
CS642:	 	
Computer	 Security	

Professor	 Ristenpart	
h9p://www.cs.wisc.edu/~rist/	
rist	 at	 cs	 dot	 wisc	 dot	 edu	

University	 of	 Wisconsin	 CS	 642	

Network	 reconnaissance	
and	 IDS	

University	 of	 Wisconsin	 CS	 642	

Let’s	 play	 over	 the	 network	 …	 	

Network	 IDS	 basics	

Target	 acquisiNon	

Host	 fingerprinNng,	 NMAP	

Port	 scanning	

Avoiding	 IDS	

Target	 acquisiNon	

backbone	

OrganizaNon	 	
X	

ISP	

How	 do	 we	 find	 vulnerable	 server(s)	 within	 a	 target	 organizaNon?	

StarNng	 point:	 one	 or	 more	 publicly	 routable	 IP	 addresses	

-‐	 WHOIS	 queries	 are	 good	 way	 to	 find	 them	

-‐	 Can	 be	 used	 to	 idenNfy	 blocks	 of	 IP	 addresses	 owned	

WHOIS	 fun	

We’ve	 idenNfied	 target	 (range	 of)	 IPs,	
now	 what?	

•  Host	 discovery	
–  Narrow	 broad	 swath	 of	 potenNal	 IPs	 to	 ones	 that	 have	
hosts	 associated	 with	 them	

•  Service	 discovery	
–  For	 a	 parNcular	 host,	 idenNfy	 running	 services	
–  E.g.,	 is	 it	 accepNng	 SSH	 connecNons	 (22)	 or	 HTTP	 (80)?	

•  OS	 fingerprinNng	
–  IdenNfy	 the	 OS	 so_ware	 version	 running	 	
–  E.g.,	 Windows	 vs	 Linux?	

•  ApplicaNon	 fingerprinNng	
–  same	 at	 higher	 level	 	
–  Apache	 version	 1.3	 or	 2.0+?	

NMAP	

•  Network	 map	 tool	
•  De-‐facto	 standard	 for	 network	
reconnaissance,	 tesNng	

•  Numerous	 built	 in	 scanning	 methods	

nmap	 –PN	 –sT	 –p	 22	 	 192.168.1.0/24	

Some	 of	 the	 NMAP	 status	 messages	

•  open	
– host	 is	 accepNng	 connecNons	 on	 that	 port	

•  closed	
– host	 responds	 to	 NMAP	 probes	 on	 port,	 but	 does	
not	 accept	 connecNons	

•  filtered	
– NMAP	 couldn’t	 get	 packets	 through	 to	 host	 on	
that	 port.	 	

– Firewall?	

Port	 scan	 of	 host	

Service	 discovery	

nmap	 –PN	 –sT	 –p	 22	 	 192.168.1.0/24	

Port	 scan	 of	 host	

Service	 discovery	

OS	 fingerprinNng	

Another	 example	

Internet	

Network	 DMZ	

DMZ	 (demilitarized	 zone)	 helps	 isolate	 public	 network	 	
components	 from	 private	 network	 components	

Outer	
firewall	

Inner	
firewall	

Web	 server	

IDS	
Customer	
databases	

Firewall	 rules	 to	 disallow	 traffic	 from	 Internet	 to	 internal	 services	

Idle	 scans	

•  We	 want	 to	 avoid	 sending	 any	 non-‐spoofed	
packets	 to	 the	 target,	 but	 sNll	 want	 to	 port	
scan	 it	

•  Salvatore	 (AnNrez)	 Sanfilippo	 1998	
•  So-‐called	 idle	 scan	 can	 enable	 this	

1)  Determine	 IPID	 of	 a	 zombie	 via	 SYN/ACK	
2)  Send	 SYN	 spoofed	 from	 zombie	
3)  Determine	 new	 IPID	 of	 zombie	 via	 SYN/ACK	 	

Idle	 scans	

From	 h9p://nmap.org/book/idlescan.html	

Idle	 scan	

From	 h9p://nmap.org/book/idlescan.html	

PrevenNng	 idle	 scans	

•  How	 can	 we	 prevent	 our	 system	 from	 being	 a	
zombie?	

Other	 idle	 scan	 type	 methods?	

•  Ensafi	 et	 al.	 “Idle	 Port	 Scanning	 and	 Non-‐
Interference	 Analysis	 of	 Network	 Protocol	
Stacks	 Using	 Model	 Checking”,	 USENIX	
Security	 2010	

•  IPID	 is	 a	 side	 channel	 –	 maybe	 there	 are	
others?	
– RST	 rate	
– SYN	 cache	 size	

Idle	 scan:	 RST	 rate	 limit	

From	 	 Ensafi	 et	 al.	 	 2010	

SYN	 caches	 and	 SYN	 cookies	

•  SYN	 cache	 maintains	 state	 for	 outstanding	 TCP	
SYN	 requests	 received	
– Finite	 amount	 of	 memory	

•  SYN	 cookie	 is	 mechanism	 for	 dealing	 with	 DoS	
– When	 SYN	 cache	 is	 full,	 calculate	 response’s	 ISN	

3	 bits	
Max	 Seg	
Size	 	

encoding	

5	 bits	
Nmestamp	 t	 	
mod	 32	

24	 bits	
MD5(serverIP,serverPort,clientIP,clientPort,t)	

Idle	 scan:	 SYN	 cache	

From	 	 Ensafi	 et	 al.	 	 2010	

Port	 scanning:	 legality	 	
•  United	 States’	 Computer	 Fraud	 and	 Abuse	 Act	
(CFAA)	 	
–  Computer	 system	 access	 must	 be	 authorized	

•  Moulton	 v	 VC3	 (2000).	 	
–  port	 scanning,	 by	 itself,	 does	 not	 create	 a	 damages	
claim	 (direct	 harm	 must	 be	 shown	 to	 establish	
damages	 under	 the	 CFAA).	

•  O.	 Kerr.	 	 “Cybercrime’s	 scope:	 InterpreNng	
’access’	 and	 ’authorizaNon’	 in	 computer	 misuse	
statutes”.	 NYU	 Law	 Review,	 Vol.	 78,	 No.	 5,	 pp.	
1596–1668,	 November	 2003.	

Internet	

Network	 DMZ	

DMZ	 (demilitarized	 zone)	 helps	 isolate	 public	 network	 	
components	 from	 private	 network	 components	

Outer	
firewall	

Inner	
firewall	

Web	 server	

IDS	
Customer	
databases	

Firewall	 rules	 to	 disallow	 traffic	 from	 Internet	 to	 internal	 services	

CIDF	 	
(Common	 intrusion	 detecNon	 framework)	

Event	 generators	
(E-‐box)	

Analysis	 engine	 	
(A-‐box)	

From	 h9p://insecure.org/so/secnet_ids/secnet_ids.html	

Two	 broad	 classes	

•  Anomaly	 detecNon	
– What	 does	 “normal”	 traffic	 look	 like?	
– Flag	 abnormal	 traffic	

•  Signature	 based	
– Define	 some	 explicit	 traffic	 pa9erns	 as	 bad	
– Flag	 them	
– E.g.,	 regular	 expressions	

Basic	 NIDS	 setup	

From	 h9p://insecure.org/so/secnet_ids/secnet_ids.html	

Some	 examples	

•  Snort	 (MarNn	 Roesch)	
•  Bro	 (Vern	 Paxson)	
– 1999:	 27,000	 lines	 of	 C++	 code	

A9acking	 or	 bypassing	 NIDS	

•  How	 do	 we	 circumvent	 a	 NIDS?	

Internet	

Outer	
firewall	

Inner	
firewall	

Web	 server	

IDS	
Customer	
databases	

Overload	 a9acks,	 crash	 a9acks,	 subterfuge	 a9acks	

Subterfuge	 a9ack	 example	

Monitor

(10 hops)

(18 hops)
USER

seq= 6 ... 9

ttl=20

ttl=12

10 .. 13

nice

10 .. 13

ttl=20 root

ttl expires

USER nice

USER root

?

?

USER root

VictimAttacker

Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

quence numbers 6 through 9 in the TCP data stream. It is
18 hops to the victim and 10 hops to the monitor, so both
see this text and accept it. The attacker next transmits the
text “nice” covering the next consecutive span of the se-
quence space, 10 through 13, but with an initial TTL of
only 12, which suffices for the packet to travel past the mon-
itor, but not all the way to the victim. Hence, the moni-
tor sees this text but the victim does not. The attacker the
sends the text “root” with the same sequence numbers as
“nice”, but this time with enough TTL to reach the victim.
The victim will thus only see the text “USER” followed by
“root”, while the monitor will see two versions of the text
for sequence numbers 10 through 13, and will have to decide
which to assume was also received by the victim (if, indeed,
it even detects that the data stream includes an inconsistency,
which requires extra work on the monitor's part). While in
this case by inspecting the TTLs it may be able to determine
which of the two versions the victim will have seen, there are
many other ways (window checks, the MTU attack above,
checksums, acknowledgement sequence number checks) of
subtly affecting header fields such that the victim will re-
ject one or the other of the two versions. Fundamentally, the
monitor cannot confidently know which of the two versions
to accept.
A partial defense against this attack is that when we ob-

serve a retransmitted packet (one with data that wholly or
partially overlaps previously-seen data), we compare it with
any data it overlaps, and sound an alarm (or, for Bro, gener-
ate an event) if they disagree. A properly-functioning TCP
will always retransmit the same data as originally sent, so
any disagreement is either due to a broken TCP, undetected
data corruption (i.e., corruption the checksum fails to catch),
or an attack.
We have argued that the monitor must retain a record of

previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of

memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.
Here we can make use of our assumption that the attacker

controls only one of the connection endpoints. Suppose the
stream of interest flows from host to host . If the at-
tacker controls , then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they control , then,
from our assumption, any traffic we see from reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming from). In particular, we can trust that
if we see an acknowledgement from for sequence number
, then indeed has received all data in sequence up to .
At this point, ' s TCP will deliver, or has already delivered,
this data to the application running on . In particular, ' s
TCP cannot accept any retransmitted data below sequence
, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for , it can safely release any memory associated with data
up to sequence .
While this defenseworks for detecting this general class of

insertion attacks, it suffers from false positives, as discussed
in 7.3 below.
Finally, we note a general defense against certain types

of subterfuge attacks, which we term “bifurcating analysis.”
The idea is that when the monitor cannot determine how an
endpoint will interpret some network traffic (such as whether
it will accept USER nice or USER root), it forms mul-
tiple threads of analysis, examining each of the possibilities.
We note one example of doing so in 6.5 below in our dis-
cussion of analyzing Telnet and Rlogin traffic.

6 Application-specific processing
We finish our overview of Bro with a discussion of the addi-
tional processing it does for the six applications it currently
knows about: Finger, FTP, Portmapper, Ident, Telnet and
Rlogin. Admittedly these are just a small portion of the dif-
ferent Internet applications used in attacks, and Bro's effec-
tiveness will benefit greatly as more are added. Fortunately,
we have in general found that the system meets our goal
of extensibility (1), and adding new applications to Bro
is—other than the sometimes major headache of robustly
interpreting the application protocol itself—quite straight-
forward, a matter of deriving a C++ class to analyze each
connection's traffic, and devising a set of events correspond-
ing to significant elements of the application.

13

From	 Paxson,	 	 “Bro:	 A	 System	 for	 DetecNng	 Network	 Intruders	 in	 Real-‐Time”,	 1999	

Anomalous,	 non-‐a9ack	 traffic	

•  “Storms”	 of	 10,000s	 of	 FIN	 or	 RST	 packets	 due	
to	 protocol	 implementaNon	 error	 	

•  “Storms”	 due	 to	 foggy	 days	
– Fog	 in	 SF	 bay	 area	 killed	 a	 connecNon,	 causing	
rouNng	 flaps	 and	 in	 turn	 rouNng	 loops	

•  SYN	 packet	 with	 URG	 flag	 set	
– Flags	 ==	 SYN	 	 fails	

Honeypots	
•  Systems	 that	 should	 have	 no	 legiNmate	 traffic	
–  Isolated	 and	 monitored	
– Any	 traffic	 routed	 to	 it	 is	 spurious	

•  High	 interacNon	 (e.g.,	 a	 full	 system)	
•  Low	 interacNon	 (e.g.,	 Honeyd)	
•  Honeynets,	 honeyfarms	
–  lots	 of	 honeypots	

•  Honeytoken	
–  email	 address	
–  credit	 card	 number	

Honeypots	 and	 spam	

Figure 2: Our data collection and processing workflow.

for subsequent analysis in Section IV. (Steps ➎ and ➏ are
partially manual operations, the others are fully automated.)

The rest of this section describes these steps in detail.

A. Collecting Spam-Advertised URLs

Our study is driven by a broad range of data sources of
varying types, some of which are provided by third parties,
while others we collect ourselves. Since the goal of this
study is to decompose the spam ecosystem, it is natural
that our seed data arises from spam email itself. More
specifically, we focus on the URLs embedded within such
email, since these are the vectors used to drive recipient
traffic to particular Web sites. To support this goal, we

Feed Feed Received Distinct
Name Description URLs Domains

Feed A MX honeypot 32,548,304 100,631
Feed B Seeded honey accounts 73,614,895 35,506
Feed C MX honeypot 451,603,575 1,315,292
Feed D Seeded honey accounts 30,991,248 79,040
Feed X MX honeypot 198,871,030 2,127,164
Feed Y Human identified 10,733,231 1,051,211
Feed Z MX honeypot 12,517,244 67,856
Cutwail Bot 3,267,575 65
Grum Bot 11,920,449 348
MegaD Bot 1,221,253 4
Rustock Bot 141,621,731 13,612,815
Other bots Bot 7,768 4

Total 968,918,303 17,813,952

Table I: Feeds of spam-advertised URLs used in this study. We
collected feed data from August 1, 2010 through October 31, 2010.

obtained seven distinct URL feeds from third-party partners
(including multiple commercial anti-spam providers), and
harvested URLs from our own botfarm environment.

For this study, we used the data from these feeds from
August 1, 2010 through October 31, 2010, which together
comprised nearly 1 billion URLs. Table I summarizes our
feed sources along with the “type” of each feed, the number
of URLs received in the feed during this time period, and
the number of distinct registered domains in those URLs.
Note that the “bot” feeds tend to be focused spam sources,
while the other feeds are spam sinks comprised of a blend
of spam from a variety of sources. Further, individual feeds,
particularly those gathered directly from botnets, can be
heavily skewed in their makeup. For example, we received
over 11M URLs from the Grum bot, but these only contained
348 distinct registered domains. Conversely, the 13M distinct
domains produced by the Rustock bot are artifacts of a
“blacklist-poisoning” campaign undertaken by the bot op-
erators that comprised millions of “garbage” domains [54].
Thus, one must be mindful of these issues when analyzing
such feed data in aggregate.

From these feeds we extract and normalize embedded
URLs and insert them into a large multi-terabyte Postgres
database. The resulting “feed tables” drive virtually all
subsequent data gathering.

B. Crawler data

The URL feed data subsequently drives active crawling
measurements that collect information about both the DNS
infrastructure used to name the site being advertised and the
Web hosting infrastructure that serves site content to visitors.
We use distinct crawlers for each set of measurements.

DNS Crawler: We developed a DNS crawler to iden-
tify the name server infrastructure used to support spam-
advertised domains, and the address records they specify for
hosting those names. Under normal use of DNS this process
would be straightforward, but in practice it is significantly

From	 Levchenko	 et	 al.,	 “Click	 Trajectories:	 End-‐to-‐End	 Analysis	 of	 the	 Spam	
Value	 Chain”,	 IEEE	 Symposium	 on	 Security	 and	 Privacy,	 2011	

Figure 1: Infrastructure involved in a single URL’s value chain, including advertisement, click support and realization steps.

machine in Brazil (➍). The user’s browser initiates an HTTP
request to the machine (➎), and receives content that renders
the storefront for “Pharmacy Express,” a brand associated
with the Mailien pharmaceutical affiliate program based in
Russia (➏).

After selecting an item to purchase and clicking on
“Checkout”, the storefront redirects the user to a payment
portal served from payquickonline.com (this time serving
content via an IP address in Turkey), which accepts the
user’s shipping, email contact, and payment information, and
provides an order confirmation number. Subsequent email
confirms the order, provides an EMS tracking number, and
includes a contact email for customer questions. The bank
that issued the user’s credit card transfers money to the
acquiring bank, in this case the Azerigazbank Joint-Stock
Investment Bank in Baku, Azerbaijan (BIN 404610, ➐).
Ten days later the product arrives, blister-packaged, in a
cushioned white envelope with postal markings indicating
a supplier named PPW based in Chennai, India as its
originator (➑).

C. Cybercrime economics

Alongside the myriad studies of the various components
employed in spam (e.g., botnets, fast flux, etc.), a literature
has recently emerged that focuses on using economic tools
for understanding cybercrime (including spam) in a more
systematic fashion, with an aim towards enabling better
reasoning about effective interventions. Here we highlight
elements of this work that have influenced our study.

Some of the earliest such work has aimed to understand
the scope of underground markets based on the value of
found goods (typically stolen financial credentials), either as
seen on IRC chatrooms [10], forums [59], malware “drop-
zones” [16], or directly by intercepting communications to
botnet C&C servers [50]. Herley and Florêncio critique this
line of work as not distinguishing between claimed and
true losses, and speculate that such environments inherently

reflect “lemon markets” in which few participants are likely
to acquire significant profits (particularly spammers) [15].
While this hypothesis remains untested, its outcome is
orthogonal to our focus of understanding the structure of
the value chain itself.

Our own previous work on spam conversion also used
empirical means to infer parts of the return-on-investment
picture in the spam business model [21]. By contrast,
this study aims to be considerably more comprehensive in
breadth (covering what we believe reflect most large spam
campaigns) and depth (covering the fullness of the value
chain), but offering less precision regarding specific costs.

Finally, another line of work has examined interventions
from an economic basis, considering the efficacy of site
and domain takedown in creating an economic impediment
for cybercrime enterprises (notably phishing) [6], [35], [36].
Molnar et al. further develop this approach via comparisons
with research on the illicit drug ecosystem [34]. Our work
builds on this, but focuses deeply on the spam problem in
particular.

III. DATA COLLECTION METHODOLOGY

In this section we describe our datasets and the method-
ology by which we collected, processed, and validated
them. Figure 2 concisely summarizes our data sources and
methods. We start with a variety of full-message spam feeds,
URL feeds, and our own botnet-harvested spam (➊). Feed
parsers extract embedded URLs from the raw feed data for
further processing (➋). A DNS crawler enumerates various
resource record sets of the URL’s domain, while a farm
of Web crawlers visits the URLs and records HTTP-level
interactions and landing pages (➌). A clustering tool clusters
pages by content similarity (➍). A content tagger labels the
content clusters according to the category of goods sold, and
the associated affiliate programs (➎). We then make targeted
purchases from each affiliate program (➏), and store the
feed data and distilled and derived metadata in a database

From	 Levchenko	 et	 al.,	 “Click	 Trajectories:	 End-‐to-‐End	 Analysis	 of	 the	 Spam	
Value	 Chain”,	 IEEE	 Symposium	 on	 Security	 and	 Privacy,	 2011	

