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Abstract
Most recent MPP systems employ a fast microprocessor
surrounded by a shell of communication and synchroniza-
tion logic. The CRAY-T3D' provides an elaborate shell to
support global-memory access, prefetch, atomic operations,
barriers, and block transfers. We provide a detailed empir-
ical performance characterization of these primitives using
micro-benchmarks and evaluate their utility in compiling
for a parallel language. We have found that the raw perfor-
mance of the machine is quite impressive and the most effec-
tive forms of communication are prefetch and write. Other
shell provisions, such as the bulk transfer engine and the
external Annex register set, are cumbersome and of little
use. By evaluating the system in the context of a language
implementation, we shed light on important trade-offs and

pitfalls in the machine architecture.

1 Introduction

In 1991 and 1992 a wave of large-scale parallel machines were
announced that followed the “shell” approach [25], including
the Thinking Machines CM-5 [15], Intel Paragon [8], Meiko
CS-2 [1], and CRAY-T3D [11]. In this approach the core of
each node is realized by a state-of-the-art commercial micro-
processor and its memory system, surrounded by a shell of
additional logic to support global operations, such as com-
munication and synchronization. Based on the announced
designs, a simple parallel extension to the C language was
designed with the goal of extracting the full performance
capability out of this wave of machines[6]. The basic ap-
proach was to provide a full C on each node operating out
of the local memory, augmented with a rich set of assignment
operations on the collective global address space. As the an-
nouncements were followed by delivery of the machines, the
experiment of implementing the language on the machine
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and assessing its performance was conducted. For numer-
ous reasons, the T3D provides a very interesting case study:
the shell is extremely elaborate, the semantics of the hard-
ware primitives for global operations are at essentially the
same level as the language primitives, and many distinct
mechanisms exist to perform the same function.

The difficulty this “architecturally interesting” design
presents for language implementation is two-fold. First, we
need to map language primitives onto the hardware within
the compilation framework. Second, to choose the best
primitives, we need to establish their performance, which
may be a result of complex interactions between the micro-
processor and the shell. Thus, our language implementation
approach begins by establishing the actual performance of
the machine and then tries to minimize the additional costs.
To do this, we follow a “gray-box” methodology, where de-
sign documents are used to establish the functional charac-
teristics of the hardware and a set of micro-benchmarks are
used to characterize its performance empirically. Together
these dictate the code-generation strategy.

In this paper we document the results of a “gray-box”
language-implementation study on the CRAY-T3D. The lan-
guage is Split-C, constructed as an extension of gcc, but the
study would apply to many languages with similar goals,
such as CC++ [4] and HPF [9].

In the remainder of this section we outline the language
and the basic machine architecture. In Section 2 we explain
our micro-benchmarking methodology and characterize the
data access performance of the individual node, including
a comparison with a standard workstation using the same
microprocessor (DEC Alpha 21064). In Section 3 we explain
how the language concept of a global address is mapped to
the analogous hardware concept and identify performance
concerns that arise. We extend our micro-benchmarking to
characterize reads and writes to the global address space in
Section 4, and identify semantic problems attributable either
to the Alpha or T3D shell. In Section 5 we consider memory
operations that overlap communication with computation,
and in Section 6 we investigate mechanisms for bulk transfer.
We examine a family of synchronization issues in Section 7,
and finally come to a close in Section 8, where we illustrate
final program performance using a scalable application ker-
nel. In each of the sections, we outline the requirements of
the language model as well as the structure, constraints, or
performance characteristics of the machine that dictate how
the language is implemented.



1.1 Language overview

Split-C 1s a simple parallel extension to C for program-
ming distributed memory machines using a global address
space abstraction[6]. Tt has been implemented on the CM-
5, Paragon, SP-1, and a variety of networks of worksta-
tions, using Active Messages to implement the global ad-
dress space[17, 26, 19]. The language has the following
salient features:

e A program is comprised of a thread of control on each
processor from a single code image.

e Threads interact through reads and writes on shared
data, referenced by global pointers or spread arrays.
The type system ensures that the compiler can distin-
guish local accesses from global accesses, although a
global access may be to an address on the local pro-
cessor. Threads may also synchronize through global
barriers.

e To allow the long latency of remote access to be masked,
split-phase (or non-blocking) variants of read and write,
called get and put, are provided. For example, given
global pointer P and local variable x, x := *P initiates
a get to the global address P, whereas *P := x initi-
ates a put. The left-hand side is undefined until a sync
statement is issued; sync then waits for completion of
all pending gets and puts.

e Bulk transfer within the global address space can be
specified in either blocking or non-blocking forms.

e A form of write, called store, is provided to expose
the efficiency of one-way communication in those algo-
rithms where the communication pattern is known in
advance. Threads can synchronize on the completion
of a phase of stores, as in data-parallel programs, or
the recipient of stored values may wait for a specified
amount of data, as in message-driven programs.

Given the one-to-one nature of threads of control and
processors, we often refer to either as the processor without
confusion.

1.2 The CRAY-T3D

The CRAY-T3D is a massively parallel processor, consisting
of up to 2,048 Alpha nodes with 16 to 64 MB of memory each
and a “shell” of support circuitry to provide global memory
access and synchronization as part of the interface to the
network. Here we discuss the key features of the design; see
[11] or [12] for an overview and [5] for a complete functional
description.

The DEC Alpha 21064[24] is a 64-bit, dual-issue, sec-
ond generation RISC processor, clocked at 150 MHz (6.67
ns cycle), with 8 KB instruction and data caches, each with
32-byte lines. The Alpha operates on 64-bit data values,
whether integer or floating point, and has only word (32-
bit) and long word (64-bit) memory operations. Accesses to
smaller data types use powerful byte manipulation instruc-
tions. Stores are non-blocking and loads and stores may
be reordered, so a memory barrier instruction is required
to serialize memory references. The 21064 supports a 43-bit
virtual address space, but can only address 4 GB of physical
memory.

Cray Research has designed a shell around the micro-
processor, and the shell provides several features to support

global operation under a primarily shared-memory paradigm;
the simplest of these lets a processor access any memory
location in the machine through a standard load or store
instruction. However, since the physical address space is
small, the remote processor number is obtained from one
of 32 external registers, called the DTB Annex, indexed
by five bits of the physical address. Additional fields in
each Annex entry control the mode of remote operation.
The Alpha load-locked and store-conditional instructions
are used to read and write the Annex registers. The shell
also supports an atomic-swap between a shell register and
memory and two fetch&increment registers per processor,
as well as global-OR and global-AND barriers. The Alpha
fetch hint instruction is interpreted by the shell as a binding
prefetch into a prefetch FIFO, which is popped by the pro-
cessor through loads from a memory-mapped address. The
Alpha memory barrier instruction ensures that writes and
prefetches have been delivered to the shell; an additional
status bit indicates whether any remote accesses are out-
standing. The shell provides a system-level block transfer
engine, which can DMA-transfer large blocks of contigu-
ous or strided data to or from remote memories. Finally,
the shell provides a user-level message send FIFO; arrival of
a message at the receiver either places the message into a
user-level message queue or invokes a specific user thread.
Processors are grouped in pairs, share a network interface
and block-transfer engine, and all 2-processor nodes are con-
nected via a three-dimensional torus network with 300 MB/s
links. The network uses dimension-order routing and incurs
a very small latency per hop. These machine features will
be discussed in more detail in later sections.

2 Local-Node Performance

In this section we introduce our micro-benchmarking method-
ology and use it to examine the structure and costs of the
local memory system. The results prove critical to under-
standing the costs and consistency issues of global opera-
tions because the memory system is the primary gateway to

the shell.

2.1 Micro-benchmarking

Benchmarking massively parallel processors usually refers to
measuring the execution time of a set of applications (such
as ParkBench [20] or Perfect Club [3]) designed to represent
a meaningful workload. This measures the performance of
the system as a whole, including the processor, the mem-
ory system, and the compiler, which is appropriate if one
is taking all of these as fixed. However, the results tell us
little about the performance of the individual components
of the system, which is important if we are developing a new
compiler or, in many cases, optimizing applications.

In this paper we take a different path toward perfor-
mance evaluation inspired by Saavedra’s micro-benchmarks
[22, 21]. We treat the system as a “gray box” — admitting
that we have some a priori knowledge of the system, but
that it is both incomplete and unverified. Simple probes
are used to determine the parameters and characteristics of
the machine. We work from the bottom-up, analyzing the
simplest primitives first so the results can be used to help
understand increasingly more complex mechanisms. Our
probes are written in assembly language so that measure-
ments reflect actual hardware costs, not overhead inflicted
by the compiler or message passing library.
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Figure 1: Local Memory Hierarchy Comparison. Average read latency for CRAY-T3D and DEC Alpha.

2.2 Local Read Latency

Our first experiment characterizes the latency of a local read.
The idea is to generate a controlled stream of addresses to
the memory system, i.e., a stimulus, and to observe the re-
sponse 1n terms of the average latency per memory access.
By varying the parameters that define the address stream,
i.e., by varying the stimulus, and observing the variations in
the response we can infer specific properties of the memory
system. The probe, derived from [22] with slight modifica-
tions, simply steps through an array of a given size with a
given stride. By increasing the size of the array, we increase
the range of addresses within the stream. By increasing the
stride, we increase the frequency at which the address varies
from low to high. The stimulus is a sawtooth wave, and can
be described with the pseudo-code:

for (arraySize = 4 KB; arraySize < 8 MB; arraySize *= 2)
for (stride = 1; stride <= arraySize/2; stride *= 2)

for (i = 0; i < arraySize; i += stride)
MEMORY OPERATION ON A[il;

We surround the innermost loop with an additional loop
that repeats the experiment to mitigate timer granularity
and obtain a suitable confidence level. All loop and address
calculation overhead is subtracted out so that the reported
time reflects only the time of the requisite memory oper-
ation. We use two separate probes: reads from memory
location A[i], and writes to memory location A[i]. Note that
Ali] is an 8-byte word. In each case we plot the average la-
tency curve as a function of stride for a range of array sizes.
The results for the read experiment are shown in the left
portion of Figure 1.

The graph shows that reads take an average of 6.67
nanoseconds for array sizes up to 8 KB, matching the cycle
time (150 MHz) of the microprocessor and the published size
of the on-chip first-level data cache, respectively. (Note that
while a read issues in one cycle, the result is not accessible
for two more cycles.) When the size of the array exceeds the
size of the data cache, the reads begin to generate misses.
The average access time is now the weighted sum of the hit
time and miss time, so an inflection point occurs when every
read generates a miss. This point reveals the cache-line size
of 32 bytes and the full memory access time of roughly 145
ns (22 cycles). We can tell that the cache is direct mapped
because the access time does not drop to the cache-hit time

for large strides. If the cache had an associativity of two, for
example, there would have been a drop when the stride was
half of the array size since the two addresses being accessed
would fit in a single set.

As the array size and stride continue to increase we see
another rise in latency. This effect is due to the internals
of DRAM: strides of 16 KB or greater result in off-page
DRAM accesses with each subsequent load. The net result
is an additional 60 ns (9 cycles) of latency. At 64 KB strides,
the effect is slightly worse, again due to the organization of
the memory system. Since there are 4 memory banks, every
access with a stride of 64 KB accesses the same bank, thus
exposing the full memory-cycle time. This brings the total
worst-case memory access to 264 ns (40 cycles).

In most systems, this secondary increase in latency is
indicative of the translation look-aside buffer (TLB), which
caches a limited number of virtual to physical translations.
However, on the T3D the rise occurs at too small an array
size (32 KB) for it to be caused by TLB costs, as this would
imply a 2-entry TLB with the smallest possible page size of
8 KB. The absence of a rise in latency attributable to the
TLB indicates that the T3D designers have chosen to use
very large page sizes, possibly reflecting their heritage of
not supporting virtual memory. This resolves a potentially
difficult code-generation issue regarding global pointers, and
will be discussed in Section 3.

The graph also shows that there is no second-level (L2)
cache on the T3D; an L2 cache would reveal itself as an
intermediary latency between the L1 cache cost and the full
memory access time. For comparison, Figure 1 also shows
the read latency profile of a DEC Alpha workstation, which
contains the same microprocessor (DEC 21064) as the T3D
but a different memory system. This graph shows three
distinct sets of curves, corresponding to the 8-KB L1 cache,
the 512-KB L2 cache, and main memory. The inflection
point at a stride of 8 KB is due to TLB misses and indicates
the page size used by this workstation.

Notice that a main memory access require 300 ns (45 cy-
cles) on the workstation, but only 145 ns (22 cycles) on the
T3D. This supports the vendors’ claim that eliminating the
L2 cache allows for higher memory bandwidth when stream-
ing through very large data sets, as is typical of vector-style
scientific codes[12]. The T3D can deliver roughly 220 MB/s
from memory into the processor and the workstation only
about half that amount.



2.3 Local Writes

Our second probe, which updates the array in the inner loop,
produces the write latency profile shown in Figure 2. The
difference between the read and write profiles is dramatic,
but not surprising. Much of the difference is due to the write
buffer hiding the latency of writes to memory.

Local Write Performance
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Figure 2: Local Write Cost.

The Alpha 21064 has a write-through, read-allocate data
cache. We observe the presence of the write buffer by noting
that every write to the cache does not incur the full memory
latency. Note that the inflection point at a stride of 16 KB
occurs because each successive store to the array causes an
off-page DRAM access in the memory controller.

For very small strides, the average access time is about
20 nanoseconds (3 cycles), but at a stride of 32 bytes (the
block size of the cache), the average access time goes up to
35 nanoseconds. We can draw two conclusions from these
measurements. First, at very small strides, successive writes
to the same line are written to the same entry in the write
buffer. This is a feature known as write-merging [24]. Sec-
ond, since main memory access time is roughly 145 nanosec-
onds, dividing this by 35 nanoseconds gives an estimated
write buffer size of 4. This is corroborated by the Alpha
21064 Reference Manual[7].

This section has provided a detailed examination of the
local memory system. We determined that the cost of an
off-chip memory access is 23 cycles, that the large page size
essentially eliminates TLB costs, and that the write buffer
contains four entries and supports write-merging. Later sec-
tions will discuss how these costs and mechanisms affect the
language implementation.

3 Global Pointers

In this section we turn to the first of our code-generation
challenges: the representation of pointers into the global ad-
dress space and the operations on these pointers. This issue
involves a complex aspect of the T3D shell, which provides
a level of physical address translation and interacts with the

TLB.

3.1 Language Storage Model Requirements

In Split-C, any processor may access any location in the
global address space and each processor owns a specific re-

gion of the global space, its local region. The local region
contains the stack for automatic variables, static or exter-
nal variables, and a portion of the heap. Global pointers
reference the entire address space, while standard pointers
reference only the portion local to the accessing processor.
The following operations are supported on global pointers.

o Dereference: The location referenced by the pointer is
read or written.

o Transfer: The pointer may be passed as a parameter
or stored in an object.

o Arithmetic: The reference may be manipulated by per-
forming address arithmetic of two forms. Local ad-
dressing treats the global address space as segmented
among processors and acts on a global pointer as the
corresponding addressing operations would act on a
standard pointer, i.e., an incremented pointer refers
to the next location on the same processor. Global ad-
dressing treats the global address space as linear with
the processor component varying fastest. Addresses
wrap around from the last processor to the next offset
on the first processor.

e FExtraction and construction: The global pointer can
be taken apart to obtain its processor number and lo-
cal address components. A global pointer can also be
constructed from these components.

o Null test: A global pointer can be tested for null just
as a standard pointer, i.e., by equality with 0.

3.2 T3D Design Constraints

The 21064 implementation of the Alpha architecture sup-
ports 43-bit virtual addresses and 32-bit physical addresses
(two additional high bits support memory mapped devices).
This has a significant impact on how the machine supports
shared memory. Many shared-memory machines map all
memory accessible to a process into the virtual address space
and a virtual address is translated into a global physical ad-
dress [2, 16, 10, 13, 14]. The memory system extracts the
node number and physical location from the global physi-
cal address and performs either a local memory access or a
message transaction with a remote memory controller. For
a fully configured T3D, this would require at least 37 bits of
physical address. Since there not that many bits available,
the T3D shell performs an additional level of address trans-
lation using a set of 32 segment registers known as the DTB
annex (Figure 3). Each Annex register specifies a processor
number and function code. Annex registers are updated at
user level with the revised store-conditional instruction at a
measured cost typical of off-chip access, 23 cycles. Annex
register 0 always refers to the local processor.

The page tables are constructed to provide shared stack
and heap segments containing 32 regions of 128 MB each,
one per Annex register. The virtual-to-physical translation
performed in the Alpha carries the Annex register index
through and translates the remainder of the address to a 27-
bit physical address, which must be valid on all processors.
Thus, one must view a virtual address as a temporary global
address; its meaning is dependent on the configuration of
the Annex. 2

2 An alternative would have been to provide truly global virtual
addresses and have the operating system manage the Annex trans-
parently. The page tables would associate addresses for the currently
mapped remote processors with the appropriate Annex indexes and
a fault would occur on reference to an un-mapped remote processor.
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Figure 3: The DTB Annez. A 43-bit Virtual Address (VA)
is translated to a 34-bit Physical Address (PA), followed by
the index into the Annex. Each of 32 Annex entries specifies
a function code (FC) and a remote processor (PE). The two
mm bits are used to support memory-mapped devices.

A remote access involves storing the destination node
number into one of the Annex entries, and then accessing
the desired offset in the corresponding segment of the virtual
address space. Thus, the Annex presents a new set of reg-
isters that the compiler must manage and a short sequence
of instructions is required to perform a remote access.

3.3 Global Pointer Representation and Operations

A natural choice for the global pointer representation is a 64-
bit entity with the local address stored in the lower 48 bits
and the processor number stored in the upper 16 bits. This
is the same size as a local address, so transfer is efficient. The
Alpha has powerful byte manipulation instructions, so ex-
tracting the components of a global pointer and performing
arithmetic are also fast. In fact, with the particular virtual
memory mapping in the T3D, the 42nd bit of any virtual
address is zero. Thus, local address arithmetic is performed
on global pointers exactly as it is on local pointers; the re-
sult should never overflow into the processor portion of the
address. The meaning of a global pointer is independent
of the processor that dereferences it, so they can be freely
placed in shared data structures.

On dereference, the processor number is extracted and
stored in an Annex register, and the annex entry number
is inserted in the appropriate bit-field to generate a valid
virtual address for use in a load or store instruction. Lo-
cal arithmetic can be performed on this “internal” global
pointer and multiple references can be made without incur-
ring the cost of annex setup.

3.4 Annex Register Management

A key question underlying the use of global pointers is how
the compiler manages the Annex registers. The simplest ap-
proach is to use only one Annex register and update it on
each global access, skipping the Annex update if the com-
piler can determine that successive accesses are to the same
processor. An alternative is to use several Annex registers

and keep a runtime table of their entries, with a table lookup
added to each global access. This could be combined with
compiler analysis to eliminate the table lookup when there
is sufficient static information about the pointers.

On the surface, using multiple Annex registers appears
to be the better alternative, but it leads to subtle seman-
tic problems and in the end there is no clear performance
advantage. The semantic problem occurs if two Annex reg-
isters specify the same processor. Because the Annex per-
forms address translation on physical addresses, this allows
synonyms: two physical addresses that differ only in their
Annex index may map to the same location. Both the cache
and write buffer use physical addresses to determine when
two accesses are to the same location, so synonyms po-
tentially lead to inconsistent copies. Inconsistencies from
caching do not arise on the T3D because the annex entry
appears in the high order bits of the address and the cache is
direct-mapped, so two synonyms always map onto the same
cache line. Unfortunately, the write buffer does admit in-
consistencies, since reads can bypass writes. If a write is fol-
lowed by a read to a synonym, the read may see a stale value
from memory while the write is caught in the write buffer.
We have produced probes that exhibit this unpleasant phe-
nomenon. Thus, in order to use multiple Annex registers,
the compiler must recognize aliases between global pointers
or it must generate runtime checks to prevent synonyms.

If a runtime table of Annex entries is kept, the Annex
register will need to be selected by hashing the processor
portion of the global pointer. Even a simple table lookup
requires a memory read and a branch, so the savings relative
to a 23-cycle Annex update are small.

A final consideration in using multiple Annex registers is
whether this interacts poorly with other aspects of the mem-
ory system. Since the Annex register number appears in the
high order bits of the virtual address, remote accesses will
consume TLB entries. Our concerns on this point where al-
layed when we determined that the processor was configured
to use huge pages and therefore few TLB entries.

3.5 Summary

Global pointers are easily represented on the T3D in a form
almost identical to that of local pointers and address arith-
metic on global pointers is extremely fast. This capabil-
ity 1s due to the 64-bit architecture of the Alpha as well
as its powerful byte manipulation instructions. However,
the small physical address space of the 21064 presents a
serious problem for large shared memory multiprocessors,
even when the compiler explicitly manages the global ad-
dress space. The use of external segment registers to extend
the effective physical addressing interacts poorly with the
memory system and complicates code generation. The pro-
vision of many external segment registers appears to be of
small value.

4 Remote Reads and Writes

The shell of the T3D provides a large set of mechanisms
for reading and writing to the global address space, each
with its own semantics and costs. The compiler writer must
determine which of these mechanisms can be used to imple-
ment a language primitive and then choose the fastest. This
section describes the implementation of the simplest Split-
C remote access primitives, read and write. We define the
semantics required by Split-C, characterize the performance
of similar T3D mechanisms, and then describe our resulting
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implementation. We end with a discussion of two semantic
mismatches — discrepancies between the behavior defined by
the language and that implemented by the machine — that
required awkward workarounds.

4.1 Split-C Global Memory Access

An assignment statement with a global pointer on the right-
hand side causes a remote read, and one with a global pointer
on the left-hand side causes a remote write. Reads and
writes are blocking operations; a read waits for the requested
value to arrive from the remote processor, and a write waits
for an acknowledgement that the write is complete. There-
fore, these operations appear sequentially consistent to the
programmer.

4.2 T3D Remote Reads

The T3D provides two types of remote reads: cached and
uncached. Both use the standard Alpha load instruction on
a global address, but a function code in the DTB Annex
entry specifies the type of read. A cached read updates
the requested line (32 bytes) in the the cache and places
the requested word into the specified register. An uncached
read fetches only the requested word and does not modify
the cache.

We determine the latency of remote reads by modifying
the local micro-benchmark so that it strides through remote
memory. The results are shown in Figure 4. An uncached
read costs roughly 610 ns (91 cycles) while a cached read
costs 765 ns (114 cycles). As we saw with local-memory
operations, strides of 16 KB or greater cause an off-page
DRAM access (this time in the remote node’s memory con-
troller) which increases the average access time by about
100 ns (15 cycles). The cost of cached reads depends on the
contents of the local cache. In our micro-benchmark, array
sizes that fit in the cache result in local-cache memory-access
times since the first time through the array brings the data
local for all successive iterations. Cached reads also perform
slightly differently for strides of 8 and 16 bytes. By bringing
over entire cache lines, cached reads essentially prefetch the
next 1 or 3 accesses. Note that all of our measurements are
to an adjacent node, with only one processor active; mea-
suring the additional latency through the network reveals
roughly a 13 to 20 ns (2-3 cycle) cost per hop.

To put these costs in perspective, remember that a re-
mote uncached read is only three to four times slower than
a read from local memory. In fact, the latency to remote
memory on the T3D is only 80 ns higher than a main mem-
ory access (including TLB miss) on the DEC workstation.
This also is significantly faster than similar MPPs: the cost
of a read to a remote node on the DASH multiprocessor is
roughly 3 s, and is about 7.5 ps on the KSR [23].

4.3 T3D Remote Writes

The next primitive we examine is the remote write. Just
as the remote read is an extension of the load instruction,
remote writes use the Alpha store instruction on a global
address.

Because stores are handled by the write-buffer, and are
therefore non-blocking, we must explicitly poll for the re-
mote acknowledgement in order to match the semantics of
the language. The acknowledgement is automatically sent
by the T3D hardware and causes a bit in a local shell sta-
tus register to be cleared. Figure 5 shows the write-latency
profile, with blocking remote writes completing in roughly
880 nanoseconds (130 cycles).

One subtlety arose while implementing the blocking write
that illustrates the unwanted interactions that can occur
between the custom shell and the commodity core. The
remote-write status bit is set when there are writes that have
left the processor and not returned, but it is clear if there are
pending remote writes in the write buffer. Therefore, to poll
on this bit, one must first guarantee that the corresponding
write(s) have left the buffer. This can be done by issuing a
memory barrier instruction or a sufficient number of writes,
which effectively increases the cost of the operation.

4.4 Compiler Implications

It was not immediately obvious which mechanism should
be used to implement the Split-C read primitive. Cached
reads offer a higher bandwidth, but are difficult to use be-
cause the machine does not guarantee coherence of cached
values. If the processor that owns the cache line updates
it, the change is not reflected on remote processors that
are caching the same line. Reads to the cache line would
then obtain stale data. Therefore, if cached reads were used
for reading remote values, the cache line would have to be
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Figure 5: Remote Write Latency. The time to write a word
into the network and get an acknowledgement.

flushed after the read. This restriction makes cached reads
less advantageous since a cache-line flush costs an extra 23
cycles (equivalent to accessing main memory). Languages
such as HPF might be able to perform some type of global
analysis to determine when data-sharing occurs (and thus
when to flush), but this is not possible in a C-like language.
Therefore, the Split-C implementation uses uncached reads.
Figure 4 shows the total latency as seen by the programmer,
which is about 850 ns (128 cycles). The majority of this is
attributed to the remote read and Annex set-up time.

The Split-C write primitive uses the write mechanism
followed by polling and requires a total latency of 981 ns
(147 cycles), as seen in Figure 5. However, the operation
has a subtle associated cost. When a processor initiates a
remote write, the object being written to might be cached
by the remote processor that owns the object. In order to
maintain coherence, the T3D allows the caches to be op-
erated in a cache-invalidate mode. When a remote write
request is received, the corresponding cache line is flushed
even if that particular cache line isn’t currently cached. In
other words, we are forced to operate in this mode in the ab-
sence of higher-level information, and doing so may generate
spurious cache flushes in order to preserve coherence.

4.5 Semantic Mismatches

There are two idiosyncrasies of reads and writes on the T3D,
caused by tension between the machine’s shell and core, that
led to serious semantic mismatches between the machine and
the language:

Byte Writes: The Alpha does not support byte store
operations. The designers chose to simplify the memory in-
terface by not supporting byte read/write operations, but
instead provided a family of byte manipulation instructions
that operate on register values [24]. A byte store opera-
tion could therefore be implemented as a read-modify-write
sequence. However, on a multiprocessor like the T3D, we
cannot guarantee correct execution of a byte-store opera-
tion when multiple processors are updating the same word.
If two processors attempt to update a byte at the same time,
one update will clobber the other. Note that a solution us-
ing the load-locked and store-conditional instructions is no
longer possible, since these instructions were consumed by
annex manipulation. Section 7 looks at an alternative way

to support byte updates.

Global-Local Consistency Issues: Writes through global
pointers wait for the operation to complete irrespective of
whether the location being accessed is local or remote. How-
ever, writes through normal local pointers, which appear
as standard Alpha store operations, are buffered in a write
buffer. This could result in access order violations since the
global address space is also accessible through standard lo-
cal pointers. A read through a local pointer could overtake
a write operation issued earlier also through a local pointer
but to a different location. In such a situation, another pro-
cessor could observe this reordering of accesses, resulting in
a violation of sequential consistency semantics. To avoid
consistency violations, we could either ensure that writes
through local pointers are not caught in the write buffer by
using the memory barrier instruction or by explicitly pri-
vatizing the global address space. We currently choose the
latter, and require the programmer to insert explicit calls
around any region where shared global data may be accessed
through local pointers.

5 Split-Phase Accesses

5.1 Split-C Get and Put Operations

The Split-C get and put primitives are split-phase, non-
blocking operations that can be used to overlap communica-
tion and computation. A get operation initiates a prefetch
from a remote address to a local address, while a put opera-
tion initiates a non-blocking write to a remote location. The
sync operation waits for all outstanding split-phase accesses
to complete. The gef and put operations lead to weak consis-
tency semantics because the accesses initiated between two
syncs can no longer be ordered.

5.2 T3D Binding Prefetch

The T3D’s prefetch mechanism uses the Alpha fetch instruc-
tion to provide non-blocking reads of remote addresses. The
fetch instruction informs the support circuitry to fetch a
word from a remote node while the processor continues com-
putation. The fetch request is placed in the write buffer and
eventually sent to the specified remote processor. When the
processor actually needs the requested data it must pop the
word(s) from the 16-entry memory-mapped prefetch queue
by issuing a load instruction.

To examine the performance of the prefetch mechanism
we used a simple benchmark that measures the average la-
tency of prefetching one or more words. The benchmark
groups n remote read requests into a series of prefetch in-
structions and then pops the results from the prefetch queue
and stores them to local memory. The results indicate the
extent to which the prefetch mechanism can overlap remote
access costs (Figure 6).

One (prefetch, pop from queue, store) sequence is slower
than a blocking read by about 15 cycles, but issuing four
prefetches, popping the queue four times, and storing all
the results to local memory is significantly faster than four
blocking reads. The prefetch essentially allows the network
to be pipelined, thereby masking most of its latency. An
important conclusion we can draw from Figure 6 is that the
remote latency is almost entirely hidden as the size of the
group approaches 16. Therefore, the choice of 16 for the
size of the prefetch queue seems to be a reasonable one.
Note that when less than 4 prefetches are issued, a memory
barrier must be inserted before the pop from queue. This
guarantees that the prefetch has left the processor.
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Further instrumentation of the prefetch mechanism re-
veals the following cost breakdown:

Prefetch Issue: 4 cycles
Memory barrier: 4 cycles
Round Trip: 80 cycles
Prefetch pop: 23 cycles

This breakdown shows that the prefetch mechanism al-
lows about 75% of the cost of a remote fetch operation to
be overlapped with other useful work. When prefetches are
issued in groups of 16, we spend 31 cycles per prefetch/pop
operation. Subtracting the 23 cycles required for the pop
and the 4 cycles required for the prefetch issue leaves only
4 cycles of network latency and address manipulation over-

head.

5.3 T3D Non-blocking Writes

The Alpha store instruction is a non-blocking write opera-
tion; the processor simply issues a store to the write-buffer
and continues computation. Figure 7 shows the results of
the familiar micro-benchmark modified to write to a remote
processor. Writes with a stride of less than 32 bytes reveal
the write-merging behavior of the Alpha (similar to Figure
2). Larger strides show an average cost of 115 nanoseconds
(17 cycles) per write. At 16K, we once again see the sensi-
tivity to remote-memory DRAM page misses.

5.4 Compiler Implications

We can implement the Split-C gef operation with the prefetch
mechanism. However, some additional work is required since
the get operation also specifies a local address that serves as
the target for the fetched value. The target address needs
to be stashed away when the fetch is issued. This can be
accomplished if the compiler has sufficient information to
match the prefetches and the corresponding syncs, which
might not be possible in the presence of unstructured con-
trol constructs. In the general case, we maintain a table for
storing these local addresses. The target address is stored
in this table at prefetch initiation time. When a sync op-
eration is encountered, or when the number of outstanding
fetch operations reaches 16, a memory barrier is issued, and
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Figure 7: Non-blocking Write Latency. The average time to
write to a remote processor (no acknowledgement).

the values in the prefetch queue are dequeued and stored in
the appropriate target addresses obtained from the table.

The Split-C implementation introduces two additional
pieces of overhead over the raw hardware prefetch mecha-
nism: the table update and the store into the local address
when the prefetch is complete. The cost of the table update
and lookup operation is 10 cycles, and the cost of the local
store operation is 3 cycles. Figure 6 reveals the final Split-C
get cost, which includes annex set-up time, table manage-
ment, and all other overheads.

The implementation of putis straight-forward from the
non-blocking write, and requires the annex setup as well as
a few additional checks. The performance of the Split-C
primitive is shown in Figure 7. From this we see that put
average latency is about 300 ns (45 cycles).

6 Bulk Operations

6.1 Language Provisions

Bulk transfers occur in Split-C in two different flavors: im-
plicitly when an entire remote structure is accessed by a
read, write, get, or put in a single assignment and explicitly
through calls to bulk_read, bulk_write, bulk_get, and bulk_put
for copying contiguous regions of global memory. The com-
piler transforms structure assignment operations into the
explicit bulk operations.

6.2 T3D: Block Transfer Engine
The block-transfer engine (BLT) is essentially a DMA de-

vice: given a remote processor number, a pointer to a buffer,
and a length argument, the engine initiates a transfer be-
tween the two processors’ memories. The operation spec-
ified can be either a read or a write. The BLT is also
capable of performing strided-array accesses. One would
think that this would be the natural match for the Split-C
bulk routines. However, unlike the hardware primitives we
have tested so far, this mechanism for remote memory ac-
cess is only available through an operating system invocation
with high software overheads. As language implementors,
we need to compare the BLT with the other remote access



mechanisms that the T3D shell provides and answer the ob-
vious question of which mechanism to use in implementing
the bulk transfer routines.

To compare the different mechanisms for implementing
bulk transfers, the appropriate metric is the bandwidth at-
tained by the mechanisms for large reads. Using each of
mechanisms described before (uncached reads, cached reads,
the prefetch queue, and the bulk-transfer engine), we imple-
mented and micro-benchmarked four bulk read operations.
The left side of Figure 8 compares the resultant bandwidths
of each implementation.

As the figure indicates, for very large reads (i.e. greater
than 16 KB in size), the bulk-transfer engine achieves the
highest transfer rate, peaking at roughly 140 MB/s. For
reads between 128 bytes and 16 KB, the prefetch queue at-
tains the maximum bandwidth. At this point, the over-
head incurred by the BLT overcomes its superior maximum
transfer rate. Though cached reads bring over four words
at a time (whereas prefetches can only bring over one), the
latency-hiding ability of the prefetch mechanism makes it
strictly better than the cached reads, except in the case of
32 and 64 bytes®. At these points, the cached read can bring
over either one whole cache line or two, and thereby achieve
the best performance. Lastly, for very small transfers (8
bytes), the uncached read is optimal.

For bulk writes, we have two mechanisms available: the
non-blocking store instruction and the BLT. Figure 8 shows
the net difference between the two. Whether the local data
to be written is in cache or not, the performance of non-
blocking writes is superior to initiating the bulk-transfer en-
gine. The bandwidth for writes from local memory to remote
memory (i.e. not in the local cache) peaks at 90 MB/s, and
is apparently bus limited.

6.3 Compiler Implications

The implementation of the Split-C bulk_read and bulk_write
routines is an obvious progression from the micro-benchmarks.
The key cross-over point occurs at a transfer size of about
16 KB. At this size, the bulk transfer engine should be used
instead of the prefetch queue. For simplicity, the prefetch
queue is used even for 32 and 64 byte transfers; switching
this to cached reads would increase performance. Figure 8
shows the Split-C performance attained.

To implement the bulk get and put operations, we need
to compare the initiation time of the various mechanisms.
If we use the BLT for implementing a bulk get, we need to
wait only for the duration of initiating a BLT operation, and
we could overlap the actual transfer with local computation.
However, if we use the prefetch mechanism for implement-
ing a bulk get, we find that removing the restriction of com-
pletion is not especially beneficial. This follows from the
fact that the prefetch queue can only have a maximum of
16 outstanding requests. Unfortunately, since BLT invoca-
tion overhead is egregiously high, we must use the prefetch
mechanism for implementing bulk gets of certain transfer
sizes. The cost of initiating a bulk transfer using the BLT
is 180usec. The prefetch mechanism can read about 7,900
bytes during that time interval. Therefore, the Split-C bulk
get uses the prefetch mechanism for all transfer sizes less
than 7,900 bytes and the BLT for larger transfers. By sim-
ilar reasoning, the implementation of bulk put uses the Al-

3The performance of bulk transfers using cached reads has an in-
flection point at 8K. This occurs because the cache line flushes (re-
quired to maintain coherence) can now be batched into an entire cache
flush operation, which is less expensive.

pha non-blocking stores for all transfer sizes less than 16,900
bytes and the BLT for larger transfers.

6.4 Summary

We have now seen most of the T3D’s shell: cached and
uncached reads, writes, prefetching, and bulk transfer. Of
these, the prefetch and write are most useful. Prefetch would
be the ideal read mechanism if a larger pay-load could be
brought over. Since prefetch is so efficient, both cached and
uncached reads are of little use. Cached reads are especially
difficult to utilize due to the lack of hardware coherence. The
block transfer engine is cumbersome, and would be greatly
improved if access were from user level. Lastly, writes are
the simplest and most efficient data movement mechanism,
achieving both low-latency and high-bandwidth data trans-
fer.

7 Bulk-synchronous and Message-driven Computation

In this section we investigate optimizations that are available
for applications with structured communication and syn-
chronization patterns. Typically, this structure arises where
there is a well-understood global view of the computation al-
lowing information to be pushed to where it is needed next.
For example, in stencil calculations where the boundary re-
gions must be exchanged between steps, the communica-
tion patterns are predefined. In a “bulk synchronous” style,
the program proceeds as a phase of purely local computa-
tion followed by a phase in which all processors store data
into the boundary regions of their logical neighbors. Global
barriers between phases enforce all necessary dependences
without requiring fine-grain completion of individual stores.
In a “message driven” style, a node can proceed with the
next phase of computation as soon as it has received its new
boundary data. The language provides a means of express-
ing the lenient synchronization requirements of structured
applications, potentially enabling the use of various opti-
mizations at the machine level.

7.1 Language Support: Signaling Stores

Split-C allows the programmer to reason at the global level
by specifying clearly how the global address space is parti-
tioned over the processors, as discussed in Section 3. What
is remote to one processor is local to another. The :- assign-
ment operator, called store, stores a value into a global lo-
cation, but the issuing processor is not necessarily informed
of its completion. The extremely weak completion seman-
tics of store mean that only one-way communication is re-
quired (i.e., no acknowledgements) and stores can be heav-
ily pipelined. There are two ways of detecting completion of
stores. A form of global barrier, all_store_sync, returns when
all stores issued before the barrier have completed. This is
sufficient to support bulk-synchronous execution. Alterna-
tively, completion can be detected locally using store_sync,
which returns when a specified amount of data has been
stored into the region of the address space owned by the
local processor. This supports message-driven execution. In
many Split-C implementations, signaling stores are the most
efficient form of communication when applicable.

7.2 T3D Design Constraints

The T3D offers no store mechanism that avoids acknowl-
edgement upon completion. In this view, the completion
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a bulk read. On the right, bulk writes are implemented using the BL'T and the store instruction.

semantics provided by the machine are stronger than those
specified by the language. There still is a potential perfor-
mance gain on signaling stores (now essentially puts), since
waiting for completion can be deferred and many stores can
potentially be issued before waiting.

The key problem with remote reads and writes performed
directly in hardware is that the recipient of the data is not
informed that the data is in fact present, as required for
message-driven programs. This is in contrast to many other
Split-C implementations where the global memory opera-
tions are constructed upon Active Messages and a store han-
dler can, for example, increment a counter. On the T3D, we
must construct essentially the equivalent of Active Messages
to provide notification to the recipient, apart from the ac-
tual data transfer. This brings three other significant com-
ponents of the T3D shell into the picture: explicit messages,
fetch&increment registers, and fuzzy barriers.

7.3 User-level Message Queue

The T3D provides direct access to the network via a mes-
sage queue. The mechanism is straight-forward: a four word
message is composed and a PAL call is issued to atomically
put the message into a cache-line sized transfer to the spec-
ified destination. PAL code is provided by the Alpha as an
architected interface to microcoded functions. We measure
the time to inject a message into the network as 813 ns (122
cycles), comparable to the time to perform a remote read.

Unfortunately, the send cost is the fast part in the mes-
sage transfer. Upon message reception, the processor is in-
terrupted, the message is placed in a user-level queue, and
one of the following two actions take place: control is either
returned to the original thread or transferred to a specific
message handler. The measured cost of the interrupt is 25
microseconds (3700 cycles), and the switch to a message
handler adds another 33 microseconds (5000 cycles) on top
of this.

7.4 Fetch&Increment Registers

Given the high cost of message receipt due to operating sys-
tem intervention, we are led to consider ways of constructing
message transfers out of the fast shared memory primitives.
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One approach is to have each node provide a dedicated in-
put queue for every other node. In this case send is again
simple (check availability in remote queue, store data, store
flag), but determining that a message has arrived requires
searching all the queues. What really is required is an N-to-1
queue to bring all the incoming messages or notifications to-
gether (which is, of course, what the physical network does).
The T3D provides a set of fetch&increment registers to al-
low such multi-access data structures to be constructed ef-
ficiently. The fetch&increment operation is essentially the
cost of a remote read, i.e., about 1 microsecond. To de-
posit a message of four data words and one control word
into a remote queue (essentially equivalent to a CMAM Ac-
tive Message call[26]), takes 2.9 us, whereas dispatching on
the receiving end and accessing the message takes 1.5 us.
As this provides the full power of poll-based Active Mes-
sages, it provides a basis for supporting the message-driven
store_sync as well as the ability to execute a function atom-
ically on a remote processor. We can also provide a correct
implementation of byte_write using this mechanism, as dis-
cussed in Section 4.

7.5 Fuzzy Barriers

Bulk-synchronous execution can be supported, as well, but
issuing the store is slower than a put. The global barrier
waits for outstanding stores to complete, performs the start-
barrier instruction, and then polls the message queue until
all other processors have reached the start-barrier before
completing the barrier. This “fuzzy” barrier gives us the
ability to place code between the start-barrier, which noti-
fies other processors that the synchronization point has been
reached, and the end-barrier, which resets the global-OR bit
so the barrier can be used again, and allows the fast hard-
ware barrier to be used while supporting remote memory
access and user-level message passing. On many other plat-
forms, the Split-C implementation was unable to use the
fast native barriers because they did not compose well with
other operations.

8 A Case Study: EM3D

In this section we bring together the various components of
the language implementation on the T3D in a performance
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Figure 9: FM3D Performance. Performance obtained on
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study of a scalable Split-C application, EM3D, that models
the propagation of electro-magnetic waves through objects
in three dimensions [18]. A preprocessing step casts this
problem into a simple computation on an irregular bipar-
tite graph containing nodes representing electric and mag-
netic field values. The computation consists of a series of
“leapfrog” integration steps: on alternate half time steps,
changes in the electric field are calculated as a linear func-
tion of the neighboring magnetic field values and wice versa.
Specifically, the value of each E node is updated by a weighted
sum of neighboring H nodes, and then H nodes are similarly
updated using the E nodes. Thus, the dependencies between
E and H nodes form a bipartite graph. In the parallel ver-
sion of EM3D this graph is represented directly using global
pointers, and is spread across all of the processors.

We have developed six versions of the application with
varying degrees of optimizations using the capabilities of-
fered in Split-C. We consider a collection of synthetic graphs
with 500 vertices on each processor with each vertex having
a degree of 20, the same inputs seen in [6]. The communi-
cation requirements of the problem are scaled by adjusting
the fraction of edges in the graph that cross processors in a
synthetic graph. The useful performance metric when scal-
ing both problem and machine size is the average time per
edge, as shown in Figure 9 for the T3D. This corresponds
to reading the value of a neighboring E or H node and a
floating-point multiply-add. In the figure, the horizontal
axis is the percentage of remote edges.

In the simplest version (Simple) the value associated with
an edge is simply read, i.e., a blocking memory read is is-
sued to fetch the possibly remote value. The same value is
fetched multiple times if it is required more than once during
a single time-step. The other versions rectify this problem
by introducing local “ghost nodes” that serve as temporary
cache-sites for non-local values. The computation is divided
into two phases: the first phase fetches the remote values
into the local ghost nodes, and the second phase performs
the weighted sum computation based on the ghost node val-
ues. With this change, Bundle benefits from reuse of cached
values and from better code generation since the communi-
cation and compute phases are separated. Next, we optimize
the compute phase of the program by loop unrolling and
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software pipelining. In version Get, we pipeline the remote
reads that fill the ghost node values using Split-C gets. In
Put, we move the responsibility of filling a ghost node from
the local processor that maintains the ghost node to the re-
mote processor that maintains the actual value, using put
operations to update them. The last optimization gathers
all the values that need to be sent from one processor to
another processor into a single buffer and uses a bulk_put
transfer to fill the ghost node values.

By introducing ghost nodes and optimizing the local
computation, we reduce the cost of processing an edge to
0.37pusec when all the edges are local. This corresponds to a
floating point performance of 5.5 MFlops per processor since
there are two floating point operations involved in process-
ing an edge. The other versions do not affect this local node
performance; they primarily focus on decreasing the commu-
nication costs. As expected, we decrease the communication
costs by pipelining the reads in the Get version. The Put
version performs better than the Get version because puts
have less overhead than gets. Finally, the Bulk version has
the best performance since it avoids repeated Annex set-up
operations.

9 Analysis and Conclusions

The goal of this study was to derive an efficient implemen-
tation of a parallel language, Split-C, on a novel large-scale
multiprocessor, the CRAY-T3D, using a systematic micro-
benchmarking methodology. This approach is warranted be-
cause the T3D provides an elaborate shell around a sophis-
ticated microprocessor, the DEC Alpha, to support global
operations which are critical to a parallel language. The
performance of the many shell operations was not previ-
ously documented and the interactions between them were
potentially non-trivial.

In particular, the shell provides loads and stores of re-
mote addresses, but requires manipulation of external seg-
ment registers to expand the physical address into one con-
taining a full processor number. The external registers are
managed by the compiler, and the usage strategy potentially
interacts with the use of the TLB. The Alpha takes an ex-
treme position on the weak ordering of memory operations,
so writes are only known to have been committed after an
explicit memory barrier instruction and reads can bypass in-
dependent writes. The shell provides additional operations
to detect completion of remote operations. Various forms of
cache-ability are supported, but caching of remote memory
is not coherent. The Alpha provides prefetch “hints,” which
the T3D shell interprets as a binding load into an off-chip
prefetch queue. The shell provides a powerful block transfer
engine, which can move data to or from remote memory,
but requires operating system intervention on start-up. It
also supports explicit messaging through a user-level output
FIFO, although the receive requires operating system inter-
vention to handle the interrupt. The shell also provides an
extremely fast global “fuzzy” barrier and special registers to
support fetch&increment operations on remote nodes.

The large menu of primitives meant that there were po-
tentially many different ways to realize the same language
primitive on the machine. Careful assessment of the perfor-
mance trade-offs was required to select between them. In
making this selection, we have provided a thorough empir-
ical characterization of the performance of the many prim-
itives supported in the machine. The raw performance of
the remote memory operations is very impressive and sig-
nificantly faster in absolute terms than any previous large



scale design. Remote access is performed in less than 1 us,
only three to four times the latency of a local cache miss,
depending on whether the local DRAM access is off-page
or not. However, the fast clock-rate of the Alpha means
that this is still roughly 100 cycles. The prefetch support is
very effective and capable of reducing the effective remote
latency to 250 ns, where the remaining time is filled with
useful work or used to issue additional prefetches.

In many cases we found that either the performance char-
acteristics or subtle interactions between the language and
hardware eliminated many of the potential options. Fur-
ther, architectural oversights in both the shell and the mi-
croprocessor were limiting factors. For example, the po-
tential hazards arising from physical synonyms in the write
buffer prevent the compiler from using many external seg-
ment registers, except in special situations. The potential
degradation of TLB efficiency leads to the same conclusion.
Updating the configuration of the external registers is fast
enough (roughly 23 cycles), that explicit checks can out-
weigh the cost of simply reloading it. In light of this, a
single Annex entry for remote access could have sufficed.
The lack of partial word stores make the use of shared data
structure with data types that are less than a word, e.g.,
character arrays, very cumbersome, even when there is no
actual interaction on the individual elements. The prefetch
mechanism is so fast that there is little performance advan-
tage to providing the load, except that tracking the implicit
hardware management of the prefetch queue can be costly.
The start-up cost of the block-transfer engine is large, so
prefetches and non-blocking writes are the best way to per-
form bulk transfer, except for very large transfers, in excess
of 16 KB. Finally, the cost of message receipt is large, so that
it is generally better to construct a remote message queue
using the shared memory primitives and the fast synchro-
nization support.
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