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Let’s	  play	  over	  the	  network	  …	  	  

Network	  IDS	  basics	  

Target	  acquisiNon	  

Host	  fingerprinNng,	  NMAP	  

Port	  scanning	  

Avoiding	  IDS	  



Target	  acquisiNon	  

backbone	  

OrganizaNon	  	  
X	  

ISP	  

How	  do	  we	  find	  vulnerable	  server(s)	  within	  a	  target	  organizaNon?	  

StarNng	  point:	  one	  or	  more	  publicly	  routable	  IP	  addresses	  

-‐	  WHOIS	  queries	  are	  good	  way	  to	  find	  them	  

-‐	  Can	  be	  used	  to	  idenNfy	  blocks	  of	  IP	  addresses	  owned	  



WHOIS	  fun	  



We’ve	  idenNfied	  target	  (range	  of)	  IPs,	  
now	  what?	  

•  Host	  discovery	  
–  Narrow	  broad	  swath	  of	  potenNal	  IPs	  to	  ones	  that	  have	  
hosts	  associated	  with	  them	  

•  Service	  discovery	  
–  For	  a	  parNcular	  host,	  idenNfy	  running	  services	  
–  E.g.,	  is	  it	  accepNng	  SSH	  connecNons	  (22)	  or	  HTTP	  (80)?	  

•  OS	  fingerprinNng	  
–  IdenNfy	  the	  OS	  so_ware	  version	  running	  	  
–  E.g.,	  Windows	  vs	  Linux?	  

•  ApplicaNon	  fingerprinNng	  
–  same	  at	  higher	  level	  	  
–  Apache	  version	  1.3	  or	  2.0+?	  





NMAP	  

•  Network	  map	  tool	  
•  De-‐facto	  standard	  for	  network	  
reconnaissance,	  tesNng	  

•  Numerous	  built	  in	  scanning	  methods	  



nmap	  –PN	  –sT	  –p	  22	  	  192.168.1.0/24	  



Some	  of	  the	  NMAP	  status	  messages	  

•  open	  
– host	  is	  accepNng	  connecNons	  on	  that	  port	  

•  closed	  
– host	  responds	  to	  NMAP	  probes	  on	  port,	  but	  does	  
not	  accept	  connecNons	  

•  filtered	  
– NMAP	  couldn’t	  get	  packets	  through	  to	  host	  on	  
that	  port.	  	  

– Firewall?	  



Port	  scan	  of	  host	  



Service	  discovery	  



nmap	  –PN	  –sT	  –p	  22	  	  192.168.1.0/24	  



Port	  scan	  of	  host	  



Service	  discovery	  



OS	  fingerprinNng	  



Another	  example	  





Internet	  

Network	  DMZ	  

DMZ	  (demilitarized	  zone)	  helps	  isolate	  public	  network	  	  
components	  from	  private	  network	  components	  

Outer	  
firewall	  

Inner	  
firewall	  

Web	  server	  

IDS	  
Customer	  
databases	  

Firewall	  rules	  to	  disallow	  traffic	  from	  Internet	  to	  internal	  services	  



Idle	  scans	  

•  We	  want	  to	  avoid	  sending	  any	  non-‐spoofed	  
packets	  to	  the	  target,	  but	  sNll	  want	  to	  port	  
scan	  it	  

•  Salvatore	  (AnNrez)	  Sanfilippo	  1998	  
•  So-‐called	  idle	  scan	  can	  enable	  this	  

1)  Determine	  IPID	  of	  a	  zombie	  via	  SYN/ACK	  
2)  Send	  SYN	  spoofed	  from	  zombie	  
3)  Determine	  new	  IPID	  of	  zombie	  via	  SYN/ACK	  	  



Idle	  scans	  

From	  h9p://nmap.org/book/idlescan.html	  



Idle	  scan	  

From	  h9p://nmap.org/book/idlescan.html	  



PrevenNng	  idle	  scans	  

•  How	  can	  we	  prevent	  our	  system	  from	  being	  a	  
zombie?	  



Other	  idle	  scan	  type	  methods?	  

•  Ensafi	  et	  al.	  “Idle	  Port	  Scanning	  and	  Non-‐
Interference	  Analysis	  of	  Network	  Protocol	  
Stacks	  Using	  Model	  Checking”,	  USENIX	  
Security	  2010	  

•  IPID	  is	  a	  side	  channel	  –	  maybe	  there	  are	  
others?	  
– RST	  rate	  
– SYN	  cache	  size	  



Idle	  scan:	  RST	  rate	  limit	  

From	  	  Ensafi	  et	  al.	  	  2010	  



SYN	  caches	  and	  SYN	  cookies	  

•  SYN	  cache	  maintains	  state	  for	  outstanding	  TCP	  
SYN	  requests	  received	  
– Finite	  amount	  of	  memory	  

•  SYN	  cookie	  is	  mechanism	  for	  dealing	  with	  DoS	  
– When	  SYN	  cache	  is	  full,	  calculate	  response’s	  ISN	  

3	  bits	  
Max	  Seg	  
Size	  	  

encoding	  

5	  bits	  
Nmestamp	  t	  	  
mod	  32	  

24	  bits	  
MD5(serverIP,serverPort,clientIP,clientPort,t)	  



Idle	  scan:	  SYN	  cache	  

From	  	  Ensafi	  et	  al.	  	  2010	  



Port	  scanning:	  legality	  	  
•  United	  States’	  Computer	  Fraud	  and	  Abuse	  Act	  
(CFAA)	  	  
–  Computer	  system	  access	  must	  be	  authorized	  

•  Moulton	  v	  VC3	  (2000).	  	  
–  port	  scanning,	  by	  itself,	  does	  not	  create	  a	  damages	  
claim	  (direct	  harm	  must	  be	  shown	  to	  establish	  
damages	  under	  the	  CFAA).	  

•  O.	  Kerr.	  	  “Cybercrime’s	  scope:	  InterpreNng	  
’access’	  and	  ’authorizaNon’	  in	  computer	  misuse	  
statutes”.	  NYU	  Law	  Review,	  Vol.	  78,	  No.	  5,	  pp.	  
1596–1668,	  November	  2003.	  



Internet	  

Network	  DMZ	  

DMZ	  (demilitarized	  zone)	  helps	  isolate	  public	  network	  	  
components	  from	  private	  network	  components	  

Outer	  
firewall	  

Inner	  
firewall	  

Web	  server	  

IDS	  
Customer	  
databases	  

Firewall	  rules	  to	  disallow	  traffic	  from	  Internet	  to	  internal	  services	  



CIDF	  	  
(Common	  intrusion	  detecNon	  framework)	  

Event	  generators	  
(E-‐box)	  

Analysis	  engine	  	  
(A-‐box)	  

From	  h9p://insecure.org/so/secnet_ids/secnet_ids.html	  



Two	  broad	  classes	  

•  Anomaly	  detecNon	  
– What	  does	  “normal”	  traffic	  look	  like?	  
– Flag	  abnormal	  traffic	  

•  Signature	  based	  
– Define	  some	  explicit	  traffic	  pa9erns	  as	  bad	  
– Flag	  them	  
– E.g.,	  regular	  expressions	  



Basic	  NIDS	  setup	  

From	  h9p://insecure.org/so/secnet_ids/secnet_ids.html	  



Some	  examples	  

•  Snort	  (MarNn	  Roesch)	  
•  Bro	  (Vern	  Paxson)	  
– 1999:	  27,000	  lines	  of	  C++	  code	  



A9acking	  or	  bypassing	  NIDS	  

•  How	  do	  we	  circumvent	  a	  NIDS?	  

Internet	  

Outer	  
firewall	  

Inner	  
firewall	  

Web	  server	  

IDS	  
Customer	  
databases	  

Overload	  a9acks,	  crash	  a9acks,	  subterfuge	  a9acks	  



Subterfuge	  a9ack	  example	  

Monitor

(10 hops)

(18 hops)
USER

seq= 6 ... 9

ttl=20

ttl=12

10 .. 13

nice

10 .. 13

ttl=20 root

ttl expires

USER nice

USER root

?

?

USER root

VictimAttacker

Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

quence numbers 6 through 9 in the TCP data stream. It is
18 hops to the victim and 10 hops to the monitor, so both
see this text and accept it. The attacker next transmits the
text “nice” covering the next consecutive span of the se-
quence space, 10 through 13, but with an initial TTL of
only 12, which suffices for the packet to travel past the mon-
itor, but not all the way to the victim. Hence, the moni-
tor sees this text but the victim does not. The attacker the
sends the text “root” with the same sequence numbers as
“nice”, but this time with enough TTL to reach the victim.
The victim will thus only see the text “USER” followed by
“root”, while the monitor will see two versions of the text
for sequence numbers 10 through 13, and will have to decide
which to assume was also received by the victim (if, indeed,
it even detects that the data stream includes an inconsistency,
which requires extra work on the monitor's part). While in
this case by inspecting the TTLs it may be able to determine
which of the two versions the victim will have seen, there are
many other ways (window checks, the MTU attack above,
checksums, acknowledgement sequence number checks) of
subtly affecting header fields such that the victim will re-
ject one or the other of the two versions. Fundamentally, the
monitor cannot confidently know which of the two versions
to accept.
A partial defense against this attack is that when we ob-

serve a retransmitted packet (one with data that wholly or
partially overlaps previously-seen data), we compare it with
any data it overlaps, and sound an alarm (or, for Bro, gener-
ate an event) if they disagree. A properly-functioning TCP
will always retransmit the same data as originally sent, so
any disagreement is either due to a broken TCP, undetected
data corruption (i.e., corruption the checksum fails to catch),
or an attack.
We have argued that the monitor must retain a record of

previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of

memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.
Here we can make use of our assumption that the attacker

controls only one of the connection endpoints. Suppose the
stream of interest flows from host to host . If the at-
tacker controls , then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they control , then,
from our assumption, any traffic we see from reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming from ). In particular, we can trust that
if we see an acknowledgement from for sequence number
, then indeed has received all data in sequence up to .
At this point, ' s TCP will deliver, or has already delivered,
this data to the application running on . In particular, ' s
TCP cannot accept any retransmitted data below sequence
, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for , it can safely release any memory associated with data
up to sequence .
While this defenseworks for detecting this general class of

insertion attacks, it suffers from false positives, as discussed
in 7.3 below.
Finally, we note a general defense against certain types

of subterfuge attacks, which we term “bifurcating analysis.”
The idea is that when the monitor cannot determine how an
endpoint will interpret some network traffic (such as whether
it will accept USER nice or USER root), it forms mul-
tiple threads of analysis, examining each of the possibilities.
We note one example of doing so in 6.5 below in our dis-
cussion of analyzing Telnet and Rlogin traffic.

6 Application-specific processing
We finish our overview of Bro with a discussion of the addi-
tional processing it does for the six applications it currently
knows about: Finger, FTP, Portmapper, Ident, Telnet and
Rlogin. Admittedly these are just a small portion of the dif-
ferent Internet applications used in attacks, and Bro's effec-
tiveness will benefit greatly as more are added. Fortunately,
we have in general found that the system meets our goal
of extensibility ( 1), and adding new applications to Bro
is—other than the sometimes major headache of robustly
interpreting the application protocol itself—quite straight-
forward, a matter of deriving a C++ class to analyze each
connection's traffic, and devising a set of events correspond-
ing to significant elements of the application.

13

From	  Paxson,	  	  “Bro:	  A	  System	  for	  DetecNng	  Network	  Intruders	  in	  Real-‐Time”,	  1999	  



Anomalous,	  non-‐a9ack	  traffic	  

•  “Storms”	  of	  10,000s	  of	  FIN	  or	  RST	  packets	  due	  
to	  protocol	  implementaNon	  error	  	  

•  “Storms”	  due	  to	  foggy	  days	  
– Fog	  in	  SF	  bay	  area	  killed	  a	  connecNon,	  causing	  
rouNng	  flaps	  and	  in	  turn	  rouNng	  loops	  

•  SYN	  packet	  with	  URG	  flag	  set	  
– Flags	  ==	  SYN	  	  fails	  



Honeypots	  
•  Systems	  that	  should	  have	  no	  legiNmate	  traffic	  
–  Isolated	  and	  monitored	  
– Any	  traffic	  routed	  to	  it	  is	  spurious	  

•  High	  interacNon	  (e.g.,	  a	  full	  system)	  
•  Low	  interacNon	  (e.g.,	  Honeyd)	  
•  Honeynets,	  honeyfarms	  
–  lots	  of	  honeypots	  

•  Honeytoken	  
–  email	  address	  
–  credit	  card	  number	  



Honeypots	  and	  spam	  

Figure 2: Our data collection and processing workflow.

for subsequent analysis in Section IV. (Steps ➎ and ➏ are
partially manual operations, the others are fully automated.)

The rest of this section describes these steps in detail.

A. Collecting Spam-Advertised URLs

Our study is driven by a broad range of data sources of
varying types, some of which are provided by third parties,
while others we collect ourselves. Since the goal of this
study is to decompose the spam ecosystem, it is natural
that our seed data arises from spam email itself. More
specifically, we focus on the URLs embedded within such
email, since these are the vectors used to drive recipient
traffic to particular Web sites. To support this goal, we

Feed Feed Received Distinct
Name Description URLs Domains

Feed A MX honeypot 32,548,304 100,631
Feed B Seeded honey accounts 73,614,895 35,506
Feed C MX honeypot 451,603,575 1,315,292
Feed D Seeded honey accounts 30,991,248 79,040
Feed X MX honeypot 198,871,030 2,127,164
Feed Y Human identified 10,733,231 1,051,211
Feed Z MX honeypot 12,517,244 67,856
Cutwail Bot 3,267,575 65
Grum Bot 11,920,449 348
MegaD Bot 1,221,253 4
Rustock Bot 141,621,731 13,612,815
Other bots Bot 7,768 4

Total 968,918,303 17,813,952

Table I: Feeds of spam-advertised URLs used in this study. We
collected feed data from August 1, 2010 through October 31, 2010.

obtained seven distinct URL feeds from third-party partners
(including multiple commercial anti-spam providers), and
harvested URLs from our own botfarm environment.

For this study, we used the data from these feeds from
August 1, 2010 through October 31, 2010, which together
comprised nearly 1 billion URLs. Table I summarizes our
feed sources along with the “type” of each feed, the number
of URLs received in the feed during this time period, and
the number of distinct registered domains in those URLs.
Note that the “bot” feeds tend to be focused spam sources,
while the other feeds are spam sinks comprised of a blend
of spam from a variety of sources. Further, individual feeds,
particularly those gathered directly from botnets, can be
heavily skewed in their makeup. For example, we received
over 11M URLs from the Grum bot, but these only contained
348 distinct registered domains. Conversely, the 13M distinct
domains produced by the Rustock bot are artifacts of a
“blacklist-poisoning” campaign undertaken by the bot op-
erators that comprised millions of “garbage” domains [54].
Thus, one must be mindful of these issues when analyzing
such feed data in aggregate.

From these feeds we extract and normalize embedded
URLs and insert them into a large multi-terabyte Postgres
database. The resulting “feed tables” drive virtually all
subsequent data gathering.

B. Crawler data

The URL feed data subsequently drives active crawling
measurements that collect information about both the DNS
infrastructure used to name the site being advertised and the
Web hosting infrastructure that serves site content to visitors.
We use distinct crawlers for each set of measurements.

DNS Crawler: We developed a DNS crawler to iden-
tify the name server infrastructure used to support spam-
advertised domains, and the address records they specify for
hosting those names. Under normal use of DNS this process
would be straightforward, but in practice it is significantly

From	  Levchenko	  et	  al.,	  “Click	  Trajectories:	  End-‐to-‐End	  Analysis	  of	  the	  Spam	  
Value	  Chain”,	  IEEE	  Symposium	  on	  Security	  and	  Privacy,	  2011	  



Figure 1: Infrastructure involved in a single URL’s value chain, including advertisement, click support and realization steps.

machine in Brazil (➍). The user’s browser initiates an HTTP
request to the machine (➎), and receives content that renders
the storefront for “Pharmacy Express,” a brand associated
with the Mailien pharmaceutical affiliate program based in
Russia (➏).

After selecting an item to purchase and clicking on
“Checkout”, the storefront redirects the user to a payment
portal served from payquickonline.com (this time serving
content via an IP address in Turkey), which accepts the
user’s shipping, email contact, and payment information, and
provides an order confirmation number. Subsequent email
confirms the order, provides an EMS tracking number, and
includes a contact email for customer questions. The bank
that issued the user’s credit card transfers money to the
acquiring bank, in this case the Azerigazbank Joint-Stock
Investment Bank in Baku, Azerbaijan (BIN 404610, ➐).
Ten days later the product arrives, blister-packaged, in a
cushioned white envelope with postal markings indicating
a supplier named PPW based in Chennai, India as its
originator (➑).

C. Cybercrime economics

Alongside the myriad studies of the various components
employed in spam (e.g., botnets, fast flux, etc.), a literature
has recently emerged that focuses on using economic tools
for understanding cybercrime (including spam) in a more
systematic fashion, with an aim towards enabling better
reasoning about effective interventions. Here we highlight
elements of this work that have influenced our study.

Some of the earliest such work has aimed to understand
the scope of underground markets based on the value of
found goods (typically stolen financial credentials), either as
seen on IRC chatrooms [10], forums [59], malware “drop-
zones” [16], or directly by intercepting communications to
botnet C&C servers [50]. Herley and Florêncio critique this
line of work as not distinguishing between claimed and
true losses, and speculate that such environments inherently

reflect “lemon markets” in which few participants are likely
to acquire significant profits (particularly spammers) [15].
While this hypothesis remains untested, its outcome is
orthogonal to our focus of understanding the structure of
the value chain itself.

Our own previous work on spam conversion also used
empirical means to infer parts of the return-on-investment
picture in the spam business model [21]. By contrast,
this study aims to be considerably more comprehensive in
breadth (covering what we believe reflect most large spam
campaigns) and depth (covering the fullness of the value
chain), but offering less precision regarding specific costs.

Finally, another line of work has examined interventions
from an economic basis, considering the efficacy of site
and domain takedown in creating an economic impediment
for cybercrime enterprises (notably phishing) [6], [35], [36].
Molnar et al. further develop this approach via comparisons
with research on the illicit drug ecosystem [34]. Our work
builds on this, but focuses deeply on the spam problem in
particular.

III. DATA COLLECTION METHODOLOGY

In this section we describe our datasets and the method-
ology by which we collected, processed, and validated
them. Figure 2 concisely summarizes our data sources and
methods. We start with a variety of full-message spam feeds,
URL feeds, and our own botnet-harvested spam (➊). Feed
parsers extract embedded URLs from the raw feed data for
further processing (➋). A DNS crawler enumerates various
resource record sets of the URL’s domain, while a farm
of Web crawlers visits the URLs and records HTTP-level
interactions and landing pages (➌). A clustering tool clusters
pages by content similarity (➍). A content tagger labels the
content clusters according to the category of goods sold, and
the associated affiliate programs (➎). We then make targeted
purchases from each affiliate program (➏), and store the
feed data and distilled and derived metadata in a database

From	  Levchenko	  et	  al.,	  “Click	  Trajectories:	  End-‐to-‐End	  Analysis	  of	  the	  Spam	  
Value	  Chain”,	  IEEE	  Symposium	  on	  Security	  and	  Privacy,	  2011	  




