
Fast key-value stores:

An idea whose time has come and gone

Atul Adya, Robert Grandl, Daniel Myers
Google

Henry Qin
Stanford University

Abstract

Remote, in-memory key-value (RInK) stores such as Mem-
cached [6] and Redis [7] are widely used in industry and are
an active area of academic research. Coupled with stateless
application servers to execute business logic and a database-
like system to provide persistent storage, they form a core
component of popular data center service architectures. We
argue that the time of the RInK store has come and gone: their
domain-independent APIs (e.g., PUT/GET) push complex-
ity back to the application, leading to extra (un)marshalling
overheads and network hops. Instead, data center services
should be built using stateful application servers or custom
in-memory stores with domain-specific APIs, which offer
higher performance than RInKs at lower cost. Such designs
have been avoided because they are challenging to imple-
ment without appropriate infrastructure support. Given re-
cent advances in auto-sharding [8, 9], we argue it is time to
revisit these decisions. In this paper, we evaluate the poten-
tial performance improvements of stateful designs, propose
a new abstraction, the linked, in-memory key-value (LInK)
store, to enable developers to easily implement stateful ser-
vices, and discuss areas for future research.

CCSConcepts •Computer systems organization→Dis-
tributed Systems; Key/Value Stores; Stateful Architectures;

Keywords Distributed Systems, Key-Value Stores, Caches
ACM Reference format:

Atul Adya, Robert Grandl, Daniel Myers and Henry Qin. 2019.
Fast key-value stores: An idea whose time has come and gone.
In Proceedings of Workshop on Hot Topics in Operating Systems,

Bertinoro, Italy, May 13–15, 2019 (HotOS ’19), 7 pages.
https://doi.org/10.1145/3317550.3321434

1 Introduction

Modern internet-scale services often rely on remote, in-
memory, key-value (RInK) stores such as Redis [7] and Mem-
cached [6] (Fig. 1). These stores serve at least two purposes.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
HotOS ’19, May 13–15, 2019, Bertinoro, Italy
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6727-1/19/05. . . $15.00
https://doi.org/10.1145/3317550.3321434

First, they may provide a cache over a storage system to
enable faster retrieval of persistent state. Second, they may
store short-lived data, such as per-session state, that does
not warrant persistence [25].

These stores enable services to be deployed using stateless
application servers [16], which maintain only per-request
state; all other state resides in persistent storage or in a
RInK store. Stateless application servers bring operational
simplicity: for example, any request may be handled by any
application server, which makes it easy to add and remove
application servers, to handle server failures, and to handle
skewed workloads.

Frontends

End-user 
devices

Stateless 
application servers

. . .

Database

. . .

. . .

RINK store,
e.g., Memcache

Figure 1. Stateless application servers with a RInK store (S+RInK).

A key property of RInK stores is that they provide a sim-
ple and domain-agnostic interface (e.g., PUT/GET of string
keys and string values, or manipulation of simple data struc-
tures such as lists). Because RInK stores handle well-defined
and simple operations, implementations have been able to
achieve extraordinarily high throughput and low latency [14,
18, 20, 24]. Moreover, the high performance of these stores
makes distributed caching challenges such as load balancing
relatively less important: even when a workload exhibits
skew, simply overprovisioning the RInK store can be viable.

On the other hand, the domain-agnostic interfaces of RInK
stores push cost and complexity back to the application
servers. For example, they force applications to repeatedly
convert their internal data structures between native lan-
guage representations and strings, which imposes both a
CPU cost and a programmer burden. This problem is exac-
erbated when applications do not use the entirety of every
value retrieved from a RInK store, since bytes are needlessly
transferred only to be discarded. Finally, the network dis-
tance imposes a latency cost, particularly when large values
must be transferred or multiple round trips are needed.
We argue that these costs are under-appreciated and no

longer necessary, given recent improvements in auto-sharding

https://doi.org/10.1145/3317550.3321434
https://doi.org/10.1145/3317550.3321434


HotOS ’19, May 13–15, 2019, Bertinoro, Italy Adya et al.

systems [8, 9]. Rather than externalizing in-memory state
in a RInK, developers should instead build stateful appli-
cation servers. By a stateful application server, we mean
a server that couples application code and long-lived in-
memory state in the same process. If a stateful application
server is not feasible, e.g., because state is shared by multiple
applications or languages, developers should instead build
a custom in-memory store, which is at a network distance
from application servers but exposes a domain-specific API.
Building stateful services requires solving new technical

challenges, and the research community should focus on
helping developers solve them, rather than on building ever-
faster RInK stores. Although they pose challenges, stateful
services offer significant performance improvements. For
example, ProtoCache (a component of a widely-used Google
application) saw a 40% reduction of 99.9% latency when
it made this architectural switch, and experiments with a
model application and synthetic workloads show potential
latency improvements of up to 57%.
This paper makes three contributions. First, we argue

that coupling application code and cached in-memory state
brings underappreciated performance benefits. Second, we
propose a new linked, in-memory key-value (LInK) store
abstraction. A LInK store is a key-to-rich-object map linked
into application servers or custom in-memory stores that
replaces an external RInK store; it implements functionality,
such as reconfiguration after a resharding event, whose ab-
sence we have found to impose a burden on developers. To
conclude, we describe additional areas in which the research
community can make contributions.

Finally, we are concerned with improving application per-
formance when accessing in-memory state by eliminating
RInK stores. Questions of how to ensure persistence of data,
while important, are outside the scope of this paper.

2 Motivation

2.1 Stateless and RInK Architecture

Modern internet-scale services need to be highly available
and reliable. One of the most important principles for ro-
bustness is simplicity, and service writers aim to architect
their systems as simply as possible so that they are easy to
implement, debug, maintain, and operate.

As far back as the late 1990s, developers were converging
on stateless application servers, where multiple independent
processes in a data center handle requests without maintain-
ing any state that outlives a request (the “LAMP stack”). The
state needed to handle each request is obtained ad-hoc from
a storage system, such as a SQL database or a horizontally
partitioned distributed storage system such as HBase [2],
Cassandra [1], Bigtable [12], or Spanner [13]. This design
maximizes the simplicity of the application server, which
contains only business logic; in particular, it contains no
code to manage state.

The purely stateless design yields operational benefits
because every application server is equivalent. If the load on
the service increases, new servers can be added to absorb the
additional load. If a server crashes, requests can be directed to
the remaining servers. If a server becomes overloaded, load
can easily be shed, e.g., by directing calls to the least-loaded
server or by using the power-of-two approach [22].

On the other hand, accessing persistent storage on every
request is expensive and slow. Services may also have state
that is inappropriate to persist but that nonetheless must
outlive individual requests (e.g., session state). To handle
these demands, developers evolved the stateless architecture
to include a layer of RInK stores such as Memcached [6]
and Redis [7] (Fig. 1). We call this the Stateless + RInK ar-
chitecture, or S+RInK. The expectation is that the RInK: (1)
improves scalability by offloading work from the persistent
store, since the RInK handles most requests; (2) lowers the
latency, because it does not need to provide durability.
Moreover, in some cases, a RInK store provides a shared

cache between multiple different applications, which im-
proves overall efficiency by avoiding duplication of data in a
per-application caches.

Finally, RInK stores are more scalable than (most) applica-
tion servers, since application servers often execute complex
logic and RInK stores have a straightforward, well-defined
interface. High performance allows RInK stores to be sharded
with simple techniques (e.g., load-unaware consistent hash-
ing in Memcacheg). Given a lack of auto-sharding infrastruc-
ture, isolating sharding to the RInK store would be attractive.

2.2 Stateless and RInK Architecture Limitations

The S+RInK architecture attempts to provide the best of both
worlds: to simultaneously offer both the implementation and
operational simplicity of stateless application servers and
the performance benefits of servers caching state in RAM.
We believe the architecture falls short due to fundamental
limitations in the abstraction it offers.
We identify the domain-agnostic API of RInK stores as

the flaw that hinders end-to-end application performance.
The limited power of such APIs forces applications to incur
unnecessary resource costs and increased latency.
2.2.1 CPU cost due to (un)marshalling

When reading data from a RInK store, a stateless application
server must perform a conversion step to translate that data
into an application object. For example, a calendar applica-
tion might construct a structured representation of events
and attendees. This operation takes CPU time. Simply re-
ceiving the bytes from the network may also require CPU,
although we do not consider this cost here. For example,
in ProtoCache prior to its rearchitecture, 27% of latency
was due to (un)marshalling. In our experiments (Section 3),
(un)marshalling accounts for more than 85% of CPU usage.
We also found (un)marshalling a 1KB protocol buffer to cost



Fast key-value stores: An idea whose time has come and gone HotOS ’19, May 13–15, 2019, Bertinoro, Italy

over 10us, with all data in the L1 cache. A third-party bench-
mark [5] shows that other popular serialization formats (e.g.,
Thrift [27]) are equally slow.

We see (un)marshalling as fundamental to real-world ap-
plications. Abstract data types are useful [21], and their in-
ternal representation is unlikely to correspond to a wire
format. For example, it may include variable-length fields or
pointers. Second, as software evolves, fields may be added
and removed from the data structure stored in the RInK,
which argues different wire and in-memory formats. Finally,
if programs written in different languages consume the same
cached data, some (un)marshalling is unavoidable.

RInK API introduces significant CPU overhead due to data

conversion into domain-specific representations.

2.2.2 Overreads

An overread occurs when an application reads data from a
RInK store in excess of what was required, resulting in extra
CPU and network costs. This happens when an application
must fetch an entire value, even if only a fraction of it is useful
for the corresponding computation. For example, consider an
application that caches the address books for all online users
in a RInK store: for each user, the address book is stored as a
single key-value pair. If a request arrives from Alice to read
Bob’s phone number from her address book, all of Alice’s
contacts must be fetched and unmarshalled, even though
only a small portion of the data is needed.
Decomposing large key-value pairs into multiple key-

value pairs can reduce the degree of overread, but at the cost
of weaker consistency guarantees: most RInK stores do not
support atomic cross-key operations. Additionally, devising
a decomposed representation to accelerate rich operations
(e.g., find the first free time slot for a user in a calendar appli-
cation) is not obviously trivial. Finally, the more the schema
is optimized to support particular operations, the harder it is
to evolve as requirements or workloads change. Overreads
can also sometimes be mitigated with richer data models in
the store [7], but as we discuss below, such solutions lack
generality and flexibility.
As a real-world example, for a common type of opera-

tion in ProtoCache, at the 99th percentile, responses are
only 2% of the size of the total cached item: avoiding over-
reads is important. These operations are implemented using
a collection of indices, which means that there is no single
decomposition of cached items into multiple key-value pairs
that would work for all operations.
Finally, our experiments in Section 3 show that if only

part of the record is needed (10%), RInK stores incur both
extra CPU (46%) and network (85%) costs.

RInK causes unnecessary data processing and transfer.

2.2.3 Network Latency

Even fast data center networks can impose latency costs in
the stateless and RInK architecture. If an application requires
multiple reads or writes to service a request, these latencies

can quickly add up. Beyond the simple RTT, the size of the
data to be transferred also matters, which is a particular
problem when coupled with overreads. For example, prior
to its rearchitecture, ProtoCache incurred an 80 ms latency
penalty simply to transfer large records from a remote store,
despite a high speed network.
Low latency data center networks do not eliminate data

transfer overheads when using a RInK store.

2.3 State-of-the-art RInK Stores

Although many approaches have been proposed to improve
RInK implementations, none of them address the challenges
described above.
2.3.1 Basic RInK stores

Basic RInK stores offer an interface that is effectively only
a PUT/GET API. For example, Memcached [6] is one of the
original and best-known RInK stores; it has been broadly
deployed, including in Facebook’s Tao [11] and Dropbox’s
Edgestore [4]; a version is also widely used at Google. Be-
yond PUT/GET, it includes some limited additional opera-
tions, such as appending a value to an existing value and
incrementing an existing integer value.
Recently, the academic community has focused on build-

ing more performant basic RInK stores, as well as optimizing
Memcached to death [10, 15, 26, 28]. FaRM [14] attempts
to improve the performance of stateless applications by re-
ducing the cost of fetching remote data using RDMA. Net-
Cache [18] addresses load skew for in-memory stores with
an extra layer of caching for hot keys directly in the net-
work switch. KV-Direct [20] leverages programmable NICs
to bypass the remote CPU and achieve high throughput ac-
cess to remote memory while offering richer semantics than
traditional RDMA.

These systems focus on improving the performance of the
PUT/GET operations rather than addressing the problems
of (un)marshalling costs or overreads.
2.3.2 Extended RInK stores

Extended RInK stores offer a richer domain-agnostic API
than the basic RInK stores.

Gribble et al. [17] proposed building a small set of cluster-
scale distributed data structures. As considered here, this is
similar to Redis [7], which also provides data structures that
enable finer-grained access to stored data but requires the
application to model its objects using one of the available
data structures. Redis can also be extended using modules
of arbitrary C code, and Splinter [29] allows applications to
ship small fragments of code to the store. These extensions
are in the spirit of the custom in-memory stores for which
we advocate. We argue for taking this approach even fur-
ther, embedding the store into the application server when
possible, and for providing a richer set of features, such as
dynamic load balancing and replication.



HotOS ’19, May 13–15, 2019, Bertinoro, Italy Adya et al.

RINK store,
e.g., Memcache

Frontends

Stateless 
application
servers

. . .

Database

. . .

. . .

Put/Get API

(a) Stateless servers with RInK

Stateful 
application
servers

Frontends

Database

. . .

. . .

(b) Stateful servers

. . .

. . .

. . .

Application API

Domain-specific
cache

Frontends

Stateless 
application
servers

Database

(c) Stateless servers with domain-specific caches

Figure 2. Different in-memory architectures. In each case, an auto-sharding system (not shown) could be incorporated.

3 Eliminating RInK stores

We argue that RInK stores (Fig. 2a) should not be used when
implementing scalable data center services. In this section,
we describe how to eliminate RInK stores from existing archi-
tectures by presenting two standard architectures for stateful
services. In Section 4, we describe how to make these archi-
tectures easier to implement.

3.1 Stateful application servers

Stateful application servers couple full application logic with
a cache of in-memory state linked into the same process
(Fig. 2b). This architecture effectively merges the RInK with
the application server; it is feasible when a RInK is only
accessed by a single application and all requests access a
single key. For example, a contacts application server might
cache user address books and directly accept HTTP requests
to render them in a web UI.
This architecture eliminates the problems with RInK dis-

cussed in Section 2. Since the cache stores application objects,
there is no (un)marshalling overhead or network latency.
Similarly, overreads are eliminated because the application
can directly access only the required portions of its objects;
for example, for small modifications to a large object, an
expensive read-modify-write operation can be replaced by a
cheap local modify operation.

  

0 20 40 60 80 100
0

20

40

60

80

100B
1KB
10KB
100KB
1MB

Percentile

R
ed

uc
tio

n 
[%

] i
n 

E
nd

 to
 E

nd
 L

at
en

cy

(a)
  

0 20 40 60 80 100
0

20

40

60

80

10%
50%
100%

Percentile

R
ed

uc
tio

n 
[%

] i
n 

E
nd

 to
 E

nd
 L

at
en

cy

(b)
Figure 3. CDF of improvement in end to end latency using stateful appli-
cation servers in place of a S+RInK for (a) different object sizes (with no
overreads) and (b) various overread percentages (for 10KB objects).

To quantify these benefits, we ran experiments comparing
S+RInK to stateful application servers. We used 5 clients, 5
servers of each type, and a deployment model as in Fig. 2a.
Each workload ran for 2 hours and had 80% read and 20%
write operations with a total throughput ranging from 6KB/s

to 250MB/s. We measured the reduction in resource con-
sumption (CPU and bytes transferred) and end-to-end la-
tency of the two architectures. We performed experiments
for different object sizes and overread percentages.

Figs. 3a, 3b, and Table 1 show our results. The stateful ap-
proach is superior to S+RInK in terms of per request/response
latency and resource utilization:

• Latency is 29% to 57% better (at the median), with rela-
tive improvement increasing with object size (Fig. 3a);

• Decreased overreads lead to lower latency and re-
source utilization (Fig. 3b, Table 1);

Object Size Overread Percentages

100B 1KB 10KB 100KB 1MB 90% 50% 0%
CPU 43% 43% 44% 41% 48% 46% 45% 44%

Network 46% 51% 50% 50% 51% 85% 69% 50%

Table 1. Stateful application servers vs S+RInK: Average percent reduc-
tion of resources for different object sizes (with no overreads) and various
overread percentages (for 10KB objects).

3.2 Custom in-memory stores

Custom in-memory stores are a separate, in-memory cache
with a domain-specific interface (Fig. 2c). This architecture
incurs an additional network hop relative to a stateful ap-
plication server, which means that it only alleviates, rather
than eliminates, the problems with a RInK store. For example,
it can still reduce unmarshalling overheads and overreads
using a domain-specific API. On the other hand, in exchange
for the network hop, it allows a single cache to be shared
across multiple applications and languages.

For example, a calendar service might cache user calendars
and expose a find-free-slots(user, date) API to find the free
timeslots for a particular user on a given day, which would
be less expensive than requiring an application to fetch the
entirety of a user’s calendar.
There are several reasons that developers often believe a

RInK store to be essential.We briefly enumerate some of them
and describe how a custom in-memory store can replace a
RInK while providing equivalent or better performance.

Fanout: Stateless application servers often read many keys
from a RInK while handling a single logical operation. A cus-
tom in-memory store can also support fanout, but a domain-
specific API can reduce overreads, e.g., using aggregation or



Fast key-value stores: An idea whose time has come and gone HotOS ’19, May 13–15, 2019, Bertinoro, Italy

class Linklet <V> {

// Converts between objects and strings.

class Marshaller {

virtual string Marshall(const V& v) = 0;

virtual V Unmarshall(const std:: string& s) = 0;

};

Linklet(std::unique_ptr <Marshaller > m);

// Caller owns returned value if non -null.

std::unique_ptr <V> Get(const string& key);

// Resharding may move object after call returns.

void Commit(const string& key ,

std::unique_ptr <V> value);

};

Figure 4. Linklet API to access in-memory rich objects.

filtering. For example, in order to schedule a meeting with
several participants, a calendar application might issue many
find-free-slots RPCs to fetch candidate meeting times for each
participant.

Sharing: A RInK store is often used to provide a cache shared
by multiple different applications, either to enable cross-
application integration (such as showing a calendar in an
email client) or to avoid duplicating data in separate caches.
A custom in-memory store can also fill this role, again with
possibly better performance.

Resource Disaggregation: Service owners may prefer iso-
lating CPU- and memory-heavy parts of their workload in
different processes (i.e., an application server and a RInK) so
that they can be provisioned separately. To the extent that a
RInK store enables more efficient provisioning, so too can a
custom in-memory store.

In summary, a stateful application server or a stateless
application server with a domain-specific cache will always
offer equal or better latency, efficiency, and scalability than a
RInK based approach, since these architectures can trivially
mimic it. In particular, these architectures reduce or eliminate
(un)marshalling overheads, overreads, and network delays.
However, RInK stores are popular in part because they are
easy to adopt. To make it easy for service writers to achieve
the benefits of stateful architectures, we propose a new store
abstraction, as described next.

4 LInK store: Raising the Abstraction

This section presents the LInK store abstraction, first motivat-
ing it by describing requirements unmet by an auto-sharder.

4.1 Auto-Sharder: Necessary but Insufficient

An auto-sharding system [8, 9] is a necessary building block
for stateful application servers: without the ability to re-
act to server failures and to changes in workload (e.g., hot
keys), deploying stateful application servers at scale is not
practical. However, our experience with dozens of internal
customers of Slicer [9] at Google over five years suggests
that an auto-sharding system that simply assigns application
keys to servers leaves important problems unsolved.

In particular, an auto-sharder is concerned with partition-
ing keys, but applications must handle values. For example,
when the assignment of a key changes from one server to
another, an auto-sharder does not move the associated value.
The server newly assigned the key must recover the value,
by reading it from a storage system which impacts tail la-
tency. If the value was not present in persistent storage (e.g.,
session state), then it is lost, impacting the user experience.
Additionally, applications that require both replication

of keys across multiple servers (e.g., for load or availability
reasons) and consistency of the associated values (either
strong or eventual) must build such functionality themselves:
the auto-sharder only handles assignments of keys, not the
manipulation of their values. Finally, applications may need
to keep cached state fresh with respect to some underlying
data store; an auto-sharder does not help here either.

To address these application needs, we propose a new ab-
straction, which by analogy with RInK we call a LInK store,
for linked in-memory key-value store. We have built a proto-
type, and one production team is currently implementing an
application using it. In the rest of this section, we describe
the LInK store.

4.2 LInK Store

A LInK store is a high level abstraction over an auto-sharder
that provides a distributed, in-memory, key-value map with
rich application objects as values, rather than strings or sim-
ple data structures. As a high level abstraction, it provides
richer functionality than an auto-sharder. In particular, we
consider the following features desirable:

• Data Consistency. A LInK store may provide consis-
tency of data across multiple replicas, which improves
handling of hot keys (which can be served from mul-
tiple replicas). Data consistency might be strong or
eventual; in contrast, an auto-sharder on its own pro-
vides no data consistency.

• High availability. A LInK store may provide high avail-
ability of data, e.g., by replication. This decreases the
likelihood of state loss after server failures, although
a LInK store does not provide persistence guarantees.

• Resharding support. A LInK store transparently responds
to changes from the auto-sharder by relocating values
to the servers newly assigned the keys. This prevents
resharding events from causing state loss, improving
application performance.

• State loss notifications. Servers may fail, causing state
to be lost (since, for performance, persistence of state
is not guaranteed). To allow applications to detect state
loss, a LInK store informs applications when state may
have been lost after resharding.

• Freshness. A LInK storemay automatically detect changes
in an underlying data store and invalidate its entries,
improving data freshness.



HotOS ’19, May 13–15, 2019, Bertinoro, Italy Adya et al.

4.3 API and Architecture

The architecture of a LInK store is shown in Fig. 5. It re-
lies on an auto-sharder to direct requests from application
clients to application servers, using a router library linked
into clients. Application servers link a new library, called
the Linklet, which is the LInK store implementation; it en-
capsulates all server-side interactions with the auto-sharder.
When the auto-sharder reshards, Linklet instances running
on different application servers exchange application state
over RPC.

Frontends

Stateful 
application 
servers

Database

Linklet

Auto
Sharder

Router 
library

Linklet Linklet

. . .

. . .

Figure 5. A stateful architecture using a LInK store.

The Linklet exposes a new API that provides references to
mutable application objects.We show the essential properties
of this API in Fig. 4. A full API would include additional
surface area, e.g., to notify applications of state loss, which
is beyond the scope of this paper.
An important aspect of this API is that the stored value

is a native application object (template parameter V). To en-
able the Linklet to transfer values in response to resharding
events, the application must provide the code to (un)marshall
its objects. Developersmustwrite (un)marshalling codewhen
using a RInK store, so this API does not add an additional
burden. Unlike as with a RInK store, the marshaller is not on
the critical path of every request.

5 Open Problems and Opportunities

In this section, we analyze stateful architectures from two
points of view. First, we consider challenges that remain in
providing first-class support for stateful architectures using
LInK stores, arguing that these are both areas for research
contributions and also not intractable. Second, we mention
applications that LInK stores can enable.

5.1 Open Problems

Load balancing algorithms: Stateful architectures require
load balancing algorithms that operate across diverse ap-
plications and workloads. Slicer has one such algorithm,
but remaining open problems include: balancing multiple
metrics simultaneously, modeling the cost of resharding the
application, and rapidly identifying and reacting to abrupt
changes in load without causing oscillations. We believe ap-
plying control theory would be novel and effective.

Replication: Replication is an important technique to achieve
high availability. In RInK stores, replication can be applied
to the stored data and isolated from the application logic.

In LInK stores, close coupling of application code and data
makes the problem more complicated. State machine replica-
tion [19, 23] using logical operations requires deterministic
application code (which is difficult to guarantee), whereas
using physical operations require marshalling objects, impos-
ing a cost that the LInK store sought to avoid. Determining
how to address these conflicting goals is an open problem.

Minimizing application footprint: The LInK implemen-
tation proposed above relies on linking a significant amount
of functionality into the application itself, which has two
drawbacks. First, it makes supporting multiple languages
harder; second, it makes fixing LInK implementation bugs
more difficult, since developers must release new binaries.
Determining how much of the LInK architecture could be
extracted into a separate, RPC-distance control service is an
open question.

5.2 Opportunities

Faster Serverless: Serverless computing offers developers
the abstraction of a function that executes in response to
events (e.g., AWS Lambda [3]). LInK stores could enable high-
performance implementations of functions that retain state
across invocations.
Context and Personalization: Applications dependent on
per-user state (e.g., dialog-based applications like Google
Home, Amazon Alexa, etc) need conversational context to
answer queries. Not all of this state must be persisted. For
example, if server failures and state loss are rare, it might
make sense to keep state such as the last-asked question
in a LInK store, while keeping longer-term state (such as a
per-user voice recognition model) in persistent storage.

6 Conclusion

Industry-standard architectures evolved following decisions
made 15-20 years ago, prior to the advent of high-quality,
general-purpose auto-sharding systems.We have argued that
too much effort has been invested in building fast key-value
stores to improve the performance of this architecture, and
that industry should move to architectures based on stateful
application servers or custom in-memory stores.

Stateful architectures offer higher performance by avoid-
ing unnecessary network and (un)marshalling costs, at the
expense of higher demands on infrastructure software. To
address these demands, we have proposed the LInK store and
described areas for future research.

Acknowledgments

We thank Mark Goodman for converting ProtoCache to a
stateful architecture and Bart Locanthi for helping
productionize our LInK store prototype. We would also like
to thank Eric Brewer, Jeremy Elson, Sanjay Ghemawat, John
Ousterhout, Seo Jin Park, and Mendel Rosenblum for their
valuable feedback that helped improve the paper.



Fast key-value stores: An idea whose time has come and gone HotOS ’19, May 13–15, 2019, Bertinoro, Italy

References

[1] Apache Cassandra. http://cassandra.apache.org.
[2] Apache HBase. http://hbase.apache.org.
[3] AWS Lambda. https://aws.amazon.com/lambda/.
[4] Edgestore.

https://blogs.dropbox.com/tech/2016/08/reintroducing-edgestore.
[5] JVM Serializers. https://github.com/eishay/jvm-serializers/wiki.
[6] Memcached. https://memcached.org.
[7] Redis. https://redis.io.
[8] Ringpop. https://ringpop.readthedocs.io/en/latest.
[9] A. Adya, D. Myers, J. Howell, J. Elson, C. Meek, V. Khemani, S. Fulger,

P. Gu, L. Bhuvanagiri, J. Hunter, R. Peon, L. Kai, A. Shraer,
A. Merchant, and K. Lev-Ari. Slicer: Auto-sharding for datacenter
applications. In OSDI, 2016.

[10] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. Ix: A protected dataplane operating system for high
throughput and low latency. In OSDI, 2014.

[11] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding,
J. Ferris, A. Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov,
L. Puzar, Y. J. Song, and V. Venkataramani. Tao: Facebook’s
distributed data store for the social graph. In ATC, 2013.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. In OSDI, 2006.

[13] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. Spanner: Google’s globally-distributed
database. In OSDI, 2012.

[14] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro. Farm: Fast
remote memory. In NSDI, 2014.

[15] B. Fan, D. G. Andersen, and M. Kaminsky. Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing. In
NSDI, 2013.

[16] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier.
Cluster-based scalable network services. In SOSP, 1997.

[17] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. Scalable,
distributed data structures for internet service construction. In OSDI,
2000.

[18] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica.
Netcache: Balancing key-value stores with fast in-network caching.
In SOSP, 2017.

[19] L. Lamport. The part-time parliament. In TOCS, 1998.
[20] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen, and

L. Zhang. Kv-direct: high-performance in-memory key-value store
with programmable nic. In SOSP, 2017.

[21] B. Liskov. The power of abstraction - (invited lecture abstract). In
DISC, 2010.

[22] M. Mitzenmacher. The power of two choices in randomized load
balancing. In TPDC, 2001.

[23] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In ATC, 2014.

[24] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri,
D. Ongaro, S. J. Park, H. Qin, M. Rosenblum, et al. The ramcloud
storage system. In TOCS, 2015.

[25] D. R. K. Ports, A. T. Clements, I. Zhang, S. Madden, and B. Liskov.
Transactional consistency and automatic management in an
application data cache. In OSDI, 2010.

[26] H. Qin, Q. Li, J. Speiser, P. Kraft, and J. Ousterhout. Arachne:
core-aware thread management. In OSDI, 2018.

[27] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable
cross-language services implementation. Facebook White Paper, 2007.

[28] P. Stuedi, A. Trivedi, and B. Metzler. Wimpy nodes with 10gbe:
Leveraging one-sided operations in soft-rdma to boost memcached.
In ATC, 2012.

[29] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia.
Splinter: Practical private queries on public data. In NSDI, 2017.

http://cassandra.apache.org
http://hbase.apache.org
https://aws.amazon.com/lambda/
https://blogs.dropbox.com/tech/2016/08/reintroducing-edgestore
https://github.com/eishay/jvm-serializers/wiki
https://memcached.org
https://redis.io
https://ringpop.readthedocs.io/en/latest

	Abstract
	1 Introduction
	2 Motivation
	2.1 Stateless and RInK Architecture
	2.2 Stateless and RInK Architecture Limitations
	2.3 State-of-the-art RInK Stores

	3 Eliminating RInK stores
	3.1 Stateful application servers
	3.2 Custom in-memory stores

	4 LInK store: Raising the Abstraction
	4.1 Auto-Sharder: Necessary but Insufficient
	4.2 LInK Store
	4.3 API and Architecture

	5 Open Problems and Opportunities
	5.1 Open Problems
	5.2 Opportunities

	6 Conclusion
	Acknowledgments
	References

