Asymmetric encryption

CS642: Computer Security

Professor Ristenpart

http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Announcements

- Please turn in project proposals today
- Any time is fine
- Email them directly to me
 - subject line should include CS642 project proposal
 - I will reply to your email so you know I got it
 - (If you don't hear back by Thursday let me know)

Asymmetric encryption

Basic setting

The RSA algorithm

PKCS #1 encryption

Digital signing & public-key infrastructure

Hybrid encryption

TLS handshake for RSA transport

Pick random Nc

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

Pick random Ns

 $PMS \leftarrow D(sk,C)$

Check CERT using CA public verification key

CERT = (pk of bank, signature over it)

C

Pick random PMS C <- E(pk,PMS)

ChangeCipherSpec,

{ Finished, PRF(MS, "Client finished" | | H(transcript)) }

Bracket notation means contents encrypted

ChangeCipherSpec,
{ Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PS, "master secret" || Nc || Ns)

Trapdoor functions help us build PKE

The RSA trapdoor function

- Rivest, Shamir, Adleman 1978
- Garnered them a Turing award

p and q be large prime numbers

$$N = pq$$

N is called the modulus

$$p = 7$$
, $q = 13$, gives $N = 91$

$$p = 17$$
, $q = 53$, gives $N = 901$

p and q be large prime numbersN = pqN is called the modulus

$$Z_N = \{0,1,2,3,..., N-1\}$$

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

The size of a set S is denoted by |S|

gcd(X,Y) = 1 if greatest common divisor of X,Y is 1

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

$$N = 13$$
 $Z_{13}^* = \{1,2,3,4,5,6,7,8,9,10,11,12\}$

$$N = 15$$
 $Z_{15}^* = \{1,2,4,7,8,11,13,14\}$

Def. $\phi(N) = |\mathbf{Z}_N^*|$ (This is Euler's totient function)

$$\phi(13) = 12$$

$$\phi(15) = 8$$

$$\mathbf{Z}_{\phi(15)}^* = \mathbf{Z}_8^* = \{ 1,3,5,7 \}$$

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

 \mathbf{Z}_{N}^{*} is a group under modular multiplication

Fact. For any a,N with N > 0, there exists unique q,r such that

$$a = Nq + r$$
 and $0 \le r < N$

 $17 \mod 15 = 2$

Def. a mod $N = r \in \mathbf{Z}_N$

 $105 \mod 15 = 0$

Def. $a \equiv b \pmod{N}$ iff $(a \mod N) = (b \mod N)$

$$\mathbf{Z}_{N}^{*} = \{ i \mid \gcd(i,N) = 1 \}$$
 $\mathbf{Z}_{N}^{*} \text{ is a group under modular multiplication}$
 $\mathbf{Z}_{15}^{*} = \{ 1,2,4,7,8,11,13,14 \}$
 $2 \cdot 7 \equiv 14 \pmod{15}$
 $4 \cdot 8 \equiv 2 \pmod{15}$
Closure: for any $a,b \in \mathbf{Z}_{N}$ $a \cdot b \pmod{N} \in \mathbf{Z}_{N}$
Def. $a^{i} \mod N = a \cdot a \cdot a \cdot a \pmod{N}$

```
\mathbf{Z}_{N}^{*}=\{\ i\ |\ gcd(i,N)=1\} Claim: Suppose e,d\in\mathbf{Z}_{\varphi(N)}^{*} satisfying ed\ mod\ \varphi(N)=1 then for any x\in\mathbf{Z}_{N}^{*} we have that (x^{e})^{d}\ mod\ N=x
```

```
(x^e)^d \mod N = x^{(ed \mod \phi(N))} \mod N
= x^1 \mod N
= x \mod N
First equality is by Euler's Theorem
= x \mod N
```

$$Z_{N}^{*} = \{ i \mid gcd(i,N) = 1 \}$$

Claim: Suppose e,d $\in \mathbf{Z}_{\varphi(N)}^*$ satisfying ed mod $\varphi(N) = 1$ then for any $x \in \mathbf{Z}_N^*$ we have that $(x^e)^d \mod N = x$

$$\mathbf{Z}_{15}^{*} = \{ 1,2,4,7,8,11,13,14 \}$$
 $\mathbf{Z}_{\phi(15)}^{*} = \{ 1,3,5,7 \}$

e = 3, d = 3 gives $ed \mod 8 = 1$

Х	1	2	4	7	8	11	13	14
x ³ mod 15	1	8	4	13	2	11	7	14
y ³ mod 15	1	2	4	7	8	11	13	14

RSA admits a trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with ed mod $\phi(N) = 1$
$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

RSA admits a trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with $ed \mod \varphi(N) = 1$
$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

But how do we find suitable N,e,d?

If p,q distinct primes and N = pq then $\phi(N) = (p-1)(q-1)$ Why?

$$\phi(N) = |\{1,...,N-1\}| - |\{ip : 1 \le i \le q-1\}| - |\{iq : 1 \le i \le p-1\}|$$

$$= N-1 - (q-1) - (p-1)$$

$$= pq - p - q + 1$$

$$= (p-1)(q-1)$$

RSA admits a trapdoor permutation

$$pk = (N,e)$$
 $sk = (N,d)$ with ed mod $\phi(N) = 1$

$$f_{N,e}(x) = x^e \mod N$$
 $g_{N,d}(y) = y^d \mod N$

But how do we find suitable N,e,d?

If p,q distinct primes and N = pq then $\phi(N) = (p-1)(q-1)$

Given $\phi(N)$, choose $e \in \mathbf{Z}_{\phi(15)}$ and calculate $d = e^{-1} \mod \phi(N)$

Public-key encryption

Correctness: D(sk , E(pk,M,R)) = M with probability 1 over randomness used

PKCS #1 RSA encryption

Kg outputs (N,e), (N,d) where $|N|_8 = n$ Let B = $\{0,1\}^8 / \{00\}$ be set of all bytes except 00 Want to encrypt messages of length $|M|_8 = m$


```
\frac{\text{Dec}((N,d),C)}{X = C^d \mod N} \quad ; \quad \text{aa} \mid \mid \text{bb} \mid \mid \text{w} = X
If (aa ≠ 00) or (bb ≠ 02) or (00\notin w)
Return error
pad || 00 || M = w
Return M
```

Hybrid encryption

Kg outputs (pk,sk)


```
Dec(sk, (C1,C2))

K = Dec(sk,C1)

M = Dec(K,C2)

Return M
```


TLS handshake for RSA transport

Pick random Nc

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)

Check CERT using CA public verification key

Pick random PMS

C <- E(pk,PMS)

Bracket notation means contents encrypted

C

ChangeCipherSpec,
{ Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PS, "master secret" | Nc | Ns)

PMS <- D(sk,C)

Pick random Ns

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Possible attacks?

We don't know if inverse is true, whether inverting RSA implies ability to factor

Factoring composites

• What is p,q for N = 901?

Factor(N): for i = 2 , ... , sqrt(N) do if N mod i = 0 then p = i q = N / p Return (p,q)

Woops... we can always factor

But not always efficiently: Run time is sqrt(N)

 $O(\operatorname{sqrt}(N)) = O(e^{0.5 \ln(N)})$

Factoring composites

Algorithm	Time to factor N
Naïve	$O(e^{0.5 \ln(N)})$
Quadratic sieve (QS)	$O(e^{c})$ c = d (ln N) ^{1/2} (ln ln N) ^{1/2}
Number Field Sieve (NFS)	$O(e^{c})$ c = 1.92 (ln N) ^{1/3} (ln ln N) ^{2/3}

Factoring records

Algorithm	Year	Algorithm	Time
RSA-400	1993	QS	830 MIPS years
RSA-478	1994	QS	5000 MIPS years
RSA-515	1999	NFS	8000 MIPS years
RSA-768	2009	NFS	~2.5 years

RSA-x is an RSA challenge modulus of size about x bits

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Possible attacks?
 - Pick |N| > 1024 and factoring will fail
 - Active attacks?

Bleichanbacher attack

Return M

I've just learned some information about C₁^d mod N

We can take a target C and decrypt it using a sequence of chosen ciphertexts C_1 , ..., C_q where $q \sim 1$ million

Response to this attack

- Ad-hoc fix: Don't leak whether padding was wrong or not
 - This is harder than it looks (timing attacks)
- Better:
 - use chosen-ciphertext secure encryption
 - OAEP is common choice

Security of RSA PKCS#1

- Passive adversary sees (N,e),C
- Attacker would like to invert C
- Possible attacks?
 - Pick |N| > 1024 and factoring will fail
 - Active attacks?
 - Some implementations seem ok
 - Man-in-the-middle: replace (N,e) with our own key

TLS handshake for RSA transport

Bank

Pick random Nc

Check CERT using CA public verification key

Pick random PMS C <- E(pk,PMS)

Bracket notation means contents encrypted

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)

c

ChangeCipherSpec, { Finished, PRF(MS, "Client finished" || H(transcript)) }

ChangeCipherSpec, { Finished, PRF(MS, "Server finished" || H(transcript')) }

MS <- PRF(PS, "master secret" | Nc | Ns)

Pick random Ns

 $PMS \leftarrow D(sk,C)$

Digital signatures

Anyone with public key can verify a signature Only holder of secret key should be able to generate a signature

Full Domain Hash RSA

Kg outputs pk = (N,e), sk = (N,d)

H is a hash function

X = 00 || H(1||M) || ... || H(k||M)

 $S = X^d \mod N$

Return S


```
Ver((N,e), M, S)
```

 $X = S^e \mod N$

 $X' = 00 \mid | H(1||M) \mid | ... \mid | H(k||M)$

If X = X' then

Return 1

Return 0

Certificate Authorities and Public-key Infrastructure

M = (pk', data)

S = Sign(sk,M)

Give me a certificate for pk', please

http://amazon.com

pk', data, S

M = (pk',data)

If Ver(pk,M,S) then

trust pk'

(pk',sk')

This prevents man-in-the-middle (MitM) attacks