OS Security Basics

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

We start with some basics about operating system
security:

Multics

Multi-level security

Security policies

Access controls

UNIX permissions

University of Wisconsin CS 642

Take yourself back to the 1960’s

http://fyeahhippies.tumblr.com/post/135907376

Take yourself back to the 1960’s

Time-share multiuser
computers coming into
use

GE-645

36 bit address space
Up to 4 processors o
Magnetic tape drives Courtesy of

Supported virtual memory in hardware hitp://aficionadous.blogspot.com/

Multiplexed Information and
Computing Service (Multics)

Project to develop operating system for time-shared
systems

* Designed from 1964-1967.

 MIT project MAC, Bell Labs, and GE

e ~100 installations at greatest extent

* Last one shut down in 2000 (Canadian department
of defense)

“A small but useful hardware complement would be 2
CPU units, 128K of core, 4 million words of high speed
drum, 16 million words of disc, 8 tapes, 2 card readers, 2
line printers, 1 card punch and 30 consoles.”

[Vyssotsky, Corbato, Graham 1965]

Multics: ancestor to many OS’s

Lots of innovations in design

e Use of segmentation and virtual memory
with hardware support

 SMP (shared memory multiprocessor)

* Written in PL/1 (high level language)

F. Corbato, MIT

Significant attention paid to security

Multi-level security

* Military and other government entities want
to use time-sharing too

VAN

Top secret data Unclassified data

Classification levels

Top secret }

Secret }

Confidential }

Unclassified }

Classification levels and
compartmentalization

European Special intelligence

Top secret

—

Secret

. & & &

|
|
Confidential J
Unclassified J

Classification levels and
compartmentalization

e Security level (L,C)
— L is classification level (Top secret, secret, ...)
— Cis compartment (Europe, Special intelligence...)

Dominance relationship:

l11<L2
(L1,C1) < (L2,C2)

C1 subset of C2

Bell-Lapadula Confidentiality Model

/A

“no reads up”, “no writes down”

Simple security condition

User with (L1,C1) can read file with (L2,C2) if

(L1 aii2,C2) Ql,Cl) > (Lz,CZD

*-property
User with (L1,C1) can write file with (L2,C2) if

C(LLC1<(12,02) O (LLEEag2,C2)

Secret

Say we have just Bell-Lapadula in
effect... what could go wrong?

Biba integrity model

/(]

“no read down”, “no writes up”

Simple integrity condition

User with (L1,C1) can read file with (L2,C2) if

C(L,C)<(12,02) > (LG, C2)

*-property
User with (L1,C1) can write file with (L2,C2) if

(ER= T Xe) @,m) > (L2,C2)>

uper

Top Secret secret Secret
stuff ...
!!
m
uper
Top Secret A secret —» Secret

stuff ...

If we combine them... one can only
commuhnicate in same classification

Other policy models

Take-grant protection model

Chinese wall

Clarke-Wilson integrity model

etc.

A good reference is:
Bishop, Computer Security: Art and Science

Multics: ancestor to many OS’s

Lots of innovations in design

e Use of segmentation and virtual memory
with hardware support

 SMP (shared memory multiprocessor)

* Written in PL/1 (high level language)

F. Corbato, MIT

Significant attention paid to security

Multics: security mechanisms

Protection rings 0-7
in which processes execute

* Lower number = higher privilege
* Ring 0 is “hardcore” supervisor
* Inherit privileges over higher levels

Protection rings included in all typical CPUs today and
used by all operating systems

Multics: security mechanisms

Segments

* Virtual memory

* Program and data items stored
In @ segment

* Descriptor control field
(read only, write only, execute

only, ...)
* Segments access controlled

SEGMENT 0

DSEG

I I DBR

SEGMENT 1

SEGMENTN

Multics: security mechanisms

Enciphered passwords » ﬂ?,AS
S

e Couldn’t find the algorithm
e Later ones used DES, but Multics predates DES

pW h(pw)

50
45 |
ol |
35 EINY Times
‘q:'; 30 M Average
© 25 - O Paypal
@ 20 CIFidelity
5 mOWA
10 -
5 _|
O L
20 30 40 50 60 70 80 90
Bit Strength

From reading:
A Large-Scale Study of Web Password Habits, by Florencio and Herley

Karger and Schell multicians.org

Karger and Schell:
security analysis of Multics

* Classic red teaming example

- We have concluded that AFDSC cannot run an
open multi-level secure system on Multics at this time.
As we have seen above, a malicious user can penetrate the
system at will with relatively minimal effort. However,
iful tics does provide AFDSC with a basis for a benign
multi-level system in which all users are determined to be
trustworthy to some degree. For example, with certain
enhancements, Multics could serve AFDSC in a two-level
security mode with both Secret and Top Secret cleared
users simultaneously accessing the system. Such a system,
of course, would depend on the administrati ve
determination .that since all users are cleared at least to
Secret, there would be no malicious users attempting to
penetrate the security controlis.

Karger and Schell:
security analysis of Multics

In the long term, it is felt that Multics can
be developed Into an open secure multi-level system by
restructuring the operating system to include a security
kernel. Such restructuring is essential since malicious
users canngt be ruled out in an open system. The

Reference monitors / security kernels

e System component that monitors (hopefully
all) accesses to data for security violations
 Reference monitors may be:
— kernel
— hypervisor
— within applications (Apache)

Circumventing access controls:

Process 1
(L1,C1)

covert channels

(L1,C1) > (L2,C2)

send M to
Process 2

Fail

Reference
monitor

Process 2
(L2,C2)

Circumventing access controls:
covert channels

(L1,C1) > (L2,C2)

write to my
(L1,C1) ok Refergnce
monitor

Process 1 sends a 1 bit
to Process 2 by writing
lots of bits to files it
controls on hard disk

Process 1 sends a O bit
by idling

>

read from my

file on disk
Process 2

ok (L2,C2)

Process 2 measures time
to read from its files on disk

Longer read time = 1 bit sent
Shorter read time = 0 bit sent

Covert channels one of unsolved
MLS problems

FToOPT T —

l!:‘i ALY e g
— |

i"“‘ '
i

TS/SITK/B

READOUT
| Multi-Net

Access controls

Access control matrix

Objects
file 1 file 2 file n
user 1 read, write | read, read
write, own
user 2
Subjects
user m append read, read,write,
execute own

User i has permissions for file j as indicated in cell [i,j]

Due originally to Lampson in 1971

Two common implementation

paradigms
file 1 file 2 file n _
(1) Access control lists
user 1 read, read, read
write | write, Column stored with file
own
user 2 epe. o
(2) Capabilities
Row stored for each user
userm |append | read, read,wr Unforgeable tickets given
execute ite,own

to user

ACLs compared to Capabilities

ACLs requires
authenticating user

Processes must be given
permissions

Reference monitor must
protect permission setting

Token-based approach
avoids need for auth

Tokens can be passed
around

Reference monitor must
manage tokens

® 00

rist@seclab-laptopl.local:

UNIX-style file system

~[work/revindiff/full — less — 80x24

total 27648
drwXxr=xr-=x
drwxr=xr-=x
drwXxr=xr-=x

-rw-r——r—-—
—rWXr=Xr=X
—rwWXr=xr-x
-rw-r——r——
-rw-r—-—r—-—
-rw-r——r——
-rw—r—-—r—-—
-rw—r——r--
-rw—r——r—-—
—rWXIr=Xr—-x
-rw—r——r—--
-rwW—r——r--
—rWXI=Xr=x
-rwW—r——r--
-rw—r—-—r—-—
-rwW—r——r--
-rw—r——r—-—
-rw—r——r—-
-rw-r—-—r—-—

51
46

~

R el el el e e e e I s R RS SR SR

rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist
rist

staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff
staff

1734
1564
238
321
258319
242609
3049
6921
534
535
1813843
2150
30
1321
1385
6927118
59648
1115
10634
815
8597
11355

Aug
Jul
Jun
Jun
May
May
Jun
May
Jun
Jun
Jun
Jun
May
May
May
May
Jun
May
May
May
May
Jun

23

5
22

2
11
11
20
11
20

4

1

4
11
11
11
11
22
11
11
11
11
22

13:
12:
18:
22:
00:
00:
14:
00:
16:
14:
16:
14:
00:
00:
00:
00:
15:
00:
00:
00:
00:
15:

11 .
37 - .

29
38
18
18
22
18
30
49
50
13
18
18
18
18
27
18
18
18
18
08

.SVN
Makefile

abbrev.bib
abbrev_short.bib
abstract.tex

accents.sty
acknowledgements. tex
acknowledgements. tex.bak
blah.zip

citesort.sty

conf.bib

cornercase. tex
crpproof.tex

crypto.bib

defs.tex
entropymeasures. tex
extattacks.tex
extattcounterexample. tex
failedhashprop.tex
gamebased. tex

O

4
v

UNIX-style file system ACLs

® MO rist@seclab-laptopl.local: ~/work/revindiff/full — less — 80x24
total 27648

drwxr-xr-x 51 rist staff 1734 Aug 23 13:11 .

drwxr-xr-x 46 rist staff 1564 Jul 5 12:37 ..

drwxr=xr-x 7 rist staff 238 Jun 22 18:29 .svn

-rw—r——r—- 1 rist staff 321 Jun 2 22:38 Makefile

—rWXr=Xr-x 1 rist staff 258319 May 11 00:18 abbrev.bib

—rwWXr=Xr-=x 1 rist staff 242609 May 11 00:18 abbrev_short.bib

-rw= 1 rist staff 3049 Jun 20 14:22 abstract.tex
-rw=r——r-= : staff 6921 May 11 00:18 accents.sty
-rw—r——r—— 534 Jun 20 16:30 acknowledgements.tex
-rwW—r—-—r-—- \\iments.tex.bak
-rw-r-—r-4 Permissions:

-rw-r——r—-) y
—ruxr-xr—y - Directory?

—rw-r-=r=1 - Owner (r,w,x) , group (r,w,x), all (r, w, x) [rex
-rw—r——r—- X
—rWXr=Xr—x

—rw=r==r=1 - Qwner (rist)

- ures.tex

-_rwW—=r=—r-— Group (Staﬁ) tex
—-rW—r——r—-— N e __riterexample. tex
8597 May 11 00:18 failedhashprop.tex

11355 Jun 22 15:08 gamebased.tex

—rwW=r=—r—-
-rw—r—=—r—-

1
1

rist
rist

staff
staff

Who uses capabilities?

* Amoeba: distributed operating system
(1990’s)

* Eros (extremely reliable operating system)

= /| ° IBMSystem 38
L - intel iAPX 432

Capabilities are used in
various ways inside modern
systems all over

(From Wikipedia)

Delegation

Need to give a process, other user access

In ACL, process run by user inherits user’s permissions

In Cap, process can pass around token

Revocation

Take away access from user or process

In ACL, remove user from list
In Cap, more difficult

Reference monitor must know where tokens are

Using pointer indirection

UNIX-style file system ACLs

® M O rist@seclab-laptopl.local: ~/work/revindiff/full — less — 80x24

total 27648 B
drwxr-xr-x 51 rist staff 1734 Aug 23 13:11 .

drwxr-xr-x 46 rist staff 1564 Jul 5 12:37 ..

drwxr=xr-x 7 rist staff 238 Jun 22 18:29 .svn

-rw—r——r—- 1 rist staff 321 Jun 2 22:3B Makefile

—rWXr=Xr-x 1 rist staff 258319 May 11 00:18 abbrev.bib

—rWXr=xr-=x 1 rist staff 242609 May 11 00:18 abbrev_short.bib

-rw= 1 rist staff 3049 Jun 20 14:22 abstract.tex

-rw—r——r-= : staff 6921 May 11 00:18 accents.sty

-rw=r——r—— 534 Jun 20 16:30 acknowledgements.tex

-rW=r=—r—- \\ﬁments.tex.bak
-rw-r-—r-4 Permissions:

-rw-r—--r-) y

—ruxr-xr—y - Directory?

—rw-r-=r=1 - Owner (r,w,x) , group (r,w,x), all (r, w, x) [rex

-rw-r——r- X

-rwXr-xr-

—I—r—r- r[rist)

-rw-r—-— ' ’ ures.tex

—rw—r- Group (staff) tex

-rw-r——-r—- terexample. tex mh
-rw—r——r—-— 1 rist staff 8597 May 11 00:18 failedhashprop.tex A
-rw—r——r—- 1 rist staff 11355 Jun 22 15:08 gamebased.tex

Roles (groups)

Group is a set of users

Administrator User Guest

Simplifies assignment of permissions at scale

User 1 Administrator /etc/passwd
User 2 » User X » Jusr/local/

User 3 Guest * /tmp/

UNIX file permissions

* Owner, group
* Permissions set by owner / root

* Resolving permissions:
— If user=owner, then owner privileges
— |f user in group, then group privileges

— Otherwise, all privileges

UNIX Process permissions

* Process (normally) runs with permissions of
user that invoked process

®NO rist@seclab-laptopl.local: ~/work — passwd — 80x24

rist@seclab-laptopl:~/work$ passwd
Changing password for rist.
0ld Password:}

/etc/passwd is owned by root

Users shouldn’t be able to write to it generally

=r=Xr=xr—=x
=r=Xr=xr—=x
=r=Xr=xXr—=x
=r=Xr=xr—x
—rwXr=xr—=x
—rwXr=xr—=x
=rwxXr=xr—=x
=rwXr=xr—=x
=rwXr=xr—=x
=—rwXr=xr—x
—rwXr=xr—=x
=rwxXr=xr—=x
=rwXr=xr—=x
=rwXr=xr—=x
—rwXr=xr—x
=rwXr=xr—=x
=rwxXr=xr—=x
—rwXr=xr—=x
=rwXr=xr—=x
=rwXr=xr—=x
=r=Xr=xr—=x

-r=sr-=xr-x

R el e e e I T e R e R SRR S N R SCRSCR R
-
o
o
o

root

wheel

146976
71
4422
66

66
2017
4894
359968
168432
1188
265392
155449
159632
1735
2441
4954
63424

Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Apr

rist@seclab-laptopl:/usr/bin$ ls -al passwd

29

1 root wheel 111968 Apr 29 17:30 S

rist@seclab-laptopl:/usr/bin$ |

zegrep
zfgrep
zforce
zgrep
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit
zless
zmore
znew
zprint

Process permissions continued

UID O is root

Real user ID (RUID) --
same as UID of parent (who started process)

Effective user ID (EUID) --
from set user ID bit of file being executed or due to sys call

Saved user ID (SUID) --
place to save the previous UID if one temporarily changes it

Also SGID, EGID, etc..

Executable files have 3 setuid bits

e Setuid bit —set EUID of process to owner’s ID
e Setgid bit —set EGID of process to group’s ID
e sticky bit:
* 0 means user with write on directory can rename/
remove file
* 1 means only file owner, directory owner, root can
do so

So passwd is a setuid programs

program runs at permission level of
owner, not user that runs it

=r=Xr=xr—=x
=r=Xr=xr—=x
=r=Xr=xXr—=x
=r=Xr=xr—x
—rwXr=xr—=x
—rwXr=xr—=x
=rwxXr=xr—=x
=rwXr=xr—=x
=rwXr=xr—=x
=—rwXr=xr—x
—rwXr=xr—=x
=rwxXr=xr—=x
=rwXr=xr—=x
=rwXr=xr—=x
—rwXr=xr—x
=rwXr=xr—=x
=rwxXr=xr—=x
—rwXr=xr—=x
=rwXr=xr—=x
=rwXr=xr—=x
=r=Xr=xr—=x

-r=sr-=xr-x

R el e e e I T e R e R SRR S N R SCRSCR R
-
o
o
o

root

wheel

146976
71
4422
66

66
2017
4894
359968
168432
1188
265392
155449
159632
1735
2441
4954
63424

Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Feb
Apr

rist@seclab-laptopl:/usr/bin$ ls -al passwd

29

1 root wheel 111968 Apr 29 17:30 S

rist@seclab-laptopl:/usr/bin$ |

zegrep
zfgrep
zforce
zgrep
zip
zipcloak
zipgrep
zipinfo
zipnote
zipsplit
zless
zmore
znew
zprint

seteuid system call

seteuid can:
- go to SUID or RUID always

uid = getuid(); - anyIDiIfEUIDis O
eid = geteuid();
seteuid(uid); // Drop privileges

seteuid(eid); // Raise privileges
file = fopen(“/etc/passwd”, “w”);

seteuid(uid); // drop privileges

Details of setuid more complicated

Chen, Wagner, Dean “Setuid Demystified”

setuid(1) setuid(1)

setuid(0

R=0,E=1,S= setuid(1) @

setuid(ﬂ

R=0,E=0,S=0 setuid(0) id(1 setuid(1)

setuid(0)

(a) An FSA describing setuid in Linux 2.4.18

Setuid allows necessarily privilege
escalation but...

* Source of many privilege escalation
vulnerabilities

Buffer overflow (next lecture) in local setuid program
gives privilege escalation

Race conditions

Race conditions
Time-of-check-to-time-of-use (TOCTTOU)

if(access(“/tmp/myfile”, R_OK) !1=0) {
exit(-1);

}

file = open(“/tmp/myfile”,

read(file, buf, 100);

close(file);

print(“%s\n”, buf);

n n)

Say program is setuid root:
access checks RUID, but open only checks EUID

access(“/tmp/myfile”, R_OK)

In —s /tmp/myfile /home/root/.ssh/id_rsa

open(“/tmp/myfile”, “r");

print(“%s\n”, buf);

Prints out the root’s
secret key...

Better code

euid = geteuid();

ruid = getuid();

seteuid(ruid); // drop privileges
file = open(“/tmp/myfile”, “r");

read(file, buf, 100);

close(file);

print(“%s\n”, buf);

Summary

Multics: seminal multi-user operating system
— many security features

— significant auditing performed, achieved high
security certifications

IMILS security principles

— covert channels
Access controls (matrixes, ACLs, capabilities)
UNIX style file and process permissions

