
secretly with her pal Bob, and also wants to be sure Bob can authenti-
cate her messages. Let’s also say Alice and Bob each have their own PK
pair. Each of them knows his or her own private key and the other party’s
public key. If Alice encrypts her message with her own private key, she’ll
authenticate the message, since Bob can use her public key to decrypt and
will know that only Alice could have created that message. But everyone
knows Alice’s public key, so there would be no secrecy achieved. How-
ever, if Alice takes the authenticated message and encrypts it a second
time, this time with Bob’s public key, she will achieve secrecy as well.
Only Bob knows the matching private key, so only Bob can read the mes-
sage. Of course, Bob will need to decrypt twice, once with his private key
and then a second time with Alice’s public key.

Sounds expensive. It’s actually worse than you think, since it turns out
that public key cryptography has a shortcoming: it’s much more compu-
tationally expensive than traditional cryptography that relies on a single
shared key. Public key cryptography can take hundreds of times longer
to perform than standard symmetric cryptography. As a result, we really
can’t afford to use public key cryptography for everything. We need to
pick and choose our spots, using it to achieve the things it’s good at.

There’s another important issue. We rather blithely said that Alice
knows Bob’s public key and Bob knows Alice’s. How did we achieve
this blissful state of affairs? Originally, only Alice knew her public key
and only Bob knew his public key. We’re going to need to do something
to get that knowledge out to the rest of the world if we want to benefit
from the magic of public key cryptography. And we’d better be careful
about it, since Bob is going to assume that messages encrypted with the
public key he thinks belongs to Alice were actually created by Alice. What
if some evil genius, called, perhaps, Eve, manages to convince Bob that
Eve’s public key actually belongs to Alice? If that happens, messages
created by Eve would be misidentified by Bob as originating from Alice,
subverting our entire goal of authenticating the messages. We’d better
make sure Eve can’t fool Bob about which public key belongs to Alice.

This leads down a long and shadowy road to the arcane realm of key
distribution infrastructures. You will be happier if you don’t try to travel
that road yourself, since even the most well prepared pioneers who have
hazarded it often come to grief. We’ll discuss how, in practice, we dis-
tribute public keys in a chapter on distributed system security. For the
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moment, bear in mind that the beautiful magic of public key cryptogra-
phy rests on the grubby and uncertain foundation of key distribution.

One more thing about PK cryptography: THE CRYPTOGRAPHY’S
BENEFIT RELIES ENTIRELY ON THE SECRECY OF THE KEY. (Bet
you’ve heard that before.) In this case, the private key. But the secrecy of
that private key is every bit as important to the overall benefit of public
key cryptography as the secrecy of the single shared key in the case of
symmetric cryptography. Never divulge private keys. Never share pri-
vate keys. Take great care in your use of private keys and in how you
store them. If you lose a private key, everything you used it for is at risk,
and whoever gets hold of it can pose as you and read your secret mes-
sages. That wouldn’t be very good, would it?

56.4 Cryptographic Hashes

As we discussed earlier, we can protect data integrity by using cryp-
tography, since alterations to encrypted data will not decrypt properly.
We can reduce the costs of that integrity check by hashing the data and
encrypting just the hash, instead of encrypting the entire thing. However,
if we want to be really careful, we can’t use just any hash function, since
hash functions, by their very nature, have hash collisions, where two dif-
ferent bit patterns hash to the same thing. If an attacker can change the
bit pattern we intended to send to some other bit pattern that hashes to
the same thing, we would lose our integrity property.

So to be particularly careful, we can use a cryptographic hash to en-
sure integrity. Cryptographic hashes are a special category of hash func-
tions with several important properties:

• It is computationally infeasible to find two inputs that will produce
the same hash value.

• Any change to an input will result in an unpredictable change to
the resulting hash value.

• It is computationally infeasible to infer any properties of the input
based only on the hash value.

Based on these properties, if we only care about data integrity, rather
than secrecy, we can take the cryptographic hash of a piece of data, en-
crypt only that hash, and send both the encrypted hash and the unen-
crypted data to our partner. If an opponent fiddles with the data in tran-
sit, when we decrypt the hash and repeat the hashing operation on the

data, we’ll see a mismatch and detect the tampering2.

2Why do we need to encrypt the cryptographic hash? Well, anyone, including our oppo-
nent, can run a cryptographic hashing algorithm on anything, including an altered version of
the message. If we don’t encrypt the hash, the attacker will change the message, compute a
new hash, replace both the original message and the original hash with these versions, and
send the result. If the hash we sent is encrypted, though, the attacker can’t know what the
encrypted version of the altered hash should be.
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To formalize it a bit, to perform a cryptographic hash we take a plain-
text P and a hashing algorithm H(). Note that there is not necessarily
any key involved. Here’s what happens:

S = H(P ) (56.5)

Since cryptographic hashes are a subclass of hashes in general, we nor-
mally expect S to be shorter than P , perhaps a lot shorter. That implies
there will be collisions, situations in which two different plaintexts P and
P ′ both hash to S. However, the properties of cryptographic hashes out-
lined above will make it difficult for an adversary to make use of colli-
sions. Even if you know both S and P , it should be hard to find any

other plaintext P ′ that hashes to S3. It won’t be hard to figure out what S’
should be for an altered value of plaintext P ′, since you can simply apply
the cryptographic hashing algorithm directly to P ′. But even a slightly al-
tered version of P , such as a P ′ differing only in one bit, should produce
a hash S’ that differs from S in completely unpredictable ways.

Cryptographic hashes can be used for other purposes than ensuring
integrity of encrypted data, as well. They are the class of hashes of choice
for storing salted hashed passwords, for example, as discussed in the
chapter on authentication. They can be used to determine if a stored file
has been altered, a function provided by well-known security software
like Tripwire. They can also be used to force a process to perform a certain
amount of work before submitting a request, an approach called “proof
of work.” The submitter is required to submit a request that hashes to
a certain value using some specified cryptographic hash, which, because
of the properties of such hashes, requires them to try a lot of request for-
mats before finding one that hashes to the required value. Since each hash
operation takes some time, submitting a proper request will require a pre-
dictable amount of work. This use of hashes, in varying forms, occurs in
several applications, including spam prevention and blockchains.

Like other cryptographic algorithms, you’re well advised to use stan-
dard algorithms for cryptographic hashing. For example, the SHA-3 al-
gorithm is commonly regarded as a good choice. However, there is a
history of cryptographic hashing algorithms becoming obsolete, so if you
are designing a system that uses one, it’s wise to first check to see what
current recommendations are for choices of such an algorithm.

56.5 Cracking Cryptography

Chances are that you’ve heard about people cracking cryptography.
It’s a popular theme in film and television. How worried should you be
about that?

3Every so often, a well known cryptographic hashing function is “broken” in the sense
that someone figures out how to create a P

′ that uses the function to produce the same hash
as P . That happened to a hashing function known as SHA-1 in 2017, rendering that function
unsafe and unusable for integrity purposes [G17].
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Well, if you didn’t take our earlier advice and went ahead and built
your own cipher, you should be very worried. Worried enough that you
should stop reading this, rip out your own cipher from your system, and
replace it with a well-known respected standard. Go ahead, we’ll still be
here when you get back.

What if you did use one of those standards? In that case, you’re prob-
ably OK. If you use a modern standard, with a few unimportant excep-
tions, there are no known ways to read data encrypted with these algo-
rithms without obtaining the key. Which isn’t to say your system is se-
cure, but probably no one will break into it by cracking the cryptographic
algorithm.

How will they do it, then? Probably by exploiting software flaws in
your system having nothing to do with the cryptography, but there’s
some chance they will crack it by obtaining your keys or exploiting some
other flaw in your management of cryptography. How? Software flaws
in how you create and use your keys are a common problem. In dis-
tributed environments, flaws in the methods used to share keys are also
a common weakness that can be exploited. Peter Gutmann produced a
nice survey of the sorts of problems improper management of cryptogra-
phy frequently causes [G02]. Examples include distributing secret keys
in software shared by many people, incorrectly transmitting plaintext
versions of keys across a network, and choosing keys from a seriously
reduced set of possible choices, rather than the larger theoretically pos-
sible set. More recently, the Heartbleed attack demonstrated a way to
obtain keys being used in OpenSSL sessions from the memory of a re-
mote computer, which allowed an attacker to decrypt the entire session,
despite no flaws in either the cipher itself or its implementation, nor in its
key selection procedures. This flaw allowed attackers to read the traffic
of something between 1/4 and 1/2 of all sites using HTTPS, the crypto-
graphically protected version of HTTP [D+14].

One way attackers deal with cryptography is by guessing the key. Do-
ing so doesn’t actually crack the cryptography at all. Cryptographic al-
gorithms are designed to prevent people who don’t know the key from
obtaining the secrets. If you know the key, it’s not supposed to make
decryption hard.

So an attacker could try simply guessing each possible key and trying
it. That’s called a brute force attack, and it’s why you should use long
keys. For example, AES keys are at least 128 bits. Assuming you generate
your AES key at random, an attacker will need to make 2127 guesses at
your key, on average, before he gets it right. That’s a lot of guesses and
will take a lot of time. Of course, if a software flaw causes your system
to select one out of thirty two possible AES keys, instead of one out of
2128, a brute force attack may become trivial. Key selection is a big deal
for cryptography.

For example, the original 802.11 wireless networking standard included
no cryptographic protection of data being streamed through the air. The
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TIP: SELECTING KEYS

One important aspect of key secrecy is selecting a good one to begin with.
For public key cryptography, you need to run an algorithm to select one
of the few possible pairs of keys you will use. But for symmetric cryp-
tography, you are free to select any of the possible keys. How should you
choose?

Randomly. If you use any deterministic method to select your key, your
opponent’s problem of finding out your key has just been converted into
a problem of figuring out your method. Worse, since you’ll probably
generate many keys over the course of time, once he knows your method,
he’ll get all of them. If you use random chance to generate keys, though,
figuring out one of them won’t help your opponent figure out any of your
other keys. This highly desirable property in a cryptographic system is
called perfect forward secrecy.

Unfortunately, true randomness is hard to come by. The best source for
operating system purposes is to examine hardware processes that are be-
lieved to be random in nature, like low order bits of the times required
for pieces of hardware to perform operations, and convert the results into
random numbers. That’s called gathering entropy. In Linux, this is done
for you automatically, and you can use the gathered entropy by reading
/dev/random. Windows has a similar entropy-gathering feature. Use
these to generate your keys. They’re not perfect, but they’re good enough
for many purposes.

first attempt to add such protection was called WEP (Wired Equivalent
Protocol, a rather optimistic name). WEP was constrained by the need
to fit into the existing standard, but the method it used to generate and
distribute symmetric keys was seriously flawed. Merely by listening in
on wireless traffic on an 802.11 network, an attacker could determine the
key being used in as little as a minute. There are widely available tools

that allow anyone to do so4.
As another example, an early implementation of the Netscape web

browser generated cryptographic keys using some easily guess-able val-
ues as seeds to a random number generator, such as the time of day and
the ID of the process requesting the key. Researchers discovered they
could guess the keys produced in around 30 seconds [GW96].

You might have heard that PK systems use much longer keys, 2K or 4K
bits. Sounds much safer, no? Shouldn’t that at least make them stronger
against brute force attacks? However, you can’t select keys for this type of

4WEP got replaced by WPA. Unfortunately, WPA proved to have its own weaknesses, so
it was replaced by WPA2. Unfortunately, WPA2 proved to have its own weaknesses, so it
is being replaced by WPA3, as of 2018. The sad fate of providing cryptography for wireless
networks should serve as a lesson to any of you tempted to underestimate the difficulties in
getting this stuff right.
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cryptosystem at random. Only a relatively few pairs of public and private
keys are possible. That’s because the public and private keys must be
related to each other for the system to work. The relationship is usually
mathematical, and usually intended to be mathematically hard to derive,
so knowing the public key should not make it easy to learn the private
key. However, with the public key in hand, one can use the mathematical
properties of the system to derive the private key eventually. That’s why
PK systems use such big keys – to make sure “eventually” is a very long
time.

But that only matters if you keep the private key secret. By now, we
hope this sounds obvious, but many makers of embedded devices use PK
to provide encryption for those devices, and include a private key in the
device’s software. All too often, the same private key is used for all de-
vices of a particular model. Such shared private keys invariably become,
well, public. In September 2016, one study found 4.5 million embedded
devices relying on these private keys that were no longer so private [V16].
Anyone could pose as any of these devices for any purpose, and could
read any information sent to them using PK. In essence, the cryptography
performed by these devices was little more than window dressing and
did not increase the security of the devices by any appreciable amount.

To summarize, cracking cryptography is usually about learning the
key. Or, as you might have guessed: THE CRYPTOGRAPHY’S BENE-
FIT RELIES ENTIRELY ON THE SECRECY OF THE KEY.

56.6 Cryptography And Operating Systems

Cryptography is fascinating, but lots of things are fascinating5, while
having no bearing on operating systems. Why did we bother spending
half a chapter on cryptography? Because we can use it to protect operat-
ing systems.

But not just anywhere and for all purposes. We’ve pounded into your
head that key secrecy is vital for effective use of cryptography. That
should make it clear that any time the key can’t be kept secret, you can’t
effectively use cryptography. Casting your mind back to the first chap-
ter on security, remember that the operating system has control of and
access to all resources on a computer. Which implies that if you have en-
crypted information on the computer, and you have the necessary key to
decrypt it on the same computer, the operating system on that machine

can decrypt the data, whether that was the effect you wanted or not6.

5For example, the late piano Sonatas of Beethoven. One movement of his last Sonata,
Opus 111, even sounds like jazz, while being written in the 1820s!

6But remember our discussion of security enclaves in an earlier chapter, hardware that
does not allow the operating system full access to information that the enclave protects. Think
for a moment what the implications of that are for cryptography on a computer using such an
enclave, and what new possibilities it offers.
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Either you trust your operating system or you don’t. If you don’t,
life is going to be unpleasant anyway, but one implication is that the un-
trusted operating system, having access at one time to your secret key,
can copy it and re-use it whenever it wants to. If, on the other hand, you
trust your operating system, you don’t need to hide your data from it, so
cryptography isn’t necessary in this case. This observation has relevance
to any situation in which you provide your data to something you don’t
trust. For instance, if you don’t trust your cloud computing facility with
your data, you won’t improve the situation by giving them your data in
plaintext and asking them to encrypt it. They’ve seen the plaintext and
can keep a copy of the key.

If you’re sure your operating system is trustworthy right now, but are
concerned it might not be later, you can encrypt something now and
make sure the key is not stored on the machine. Of course, if you’re
wrong about the current security of the operating system, or if you ever
decrypt the data on the machine after the OS goes rogue, your cryptog-
raphy will not protect you, since that ever-so-vital secrecy of the key will
be compromised.

One can argue that not all compromises of an operating system are
permanent. Many are, but some only give an attacker temporary access
to system resources, or perhaps access to only a few particular resources.
In such cases, if the encrypted data is not stored in plaintext and the de-
cryption key is not available at the time or in the place the attacker can
access, encrypting that data may still provide benefit. The tricky issue
here is that you can’t know ahead of time whether successful attacks on
your system will only occur at particular times, for particular durations,
or on particular elements of the system. So if you take this approach,
you want to minimize all your exposure: decrypt infrequently, dispose
of plaintext data quickly and carefully, and don’t keep a plaintext ver-
sion of the key in the system except when performing the cryptographic
operations. Such minimization can be difficult to achieve.

If cryptography won’t protect us completely against a dishonest oper-
ating system, what OS uses for cryptography are there? We saw a spe-
cialized example in the chapter on authentication. Some cryptographic
operations are one-way: they can encrypt, but never decrypt. We can use
these to securely store passwords in encrypted form, even if the OS is

compromised, since the encrypted passwords can’t be decrypted7.

What else? In a distributed environment, if we encrypt data on one
machine and then send it across the network, all the intermediate com-
ponents won’t be part of our machine, and thus won’t have access to the
key. The data will be protected in transit. Of course, our partner on the

7But if the legitimate user ever provides the correct password to a compromised OS, all
bets are off, alas. The compromised OS will copy the password provided by the user and hand
it off to whatever villain is working behind the scenes, before it runs the password through the
one-way cryptographic hashing algorithm.
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final destination machine will need the key if he or she is to use the data.
As we promised before, we’ll get to that issue in another chapter.

Anything else? Well, what if someone can get access to some of our
hardware without going through our operating system? If the data stored
on that hardware is encrypted, and the key isn’t on that hardware it-
self, the cryptography will protect the data. This form of encryption is
sometimes called at-rest data encryption, to distinguish it from encrypt-
ing data we’re sending between machines. It’s useful and important, so
let’s examine it in more detail.

56.7 At-Rest Data Encryption
As we saw in the chapters on persistence, data can be stored on a disk

drive, flash drive, or other medium. If it’s sensitive data, we might want
some of our desirable security properties, such as secrecy or integrity, to
be applied to it. One technique to achieve these goals for this data is to
store it in encrypted form, rather than in plaintext. Of course, encrypted
data cannot be used in most computations, so if the machine where it is
stored needs to perform a general computation on the data, it must first

be decrypted8. If the purpose is merely to preserve a safe copy of the data,
rather than to use it, decryption may not be necessary, but that is not the
common case.

The data can be encrypted in different ways, using different ciphers
(DES, AES, Blowfish), at different granularities (records, data blocks, in-
dividual files, entire file systems), by different system components (ap-
plications, libraries, file systems, device drivers). One common general
use of at-rest data encryption is called full disk encryption. This usu-
ally means that the entire contents (or almost the entire contents) of the
storage device are encrypted. Despite the name, full-disk encryption can
actually be used on many kinds of persistent storage media, not just hard
disk drives. Full disk encryption is usually provided either in hardware
(built into the storage device) or by system software (a device driver or
some element of a file system). In either case, the operating system plays
a role in the protection provided. Windows BitLocker and Apple’s File-
Vault are examples of software-based full disk encryption.

Generally, at boot time either the decryption key or information usable
to obtain that key (such as a passphrase – like a password, but possibly
multiple words) is requested from the user. If the right information is
provided, the key or keys necessary to perform the decryption become
available (either to the hardware or the operating system). As data is
placed on the device, it is encrypted. As data moves off the device, it is

8 There’s one possible exception worth mentioning. Those cryptographic wizards have
created a form of cryptography called homomorphic cryptography, which allows you to per-
form operations on the encrypted form of the data without decrypting it. For example, you
could add one to an encrypted integer without decrypting it first. When you decrypted the re-
sult, sure enough, one would have been added to the original number. Homomorphic ciphers
have been developed, but high computational and storage costs render them impractical for
most purposes, as of the writing of this chapter. Perhaps that will change, with time.
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decrypted. The data remains decrypted as long as it is stored anywhere
in the machine’s memory, including in shared buffers or user address
space. When new data is to be sent to the device, it is first encrypted.
The data is never placed on the storage device in decrypted form. After
the initial request to obtain the decryption key is performed, encryption
and decryption are totally transparent to users and applications. They
never see the data in encrypted form and are not asked for the key again,
until the machine reboots.

Cryptography is a computationally expensive operation, particularly
if performed in software. There will be overhead associated with per-
forming software-based full disk encryption. Reports of the amount of
overhead vary, but a few percent extra latency for disk-heavy operations
is common. For operations making less use of the disk, the overhead
may be imperceptible. For hardware-based full disk encryption, the rated
speed of the disk drive will be achieved, which may or may not be slower
than a similar model not using full disk encryption.

What does this form of encryption protect against?

• It offers no extra protection against users trying to access data they
should not be allowed to see. Either the standard access control
mechanisms that the operating system provides work (and such
users can’t get to the data because they lack access permissions)
or they don’t (in which case such users will be given equal use of
the decryption key as anyone else).

• It does not protect against flaws in applications that divulge data.
Such flaws will permit attackers to pose as the user, so if the user
can access the unencrypted data, so can the attacker. For example,
it offers little protection against buffer overflows or SQL injections.

• It does not protect against dishonest privileged users on the system,
such as a system administrator. Administrator’s privileges may al-
low the admin to pose as the user who owns the data or to install
system components that provide access to the user’s data; thus, the
admin could access decrypted copies of the data on request.

• It does not protect against security flaws in the OS itself. Once the
key is provided, it is available (directly in memory, or indirectly by
asking the hardware to use it) to the operating system, whether that
OS is trustworthy and secure or compromised and insecure.

So what benefit does this form of encryption provide? Consider this
situation. If a hardware device storing data is physically moved from
one machine to another, the OS on the other machine is not obligated to
honor the access control information stored on the device. In fact, it need
not even use the same file system to access that device. For example, it
can treat the device as merely a source of raw data blocks, rather than an
organized file system. So any access control information associated with
files on the device might be ignored by the new operating system.

However, if the data on the device is encrypted via full disk encryp-
tion, the new machine will usually be unable to obtain the encryption
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key. It can access the raw blocks, but they are encrypted and cannot be
decrypted without the key. This benefit would be useful if the hardware
in question was stolen and moved to another machine, for example. This
situation is a very real possibility for mobile devices, which are frequently
lost or stolen. Disk drives are sometimes resold, and data belonging to the
former owner (including quite sensitive data) has been found on them by
the re-purchaser. These are important cases where full disk encryption
provides real benefits.

For other forms of encryption of data at rest, the system must still ad-
dress the issues of how much is encrypted, how to obtain the key, and
when to encrypt and decrypt the data, with different types of protection
resulting depending on how these questions are addressed. Generally,
such situations require that some software ensures that the unencrypted
form of the data is no longer stored anywhere, including caches, and that
the cryptographic key is not available to those who might try to illicitly
access the data. There are relatively few circumstances where such pro-
tection is of value, but there are a few common examples:

• Archiving data that might need to be copied and must be preserved,
but need not be used. In this case, the data can be encrypted at
the time of its creation, and perhaps never decrypted, or only de-
crypted under special circumstances under the control of the data’s
owner. If the machine was uncompromised when the data was first
encrypted and the key is not permanently stored on the system, the
encrypted data is fairly safe. Note, however, that if the key is lost,
you will never be able to decrypt the archived data.

• Storing sensitive data in a cloud computing facility, a variant of the
previous example. If one does not completely trust the cloud com-
puting provider (or one is uncertain of how careful that provider
is – remember, when you trust another computing element, you’re
trusting not only its honesty, but also its carefulness and correct-
ness), encrypting the data before sending it to the cloud facility is
wise. Many cloud backup products include this capability. In this
case, the cryptography and key use occur before moving the data
to the untrusted system, or after it is recovered from that system.

• User-level encryption performed through an application. For ex-
ample, a user might choose to encrypt an email message, with any
stored version of it being in encrypted form. In this case, the cryp-
tography will be performed by the application, and the user will
do something to make a cryptographic key available to the appli-
cation. Ideally, that application will ensure that the unencrypted
form of the data and the key used to encrypt it are no longer readily
available after encryption is completed. Remember, however, that
while the key exists, the operating system can obtain access to it
without your application knowing.

One important special case for encrypting selected data at rest is a
password vault (also known as a key ring), which we discussed in the
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authentication chapter. Typical users interact with many remote sites that
require them to provide passwords (authentication based on “what you
know”, remember?) The best security is achieved if one uses a different
password for each site, but doing so places a burden on the human user,
who generally has a hard time remembering many passwords. A solution
is to encrypt all the different passwords and store them on the machine,
indexed by the site they are used for. When one of the passwords is re-
quired, it is decrypted and provided to the site that requires it.

For password vaults and all such special cases, the system must have
some way of obtaining the required key whenever data needs to be en-
crypted or decrypted. If an attacker can obtain the key, the cryptography
becomes useless, so safe storage of the key becomes critical. Typically,
if the key is stored in unencrypted form anywhere on the computer in
question, the encrypted data is at risk, so well designed encryption sys-
tems tend not to do so. For example, in the case of password vaults, the
key used to decrypt the passwords is not stored in the machine’s stable
storage. It is obtained by asking the user for it when required, or asking
for a passphrase used to derive the key. The key is then used to decrypt
the needed password. Maximum security would suggest destroying the
key as soon as this decryption was performed (remember the principle of
least privilege?), but doing so would imply that the user would have to
re-enter the key each time a password was needed (remember the prin-
ciple of acceptability?). A compromise between usability and security is
reached, in most cases, by remembering the key after first entry for a sig-
nificant period of time, but only keeping it in RAM. When the user logs
out, or the system shuts down, or the application that handles the pass-
word vault (such as a web browser) exits, the key is “forgotten.” This
approach is reminiscent of single sign-on systems, where a user is asked
for a password when the system is first accessed, but is not required to
re-authenticate again until logging out. It has the same disadvantages as
those systems, such as permitting an unattended terminal to be used by
unauthorized parties to use someone else’s access permissions. Both have
the tremendous advantage that they don’t annoy their users so much that
they are abandoned in favor of systems offering no security whatsoever.

56.8 Cryptographic Capabilities
Remember from our chapter on access control that capabilities had the

problem that we could not leave them in users’ hands, since then users
could forge them and grant themselves access to anything they wanted.
Cryptography can be used to create unforgeable capabilities. A trusted
entity could use cryptography to create a sufficiently long and securely
encrypted data structure that indicated that the possessor was allowed
to have access to a particular resource. This data structure could then
be given to a user, who would present it to the owner of the matching
resource to obtain access. The system that actually controlled the resource
must be able to check the validity of the data structure before granting
access, but would not need to maintain an access control list.
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Such cryptographic capabilities could be created either with symmet-
ric or public key cryptography. With symmetric cryptography, both the
creator of the capability and the system checking it would need to share
the same key. This option is most feasible when both of those entities are
the same system, since otherwise it requires moving keys around between
the machines that need to use the keys, possibly at high speed and scale,
depending on the use scenario. One might wonder why the single ma-
chine would bother creating a cryptographic capability to allow access,
rather than simply remembering that the user had passed an access check,
but there are several possible reasons. For example, if the machine con-
trolling the resource worked with vast numbers of users, keeping track
of the access status for each of them would be costly and complex, par-
ticularly in a distributed environment where the system needed to worry
about failures and delays. Or if the system wished to give transferable
rights to the access, as it might if the principal might move from machine
to machine, it would be more feasible to allow the capability to move with
the principal and be used from any location. Symmetric cryptographic ca-
pabilities also make sense when all of the machines creating and checking
them are inherently trusted and key distribution is not problematic.

If public key cryptography is used to create the capabilities, then the
creator and the resource controller need not be co-located and the trust re-
lationships need not be as strong. The creator of the capability needs one
key (typically the secret key) and the controller of the resource needs the
other. If the content of the capability is not itself secret, then a true public
key can be used, with no concern over who knows it. If secrecy (or at least
some degree of obscurity) is required, what would otherwise be a public
key can be distributed only to the limited set of entities that would need

to check the capabilities9. A resource manager could create a set of cre-
dentials (indicating which principal was allowed to use what resources,
in what ways, for what period of time) and then encrypt them with a pri-
vate key. Any one else can validate those credentials by decrypting them
with the manager’s public key. As long as only the resource manager
knows the private key, no one can forge capabilities.

As suggested above, such cryptographic capabilities can hold a good
deal of information, including expiration times, identity of the party who
was given the capability, and much else. Since strong cryptography will
ensure integrity of all such information, the capability can be relied upon.
This feature allows the creator of the capability to prevent arbitrary copy-
ing and sharing of the capability, at least to a certain extent. For example,
a cryptographic capability used in a network context can be tied to a par-
ticular IP address, and would only be regarded as valid if the message
carrying it came from that address.

9Remember, however, that if you are embedding a key in a piece of widely distributed
software, you can count on that key becoming public knowledge. So even if you believe the
matching key is secret, not public, it is unwise to rely too heavily on that belief.
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Many different encryption schemes can be used. The important point
is that the encrypted capabilities must be long enough that it is compu-
tationally infeasible to find a valid capability by brute force enumeration
or random guessing (e.g., the number of invalid bit patterns is 1015 times
larger than the number of valid bit patterns).

We’ll say a bit more about cryptographic capabilities in the chapter on
distributed system security.

56.9 Summary

Cryptography can offer certain forms of protection for data even when
that data is no longer in a system’s custody. These forms of protection in-
clude secrecy, integrity, and authentication. Cryptography achieves such
protection by converting the data’s original bit pattern into a different bit
pattern, using an algorithm called a cipher. In most cases, the transforma-
tion can be reversed to obtain the original bit pattern. Symmetric ciphers
use a single secret key shared by all parties with rights to access the data.
Asymmetric ciphers use one key to encrypt the data and a second key
to decrypt the data, with one of the keys kept secret and the other com-
monly made public. Cryptographic hashes, on the other hand, do not
allow reversal of the cryptography and do not require the use of keys.

Strong ciphers make it computationally infeasible to obtain the orig-
inal bit pattern without access to the required key. For symmetric and
asymmetric ciphers, this implies that only holders of the proper key can
obtain the cipher’s benefits. Since cryptographic hashes have no key, this
implies that no one should be able to obtain the original bit pattern from
the hash.

For operating systems, the obvious situations in which cryptography
can be helpful are when data is sent to another machine, or when hard-
ware used to store the data might be accessed without the intervention of
the operating system. In the latter case, data can be encrypted on the de-
vice (using either hardware or software), and decrypted as it is delivered
to the operating system.

Ciphers are generally not secret, but rather are widely known and
studied standards. A cipher’s ability to protect data thus relies entirely on
key secrecy. If attackers can learn, deduce, or guess the key, all protection
is lost. Thus, extreme care in key selection and maintaining key secrecy
is required if one relies on cryptography for protection. A good princi-
ple is to store keys in as few places as possible, for as short a duration as
possible, available to as few parties as possible.
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Distributed System Security

Chapter by Peter Reiher (UCLA)

57.1 Introduction

An operating system can only control its own machine’s resources.
Thus, operating systems will have challenges in providing security in dis-
tributed systems, where more than one machine must cooperate. There
are two large problems:

• The other machines in the distributed system might not properly
implement the security policies you want, or they might be adver-
saries impersonating trusted partners. We cannot control remote
systems, but we still have to be able to trust validity of the creden-
tials and capabilities they give us.

• Machines in a distributed system communicate across a network
that none of them fully control and that, generally, cannot be trusted.
Adversaries often have equal access to that network and can forge,
copy, replay, alter, destroy, and delay our messages, and generally
interfere with our attempts to use the network.

As suggested earlier, cryptography will be the major tool we use here,
but we also said cryptography was hard to get right. That makes it sound
like the perfect place to use carefully designed standard tools, rather than
to expect everyone to build their own. That’s precisely correct. As such:

THE CRUX: HOW TO PROTECT DISTRIBUTED SYSTEM OPERATIONS

How can we secure a system spanning more than one machine? What
tools are available to help us protect such systems? How do we use them
properly? What are the areas in using the tools that require us to be care-
ful and thoughtful?
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57.2 The Role of Authentication

How can we handle our uncertainty about whether our partners in
a distributed system are going to enforce our security policies? In most
cases, we can’t do much. At best, we can try to arrange to agree on poli-
cies and hope everyone follows through on those agreements. There are
some special cases where we can get high-quality evidence that our part-
ners have behaved properly, but that’s not easy, in general. For example,
how can we know that they are using full disk encryption, or that they
have carefully wiped an encryption key we are finished using, or that
they have set access controls on the local copies of their files properly?
They can say they did, but how can we know?

Generally, we can’t. But you’re used to that. In the real world, your
friends and relatives know some secrets about you, and they might have
keys to get into your home, and if you loan them your car you’re fairly
sure you’ll get it back. That’s not so much because you have perfect mech-
anisms to prevent those trusted parties from behaving badly, but because
you are pretty sure they won’t. If you’re wrong, perhaps you can de-
tect that they haven’t behaved well and take compensating actions (like
changing your locks or calling the police to report your car stolen). We’ll
need to rely on similar approaches in distributed computer systems. We
will simply have to trust that some parties will behave well. In some
cases, we can detect when they don’t and adjust our trust in the parties
accordingly, and maybe take other compensating actions.

Of course, in the cyber world, our actions are at a distance over a net-
work, and all we see are bits going out and coming in on the network.
For a trust-based solution to work, we have to be quite sure that the bits
we send out can be verified by our buddies as truly coming from us, and
we have to be sure that the bits coming in really were created by them.
That’s a job for authentication. As suggested in the earlier authentication
chapter, when working over a network, we need to authenticate based on
a bundle of bits. Most commonly, we use a form of authentication based
on what you know. Now, think back to the earlier chapters. What might
someone running on a remote operating system know that no one else
knows? How about a password? How about a private key?

Most of our distributed system authentication will rely on one of these
two elements. Either you require the remote machine to provide you
with a password, or you require it to provide evidence using a private

key stored only on that machine1. In each case, you need to know some-
thing to check the authentication: either the password (or, better, a cryp-
tographic hash of the password plus a salt) or the public key.

1We occasionally use other methods, such as smart cards or remote biometric readers.
They are less common in today’s systems, though. If you understand how we use passwords
and public key cryptography for distributed system authentication, you can probably figure
out how to make proper use of these other techniques, too. If you don’t, you’ll be better off
figuring out the common techniques before moving to the less common ones.
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When is each appropriate? Passwords tend to be useful if there are a
vast number of parties who need to authenticate themselves to one party.
Public keys tend to be useful if there’s one party who needs to authen-
ticate himself to a vast number of parties. Why? With a password, the
authentication provides evidence that somebody knows a password. If
you want to know exactly who that is (which is usually important), only
the party authenticating and the party checking can know it. With a pub-
lic key, many parties can know the key, but only one party who knows
the matching private key can authenticate himself. So we tend to use
both mechanisms, but for different cases. When a web site authenticates
itself to a user, it’s done with PK cryptography. By distributing one single
public key (to vast numbers of users), the web site can be authenticated
by all its users. The web site need not bother keeping separate authen-
tication information to authenticate itself to each user. When that user
authenticates itself to the web site, it’s done with a password. Each user
must be separately authenticated to the web site, so we require a unique
piece of identifying information for that user, preferably something that’s
easy for a person to use. Setting up and distributing public keys is hard,
while setting up individual passwords is relatively easy.

How, practically, do we use each of these authentication mechanisms
in a distributed system? If we want a remote partner to authenticate it-
self via passwords, we will require it to provide us with that password,
which we will check. We’ll need to encrypt the transport of the password
across the network if we do that; otherwise anyone eavesdropping on the
network (which is easy for many wireless networks) will readily learn
passwords sent unencrypted. Encrypting the password will require that
we already have either a shared symmetric key or our partner’s public
key. Let’s concentrate now on how we get that public key, either to use it
directly or set up the cryptography to protect the password in transit.

We’ll spend the rest of the chapter on securing the network connec-
tion, but please don’t forget that even if you secure the network perfectly,
you still face the major security challenge of the uncontrolled site you’re
interacting with on the other side of the network. If your compromised
partner attacks you, it will offer little consolation that the attack was au-
thenticated and encrypted.

57.3 Public Key Authentication For Distributed Systems

The public key doesn’t need to be secret, but we need to be sure it re-
ally belongs to our partner. If we have a face-to-face meeting, our partner
can directly give us a public key in some form or another, in which case
we can be pretty sure it’s the right one. That’s limiting, though, since
we often interact with partners whom we never see face to face. For that

matter, whose “face” belongs to Amazon2 or Google?

2How successful would Amazon be if Jeff Bezos had to make an in-person visit to every
customer to deliver them Amazon’s public key? Answer: Not as successful.
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Fortunately, we can use the fact that secrecy isn’t required to simply
create a bunch of bits containing the public key. Anyone who gets a copy
of the bits has the key. But how do they know for sure whose key it
is? What if some other trusted party known to everyone who needs to
authenticate our partner used their own public key to cryptographically
sign that bunch of bits, verifying that they do indeed belong to our part-
ner? If we could check that signature, we could then be sure that bunch
of bits really does represent our partner’s public key, at least to the extent
that we trust that third party who did the signature.

This technique is how we actually authenticate web sites and many
other entities on the Internet. Every time you browse the web or perform
any other web-based activity, you use it. The signed bundle of bits is
called a certificate. Essentially, it contains information about the party
that owns the public key, the public key itself, and other information, such
as an expiration date. The entire set of information, including the public
key, is run through a cryptographic hash, and the result is encrypted with
the trusted third party’s private key, digitally signing the certificate. If
you obtain a copy of the certificate, and can check the signature, you can
learn someone else’s public key, even if you have never met or had any
direct interaction with them. In certain ways, it’s a beautiful technology
that empowers the whole Internet.

Let’s briefly go through an example, to solidify the concepts. Let’s
say Frobazz Inc. wants to obtain a certificate for its public key, which
is KF . Frobazz Inc. pays big bucks to Acmesign Co., a widely trusted
company whose business it is to sell certificates, to obtain a certificate
signed by AcmeSign. Such companies are commonly called Certificate
Authorities, or CAs, since they create authoritative certificates trusted by
many parties. Acmesign checks up on Frobazz Inc. to ensure that the
people asking for the certificate actually are legitimate representatives of
Frobazz. Acmesign then makes very, very sure that the public key it’s
about to embed in a certificate actually is the one that Frobazz wants to
use. Assuming it is, Acmesign runs a cryptographic hashing algorithm
(perhaps SHA-3 which, unlike SHA-1, has not been cracked, as of 2020)
on Frobazz’s name, public key KF , and other information, producing
hash HF . Acmesign then encrypts HF with its own private key, PA,
producing digital signature SF . Finally, Acmesign combines all the in-
formation used to produce HF , plus Acmesign’s own identity and the
signature SF , into the certificate CF , which it hands over to Frobazz,
presumably in exchange for money. Remember, CF is just some bits.

Now Frobazz Inc. wants to authenticate itself over the Internet to one
of its customers. If the customer already has Frobazz’s public key, we
can use public key authentication mechanisms directly. If the customer
does not have the public key, Frobazz sends CF to the customer. The
customer examines the certificate, sees that it was generated by Acmesign
using, say, SHA-3, and runs the same information that Acmesign hashed
(all of which is in the certificate itself) through SHA-3, producing HF ′.
Then the customer uses Acmesign’s public key to decrypt SF (also in the
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certificate), obtaining HF . If all is well, HF equals HF ′, and now the
customer knows that the public key in the certificate is indeed Frobazz’s.

Public key-based authentication can proceed3. If the two hashes aren’t
exactly the same, the customer knows that something fishy is going on
and will not accept the certificate.

There are some wonderful properties about this approach to learning
public keys. First, note that the signing authority (Acmesign, in our ex-
ample) did not need to participate in the process of the customer checking
the certificate. In fact, Frobazz didn’t really, either. The customer can get
the certificate from literally anywhere and obtain the same degree of as-
surance of its validity. Second, it only needs to be done once per customer.
After obtaining the certificate and checking it, the customer has the pub-
lic key that is needed. From that point onward, the customer can simply
store it and use it. If, for whatever reason, it gets lost, the customer can
either extract it again from the certificate (if that has been saved), or go
through the process of obtaining the certificate again. Third, the customer
had no need to trust the party claiming to be Frobazz until that identity
had been proven by checking the certificate. The customer can proceed
with caution until the certificate checks out.

Assuming you’ve been paying attention for the last few chapters, you
should be saying to yourself, “now, wait a minute, isn’t there a chicken-
and-egg problem here?” We’ll learn Frobazz’s public key by getting a
certificate for it. The certificate will be signed by Acmesign. We’ll check
the signature by knowing Acmesign’s public key. But where did we get
Acmesign’s key? We really hope you did have that head-scratching mo-
ment and asked yourself that question, because if you did, you under-
stand the true nature of the Internet authentication problem. Ultimately,
we’ve got to bootstrap it. You’ve got to somehow or other obtain a public
key for somebody that you trust. Once you do, if it’s the right public key
for the right kind of party, you can then obtain a lot of other public keys.
But without something to start from, you can’t do much of anything.

Where do you get that primal public key? Most commonly, it comes
in a piece of software you obtain and install. The one you use most of-
ten is probably your browser, which typically comes with the public keys

for several hundred trusted authorities4. Whenever you go to a new web
site that cares about security, it provides you with a certificate containing
that site’s public key, and signed by one of those trusted authorities pre-
configured into your browser. You use the pre-configured public key of
that authority to verify that the certificate is indeed proper, after which
you know the public key of that web site. From that point onward, you
can use the web site’s public key to authenticate it. There are some se-

3And, indeed, must, since all this business with checking the certificate merely told the
customer what Frobazz’s public key was. It did nothing to assure the customer that whoever
sent the certificate actually was Frobazz or knew Frobazz’s private key.

4You do know of several hundred companies out there that you trust with everything you
do on the web, don’t you? Well, know of them or not, you effectively trust them to that extent.
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rious caveats here (and some interesting approaches to addressing those
caveats), but let’s put those aside for the moment.

Anyone can create a certificate, not just those trusted CAs, either by
getting one from someone whose business it is to issue certificates or sim-
ply by creating one from scratch, following a certificate standard (X.509
is the most commonly used certificate standard [I12]). The necessary re-
quirement: the party being authenticated and the parties performing the
authentication must all trust whoever created the certificate. If they don’t
trust that party, why would they believe the certificate is correct?

If you are building your own distributed system, you can create your
own certificates from a machine you (and other participants in the sys-
tem) trust and can handle the bootstrapping issue by carefully hand-
installing the certificate signing machine’s public key wherever it needs
to be. There are a number of existing software packages for creating cer-
tificates, and, as usual with critical cryptographic software, you’re better
off using an existing, trusted implementation rather than coding up one
of your own. One example you might want to look at is PGP (available in
both supported commercial versions and compatible but less supported
free versions) [P16], but there are others. If you are working with a fixed
number of machines and you can distribute the public key by hand in
some reasonable way, you can dispense entirely with certificates. Re-
member, the only point of a PK certificate is to distribute the public key,
so if your public keys are already where they need to be, you don’t need
certificates.

OK, one way or another you’ve obtained the public key you need to
authenticate some remote machine. Now what? Well, anything they send
you encrypted with their private key will only decrypt with their public
key, so anything that decrypts properly with the public key must have
come from them, right? Yes, it must have come from them at some point,
but it’s possible for an adversary to have made a copy of a legitimate
message the site sent at some point in the past and then send it again it
at some future date. Depending on exactly what’s going on, that could
cause trouble, since you may take actions based on that message that the
legitimate site did not ask for. So usually we take measures to ensure that
we’re not being subjected to a replay attack. Such measures generally
involve ensuring that each encrypted message contains unique informa-
tion not in any other message. This feature is built in properly to standard
cryptographic protocols, so if you follow our advice and use one of those,
you will get protection from such replay attacks. If you insist on building
your own cryptography, you’ll need to learn a good deal more about this
issue and will have to apply that knowledge very carefully. Also, public
key cryptography is expensive. We want to stop using it as soon as possi-
ble, but we also want to continue to get authentication guarantees. We’ll
see how to do that when we discuss SSL and TLS.
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57.4 Password Authentication For Distributed Systems

The other common option to authenticate in distributed systems is to
use a password. As noted above, that will work best in situations where
only two parties need to deal with any particular password: the party be-
ing authenticated and the authenticating party. They make sense when an
individual user is authenticating himself to a site that hosts many users,
such as when you log in to Amazon. They don’t make sense when that
site is trying to authenticate itself to an individual user, such as when a
web site claiming to be Amazon wants to do business with you. Public
key authentication works better there.

How do we properly handle password authentication over the net-
work, when it is a reasonable choice? The password is usually associated
with a particular user ID, so the user provides that ID and password to
the site requiring authentication. That typically happens over a network,
and typically we cannot guarantee that networks provide confidentiality.
If our password is divulged to someone else, they’ll be able to pose as
us, so we must add confidentiality to this cross-network authentication,
generally by encrypting at least the password itself (though encrypting
everything involved is better). So a typical interchange with Alice try-
ing to authenticate herself to Frobazz Inc.’s web site would involve the
site requesting a user ID and password and Alice providing both, but
encrypting them before sending them over the network.

The obvious question you should ask is, encrypting them with what
key? Well, if Frobazz authenticated itself to Alice using PK, as discussed
above, Alice can encrypt her user ID and password with Frobazz’s pub-
lic key. Frobazz Inc., having the matching private key, will be able to
check them, but nobody else can read them. In actuality, there are vari-
ous reasons why this alone would not suffice, including replay attacks, as
mentioned above. But we can and do use Frobazz’s private key to set up
cryptography that will protect Alice’s password in transit. We’ll discuss
the details in the section on SSL/TLS.

We discussed issues of password choice and management in the chap-
ter on authentication, and those all apply in the networking context. Oth-
erwise, there’s not that much more to say about how we’ll use passwords,
other than to note that after the remote site has verified the password,
what does it actually know? That the site or user who sent the password
knows it, and, to the strength of the password, that site or user is who it
claims to be. But what about future messages that come in, supposedly
from that site? Remember, anyone can create any message they want, so
if all we do is verify that the remote site sent us the right password, all we
know is that particular message is authentic. We don’t want to have to
include the password on every message we send, just as we don’t want
to use PK to encrypt every message we send. We will use both authenti-
cation techniques to establish initial authenticity, then use something else
to tie that initial authenticity to subsequent interactions. Let’s move right
along to SSL/TLS to talk about how we do that.
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57.5 SSL/TLS

We saw in an earlier chapter that a standard method of communicating
between processes in modern systems is the socket. That’s equally true
when the processes are on different machines. So a natural way to add
cryptographic protection to communications crossing unprotected net-
works is to add cryptographic features to sockets. That’s precisely what
SSL (the Secure Socket Layer) was designed to do, many years ago. Un-
fortunately, SSL did not get it quite right. That’s because it’s pretty darn
hard to get it right, not because the people who designed and built it were
careless. They learned from their mistakes and created a new version of

encrypted sockets called Transport Layer Security (TLS)5. You will fre-
quently hear people talk about using SSL. They are usually treating it as
a shorthand for SSL/TLS. SSL, formally, is insecure and should never be
used for anything. Use TLS. The only exception is that some very old de-
vices might run software that doesn’t support TLS. In that case, it’s better
to use SSL than nothing. We’ll adopt the same shorthand as others from
here on, since it’s ubiquitous.

The concept behind SSL is simple: move encrypted data through an
ordinary socket. You set up a socket, set up a special structure to perform
whatever cryptography you want, and hook the output of that structure
to the input of the socket. You reverse the process on the other end.
What’s simple in concept is rather laborious in execution, with a number
of steps required to achieve the desired result. There are further com-
plications due to the general nature of SSL. The technology is designed to
support a variety of cryptographic operations and many different ciphers,
as well as multiple methods to perform key exchange and authentication
between the sender and receiver.

The process of adding SSL to your program is intricate, requiring the
use of particular libraries and a sequence of calls into those libraries to
set up a correct SSL connection. We will not go through those operations
step by step here, but you will need to learn about them to make proper
use of SSL. Their purpose is, for the most part, to allow a wide range of
generality both in the cryptographic options SSL supports and the ways
you use those options in your program. For example, these setup calls
would allow you to create one set of SSL connections using AES-128 and
another using AES-256, if that’s what you needed to do.

One common requirement for setting up an SSL connection that we
will go through in a bit more detail is how to securely distribute what-
ever cryptographic key you will use for the connection you are setting
up. Best cryptographic practice calls for you to use a brand new key to
encrypt the bulk of your data for each connection you set up. You will use

5Actually, even the first couple of versions of TLS didn’t get it quite right. As of 2020,
the current version of TLS is 1.3, and that’s probably what you should use. TLS 1.3 closed
some vulnerabilities that TLS 1.2 is subject to, The history of required changes to SSL/TLS
should further reinforce the lesson of how hard it is to use cryptography properly, which in
turn should motivate you to foreswear ever trying to roll your own crypto.
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public/private keys for authentication many times, but as we discussed
earlier, you need to use symmetric cryptography to encrypt the data once
you have authenticated your partner, and you want a fresh key for that.
Even if you are running multiple simultaneous SSL connections with the
same partner, you want a different symmetric key for each connection.

So what do you need to do to set up a new SSL connection? We won’t
go through all of the gory details, but, in essence, SSL needs to bootstrap
a secure connection based (usually) on asymmetric cryptography when
no usable symmetric key exists. (You’ll hear “usually” and “normally”
and “by default” a lot in SSL discussions, because of SSL’s ability to sup-
port a very wide range of options, most of which are ordinarily not what
you want to do.) The very first step is to start a negotiation between the
client and the server. Each party might only be able to handle particu-
lar ciphers, secure hashes, key distribution strategies, or authentication
schemes, based on what version of SSL they have installed, how it’s con-
figured, and how the programs that set up the SSL connection on each
side were written. In the most common cases, the negotiation will end in
both sides finding some acceptable set of ciphers and techniques that hit
a balance between security and performance. For example, they might
use RSA with 2048 bit keys for asymmetric cryptography, some form of
a Diffie-Hellman key exchange mechanism (see the Aside on this mecha-
nism) to establish a new symmetric key, SHA-3 to generate secure hashes
for integrity, and AES with 256 bit keys for bulk encryption. A modern
installation of SSL might support 50 or more different combinations of
these options.

In some cases, it may be important for you to specify which of these
many combinations are acceptable for your system, but often most of
them will do, in which case you can let SSL figure out which to use for
each connection without worrying about it yourself. The negotiation will
happen invisibly and SSL will get on with its main business: authenticat-
ing at least the server (optionally the client), creating and distributing a
new symmetric key, and running the communication through the chosen
cipher using that key.

We can use Diffie-Hellman key exchange to create the key (and SSL
frequently does), but we need to be sure who we are sharing that key
with. SSL offers a number of possibilities for doing so. The most com-
mon method is for the client to obtain a certificate containing the server’s
public key (typically by having the server send it to the client) and to use
the public key in that certificate to verify the authenticity of the server’s
messages. It is possible for the client to obtain the certificate through some
other means, though less common. Note that having the server send the
certificate is every bit as secure (or insecure) as having the client obtain
the certificate through other means. Certificate security is not based on
the method used to transport it, but on the cryptography embedded in
the certificate.

With the certificate in hand (however the client got it), the Diffie-Hellman
key exchange can now proceed in an authenticated fashion. The server
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ASIDE: DIFFIE-HELLMAN KEY EXCHANGE

What if you want to share a secret key between two parties, but they can
only communicate over an insecure channel, where eavesdroppers can
hear anything they say? You might think this is an impossible problem to
solve, but you’d be wrong. Two extremely smart cryptographers named
Whitfield Diffie and Martin Hellman solved this problem years ago, and
their solution is in common use. It’s called Diffie-Hellman key exchange.

Here’s how it works. Let’s say Alice and Bob want to share a secret key,
but currently don’t share anything, other than the ability to send each
other messages. First, they agree on two numbers, n (a large prime num-
ber) and g (which is primitive mod n). They can use the insecure chan-
nel to do this, since n and g don’t need to be secret. Alice chooses a
large random integer, say x, calculates X = gxmod n, and sends X to
Bob. Bob independently chooses a large random integer, say y, calculates
Y = gymod n, and sends Y to Alice. The eavesdroppers can hear X and
Y , but since Alice and Bob didn’t send x or y, the eavesdroppers don’t
know those values. It’s important that Alice and Bob keep x and y secret.

Alice now computes k = Y xmod n, and Bob computes k = Xymod n.
Alice and Bob get the same value k from these computations. Why? Well,
Y xmod n = (gy mod n)x mod n, which in turn equals gyx mod n.
Xy mod n = (gx mod n)y mod n = gxy mod n, which is the same
thing Alice got. Nothing magic there, that’s just how exponentiation and
modulus arithmetic work. Ah, the glory of mathematics! So k is the same
in both calculations and is known to both Alice and Bob.

What about those eavesdroppers? They know g, n, X , and Y , but not x or
y. They can compute k′ = XY mod n, but that is not equal to the k Alice
and Bob calculated. They do have approaches to derive x or y, which
would give them enough information to obtain k, but those approaches
require them either to perform a calculation for every possible value of
n (which is why you want n to be very large) or to compute a discrete
logarithm. Computing a discrete logarithm is a solvable problem, but it’s
computationally infeasible for large numbers. So if the prime n is large
(and meets other properties), the eavesdroppers are out of luck. How
large? 600 digit primes should be good enough.

Neat, no? But there is a fly in the ointment, when one considers using
Diffie-Hellman over a network. It ensures that you securely share a key
with someone, but gives you no assurance of who you’re sharing the key
with. Maybe Alice is sharing the key with Bob, as she thinks and hopes,
but maybe she’s sharing it with Mallory, who posed as Bob and injected
his own Y . Since we usually care who we’re in secure communication
with, we typically augment Diffie-Hellman with an authentication mech-
anism to provide the assurance of our partner’s identity.
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will sign its Diffie-Hellman messages with its private key, which will al-
low the client to determine that its partner in this key exchange is the
correct server. Typically, the client does not provide (or even have) its
own certificate, so it cannot sign its Diffie-Hellman messages. This im-
plies that when SSL’s Diffie-Hellman key exchange completes, typically
the client is pretty sure who the server is, but the server has no clue about
the client’s identity. (Again, this need not be the case for all uses of SSL.
SSL includes connection creation options where both parties know each
other’s public key and the key exchange is authenticated on both sides.
Those options are simply not the most commonly used ones, and partic-
ularly are not the ones typically used to secure web browsing.)

Recalling our discussion earlier in this chapter, it actually isn’t a prob-
lem for the server to be unsure about the client’s identity at this point, in
many cases. As we stated earlier, the client will probably want to use a
password to authenticate itself, not a public key extracted from a certifi-
cate. As long as the server doesn’t permit the client to do anything re-
quiring trust before the server obtains and checks the client’s password,
the server probably doesn’t care who the client is, anyway. Many servers
offer some services to anonymous clients (such as providing them with
publicly available information), so as long as they can get a password
from the client before proceeding to more sensitive subjects, there is no
security problem. The server can ask the client for a user ID and pass-
word later, at any point after the SSL connection is established. Since
creating the SSL connection sets up a symmetric key, the exchange of ID
and password can be protected with that key.

A final word about SSL/TLS: it’s a protocol, not a software package.
There are multiple different software packages that implement this pro-
tocol. Ideally, if they all implement the protocol properly, they all interact
correctly. However, they use different code to implement the protocol.
As a result, software flaws in one implementation of SSL/TLS might not
be present in other implementations. For example, the Heartbleed at-
tack was based on implementation details of OpenSSL [H14], but was not
present in other implementations, such as the version of SSL/TLS found
in Microsoft’s Windows operating system. It is also possible that the cur-
rent protocol definition of SSL/TLS contains protocol flaws that would
be present in any compliant implementation. If you hear of a security
problem involving SSL, determine whether it is a protocol flaw or an im-
plementation flaw before taking further action. If it’s an implementation
flaw, and you use a different implementation, you might not need to take
any action in response.

57.6 Other Authentication Approaches

While passwords and public keys are the most common ways to au-
thenticate a remote user or machines, there are other options. One such
option is used all the time. After you have authenticated yourself to a
web site by providing a password, as we described above, the web site
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will continue to assume that the authentication is valid. It won’t ask for
your password every time you click a link or perform some other inter-
action with it. (And a good thing, too. Imagine how much of a pain it
would be if you had to provide your password every time you wanted
to do anything.) If your session is encrypted at this point, it could regard
your proper use of the cryptography as a form of authentication; but you
might even be able to quit your web browser, start it up again, navigate
back to that web site, and still be treated as an authenticated user, with-
out a new request for your password. At that point, you’re no longer
using the same cryptography you used before, since you would have es-
tablished a new session and set up a new cryptographic key. How did
your partner authenticate that you were the one receiving the new key?

In such cases, the site you are working with has chosen to make a se-
curity tradeoff. It verified your identity at some time in the past using
your password and then relies on another method to authenticate you in
the future. A common method is to use web cookies. Web cookies are
pieces of data that a web site sends to a client with the intention that the
client stores that data and send it back again whenever the client next
communicates with the server. Web cookies are built into most browsers
and are handled invisibly, without any user intervention. With proper
use of cryptography, a server that has verified the password of a client
can create a web cookie that securely stores the client’s identity. When
the client communicates with the server again, the web browser auto-
matically includes the cookie in the request, which allows the server to

verify the client’s identity without asking for a password again6.

If you spend a few minutes thinking about this authentication ap-
proach, you might come up with some possible security problems associ-
ated with it. The people designing this technology have dealt with some
of these problems, like preventing an eavesdropper from simply using
a cookie that was copied as it went across the network. However, there
are other security problems (like someone other than the legitimate user
using the computer that was running the web browser and storing the
cookie) that can’t be solved with these kinds of cookies, but could have
been solved if you required the user to provide the password every time.
When you build your own system, you will need to think about these
sorts of security tradeoffs yourself. Is it better to make life simpler for
your user by not asking for a password except when absolutely necessary,
or is it better to provide your user with improved security by frequently
requiring proof of identity? The point isn’t that there is one correct an-

6You might remember from the chapter on access control that we promised to discuss
protecting capabilities in a network context using cryptography. That, in essence, is what
these web cookies are. After a user authenticates itself with another mechanism, the remote
system creates a cryptographic capability for that user that no one else could create, generally
using a key known only to that system. That capability/cookie can now be passed back to the
other party and used for future authorization operations. The same basic approach is used in
a lot of other distributed systems.
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swer to this question, but that you need to think about such questions in
the design of your system.

There are other authentication options. One example is what is called
a challenge/response protocol. The remote machine sends you a chal-
lenge, typically in the form of a number. To authenticate yourself, you
must perform some operation on the challenge that produces a response.
This should be an operation that only the authentic party can perform,
so it probably relies on the use of a secret that party knows, but no one
else does. The secret is applied to the challenge, producing the response,
which is sent to the server. The server must be able to verify that the
proper response has been provided. A different challenge is sent every
time, requiring a different response, so attackers gain no advantage by
listening to and copying down old challenges and responses. Thus, the
challenges and responses need not be encrypted. Challenge/response
systems usually perform some kind of cryptographic operation, perhaps
a hashing operation, on the challenge plus the secret to produce the re-
sponse. Such operations are better performed by machines than people,
so either your computer calculates the response for you or you have a spe-
cial hardware token that takes care of it. Either way, a challenge/response
system requires pre-arrangement between the challenging machine and
the machine trying to authenticate itself. The hardware token or data se-
cret must have been set up and distributed before the challenge is issued.

Another authentication option is to use an authentication server. In
essence, you talk to a server that you trust and that trusts you. The party
you wish to authenticate to must also trust the server. The authentication
server vouches for your identity in some secure form, usually involving
cryptography. The party who needs to authenticate you is able to check
the secure information provided by the authentication server and thus
determine that the server verified your identity. Since the party you wish
to communicate with trusts the authentication server, it now trusts that
you are who you claim to be. In a vague sense, certificates and CAs are an
offline version of such authentication servers. There are more active on-
line versions that involve network interactions of various sorts between
the two machines wishing to communicate and one or more authentica-
tion servers. Online versions are more responsive to changes in security
conditions than offline versions like CAs. An old certificate that should
not be honored is hard to get rid of, but an online authentication server
can invalidate authentication for a compromised party instantly and ap-
ply the changes immediately. The details of such systems can be quite
complex, so we will not discuss them in depth. Kerberos is one example
of such an online authentication server [NT94].

57.7 Some Higher Level Tools
In some cases, we can achieve desirable security effects by working

at a higher level. HTTPS (the cryptographically protected version of the
HTTP protocol) and SSH (a competitor to SSL most often used to set up
secure sessions with remote computers) are two good examples.
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HTTPS

HTTP, the protocol that supports the World Wide Web, does not have its
own security features. Nowadays, though, much sensitive and valuable
information is moved over the web, so sending it all unprotected over
the network is clearly a bad idea. Rather than come up with a fresh im-
plementation of security for HTTP, however, HTTPS takes the existing
HTTP definition and connects it to SSL/TLS. SSL takes care of establish-
ing a secure connection, including authenticating the web server using
the certificate approach discussed earlier and establishing a new sym-
metric encryption key known only to the client and server. Once the SSL
connection is established, all subsequent interactions between the client
and server use the secured connection. To a large extent, HTTPS is simply
HTTP passed through an SSL connection.

That does not devalue the importance of HTTPS, however. In fact, it is
a useful object lesson. Rather than spend years in development and face
the possibility of the same kinds of security flaws that other developers
of security protocols inevitably find, HTTPS makes direct use of a high
quality transport security tool, thus replacing an insecure transport with
a highly secure transport at very little development cost.

HTTPS obviously depends heavily on authentication, since we want to
be sure we aren’t communicating with malicious web sites. HTTPS uses
certificates for that purpose. Since HTTPS is intended primarily for use
in web browsers, the certificates in question are gathered and managed
by the browser. Modern browsers come configured with the public keys
of many certificate signing authorities (CAs, as we mentioned earlier).
Certificates for web sites are checked against these signing authorities to
determine if the certificate is real or bogus. Remember, however, what a
certificate actually tells you, assuming it checks out: that at some moment
in time the signing authority thoughts it was a good idea to vouch that
a particular public key belongs to a particular party. There is no impli-
cation that the party is good or evil, that the matching private key is still
secret, or even that the certificate signing authority itself is secure and un-
compromised, either when it created the certificate or at the moment you
check it. There have been real world problems with web certificates for all
these reasons. Remember also that HTTPS only vouches for authenticity.
An authenticated web site using HTTPS can still launch an attack on your
client. An authenticated attack, true, but that won’t be much consolation
if it succeeds.

Not all web browsers always supported HTTPS, typically because they
didn’t have SSL installed or configured. In those cases, a web site using
HTTPS only would not be able to interact with the client, since the client
couldn’t set up its end of the SSL socket. The standard solution for web
servers was to fall back on HTTP when a client claimed it was unable to
use HTTPS. When the server did so, no security would be applied, just as
if the server wasn’t running HTTPS at all. As ability to support HTTPS in
browsers and client machines has become more common, there has been
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a push towards servers insisting on HTTPS, and refusing to talk to clients
who can’t or won’t speak HTTPS. This approach is called HSTS (HTTP
Strict Transport Security). HSTS is an option for a web site. If the web site
decides it will support HSTS, all interactions with it will be cryptographi-
cally secured for any client. Clients who can’t or won’t accept HTTPS will
not be allowed to interact with such a web site. HSTS is used by a num-
ber of major web sites, including Google’s google.com domain, but is
far from ubiquitous as of 2020.

While HTTPS is primarily intended to help secure web browsing, it is
sometimes used to secure other kinds of communications. Some develop-
ers have leveraged HTTP for purposes rather different than standard web
browsing, and, for them, using HTTPS to secure their communications is
both natural and cheap. However, you can only use HTTPS to secure
your system if you commit to using HTTP as your application protocol,
and HTTP was intended primarily to support a human-based activity.
HTTP messages, for example, are typically encoded in ASCII and include
substantial headers designed to support web browsing needs. You may
be able to achieve far greater efficiency of your application by using SSL,
rather than HTTPS. Or you can use SSH.

SSH

SSH stands for Secure Shell which accurately describes the original pur-
pose of the program. SSH is available on Linux and other Unix systems,
and to some extent on Windows systems. SSH was envisioned as a secure
remote shell, but it has been developed into a more general tool for allow-
ing secure interactions between computers. Most commonly this shell
is used for command line interfaces, but SSH can support many other
forms of secure remote interactions. For example, it can be used to pro-
tect remote X Windows sessions. Generally, TCP ports can be forwarded
through SSH, providing a powerful method to protect interactions be-
tween remote systems.

SSH addresses many of the same problems seen by SSL, often in sim-
ilar ways. Remote users must be authenticated, shared encryption keys
must be established, integrity must be checked, and so on. SSH typically
relies on public key cryptography and certificates to authenticate remote
servers. Clients frequently do not have their own certificates and pri-
vate keys, in which case providing a user ID and password is permitted.
SSH supports other options for authentication not based on certificates or
passwords, such as the use of authentication servers (such as Kerberos).
Various ciphers (both for authentication and for symmetric encryption)
are supported, and some form of negotiation is required between the
client and the server to choose a suitable set.

A typical use of SSH provides a good example of a common general
kind of network security vulnerability called a man-in-the-middle attack.
This kind of attack occurs when two parties think they are communicat-
ing directly, but actually are communicating through a malicious third
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party without knowing it. That third party sees all of the messages passed
between them, and can alter such messages or inject new messages with-

out their knowledge7.
Well-designed network security tools are immune to man-in-the-middle

attacks of many types, but even a good tool like SSH can sometimes be
subject to them. If you use SSH much, you might have encountered an
example yourself. When you first use SSH to log into a remote machine
you’ve never logged into before, you probably don’t have the public key
associated with that remote machine. How do you get it? Often, not
through a certificate or any other secure means, but simply by asking the
remote site to send it to you. Then you have its public key and away
you go, securely authenticating that machine and setting up encrypted
communications. But what if there’s a man in the middle when you first
attempt to log into the remote machine? In that case, when the remote
machine sends you its public key, the man in the middle can discard the
message containing the correct public key and substitute one containing
his own public key. Now you think you have the public key for the re-
mote server, but you actually have the public key of the man in the mid-
dle. That means the man in the middle can pose as the remote server and
you’ll never be the wiser. The folks who designed SSH were well aware of
this problem, and if you ever do use SSH this way, up will pop a message
warning you of the danger and asking if you want to go ahead despite the
risk. Folk wisdom suggests that everyone always says “yes, go ahead”
when they get this message, including network security professionals.
For that matter, folk wisdom suggests that all messages warning a user of
the possibility of insecure actions are always ignored, which should sug-
gest to you just how much security benefit will arise from adding such
confirmation messages to your system.

SSH is not built on SSL, but is a separate implementation. As a result,
the two approaches each have their own bugs, features, and uses. A secu-
rity flaw found in SSH will not necessarily have any impact on SSL, and
vice versa.

57.8 Summary

Distributed systems are critical to modern computing, but are diffi-
cult to secure. The cornerstone of providing distributed system security
tends to be ensuring that the insecure network connecting system com-
ponents does not introduce new security problems. Messages sent be-
tween the components are encrypted and authenticated, protecting their
privacy and integrity, and offering exclusive access to the distributed ser-
vice to the intended users. Standard tools like SSL/TLS and public keys

7Think back to our aside on Diffie-Hellman key exchange and the fly in the ointment.
That’s a perfect case for a man-in-the-middle attack, since an attacker can perhaps exchange a
key with one correct party, rather than the two correct parties exchanging a key, without being
detected.
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distributed through X.509 certificates are used to provide these security
services. Passwords are often used to authenticate remote human users.

Symmetric cryptography is used for transport of most data, since it is
cheaper than asymmetric cryptography. Often, symmetric keys are not
shared by system participants before the communication starts, so the
first step in the protocol is typically exchanging a symmetric key. As
discussed in previous chapters, key secrecy is critical in proper use of
cryptography, so care is required in the key distribution process. Diffie-
Hellman key exchange is commonly used, but it still requires authentica-
tion to ensure that only the intended participants know the key.

As mentioned in earlier chapters, building your own cryptographic
solutions is challenging and often leads to security failures. A variety of
tools, including SSL/TLS, SSH, and HTTPS, have already tackled many
of the challenging problems and made good progress in overcoming them.
These tools can be used to build other systems, avoiding many of the pit-
falls of building cryptography from scratch. However, proper use of even
the best security tools depends on an understanding of the tool’s purpose
and limitations, so developing deeper knowledge of the way such tools
can be integrated into one’s system is vital to using them to their best
advantage.

Remember that these tools only make limited security guarantees. They
do not provide the same assurance that an operating system gets when
it performs actions locally on hardware under its direct control. Thus,
even when using good authentication and encryption tools properly, a
system designer is well advised to think carefully about the implications
of performing actions requested by a remote site, or providing sensitive
information to that site. What happens beyond the boundary of the ma-
chine the OS controls is always uncertain and thus risky.
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