
CS642:	
 	

Computer	
 Security	

Professor	
 Ristenpart	

h9p://www.cs.wisc.edu/~rist/	

rist	
 at	
 cs	
 dot	
 wisc	
 dot	
 edu	

University	
 of	
 Wisconsin	
 CS	
 642	

Network	
 reconnaissance	

and	
 IDS	

University	
 of	
 Wisconsin	
 CS	
 642	

Let’s	
 play	
 over	
 the	
 network	
 …	
 	

Network	
 IDS	
 basics	

Target	
 acquisiNon	

Host	
 fingerprinNng,	
 NMAP	

Port	
 scanning	

Avoiding	
 IDS	

Target	
 acquisiNon	

backbone	

OrganizaNon	
 	

X	

ISP	

How	
 do	
 we	
 find	
 vulnerable	
 server(s)	
 within	
 a	
 target	
 organizaNon?	

StarNng	
 point:	
 one	
 or	
 more	
 publicly	
 routable	
 IP	
 addresses	

-­‐	
 WHOIS	
 queries	
 are	
 good	
 way	
 to	
 find	
 them	

-­‐	
 Can	
 be	
 used	
 to	
 idenNfy	
 blocks	
 of	
 IP	
 addresses	
 owned	

WHOIS	
 fun	

We’ve	
 idenNfied	
 target	
 (range	
 of)	
 IPs,	

now	
 what?	

•  Host	
 discovery	

–  Narrow	
 broad	
 swath	
 of	
 potenNal	
 IPs	
 to	
 ones	
 that	
 have	

hosts	
 associated	
 with	
 them	

•  Service	
 discovery	

–  For	
 a	
 parNcular	
 host,	
 idenNfy	
 running	
 services	

–  E.g.,	
 is	
 it	
 accepNng	
 SSH	
 connecNons	
 (22)	
 or	
 HTTP	
 (80)?	

•  OS	
 fingerprinNng	

–  IdenNfy	
 the	
 OS	
 so_ware	
 version	
 running	
 	

–  E.g.,	
 Windows	
 vs	
 Linux?	

•  ApplicaNon	
 fingerprinNng	

–  same	
 at	
 higher	
 level	
 	

–  Apache	
 version	
 1.3	
 or	
 2.0+?	

NMAP	

•  Network	
 map	
 tool	

•  De-­‐facto	
 standard	
 for	
 network	

reconnaissance,	
 tesNng	

•  Numerous	
 built	
 in	
 scanning	
 methods	

nmap	
 –PN	
 –sT	
 –p	
 22	
 	
 192.168.1.0/24	

Some	
 of	
 the	
 NMAP	
 status	
 messages	

•  open	

– host	
 is	
 accepNng	
 connecNons	
 on	
 that	
 port	

•  closed	

– host	
 responds	
 to	
 NMAP	
 probes	
 on	
 port,	
 but	
 does	

not	
 accept	
 connecNons	

•  filtered	

– NMAP	
 couldn’t	
 get	
 packets	
 through	
 to	
 host	
 on	

that	
 port.	
 	

– Firewall?	

Port	
 scan	
 of	
 host	

Service	
 discovery	

nmap	
 –PN	
 –sT	
 –p	
 22	
 	
 192.168.1.0/24	

Port	
 scan	
 of	
 host	

Service	
 discovery	

OS	
 fingerprinNng	

Another	
 example	

Internet	

Network	
 DMZ	

DMZ	
 (demilitarized	
 zone)	
 helps	
 isolate	
 public	
 network	
 	

components	
 from	
 private	
 network	
 components	

Outer	

firewall	

Inner	

firewall	

Web	
 server	

IDS	

Customer	

databases	

Firewall	
 rules	
 to	
 disallow	
 traffic	
 from	
 Internet	
 to	
 internal	
 services	

Idle	
 scans	

•  We	
 want	
 to	
 avoid	
 sending	
 any	
 non-­‐spoofed	

packets	
 to	
 the	
 target,	
 but	
 sNll	
 want	
 to	
 port	

scan	
 it	

•  Salvatore	
 (AnNrez)	
 Sanfilippo	
 1998	

•  So-­‐called	
 idle	
 scan	
 can	
 enable	
 this	

1)  Determine	
 IPID	
 of	
 a	
 zombie	
 via	
 SYN/ACK	

2)  Send	
 SYN	
 spoofed	
 from	
 zombie	

3)  Determine	
 new	
 IPID	
 of	
 zombie	
 via	
 SYN/ACK	
 	

Idle	
 scans	

From	
 h9p://nmap.org/book/idlescan.html	

Idle	
 scan	

From	
 h9p://nmap.org/book/idlescan.html	

PrevenNng	
 idle	
 scans	

•  How	
 can	
 we	
 prevent	
 our	
 system	
 from	
 being	
 a	

zombie?	

Other	
 idle	
 scan	
 type	
 methods?	

•  Ensafi	
 et	
 al.	
 “Idle	
 Port	
 Scanning	
 and	
 Non-­‐
Interference	
 Analysis	
 of	
 Network	
 Protocol	

Stacks	
 Using	
 Model	
 Checking”,	
 USENIX	

Security	
 2010	

•  IPID	
 is	
 a	
 side	
 channel	
 –	
 maybe	
 there	
 are	

others?	

– RST	
 rate	

– SYN	
 cache	
 size	

Idle	
 scan:	
 RST	
 rate	
 limit	

From	
 	
 Ensafi	
 et	
 al.	
 	
 2010	

SYN	
 caches	
 and	
 SYN	
 cookies	

•  SYN	
 cache	
 maintains	
 state	
 for	
 outstanding	
 TCP	

SYN	
 requests	
 received	

– Finite	
 amount	
 of	
 memory	

•  SYN	
 cookie	
 is	
 mechanism	
 for	
 dealing	
 with	
 DoS	

– When	
 SYN	
 cache	
 is	
 full,	
 calculate	
 response’s	
 ISN	

3	
 bits	

Max	
 Seg	

Size	
 	

encoding	

5	
 bits	

Nmestamp	
 t	
 	

mod	
 32	

24	
 bits	

MD5(serverIP,serverPort,clientIP,clientPort,t)	

Idle	
 scan:	
 SYN	
 cache	

From	
 	
 Ensafi	
 et	
 al.	
 	
 2010	

Port	
 scanning:	
 legality	
 	

•  United	
 States’	
 Computer	
 Fraud	
 and	
 Abuse	
 Act	

(CFAA)	
 	

–  Computer	
 system	
 access	
 must	
 be	
 authorized	

•  Moulton	
 v	
 VC3	
 (2000).	
 	

–  port	
 scanning,	
 by	
 itself,	
 does	
 not	
 create	
 a	
 damages	

claim	
 (direct	
 harm	
 must	
 be	
 shown	
 to	
 establish	

damages	
 under	
 the	
 CFAA).	

•  O.	
 Kerr.	
 	
 “Cybercrime’s	
 scope:	
 InterpreNng	

’access’	
 and	
 ’authorizaNon’	
 in	
 computer	
 misuse	

statutes”.	
 NYU	
 Law	
 Review,	
 Vol.	
 78,	
 No.	
 5,	
 pp.	

1596–1668,	
 November	
 2003.	

Internet	

Network	
 DMZ	

DMZ	
 (demilitarized	
 zone)	
 helps	
 isolate	
 public	
 network	
 	

components	
 from	
 private	
 network	
 components	

Outer	

firewall	

Inner	

firewall	

Web	
 server	

IDS	

Customer	

databases	

Firewall	
 rules	
 to	
 disallow	
 traffic	
 from	
 Internet	
 to	
 internal	
 services	

CIDF	
 	

(Common	
 intrusion	
 detecNon	
 framework)	

Event	
 generators	

(E-­‐box)	

Analysis	
 engine	
 	

(A-­‐box)	

From	
 h9p://insecure.org/so/secnet_ids/secnet_ids.html	

Two	
 broad	
 classes	

•  Anomaly	
 detecNon	

– What	
 does	
 “normal”	
 traffic	
 look	
 like?	

– Flag	
 abnormal	
 traffic	

•  Signature	
 based	

– Define	
 some	
 explicit	
 traffic	
 pa9erns	
 as	
 bad	

– Flag	
 them	

– E.g.,	
 regular	
 expressions	

Basic	
 NIDS	
 setup	

From	
 h9p://insecure.org/so/secnet_ids/secnet_ids.html	

Some	
 examples	

•  Snort	
 (MarNn	
 Roesch)	

•  Bro	
 (Vern	
 Paxson)	

– 1999:	
 27,000	
 lines	
 of	
 C++	
 code	

A9acking	
 or	
 bypassing	
 NIDS	

•  How	
 do	
 we	
 circumvent	
 a	
 NIDS?	

Internet	

Outer	

firewall	

Inner	

firewall	

Web	
 server	

IDS	

Customer	

databases	

Overload	
 a9acks,	
 crash	
 a9acks,	
 subterfuge	
 a9acks	

Subterfuge	
 a9ack	
 example	

Monitor

(10 hops)

(18 hops)
USER

seq= 6 ... 9

ttl=20

ttl=12

10 .. 13

nice

10 .. 13

ttl=20 root

ttl expires

USER nice

USER root

?

?

USER root

VictimAttacker

Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

quence numbers 6 through 9 in the TCP data stream. It is
18 hops to the victim and 10 hops to the monitor, so both
see this text and accept it. The attacker next transmits the
text “nice” covering the next consecutive span of the se-
quence space, 10 through 13, but with an initial TTL of
only 12, which suffices for the packet to travel past the mon-
itor, but not all the way to the victim. Hence, the moni-
tor sees this text but the victim does not. The attacker the
sends the text “root” with the same sequence numbers as
“nice”, but this time with enough TTL to reach the victim.
The victim will thus only see the text “USER” followed by
“root”, while the monitor will see two versions of the text
for sequence numbers 10 through 13, and will have to decide
which to assume was also received by the victim (if, indeed,
it even detects that the data stream includes an inconsistency,
which requires extra work on the monitor's part). While in
this case by inspecting the TTLs it may be able to determine
which of the two versions the victim will have seen, there are
many other ways (window checks, the MTU attack above,
checksums, acknowledgement sequence number checks) of
subtly affecting header fields such that the victim will re-
ject one or the other of the two versions. Fundamentally, the
monitor cannot confidently know which of the two versions
to accept.
A partial defense against this attack is that when we ob-

serve a retransmitted packet (one with data that wholly or
partially overlaps previously-seen data), we compare it with
any data it overlaps, and sound an alarm (or, for Bro, gener-
ate an event) if they disagree. A properly-functioning TCP
will always retransmit the same data as originally sent, so
any disagreement is either due to a broken TCP, undetected
data corruption (i.e., corruption the checksum fails to catch),
or an attack.
We have argued that the monitor must retain a record of

previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of

memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.
Here we can make use of our assumption that the attacker

controls only one of the connection endpoints. Suppose the
stream of interest flows from host to host . If the at-
tacker controls , then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they control , then,
from our assumption, any traffic we see from reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming from). In particular, we can trust that
if we see an acknowledgement from for sequence number
, then indeed has received all data in sequence up to .
At this point, ' s TCP will deliver, or has already delivered,
this data to the application running on . In particular, ' s
TCP cannot accept any retransmitted data below sequence
, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for , it can safely release any memory associated with data
up to sequence .
While this defenseworks for detecting this general class of

insertion attacks, it suffers from false positives, as discussed
in 7.3 below.
Finally, we note a general defense against certain types

of subterfuge attacks, which we term “bifurcating analysis.”
The idea is that when the monitor cannot determine how an
endpoint will interpret some network traffic (such as whether
it will accept USER nice or USER root), it forms mul-
tiple threads of analysis, examining each of the possibilities.
We note one example of doing so in 6.5 below in our dis-
cussion of analyzing Telnet and Rlogin traffic.

6 Application-specific processing
We finish our overview of Bro with a discussion of the addi-
tional processing it does for the six applications it currently
knows about: Finger, FTP, Portmapper, Ident, Telnet and
Rlogin. Admittedly these are just a small portion of the dif-
ferent Internet applications used in attacks, and Bro's effec-
tiveness will benefit greatly as more are added. Fortunately,
we have in general found that the system meets our goal
of extensibility (1), and adding new applications to Bro
is—other than the sometimes major headache of robustly
interpreting the application protocol itself—quite straight-
forward, a matter of deriving a C++ class to analyze each
connection's traffic, and devising a set of events correspond-
ing to significant elements of the application.

13

From	
 Paxson,	
 	
 “Bro:	
 A	
 System	
 for	
 DetecNng	
 Network	
 Intruders	
 in	
 Real-­‐Time”,	
 1999	

Anomalous,	
 non-­‐a9ack	
 traffic	

•  “Storms”	
 of	
 10,000s	
 of	
 FIN	
 or	
 RST	
 packets	
 due	

to	
 protocol	
 implementaNon	
 error	
 	

•  “Storms”	
 due	
 to	
 foggy	
 days	

– Fog	
 in	
 SF	
 bay	
 area	
 killed	
 a	
 connecNon,	
 causing	

rouNng	
 flaps	
 and	
 in	
 turn	
 rouNng	
 loops	

•  SYN	
 packet	
 with	
 URG	
 flag	
 set	

– Flags	
 ==	
 SYN	
 	
 fails	

Honeypots	

•  Systems	
 that	
 should	
 have	
 no	
 legiNmate	
 traffic	

–  Isolated	
 and	
 monitored	

– Any	
 traffic	
 routed	
 to	
 it	
 is	
 spurious	

•  High	
 interacNon	
 (e.g.,	
 a	
 full	
 system)	

•  Low	
 interacNon	
 (e.g.,	
 Honeyd)	

•  Honeynets,	
 honeyfarms	

–  lots	
 of	
 honeypots	

•  Honeytoken	

–  email	
 address	

–  credit	
 card	
 number	

Honeypots	
 and	
 spam	

Figure 2: Our data collection and processing workflow.

for subsequent analysis in Section IV. (Steps ➎ and ➏ are
partially manual operations, the others are fully automated.)

The rest of this section describes these steps in detail.

A. Collecting Spam-Advertised URLs

Our study is driven by a broad range of data sources of
varying types, some of which are provided by third parties,
while others we collect ourselves. Since the goal of this
study is to decompose the spam ecosystem, it is natural
that our seed data arises from spam email itself. More
specifically, we focus on the URLs embedded within such
email, since these are the vectors used to drive recipient
traffic to particular Web sites. To support this goal, we

Feed Feed Received Distinct
Name Description URLs Domains

Feed A MX honeypot 32,548,304 100,631
Feed B Seeded honey accounts 73,614,895 35,506
Feed C MX honeypot 451,603,575 1,315,292
Feed D Seeded honey accounts 30,991,248 79,040
Feed X MX honeypot 198,871,030 2,127,164
Feed Y Human identified 10,733,231 1,051,211
Feed Z MX honeypot 12,517,244 67,856
Cutwail Bot 3,267,575 65
Grum Bot 11,920,449 348
MegaD Bot 1,221,253 4
Rustock Bot 141,621,731 13,612,815
Other bots Bot 7,768 4

Total 968,918,303 17,813,952

Table I: Feeds of spam-advertised URLs used in this study. We
collected feed data from August 1, 2010 through October 31, 2010.

obtained seven distinct URL feeds from third-party partners
(including multiple commercial anti-spam providers), and
harvested URLs from our own botfarm environment.

For this study, we used the data from these feeds from
August 1, 2010 through October 31, 2010, which together
comprised nearly 1 billion URLs. Table I summarizes our
feed sources along with the “type” of each feed, the number
of URLs received in the feed during this time period, and
the number of distinct registered domains in those URLs.
Note that the “bot” feeds tend to be focused spam sources,
while the other feeds are spam sinks comprised of a blend
of spam from a variety of sources. Further, individual feeds,
particularly those gathered directly from botnets, can be
heavily skewed in their makeup. For example, we received
over 11M URLs from the Grum bot, but these only contained
348 distinct registered domains. Conversely, the 13M distinct
domains produced by the Rustock bot are artifacts of a
“blacklist-poisoning” campaign undertaken by the bot op-
erators that comprised millions of “garbage” domains [54].
Thus, one must be mindful of these issues when analyzing
such feed data in aggregate.

From these feeds we extract and normalize embedded
URLs and insert them into a large multi-terabyte Postgres
database. The resulting “feed tables” drive virtually all
subsequent data gathering.

B. Crawler data

The URL feed data subsequently drives active crawling
measurements that collect information about both the DNS
infrastructure used to name the site being advertised and the
Web hosting infrastructure that serves site content to visitors.
We use distinct crawlers for each set of measurements.

DNS Crawler: We developed a DNS crawler to iden-
tify the name server infrastructure used to support spam-
advertised domains, and the address records they specify for
hosting those names. Under normal use of DNS this process
would be straightforward, but in practice it is significantly

From	
 Levchenko	
 et	
 al.,	
 “Click	
 Trajectories:	
 End-­‐to-­‐End	
 Analysis	
 of	
 the	
 Spam	

Value	
 Chain”,	
 IEEE	
 Symposium	
 on	
 Security	
 and	
 Privacy,	
 2011	

Figure 1: Infrastructure involved in a single URL’s value chain, including advertisement, click support and realization steps.

machine in Brazil (➍). The user’s browser initiates an HTTP
request to the machine (➎), and receives content that renders
the storefront for “Pharmacy Express,” a brand associated
with the Mailien pharmaceutical affiliate program based in
Russia (➏).

After selecting an item to purchase and clicking on
“Checkout”, the storefront redirects the user to a payment
portal served from payquickonline.com (this time serving
content via an IP address in Turkey), which accepts the
user’s shipping, email contact, and payment information, and
provides an order confirmation number. Subsequent email
confirms the order, provides an EMS tracking number, and
includes a contact email for customer questions. The bank
that issued the user’s credit card transfers money to the
acquiring bank, in this case the Azerigazbank Joint-Stock
Investment Bank in Baku, Azerbaijan (BIN 404610, ➐).
Ten days later the product arrives, blister-packaged, in a
cushioned white envelope with postal markings indicating
a supplier named PPW based in Chennai, India as its
originator (➑).

C. Cybercrime economics

Alongside the myriad studies of the various components
employed in spam (e.g., botnets, fast flux, etc.), a literature
has recently emerged that focuses on using economic tools
for understanding cybercrime (including spam) in a more
systematic fashion, with an aim towards enabling better
reasoning about effective interventions. Here we highlight
elements of this work that have influenced our study.

Some of the earliest such work has aimed to understand
the scope of underground markets based on the value of
found goods (typically stolen financial credentials), either as
seen on IRC chatrooms [10], forums [59], malware “drop-
zones” [16], or directly by intercepting communications to
botnet C&C servers [50]. Herley and Florêncio critique this
line of work as not distinguishing between claimed and
true losses, and speculate that such environments inherently

reflect “lemon markets” in which few participants are likely
to acquire significant profits (particularly spammers) [15].
While this hypothesis remains untested, its outcome is
orthogonal to our focus of understanding the structure of
the value chain itself.

Our own previous work on spam conversion also used
empirical means to infer parts of the return-on-investment
picture in the spam business model [21]. By contrast,
this study aims to be considerably more comprehensive in
breadth (covering what we believe reflect most large spam
campaigns) and depth (covering the fullness of the value
chain), but offering less precision regarding specific costs.

Finally, another line of work has examined interventions
from an economic basis, considering the efficacy of site
and domain takedown in creating an economic impediment
for cybercrime enterprises (notably phishing) [6], [35], [36].
Molnar et al. further develop this approach via comparisons
with research on the illicit drug ecosystem [34]. Our work
builds on this, but focuses deeply on the spam problem in
particular.

III. DATA COLLECTION METHODOLOGY

In this section we describe our datasets and the method-
ology by which we collected, processed, and validated
them. Figure 2 concisely summarizes our data sources and
methods. We start with a variety of full-message spam feeds,
URL feeds, and our own botnet-harvested spam (➊). Feed
parsers extract embedded URLs from the raw feed data for
further processing (➋). A DNS crawler enumerates various
resource record sets of the URL’s domain, while a farm
of Web crawlers visits the URLs and records HTTP-level
interactions and landing pages (➌). A clustering tool clusters
pages by content similarity (➍). A content tagger labels the
content clusters according to the category of goods sold, and
the associated affiliate programs (➎). We then make targeted
purchases from each affiliate program (➏), and store the
feed data and distilled and derived metadata in a database

From	
 Levchenko	
 et	
 al.,	
 “Click	
 Trajectories:	
 End-­‐to-­‐End	
 Analysis	
 of	
 the	
 Spam	

Value	
 Chain”,	
 IEEE	
 Symposium	
 on	
 Security	
 and	
 Privacy,	
 2011	

