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Let’s	
  play	
  over	
  the	
  network	
  …	
  	
  

Network	
  IDS	
  basics	
  

Target	
  acquisiNon	
  

Host	
  fingerprinNng,	
  NMAP	
  

Port	
  scanning	
  

Avoiding	
  IDS	
  



Target	
  acquisiNon	
  

backbone	
  

OrganizaNon	
  	
  
X	
  

ISP	
  

How	
  do	
  we	
  find	
  vulnerable	
  server(s)	
  within	
  a	
  target	
  organizaNon?	
  

StarNng	
  point:	
  one	
  or	
  more	
  publicly	
  routable	
  IP	
  addresses	
  

-­‐	
  WHOIS	
  queries	
  are	
  good	
  way	
  to	
  find	
  them	
  

-­‐	
  Can	
  be	
  used	
  to	
  idenNfy	
  blocks	
  of	
  IP	
  addresses	
  owned	
  



WHOIS	
  fun	
  



We’ve	
  idenNfied	
  target	
  (range	
  of)	
  IPs,	
  
now	
  what?	
  

•  Host	
  discovery	
  
–  Narrow	
  broad	
  swath	
  of	
  potenNal	
  IPs	
  to	
  ones	
  that	
  have	
  
hosts	
  associated	
  with	
  them	
  

•  Service	
  discovery	
  
–  For	
  a	
  parNcular	
  host,	
  idenNfy	
  running	
  services	
  
–  E.g.,	
  is	
  it	
  accepNng	
  SSH	
  connecNons	
  (22)	
  or	
  HTTP	
  (80)?	
  

•  OS	
  fingerprinNng	
  
–  IdenNfy	
  the	
  OS	
  so_ware	
  version	
  running	
  	
  
–  E.g.,	
  Windows	
  vs	
  Linux?	
  

•  ApplicaNon	
  fingerprinNng	
  
–  same	
  at	
  higher	
  level	
  	
  
–  Apache	
  version	
  1.3	
  or	
  2.0+?	
  





NMAP	
  

•  Network	
  map	
  tool	
  
•  De-­‐facto	
  standard	
  for	
  network	
  
reconnaissance,	
  tesNng	
  

•  Numerous	
  built	
  in	
  scanning	
  methods	
  



nmap	
  –PN	
  –sT	
  –p	
  22	
  	
  192.168.1.0/24	
  



Some	
  of	
  the	
  NMAP	
  status	
  messages	
  

•  open	
  
– host	
  is	
  accepNng	
  connecNons	
  on	
  that	
  port	
  

•  closed	
  
– host	
  responds	
  to	
  NMAP	
  probes	
  on	
  port,	
  but	
  does	
  
not	
  accept	
  connecNons	
  

•  filtered	
  
– NMAP	
  couldn’t	
  get	
  packets	
  through	
  to	
  host	
  on	
  
that	
  port.	
  	
  

– Firewall?	
  



Port	
  scan	
  of	
  host	
  



Service	
  discovery	
  



nmap	
  –PN	
  –sT	
  –p	
  22	
  	
  192.168.1.0/24	
  



Port	
  scan	
  of	
  host	
  



Service	
  discovery	
  



OS	
  fingerprinNng	
  



Another	
  example	
  





Internet	
  

Network	
  DMZ	
  

DMZ	
  (demilitarized	
  zone)	
  helps	
  isolate	
  public	
  network	
  	
  
components	
  from	
  private	
  network	
  components	
  

Outer	
  
firewall	
  

Inner	
  
firewall	
  

Web	
  server	
  

IDS	
  
Customer	
  
databases	
  

Firewall	
  rules	
  to	
  disallow	
  traffic	
  from	
  Internet	
  to	
  internal	
  services	
  



Idle	
  scans	
  

•  We	
  want	
  to	
  avoid	
  sending	
  any	
  non-­‐spoofed	
  
packets	
  to	
  the	
  target,	
  but	
  sNll	
  want	
  to	
  port	
  
scan	
  it	
  

•  Salvatore	
  (AnNrez)	
  Sanfilippo	
  1998	
  
•  So-­‐called	
  idle	
  scan	
  can	
  enable	
  this	
  

1)  Determine	
  IPID	
  of	
  a	
  zombie	
  via	
  SYN/ACK	
  
2)  Send	
  SYN	
  spoofed	
  from	
  zombie	
  
3)  Determine	
  new	
  IPID	
  of	
  zombie	
  via	
  SYN/ACK	
  	
  



Idle	
  scans	
  

From	
  h9p://nmap.org/book/idlescan.html	
  



Idle	
  scan	
  

From	
  h9p://nmap.org/book/idlescan.html	
  



PrevenNng	
  idle	
  scans	
  

•  How	
  can	
  we	
  prevent	
  our	
  system	
  from	
  being	
  a	
  
zombie?	
  



Other	
  idle	
  scan	
  type	
  methods?	
  

•  Ensafi	
  et	
  al.	
  “Idle	
  Port	
  Scanning	
  and	
  Non-­‐
Interference	
  Analysis	
  of	
  Network	
  Protocol	
  
Stacks	
  Using	
  Model	
  Checking”,	
  USENIX	
  
Security	
  2010	
  

•  IPID	
  is	
  a	
  side	
  channel	
  –	
  maybe	
  there	
  are	
  
others?	
  
– RST	
  rate	
  
– SYN	
  cache	
  size	
  



Idle	
  scan:	
  RST	
  rate	
  limit	
  

From	
  	
  Ensafi	
  et	
  al.	
  	
  2010	
  



SYN	
  caches	
  and	
  SYN	
  cookies	
  

•  SYN	
  cache	
  maintains	
  state	
  for	
  outstanding	
  TCP	
  
SYN	
  requests	
  received	
  
– Finite	
  amount	
  of	
  memory	
  

•  SYN	
  cookie	
  is	
  mechanism	
  for	
  dealing	
  with	
  DoS	
  
– When	
  SYN	
  cache	
  is	
  full,	
  calculate	
  response’s	
  ISN	
  

3	
  bits	
  
Max	
  Seg	
  
Size	
  	
  

encoding	
  

5	
  bits	
  
Nmestamp	
  t	
  	
  
mod	
  32	
  

24	
  bits	
  
MD5(serverIP,serverPort,clientIP,clientPort,t)	
  



Idle	
  scan:	
  SYN	
  cache	
  

From	
  	
  Ensafi	
  et	
  al.	
  	
  2010	
  



Port	
  scanning:	
  legality	
  	
  
•  United	
  States’	
  Computer	
  Fraud	
  and	
  Abuse	
  Act	
  
(CFAA)	
  	
  
–  Computer	
  system	
  access	
  must	
  be	
  authorized	
  

•  Moulton	
  v	
  VC3	
  (2000).	
  	
  
–  port	
  scanning,	
  by	
  itself,	
  does	
  not	
  create	
  a	
  damages	
  
claim	
  (direct	
  harm	
  must	
  be	
  shown	
  to	
  establish	
  
damages	
  under	
  the	
  CFAA).	
  

•  O.	
  Kerr.	
  	
  “Cybercrime’s	
  scope:	
  InterpreNng	
  
’access’	
  and	
  ’authorizaNon’	
  in	
  computer	
  misuse	
  
statutes”.	
  NYU	
  Law	
  Review,	
  Vol.	
  78,	
  No.	
  5,	
  pp.	
  
1596–1668,	
  November	
  2003.	
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CIDF	
  	
  
(Common	
  intrusion	
  detecNon	
  framework)	
  

Event	
  generators	
  
(E-­‐box)	
  

Analysis	
  engine	
  	
  
(A-­‐box)	
  

From	
  h9p://insecure.org/so/secnet_ids/secnet_ids.html	
  



Two	
  broad	
  classes	
  

•  Anomaly	
  detecNon	
  
– What	
  does	
  “normal”	
  traffic	
  look	
  like?	
  
– Flag	
  abnormal	
  traffic	
  

•  Signature	
  based	
  
– Define	
  some	
  explicit	
  traffic	
  pa9erns	
  as	
  bad	
  
– Flag	
  them	
  
– E.g.,	
  regular	
  expressions	
  



Basic	
  NIDS	
  setup	
  

From	
  h9p://insecure.org/so/secnet_ids/secnet_ids.html	
  



Some	
  examples	
  

•  Snort	
  (MarNn	
  Roesch)	
  
•  Bro	
  (Vern	
  Paxson)	
  
– 1999:	
  27,000	
  lines	
  of	
  C++	
  code	
  



A9acking	
  or	
  bypassing	
  NIDS	
  

•  How	
  do	
  we	
  circumvent	
  a	
  NIDS?	
  

Internet	
  

Outer	
  
firewall	
  

Inner	
  
firewall	
  

Web	
  server	
  

IDS	
  
Customer	
  
databases	
  

Overload	
  a9acks,	
  crash	
  a9acks,	
  subterfuge	
  a9acks	
  



Subterfuge	
  a9ack	
  example	
  

Monitor

(10 hops)

(18 hops)
USER

seq= 6 ... 9

ttl=20

ttl=12

10 .. 13

nice

10 .. 13

ttl=20 root

ttl expires

USER nice

USER root

?

?

USER root

VictimAttacker

Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

quence numbers 6 through 9 in the TCP data stream. It is
18 hops to the victim and 10 hops to the monitor, so both
see this text and accept it. The attacker next transmits the
text “nice” covering the next consecutive span of the se-
quence space, 10 through 13, but with an initial TTL of
only 12, which suffices for the packet to travel past the mon-
itor, but not all the way to the victim. Hence, the moni-
tor sees this text but the victim does not. The attacker the
sends the text “root” with the same sequence numbers as
“nice”, but this time with enough TTL to reach the victim.
The victim will thus only see the text “USER” followed by
“root”, while the monitor will see two versions of the text
for sequence numbers 10 through 13, and will have to decide
which to assume was also received by the victim (if, indeed,
it even detects that the data stream includes an inconsistency,
which requires extra work on the monitor's part). While in
this case by inspecting the TTLs it may be able to determine
which of the two versions the victim will have seen, there are
many other ways (window checks, the MTU attack above,
checksums, acknowledgement sequence number checks) of
subtly affecting header fields such that the victim will re-
ject one or the other of the two versions. Fundamentally, the
monitor cannot confidently know which of the two versions
to accept.
A partial defense against this attack is that when we ob-

serve a retransmitted packet (one with data that wholly or
partially overlaps previously-seen data), we compare it with
any data it overlaps, and sound an alarm (or, for Bro, gener-
ate an event) if they disagree. A properly-functioning TCP
will always retransmit the same data as originally sent, so
any disagreement is either due to a broken TCP, undetected
data corruption (i.e., corruption the checksum fails to catch),
or an attack.
We have argued that the monitor must retain a record of

previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of

memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.
Here we can make use of our assumption that the attacker

controls only one of the connection endpoints. Suppose the
stream of interest flows from host to host . If the at-
tacker controls , then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they control , then,
from our assumption, any traffic we see from reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming from ). In particular, we can trust that
if we see an acknowledgement from for sequence number
, then indeed has received all data in sequence up to .
At this point, ' s TCP will deliver, or has already delivered,
this data to the application running on . In particular, ' s
TCP cannot accept any retransmitted data below sequence
, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for , it can safely release any memory associated with data
up to sequence .
While this defenseworks for detecting this general class of

insertion attacks, it suffers from false positives, as discussed
in 7.3 below.
Finally, we note a general defense against certain types

of subterfuge attacks, which we term “bifurcating analysis.”
The idea is that when the monitor cannot determine how an
endpoint will interpret some network traffic (such as whether
it will accept USER nice or USER root), it forms mul-
tiple threads of analysis, examining each of the possibilities.
We note one example of doing so in 6.5 below in our dis-
cussion of analyzing Telnet and Rlogin traffic.

6 Application-specific processing
We finish our overview of Bro with a discussion of the addi-
tional processing it does for the six applications it currently
knows about: Finger, FTP, Portmapper, Ident, Telnet and
Rlogin. Admittedly these are just a small portion of the dif-
ferent Internet applications used in attacks, and Bro's effec-
tiveness will benefit greatly as more are added. Fortunately,
we have in general found that the system meets our goal
of extensibility ( 1), and adding new applications to Bro
is—other than the sometimes major headache of robustly
interpreting the application protocol itself—quite straight-
forward, a matter of deriving a C++ class to analyze each
connection's traffic, and devising a set of events correspond-
ing to significant elements of the application.

13

From	
  Paxson,	
  	
  “Bro:	
  A	
  System	
  for	
  DetecNng	
  Network	
  Intruders	
  in	
  Real-­‐Time”,	
  1999	
  



Anomalous,	
  non-­‐a9ack	
  traffic	
  

•  “Storms”	
  of	
  10,000s	
  of	
  FIN	
  or	
  RST	
  packets	
  due	
  
to	
  protocol	
  implementaNon	
  error	
  	
  

•  “Storms”	
  due	
  to	
  foggy	
  days	
  
– Fog	
  in	
  SF	
  bay	
  area	
  killed	
  a	
  connecNon,	
  causing	
  
rouNng	
  flaps	
  and	
  in	
  turn	
  rouNng	
  loops	
  

•  SYN	
  packet	
  with	
  URG	
  flag	
  set	
  
– Flags	
  ==	
  SYN	
  	
  fails	
  



Honeypots	
  
•  Systems	
  that	
  should	
  have	
  no	
  legiNmate	
  traffic	
  
–  Isolated	
  and	
  monitored	
  
– Any	
  traffic	
  routed	
  to	
  it	
  is	
  spurious	
  

•  High	
  interacNon	
  (e.g.,	
  a	
  full	
  system)	
  
•  Low	
  interacNon	
  (e.g.,	
  Honeyd)	
  
•  Honeynets,	
  honeyfarms	
  
–  lots	
  of	
  honeypots	
  

•  Honeytoken	
  
–  email	
  address	
  
–  credit	
  card	
  number	
  



Honeypots	
  and	
  spam	
  

Figure 2: Our data collection and processing workflow.

for subsequent analysis in Section IV. (Steps ➎ and ➏ are
partially manual operations, the others are fully automated.)

The rest of this section describes these steps in detail.

A. Collecting Spam-Advertised URLs

Our study is driven by a broad range of data sources of
varying types, some of which are provided by third parties,
while others we collect ourselves. Since the goal of this
study is to decompose the spam ecosystem, it is natural
that our seed data arises from spam email itself. More
specifically, we focus on the URLs embedded within such
email, since these are the vectors used to drive recipient
traffic to particular Web sites. To support this goal, we

Feed Feed Received Distinct
Name Description URLs Domains

Feed A MX honeypot 32,548,304 100,631
Feed B Seeded honey accounts 73,614,895 35,506
Feed C MX honeypot 451,603,575 1,315,292
Feed D Seeded honey accounts 30,991,248 79,040
Feed X MX honeypot 198,871,030 2,127,164
Feed Y Human identified 10,733,231 1,051,211
Feed Z MX honeypot 12,517,244 67,856
Cutwail Bot 3,267,575 65
Grum Bot 11,920,449 348
MegaD Bot 1,221,253 4
Rustock Bot 141,621,731 13,612,815
Other bots Bot 7,768 4

Total 968,918,303 17,813,952

Table I: Feeds of spam-advertised URLs used in this study. We
collected feed data from August 1, 2010 through October 31, 2010.

obtained seven distinct URL feeds from third-party partners
(including multiple commercial anti-spam providers), and
harvested URLs from our own botfarm environment.

For this study, we used the data from these feeds from
August 1, 2010 through October 31, 2010, which together
comprised nearly 1 billion URLs. Table I summarizes our
feed sources along with the “type” of each feed, the number
of URLs received in the feed during this time period, and
the number of distinct registered domains in those URLs.
Note that the “bot” feeds tend to be focused spam sources,
while the other feeds are spam sinks comprised of a blend
of spam from a variety of sources. Further, individual feeds,
particularly those gathered directly from botnets, can be
heavily skewed in their makeup. For example, we received
over 11M URLs from the Grum bot, but these only contained
348 distinct registered domains. Conversely, the 13M distinct
domains produced by the Rustock bot are artifacts of a
“blacklist-poisoning” campaign undertaken by the bot op-
erators that comprised millions of “garbage” domains [54].
Thus, one must be mindful of these issues when analyzing
such feed data in aggregate.

From these feeds we extract and normalize embedded
URLs and insert them into a large multi-terabyte Postgres
database. The resulting “feed tables” drive virtually all
subsequent data gathering.

B. Crawler data

The URL feed data subsequently drives active crawling
measurements that collect information about both the DNS
infrastructure used to name the site being advertised and the
Web hosting infrastructure that serves site content to visitors.
We use distinct crawlers for each set of measurements.

DNS Crawler: We developed a DNS crawler to iden-
tify the name server infrastructure used to support spam-
advertised domains, and the address records they specify for
hosting those names. Under normal use of DNS this process
would be straightforward, but in practice it is significantly

From	
  Levchenko	
  et	
  al.,	
  “Click	
  Trajectories:	
  End-­‐to-­‐End	
  Analysis	
  of	
  the	
  Spam	
  
Value	
  Chain”,	
  IEEE	
  Symposium	
  on	
  Security	
  and	
  Privacy,	
  2011	
  



Figure 1: Infrastructure involved in a single URL’s value chain, including advertisement, click support and realization steps.

machine in Brazil (➍). The user’s browser initiates an HTTP
request to the machine (➎), and receives content that renders
the storefront for “Pharmacy Express,” a brand associated
with the Mailien pharmaceutical affiliate program based in
Russia (➏).

After selecting an item to purchase and clicking on
“Checkout”, the storefront redirects the user to a payment
portal served from payquickonline.com (this time serving
content via an IP address in Turkey), which accepts the
user’s shipping, email contact, and payment information, and
provides an order confirmation number. Subsequent email
confirms the order, provides an EMS tracking number, and
includes a contact email for customer questions. The bank
that issued the user’s credit card transfers money to the
acquiring bank, in this case the Azerigazbank Joint-Stock
Investment Bank in Baku, Azerbaijan (BIN 404610, ➐).
Ten days later the product arrives, blister-packaged, in a
cushioned white envelope with postal markings indicating
a supplier named PPW based in Chennai, India as its
originator (➑).

C. Cybercrime economics

Alongside the myriad studies of the various components
employed in spam (e.g., botnets, fast flux, etc.), a literature
has recently emerged that focuses on using economic tools
for understanding cybercrime (including spam) in a more
systematic fashion, with an aim towards enabling better
reasoning about effective interventions. Here we highlight
elements of this work that have influenced our study.

Some of the earliest such work has aimed to understand
the scope of underground markets based on the value of
found goods (typically stolen financial credentials), either as
seen on IRC chatrooms [10], forums [59], malware “drop-
zones” [16], or directly by intercepting communications to
botnet C&C servers [50]. Herley and Florêncio critique this
line of work as not distinguishing between claimed and
true losses, and speculate that such environments inherently

reflect “lemon markets” in which few participants are likely
to acquire significant profits (particularly spammers) [15].
While this hypothesis remains untested, its outcome is
orthogonal to our focus of understanding the structure of
the value chain itself.

Our own previous work on spam conversion also used
empirical means to infer parts of the return-on-investment
picture in the spam business model [21]. By contrast,
this study aims to be considerably more comprehensive in
breadth (covering what we believe reflect most large spam
campaigns) and depth (covering the fullness of the value
chain), but offering less precision regarding specific costs.

Finally, another line of work has examined interventions
from an economic basis, considering the efficacy of site
and domain takedown in creating an economic impediment
for cybercrime enterprises (notably phishing) [6], [35], [36].
Molnar et al. further develop this approach via comparisons
with research on the illicit drug ecosystem [34]. Our work
builds on this, but focuses deeply on the spam problem in
particular.

III. DATA COLLECTION METHODOLOGY

In this section we describe our datasets and the method-
ology by which we collected, processed, and validated
them. Figure 2 concisely summarizes our data sources and
methods. We start with a variety of full-message spam feeds,
URL feeds, and our own botnet-harvested spam (➊). Feed
parsers extract embedded URLs from the raw feed data for
further processing (➋). A DNS crawler enumerates various
resource record sets of the URL’s domain, while a farm
of Web crawlers visits the URLs and records HTTP-level
interactions and landing pages (➌). A clustering tool clusters
pages by content similarity (➍). A content tagger labels the
content clusters according to the category of goods sold, and
the associated affiliate programs (➎). We then make targeted
purchases from each affiliate program (➏), and store the
feed data and distilled and derived metadata in a database
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