Asymmetric encryption

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

University of Wisconsin CS 642



Announcements

* Please turn in project proposals today
* Any time is fine
* Email them directly to me
— subject line should include CS642 project proposal

— | will reply to your email so you know | got it

— (If you don’t hear back by Thursday let me know)



Asymmetric encryption

Basic setting

The RSA algorithm

PKCS #1 encryption

Digital signing & public-key infrastructure

Hybrid encryption

University of Wisconsin CS 642



TLS handshake for
Bank customer RSA tra nSpO rt Bank

' i Meth
Pick random Nc ClientHello, MaxVer, Nc, Ciphers/CompMethods N

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod ~ Pick random Ns

<€

Check CERT : :
using CA public . CERT = (pk of bank, signature over it)

verification key Q Q

Pick random PMS PMS <- D(sk,C)

C <- E(pk,PMS) ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” | | H(transcript)) }
>

ChangeCipherSpec,

Bracket notation { Finished, PRF(MS, “Server finished” || H(transcript’)) }
means contents €

encrypted

MS <- PRF(PS, “master secret” || Nc || Ns)



Trapdoor functions help us build PKE

easy given pk

a2
N

for(X)

_

hard given pk
easy given sk




The RSA trapdoor function

e Rivest, Shamir, Adleman 1978
* Garnered them a Turing award




RSA math

p and g be large prime numbers

N =pg
N is called the modulus

p=7,q=13, gives N =91

p=17,q9 =53, gives N =901



RSA math

p and g be large prime numbers

N =pg
N is called the modulus

Z, =1{0,1,2,3,.., N-1} The size of asetSiis

denoted by |S]|
Zy ={i| ged(i,N)=1}

gcd(X,Y) =1 if greatest common divisor of X,Y is 1



RSA math

Zy ={i| ged(i,N)=1}

N=13 Z,, ={1,2,3,4,56,7,8,9,10,11,12 }

N =15 Z,. ={1,2,4,7,8,11,13,14}

Def. ¢(N)=|Zy| (Thisis Euler’s totient function)

$(13) = 12

d(15) = 8 Zos)=Z5= {1,3,57}



RSA math

Z, ={i| gcd(i,N)=1}
Z,, is a group under modular multiplication

Fact. For any a,N with N > 0, there exists unique q,r
such that

a=Nqg+r and O<r<N

17 mod 15 =2
Def. amodN=r €2, 105 mod 15=0

Def. a = b (modN) iff (amodN)=(bmodN)



RSA math

Z, ={i| gcd(i,N)=1}
Z,, is a group under modular multiplication

Z,. ={1,2,4,7,8,11,13,14 }

14 (mod 15)
2 (mod 15)

2e7
4e8

Closure: foranya,b €2, a°*bmodN€EZ,

Def. a'mod N =ae®a®a*..*a mod N

I times



RSA math

Zy ={i| ged(i,N)=1}

Claim: Suppose e,d € Z;(N) satisfying ed mod p(N) =1
then for any x& Z;, we have that
(x¢)¥ mod N = x

(Xe)d mod N = X(ed mod ¢p(N)) mod N First equality is
1 by Euler’s Theorem
= X* mod N

= xmodN



RSA math

Zy ={i| ged(i,N)=1}

Claim: Suppose e,d € Z;(N) satisfying ed mod p(N) =1

then for any x& Z;, we have that
(x¢)¥ mod N = x

Z,. ={1,2,4,7,8,11,13,14}

Zys = {1,3,57)

e=3,d=3 gives edmod8=1
X 1 2 4 7 8 11 13 14
x3mod 15 |1 8 4 13 2 11 7 14

y>mod 15 |1 2 4 7 8 11

13

14




RSA admits a trapdoor permutation
pk =(N,e) sk = (N,d) with ed mod ¢(N) =1

fye(x) =x2mod N gnaly) =y mod N

easy given N,e

X for(X)

hard given N, e
easy given N,d



RSA admits a trapdoor permutation
pk =(N,e) sk = (N,d) with ed mod ¢(N) =1

fye(x) =x2mod N gnaly) =y mod N

But how do we find suitable N,e,d ?

If p,q distinct primes and N = pg then ¢d(N) = (p-1)(g-1)
Why?

®(N) = |{1,...,N-1}| - {ip:1<i<g-1}| - [{ig:1<i<p-1}]
= N-1- (g-1) - (p-1)
=pg—-p—q+1
= (p-1)(g-1)



RSA admits a trapdoor permutation
pk =(N,e) sk = (N,d) with ed mod ¢(N) =1
fye(x) =x2mod N gnaly) =y mod N
But how do we find suitable N,e,d ?

If p,q distinct primes and N = pg then ¢d(N) = (p-1)(g-1)

Given ¢(N), choose ec Z,,; and calculate
d = e mod ¢p(N)



Public-key encryption

key generation

R Kg

kAk
T

Enc —> C C —> Dec —» Mor
M—> error

R—

Cis a ciphertext

Correctness: D( sk, E(pk,M,R) ) =M with probability 1 over randomness used



PKCS

1 RSA encryption

Kg outputs (N,e),(N,d) where [N|g=n
Let B ={0,1}%/ {00} be set of all bytes except 00
Want to encrypt messages of length [M|g=m

(N,e)
R
Enc | C
M
(N,d)
C - Dec | Mor

error

Enc((N,e), M, R)

pad = first n-m - 2 bytes from R that
arein B

X=00]|]02]||pad || 00 || M

Return X® mod N

Dec((N,d), C)

X=CmodN ; aal|bb]||w=X

If (aa # 00) or (bb #02) or (00¢ w)
Return error

pad [|00 || M=w

Return M




< =

Hybrid encryption

Kg outputs (pk,sk)

sk

Dec

M or
error

Enc(pk, M, R)

K| [R1]|R2=R
C1 = Enc(pk,K,R1)
C2 = Enc(K,M,R2)
Return (C1,C2)

Dec(sk, (C1,C2))

K = Dec(sk,C1)
M = Dec(K,C2)
Return M



TLS handshake for
Bank customer RSA tra nSpO rt Bank

' i Meth
Pick random Nc ClientHello, MaxVer, Nc, Ciphers/CompMethods N

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod ~ Pick random Ns

<€

Check CERT
using CA public <€
verification key

CERT = (pk of bank, signature over it)

Pick random PMS PMS <- D(sk,C)

C <- E(pk,PMS) ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” | | H(transcript)) }
>

ChangeCipherSpec,

Bracket notation { Finished, PRF(MS, “Server finished” || H(transcript’)) }
means contents €

encrypted

MS <- PRF(PS, “master secret” || Nc || Ns)



Security of RSA PKCS

e Passive adversary sees (N,e),C
e Attacker would like to invert C
e Possible attacks?




Inverting RSA

T EASY
Know d

T EASY
Know (V)

T EASY
Know p, g

]

Know N

. given N, e,y find x such that x* =y (mod N)

because f(y) = y9 mod N

because d = e~! mod p(N)

because p(N) =(p—1)(qg — 1)

Learning p,q from N is
the factoring problem

We don’t know if inverse is true, whether inverting RSA
implies ability to factor



Factoring composites

* Whatis p,q for N=9017

Factor(N):
fori=2,.., sqrt(N) do
if N mod i =0 then
P=i
q=N/p
Return (p,q)

Woops... we can always factor

But not always efficiently:
Run time is sqrt(N)

O(sqrt(N)) = O(e0> In(N)



Factoring composites

Algorithm Time to factor N
Naive O(e0->n(N)
Quadratic sieve (QS) O(e°)

c=d (In N)¥2 (In In N)1/2

Number Field Sieve (NFS) O(e*)
c=1.92 (In N)1/3 (In In N)?/3




Factoring records

Algorithm Year Algorithm Time
RSA-400 1993 QS 830 MIPS
years
RSA-478 1994 QS 5000 MIPS
years
RSA-515 1999 NFS 8000 MIPS
years
RSA-768 2009 NFS ~2.5 years

RSA-x is an RSA challenge modulus of size about x bits




Security of RSA PKCS

e Passive adversary sees (N,e),C
e Attacker would like to invert C

 Possible attacks?
— Pick [N| > 1024 and factoring will fail
— Active attacks?




Bleichanbacher attack

Cy

>

’'ve just learned Dec((N,d), C)

some information « X=CmodN ; aal|bb]||w=X

about C,“mod N c If (aa # 00) or (bb #02) or (00 w)
2 N Return error

padding error? | Pad || 00 || M=w

padding error?

< Return M

We can take a target C and decrypt it using
a sequence of chosen ciphertexts C,, ..., C
where g ~ 1 million

q



Response to this attack

* Ad-hoc fix: Don’t leak whether padding was
wrong or not

— This is harder than it looks (timing attacks)
* Better:

— use chosen-ciphertext secure encryption
— OAEP is common choice



Security of RSA PKCS#1

e Passive adversary sees (N,e),C
e Attacker would like to invert C

 Possible attacks?
— Pick [N| > 1024 and factoring will fail
— Active attacks?

 Some implementations seem ok

— Man-in-the-middle: replace (N,e) with our own
key



. TLS handshake for
Bank customer RSA tra nSpO rt Bank

' i Meth
Pick random Nc ClientHello, MaxVer, Nc, Ciphers/CompMethods N

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod ~ Pick random Ns

<€

Check CERT : :
using CA public . CERT = (pk of bank, signature over it)

verification key w

C
Pick random PMS PMS <- D(sk,C)
C <- E(pk,PMS)

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” | | H(transcript)) }
>

ChangeCipherSpec,

Bracket notation { Finished, PRF(MS, “Server finished” || H(transcript’)) }
means contents €

encrypted

MS <- PRF(PS, “master secret” || Nc || Ns)



Digital signatures

key generation

R Kg

sk pk

0
<

Sign | S . Ver 0/1

Anyone with public key can verify a signature
Only holder of secret key should be able to generate a signature



Full Domain Hash RSA

Kg outputs pk = (N,e), sk=(N,d) H is a hash function
(N,d) Sign((N,d), M )
‘ X=00 [| H(1] M) || ... [| H(k[|M)
M  Sign S S=X9mod N
Return S
pk Ver((N,e), M, S)
¢ X=5modN
M —> X'=00 || H(1[[M) [ ... || H(k] M)
; Ver > 0/1 |ifx=x then
Return 1

Return O



Certificate Authorities and
Public-key Infrastructure

(pk,sk)
jI‘lSlgn Give me a certificate

for pk’, please

/ = (pk’,data) \ ’
S Sign(sk,M) S http://amazon.com
\\\AL pk’, data, S

= (pk’,data) (pK',sK')
If Ver(pk,M,S) then
trust pk’ This prevents man-in-the-middle (MitM)

attacks






