Passwords, RNGs,
Implementation issues

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

University of Wisconsin CS 642

More topics in crypto

Password-based crypto

Password cracking, WPA

Random number generators (RNGs)

Side channel attacks

University of Wisconsin CS 642

Optional

N

Symmetric encryption

key generation

—

Kg

R—

M=

Enc

_>C

Cis a ciphertext

£

Handled by
= TLS key

exchange

l -

C—>

Dec —

M or
error

Correctness: D(K, E(K,M,R)) =M with probability 1 over randomness used

Password-based symmetric encryption

Optional

N

N

R—

M=

Enc

_>C

\[

T
5/\/

l

pw

Cis a ciphertext

l -

Handled by
= TLS key

exchange

C—>

Dec

., Mor
error

Correctness: D(K, E(K,M,R)) =M with probability 1 over randomness used

—t 4

j EK1 EK1 EK1
| ! |
CO Cl— C2— C3
\— /
Y
K2@ipad || C — H
K2@opad ||h =— H

Ciphertext is C, T How do we use with a pw?

Password-based Key Deriviation

PBKDF(pw,salt):

pw || salt || 1 —

pw|| salt || 2=

(PBKDF)

I

e

repeat c times

Truncate if
needed

— K2

PBKDF + Symmetric encryption =
PW-based encryption

Enc(pw,M,R):

salt || R”=R

K = PBKDF(pw,salt)
C =Enc’(K,M,R’)
Return (salt,C)

Dec(pw,C):

salt || C'=C

K = PBKDF(pw,salt)
M = Enc’(K,C’)
Return M

Here Enc’ is a normal
symmetric encryption
scheme (CBC-HMAC)

What can go wrong?

Password Popularity - Top 20

Number of Users with Number of Users with

FEILS SRR Password (absolute) L SRR Password (absolute)
1 123456 290731 11 Nicole 17168
2 12345 79078 12 Daniel 16409
3 123456789 76790 13 babyagirl 16094
4 Password 61958 14 monkey 15294
5 iloveyou 51622 15 Jessica 15162
6 princess 35231 16 Lovely 14950
7 rockyou 22588 17 michael 14898
8 1234567 21726 18 Ashley 14329
£l 12345678 20553 19 654321 13984
10 abc123 17542 20 Qwerty 13856

From an Imperva study of released RockMe.com password database

Brute-force attacks

* Given known plaintext, ciphertext pair:
— M and C = Enc(pw,M)
* Enumerate a dictionary D of possible

passwords
R is salt| |IV in CBC-based modes

BruteForcel(M,C): Both are public:
foreach pw* in D do C=salt|[[IV[[C1]].. M1
C* = Enc(pw*,M,R) \V, &
If C* = C then @ ¥
Return pw* Ei<1
CO Cl

Brute-force attacks

* Given known plaintext, ciphertext pair:
— M and C = Enc(pw,M)

* Enumerate a dictionary D of possible
passwords

BruteForcel(M,C): BruteForce2(C):
foreach pw* in D do foreach pw* in D do
C* = Enc(pw*,M,R) M* = Dec(pw*,C)
If C* = C then @ If M* looks right then

Return pw* Return (pw*,M*)

PBKDF design attempts to slow down

brute-force attacks

pw || salt || 1 =

I

H

e

I

H

e

Truncate if
needed

— K1

N
'
v

Iterating c times should slow down attacks by factor of c

Salts:

Different derived keys, even if same password

Slows down attacks against multiple users

Prevents precomputation attacks, if salts chosen correctly

rist@seclab-laptopl:~/work/teaching/642-fall-2011/slides$ openssl speed shal
Doing shal for 3s on 16 size blocks: 4109047 shal's in 3.00s
Doing shal for 3s on 64 size blocks: 3108267 shal's in 2.99s
Doing shal for 3s on 256 size blocks: 1755265 shal's in 3.00s
Doing shal for 3s on 1024 size blocks: 636540 shal's in 3.00s
Doing shal for 3s on B192 size blocks: 93850 shal's in 3.00s
OpenSSL 1.0.0d 8 Feb 2011

rist@seclab-laptopl:~/work/teaching/642-fall-2011/slides$ openssl speed aes-128-
cbc

Doing aes-128 cbc for 3s on 16 size blocks: 27022606 aes-128 cbc's in 3.00s
Doing aes-128 cbc for 3s on 64 size blocks: 6828856 aes-128 cbc's in 2.99s

Doing aes-128 cbc for 3s on 256 size blocks: 1653364 aes-128 cbc's in 3.00s
Doing aes-128 cbc for 3s on 1024 size blocks: 438909 aes-128 cbc's in 2.99s
Doing aes-128 cbc for 3s on 8192 size blocks: 54108 aes-128 cbc's in 3.00s
OpenSSL 1.0.08d 8 Feb 2011

Say ¢ = 4096. Generous back of envelope* suggests that in 1 second,
can test 252 passwords and a naive brute-force:

6 numerical digits | 10° = ~ 3968 seconds
1,000,000

6 lower case 36° = ~ 99 days

alphanumeric digits | 2,176,782,336

8 alphanumeric + 728 = ~ 33million days

10 special symbols | 722,204,136,308,736

* 1 did the arithmetic...

802.11 WPA passwords

STA AP

/ / @ < ANonce

STA constructs

the PTK
)) SNonce + MIC
PMK = PBKDF(pw, ssid| | ssidlength) :
with ¢ = 4096
PTK = H(PMK || ANonce || SNonce || AP APtﬁZn;tTr}gcts
MAC address || STA MAC address)
< GTK + MIC
MIC = HMAC-MD5(PTK, 24 message)
Ack
o

So after sniffing one handshake by another party, we can
mount offline brute force attack

802.11 WPA passwords

AP
PMK = PBKDF(pw, ssid| | ssidlength)
@ with ¢ = 4096

PTK = H(PMK || ANonce || SNonce || AP
MAC address || STA MAC address)

MIC = HMAC-MD5(PTK, 2" message)

BruteForce2(MIC,ANonce,SNonce,2"d message):

foreach pw* in D do
PMK* = PBKDF(pw™*,ssid| | ssidlength)
PTK* = H(PMK* | | ANonce || ...)
MIC* = HMAC-MD5(PTK*, 2"d message)
If MIC* = MIC then
Return pw*

We can also use precomputation for
common SSID’s

PMK = PBKDF(pw, ssid| |ssidlength)

PMK = F(pw,ssid) with ¢ = 4096

PTK =

H(PMK | | ANonce || SNonce || AP
MIC = G(PMK,data) MAC address | | STA MAC address)

MIC = HMAC-MD5(PTK, 24 message)

Online(D,SsidList): Online(P,T,MIC,ANonce, ...):
foreach pw* in D do foreach PMK™* in P[ssid] do
foreach ssid* in Ssidlist do MIC* = G(PMK*,data)
PMK* = F(pw*,ssid*) If MIC* = MIC then
T[PMK*] = pw* Return T[PMK*]

Add PMK* to P[ssid*]
Return P, T Time-space trade-off

Password recap

* Short passwords can be cracked easily
(JohnTheRipper, aircrack)

e Salting and iteration help

— Salts must be sufficiently large and unpredictable

From xkcd.com

1 IMAGINATION «

A CRYPTO NERD'S

HIS LAPTOPS ENCRYPTED.
LETS BUILD A MILLION-DOLLAR,
CLUSTER To CRACK \T-

NO GooD! IT'S
140% -BIT RSP\‘

EVlL PLF\N
1S FOILED! ™

| ACTUALLY HAPPEN:

WHAT WOULD

HIS LAPTOP'S ENCRYPTED.
DRUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE. mus US THE. PASSWORD.

GOT IT,

kﬁ

[X

\-/‘

N Random number
% generator (RNG) R

 Random number generation

* Measure events on system, harvest entropy
(unpredictability from them)

— keyboard presses and timing
— file/network interrupts
— mouse movements

* Hash entropy down to “extract” (hopefully)
uniform bit strings

lll

Linux /dev/random

Linux random number generator (2500 lines of undocumented code)

Diagram from [Gutterman, Pinkas, Reinman 2006]

keyboard

mouse

Entropy Sources

interrupts

| A '
[e
A I I I
| | A |
| |
| Y |
| Secondary I
. Entropy Pool —p /dev/random
E A 128 Bytes E (blocking)
Primary Entropy
Pool
512 bytes
Urandom
Entropy Pool —p» /dev/iurandom

128 Bytes get_random_bytes

(non-blocking)

————g -

Applications like TLS take randomness from /dev/random

They then maintain an internal pool of random bits

(at least) two points
of failure

v
Random number =
pr generator (RNG) R
MD_Update(&m,buf,j); \

MD_Update(&m,buf,j); /* purify complains */

These lines of code commented out from OpenSSL random number
generator code (md_rand.c) to address complaints by security tools
Purify and Valgrind

Only the PID was used as input to RNG.

It took a ~2 years for the bug to be (publicly) discovered! /
[Yilek et al. 2009])

Debian OpenSSL bug lead to small set of possible R

Deblan Bug Leaves Private SSL/SSH Keys Guessable

Posted by timothy on Tuesday May 13 2008, @12:01PM
from the security-is-a-process dept.

SecurityBob writes

"Debian package maintainers tend to very often modify the source code of the package they are maintaining so that it
better fits into the distribution itself. However, most of the time, their changes are not sent back to upstream for validation,
which might cause some tension between upstream developers and Debian packagers. Today, a critical security advisory
has been released: a Debian packager modified the source code of OpenSSL back in 2006 so as to remove the seeding of
OpenSSL random number generator, which in tums makes cryptographic key material generated on a Debian system
guessable. The solution? Upgrade OpenSSL and re-generate all your SSH and SSL keys. This problem not only affects
Debian, but also all its derivatives, such as Ubuntu."

Reader RichiH also points to Debian's announcement and Ubuntu's announcement.

Virtual machines and secure browsing

“Protect Against Adware and Spyware: Users protect their PCs against adware,
spyware and other malware while browsing the Internet with Firefox in a virtual

machine.”
[http://www.vmware.com/company/news/releases/player.html]

“Your dad can do his [private] surfing on the virtual machine and can even set it to
reset itself whenever the virtual computer is restarted, so there's no need to worry
about leaving tracks. ... | recommend VMware because you can download a free
version of VMware Server for home use.”

[Rescorla, http://www.thestranger.com/seattle/SavagelLove?0id=490850]

Virtual machines and secure browsing

“Protect Against Adware and Spyware: Users protect their PCs against adware,
spyware and other malware while browsing the Internet with Firefox in a virtual
machine.”

[http://www.vmware.com/company/news/releases/player.html] vimware

http://www.freesoftware.com/

/L/: browser exploit

Clean N
snapshot . Virtual machine compromised, but not host OS

of VM with
browser

running Resetting to snapshot removes malware

Virtual machine resets lead to RNG failures [R., Yilek = NDSS “10]

https://www.mybank.com/

> :
P TLS session
5 key transport

https://www.randomsite.com/
>

To-be-used > ,

/23 & TLS session
randomness ,

. e, 5 keytransport

captured in
snapshot!

Recent versions of Firefox, Chrome

.) Apache mod_ss| TLS server:
allow session compromise attacks

server’s secret DSA key can be
stolen!

https://www.mybank.com/

> :
/:a TLS session
& 5 key transport

User launches
browser in VM

User User requests
snapshots VM https page

Snapshot later
run. Randomness

Randomness
gathered by
browser random
number generator
(RNG)

used by TLS
key transport

A second run from snapshot

leads to same secret key being
sent to (different) server

TLS key .
transport ,{@
client

(Ne) RSA

PKCS#1
|

C

C sent to server

RNG recap

* Randomness is often a weak link in crypto
implementations

* Building a good RNG is not always easy
* Intel RNG instructions in next generation chips

Side-channel attacks

* Implementations might leak information
about secret internal state via side-channels:

— power consumption

— Electromagnetic emanations (Tempest)
— timing

— Shared physical resources (CPU cache)

PKCS

1 RSA encryption

Kg outputs (N,e),(N,d) where [N|g=n
Let B ={0,1}%/ {00} be set of all bytes except 00
Want to encrypt messages of length [M|g=m

(N,e)
R
Enc | C
M
(N,d)
C - Dec | Mor

error

Enc((N,e), M, R)

pad = first n-m - 2 bytes from R that
arein B

X=00]|]02]||pad || 00 || M

Return X® mod N

Dec((N,d), C)

X=CmodN ; aal|bb]||w=X

If (aa # 00) or (bb #02) or (00¢ w)
Return error

pad [|00 || M=w

Return M

Textbook exponentiation

ModExp(X,e,N) SqrAndMulExp(X,e,N)
X =X b,,...by=¢
Fori=2toddo f=1
X =X"*X mod N Fori=k down to O do
Return X’ f=f2 modN
If b, =1 then
f=f*Xmod N

Return f

SqrAndMulExp(X,e,N)

b,,...by=¢
f=1 e = Z X
Fori=k down toOdo b; £0
f= modN
If b, =1 then | |
f=f*XmodN X¢ = Xzbi?fo 28 _ H x2
Return f

b; 20

X¢mod N = (J] (X* mod N)) mod N
bs A0

Xll _ Zl?l+2+8 _ ({L‘)(.CISQ)(CBS)

SqrAndMulExp(X,e,N)

b,,....by=e
f=1
. But:
Fori=k downtoOdo) o
, Squaring and multiplying take
f=f modN . .
different amounts of time and
If b, =1 then ower
f=f*XmodN P '
Return f
From Messerges et al. 1999:
Exponentiation
Power Signal:
/ \
Multiplication
Power Signal:
Squa Multiply Squ Multiply Square

q
Cross-Correlation
Signal:

Fig. 2. Cross-Correlation of Multiplication and Exponentiation Power Signals
The above signals were obtained using the power analysis equipment described in Section 4.

SqrAndMulExp(X,e,N)

b,,....by=e
f=1
Fori=kdowntoOdo But: . .
Squaring and multiplying take
f=f2 modN . .
different amounts of time and
If b, =1 then ower
f=f*XmodN P '
Return f

Remote timing attacks against other (Boneh, Brumley 2003)
Chosen ciphertexts + timing = key extraction
~1 million queries (though highly variable)

Lots of other implementation pitfalls

Hard-coded keys in binaries

Default passwords

Developing your own crypto algorithms
Poor key management (Kerberos, RADIUS)

