Cryptography Intro

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Copiale Cipher Decoded

Posted by timothy on Tuesday October 25, @11:01AM A
from the impossible-things-before-breakfast dept. &

eldavojohn writes

"The 18th century Copiale Cipher has finally been decoded after a few minor
breakthroughs were made by linguists versed in machine translation analyzing the
document. From the article, 'Kevin Knight, a computer scientist at the Information
Sciences Institute at the University of Southern California, collaborated with Beata
Megyesi and Christiane Schaefer of Uppsala University in Sweden to decipher the
first 16 pages. They turn out to be a detailed description of a ritual from a secret
society that apparently had a fascination with eye surgery and ophthalmology.' The
Roman characters and abstract symbols turned out to be a sort of encryption of the
German language. The important clues they discovered were that the Roman
characters were nulls (misleading junk) and the bogus looking symbols the actual
text. Lastly, a colon would mean a duplication of the last consonant. A cipher falls to
word-frequency analysis. Perhaps the researchers could start another 'weekend
project’ and tackle The Voynich Manuscript for us?"

Update: 10/25 15:25 GMT by T : eldavojohn adds also a link to the final translation.

Cryptography

Basic goals and setting

TLS (HTTPS)

Provable security

One time pad

Block ciphers

University of Wisconsin CS 642

Cryptography: “Hidden writing”

e Study and practice of building security
protocols that resist adversarial behavior

* Blend of mathematics, engineering, computer
science

| \ WikiLeaks encrypted cables

US

diplomatic

cables

4

Cryptography

Don’t want to reveal data early

Want to store it in way that it
can quickly be revealed later

01101010
10101010
10101010
11111101

Cryptography

:

Don’t want to reveal data early

Want to store it in way that it
can quickly be revealed later

Modern cryptography enables this:

Encrypt file

- Store key in secure place <:

e

01101010
10101010
10101010
11111101

01101010
10101010
10101010
11111101

Secure Internet communications

Bank customer =2 «7

Customer and bank want to communicate securely:

- Confidentiality (messages are private)

- Integrity (accepted messages are as sent)

- Authenticity (is it the bank? is this the customer?)

- Non-goal: anonymity (hide identities)

- Non-goal: steganography (hide that communication took place)

TLS, SSH, IPsec, PGP

Encrypted hard disks

Company’s intellectual property
~ Customer records
' Your personal diary

Encrypt hard drives (or volumes):
- Confidentiality of data
- Attacker has physical access to device

Bitlocker, Truecrypt, Seagate

Crypto

* Powerful tool for confidentiality, authenticity,
and more
* But:
— must design securely
— must implement designs securely
— must use properly (e.g., key management)

Auguste Kerckhoffs’ (Second) Principle

“The system must not require secrecy and can be stolen
by the enemy without causing trouble”

A cryptosystem should be secure even if its algorithms,
implementations, configuration, etc. is made public ---

the only secret should be a key

Why?

Basic primitives

 Symmetric cryptography (shared key K)
— encryption & decryption using K
— message authentication using K
— pseudorandom functions
* Public-key cryptography (public key pk, secret key sk)
— encrypt with pk and decrypt with sk
— digitally sign using sk and verify with pk
* Hash functions (no keys)
— used to “compress” messages in a secure way

An example: On-line shopping

Internet http://amazon.com

Data confidentiality

Data integrity

We need secure channels for transmitting data

An example: On-line shopping with TLS

https://amazon.com

Step 1:
d < > Key exchange
\\\:/< > protocol to

share secret K

K Enc(K, “Quantity: 1, CC#: 5415431230123456")
>
Step 2:
Send data via
secure
channel

TLS uses many cryptographic primitives:
key exchange: hash functions, digital signatures, public key encryption
secure channel: symmetric encryption, message authentication

Mechanisms to resist replay attacks, man-in-the-middle attacks,
truncation attacks, etc...

. TLS handshake for
Bank customer RSA tra nSpO rt Bank

' i Meth
Pick random Nc ClientHello, MaxVer, Nc, Ciphers/CompMethods N

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod ~ Pick random Ns

<€

Check CERT
using CA public <€
verification key

CERT = (pk of bank, signature over it)

Pick random PMS PMS <- D(sk,C)

C <- E(pk,PMS) ChangeCipherSpec,

{ Finished, PRF(MS, “Client finished” | | H(transcript)) }
>

ChangeCipherSpec,

Bracket notation { Finished, PRF(MS, “Server finished” || H(transcript’)) }
means contents €

encrypted

MS <- PRF(PS, “master secret” || Nc || Ns)

TLS Record layer

Bank customer

Bank

MS <- PRF(PS, “master secret” || Nc || Ns)
K1,K2 <- PRF(MS, “key expansion” || Ns || Nc)

C1 <- E(K1,Message) C1 >

C2

Message’ <- D(K2,C2)

Message <- D(K1,C1)
C2 <- E(K2,Message’)

Primitives used by TLS

CERT = (pk of bank, signature over it)

Digital signhatures

Public-key encryption
(RSA)

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” | | H(transcript)) }

>

PRF
Hash function

C1

C2

Symmetric encryption

A short history of TLS up to 2009

SSL ver 2.0 designed by Hickman at Netscape >ol ver 2
7
—>
Wagner, Goldberg break SSL ver 2
4 =
Freier, Karlton, Kocher design SSL ver 3.0 >»lver3 |
14
Bleichenbacher breaks RSA PKCS #1 encryption,
used in SSL ver 3 >
4
TLS ver 1 released as IETF standard, TLS ver 1.0 .
based on SSL 3, many cryptographers involved
7
=
Vaudenay, Klima et al. padding attacks '
4
=
Rogaway |V re-use insecurity
v =
Brumley, Boneh remote timing attacks
4 —>
TLS ver 1.1 released as standard TLSver1.1
14

(more attacks and fixes)

1994

1995

1998

1999

2001

2002

2003

2006

How many
cryptographers
involved?

9
G

TLS was built via “design-break-redesign-break...”

We’'re now at TLS ver 1.2

Y . Did the TLS designers get it right?
O NoHpoisielyknewiratiacks

We recently showed some new attacks against TLS record layer
(Paterson, Ristenpart, Shrimpton 2011)

Even for “simple” applications (secure channels), secure cryptography
is really hard to design. The problems are rarely in primitives.

Mistakes are costly. Finding them requires rare expertise.

Many other examples of tools produced by “design-break-redesign-break...”

SSH, IPSec, Kerberos, WEP/WPA (WiFi security), GSM (cell phone networks), ...

“Those who cannot remember the past are condemned to repeat it”

[Santayana 1905]

Provable security cryptography

Supplement “design-break-redesign-break...” with a more mathematical approach

1. Design a cryptographic scheme

2. Provide proof that no one Shannon 1949

is able to break it

Formal definitions Security proofs

_ impossible to break security
Security

Symmetric encryption

key generation

R signifies fresh
random bits.
Where do these Rk Kg Handled
come from? in TLS key
exchange
, K
Optional
R
E C C D Mor
error

Cis a ciphertext

Correctness: D(K, E(K,M,R)) =M with probability 1 over randomness used

Kerckhoffs’ principle: what parts are public and which are secret?

Some attack settings
(not security definitions)

* Unknown plaintext
— attacker only sees ciphertexts

* Known plaintext

— attacker knows some plaintext-ciphertext pairs

* Chosen plaintext

— attacker can choose some plaintexts and receive
encryptions of them

Substitution ciphers Julius Caeser

Kg: output randomly chosen permutation of digits

nnnnnnn-nn plaintext digit

K= 3 ciphertext digit

E(K, 2321-4232-1340-1410) = 7472-1747-2418-2128

Jane Doe 2414-2472-2742-7428 Q 1343-1321-1231-2310

Thomas Ristenpart | 3612-4260-2478-7243 _ _ _

John Jones 6020-7412-7412-2728 Kn.owmg one plalnte-xt, ciphertext
pair leaks key material!

Eve Judas 7472-1747-2418-2128

222008

Attacker knows 2321-4232-1340-1410
7472-1747-2418-2128

b

~o

on de X0 (-0

Ne =n ”—ll}.. .dt Auv
>

o

ay (@fa (B (24
@, ke AN &Y (&4
wn S. C.R\U (4o A.v‘..»

2o, 2. o) (3 (o)

m: e @) () (e

n.o p’ow (= &)

@ o

One-time pads

Fix some message length L

Kg: output random bit string K of length L

E(K,M) = M@K D(K,C) = C®K

Shannon’s security notion

Def. A symmetric encryption scheme is perfectly secure if
for all messages M,M’ and ciphertexts C

Prl[E(K,M)=C] = Pr[E(K,M’)=C]
where probabilities are over choice of K

In words:
each message is equally likely to map to a given ciphertext

In other words:
seeing a ciphertext leaks nothing about what

message was encrypted

Does a substitution cipher meet this definition?

Shannon’s security notion

Def. A symmetric encryption scheme is perfectly secure if
for all messages M,M’ and ciphertexts C

Prl[E(K,M)=C] = Pr[E(K,M’)=C]
where probabilities are over choice of K

Thm. OTP is perfectly secure

For any Cand M of length L bits
PriKeM=C] = 1/2t

PriK@®M=C] PrlK @M’ =C]

Back to our application

Internet http://amazon.com

Does OTP provide a secure channel?

Integrity easily violated

Reuse of K for messages M,M’ leaks M @ M’
Encrypting same message twice leaks the fact

K must be as large as message message length revealed

Message length revealed

Cryptography as computational science

Use computational intractability as basis for confidence in systems

1. Design a cryptographic scheme ™
2. Provide proof that no attacker > Goldwasser, Micali and Blum circa 1980’s
with limited computational resources
can break it /
Example:

Security proofs (reductions)

Formal definitions Attacker can not

Scheme semantics recover credit card

Security ‘ ’

Breaking scheme

Can fagtdactor
large composite

As long as assumptions holds numbers
we believe in security of scheme!

Breaking assumptions

But no one knows how to
do this. It’s been studied

for a very long time!

Provable security yields
1) well-defined assumptions and security goals
2) attackers (cryptanalysts) can focus on assumptions

Typical assumptions

* Basic atomic primitives are hard to break:
— Factoring of large composites intractable
— RSA permutation hard-to-invert

— Block ciphers (AES, DES) are good pseudorandom
permutations (PRPs)

— Hash functions are collision resistant

Confidence in atomic primitives is gained by cryptanalysis,
public design competitions

Block ciphers

key generation

Encryption implements Key is a uniformly
a family of permutations Ry Kg selected bit string of
on n bit strings, length k
one permutation for each K
K
M E C C D M

E: {0,1}x {0,1}" -> {0,1}"

Data encryption standard (DES)

LO RO
Originally called Lucifer
- team at IBM Fo,
- input from NSA
- standardized by NIST in 1976
A4

n =64 Number of keys: L1 R1

k=56 72,057,594,037,927,936
Split 64-bit input into LO,RO of 32 bits each Fea

Repeat Feistel round 16 times

<€

Each round applies function F using
separate round key L2 R2

Best attacks against DES
Attack | Attacktype | Complexity [Year

Biham, Shamir Chosen plaintexts, 2%’ plaintext, 1992
recovers key ciphertext pairs
DESCHALL Unknown 256/4 DES 1997
plaintext, computations
recovers key 41 days
EFF Deepcrack Unknown ~4.5 days 1998
plaintext,
recovers key
Deepcrack + Unknown 22 hours 1999
DESCHALL plaintext,

recovers key

- DES is still used in some places
- 3DES (use DES 3 times in a row with more keys) expands
keyspace and still used widely in practice

Advanced Encryption Standard (AES)

Response to 1999 attacks:
- NIST has design competition for new

block cipher standard
- 5 year design competition
- 15 designs, Rijndael design chosen

Advanced Encryption Standard (AES)

Rijndael (Rijmen and Daemen)

n=128
k=128, 192, 256

Number of keys for k=128:
340,282,366,920,938,463,463,374,607,431,768,211,456

Substitution-permutation design.
k=128 has 10 rounds of:

1) Permute:

SubBytes (non-linear S-boxes)
ShiftRows + MixCols (invertible linear transform)

2) XOR in a round key derived from K

(Actually last round skips MixCols)

M

|

Permute

|

Sl‘ﬁ« K1

Permute

|

Sz‘ﬁ« K2

Permute

|

Best attacks against AES
Attack | Attacktype | Complexity [Year

Bogdanov, chosen 21261 time + 2011
Khovratovich, ciphertext, some data
Rechberger recovers key overheads

- Brute force requires time 2128
- Approximately factor 4 speedup

