TCP/IP security

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Moving up the network stack

Internet protocol and ICMP

IP spoofing, fragmentation

UDP and TCP

Denial of Service

IP traceback, filtering

University of Wisconsin CS 642

Internet

Local area network

(LAN) Internet
TCP/IP
Ethernet
BGP (border gateway protocol)
802.11

DNS (domain name system)

Internet threat models

(1) Malicious hosts

(2) Subverted routers or links

(3) Malicious ISPs or backbone

Internet protocol stack

Application HTTP, FTP, SMTP, SSH, etc.
Transport TCP, UDP

Network IP, ICMP, IGMP

Link 802x (802.11, Ethernet)
Application Application
Transport Transport
Network > Network |&—— Network
Link | Link 1 Link

IP protocol (IPv4)

e Connectionless
— Nno state

* Unreliable

— NO guarantees

* |CMP (Internet Control Message Protocol)
— error messages, etc.
— often used by tools such as ping, traceroute

Internet protocol stack

user data
Application
Appl
TCP hdr user data
IP
Ethernet TCP | Appl
hdr hdr user data
IP TCP | Appl
hdr | hdr | hdr UsSidata
ENet IP TCP | Appl ENet
hdr | hdr | hdr | hdr UsSidata tlr
14 20 20

46 to 1500 bytes

TCP segment

IP datagram

Ethernet frame

IPv4

ENet | IP i ENet E(t):i;ri‘neitnframe
hdr | hdr tlr &
IP datagram
4-bit 4-bit 8-bit 16-bit
version | hdrlen | type of service total length (in bytes)
16-bit 3-bit 13-bit
identification flags fragmentation offset
8-bit 8-bit 16-bit
time to live (TTL) protocol header checksum
32-bit

source IP address

destination IP address

32-bit

options (optional)

Class A

Class B

Class C

Class D

Class E

Hierarchical addressing

128.168.3.4
7 bits 24 bit
netid hostid
0 14 bits 16 bits
netid hostid
1 0 21 bits 8 bits
netid hostid
28 bits
1]11]0 multicast group ID
28 bits
1 1 1 reserved for future use

CIDR address block Description

0.0.0.0/8 Current network (only valid as source address)
10.0.0.0/8 Private network

127.0.0.0/8 Loopback

169.254.0.0/16 Link-Local

172.16.0.0/12 Private network

192.0.0.0/24 Reserved (IANA)

192.0.2.0/24 TEST-NET-1, Documentation and example code
192.88.99.0/24 IPv6 to IPv4 relay

192.168.0.0/16 Private network

198.18.0.0/15 Network benchmark tests

198.51.100.0/24 TEST-NET-2, Documentation and examples
203.0.113.0/24 TEST-NET-3, Documentation and examples
224.0.0.0/4 Multicasts (former Class D network)
240.0.0.0/4 Reserved (former Class E network)

255.255.255.255 Broadcast

From http://en.wikipedia.org/wiki/IPv4

Reference

RFC 1700 &
RFC 1918 &
RFC 5735 &
RFC 3927 &
RFC 1918 &
RFC 5735 &
RFC 5735 &
RFC 3068 &
RFC 1918 &
RFC 2544 &%
RFC 5737 &
RFC 5737 &
RFC 3171 &
RFC 1700 &
RFC 919

Classless Inter-Domain routing (CIDR)

128.168.0.0/16

a.b.c.d / x

X indicates number of bits used for a routing prefix
IP addresses with same /x prefix share some portion of route

IP and CIDR addressing

10110... 1110000

10110... 1100011

...1111001

..1111011

Prefixes used to setup hierarchical routing:
- An organization assigned a.b.c.d/x
- It manages addresses prefixed by a.b.c.d/x

Routing

10110... 1110000

S,

i

10110... 1111000

10110... 1100011

...1111001

" backbone

..1111011

Autonomous systems (AS) are organizational building blocks
- Collection of IP prefixes under single routing policy
- wisc.edu
Within AS, might use RIP (Routing Information Protocol)
Between AS, use BGP (Border Gateway Protocol)

Security issues with IP

10110... 1110000

10110... 1100011

...1111001

..1111011

Routing has issues, we’ll get to that later
What else?

- No source address authentication

- IP spoofing

Spoofed source IPs

Attacker can send packet with fake source IP
Packet will get routed correctly
Replies will not

Send IP packet with source: 8.7.3.4 from 5.6.7.8
dest: 1.2.3.4

How might an attacker abuse this?

Denial of Service using
spoofed packets

8.7.3.4

Easy to use ingress filtering to prevent simple DoS
- Attacker doesn’t sends lots of packets with src 5.6.7.8

Early DoS would use randomly chosen spoofed source IP
- Ingress filtering for 1.2.3.4 less effective
- Egress filtering may still work at ISP2

Reflection attacks

8.7.3.4

Note a valid packet sends a reply to 8.7.3.4
- Attacker can bounce an attack against 8.7.3.4 off 1.2.3.4
- Frame 1.2.3.4
- Hides a single-packet exploit even better
(1.2.3.4 in foreign country)

Anonymous single-packet
attacks

8.7.3.4

1.2.3.4 contains a buffer overflow in web server

src: 8.7.3.4 src: 8.7.3.4
dst: 1.2.3.4 dst: 1.2.3.4
HTTP/1.1 GET HTTP/1.1 GET
AAAAAAAAAAA.... exploit buffer

Untraceable packet of death Untraceable single-packet exploit + payload

IPv4 fragmenting

ENet
hdr

P
hdr

data

ENet
tir

IP allows datagrams of size from
20 bytes up to 65535 bytes

Some link layers only allow MTU of 1500 bytes

Ethernet frame
containing
IP datagram

IP figures out MTU of next link, and fragments packet if
necessary into smaller chunk

IPv4 fragmenting

ENet | IP i ENet E(t):i;ri‘neitnframe
hdr | hdr tlr &
IP datagram
4-bit 4-bit 8-bit 16-bit
version | hdrlen | type of service total length (in bytes)
16-bit 3-bit 13-bit
identification flags fragmentation offset
8-bit 8-bit 16-bit
time to live (TTL) protocol header checksum
32-bit

source IP address

destination IP address

32-bit

options (optional)

IPv4 fragmenting

Ethernet frame

ENet | IP ENet o
hdr | hdr e tlr containing
IP datagram
16-bit 3-bit 13-bit
identification flags fragmentation offset

Source-specified “unique” number
identifying datagram

Flags:
0 bl b2

where b1l = May Fragment (0) / Don’t Fragment (1)

where bl = Last Fragment (0) / More Fragments (1)

Fragment offset in 8-byte
units

Fragmentation attacks

8.7.3.4

Fragmentation is a mess:
 Teardrop DoS (mangled fragmentation crashes reconstruction
code). Set offsets so that two packets have overlapping data

Fragmentation attacks

. . 8.7.3.4
Fragmentatlon IS @ MesSsS:

 Teardrop DoS (mangled fragmentation crashes reconstruction
code). Set offsets so that two packets have overlapping data
* Such manipulations also allow avoiding IDS systems
* |DS scans packets for exploit strings
 Add random data into packets, overwrite later during
reconstruction due to overlapping fragments
* DoS by filling up fragmentation buffers

IP traceback

e Spoofed IPs means we cannot know where
packets came from

* |P traceback is problem of determining the
origination of one or more packets

IP traceback

IP traceback approaches: 8734

Logging — each router keeps logs of packets going by

Input debugging — feature of routers allowing filtering egress
port traffic based on ingress port. Associate egress with ingress
Controlled flooding — mount your own DoS on links selectively to
see how it affects malicious flood

Marking — router probabilistically marks packets with info

ICMP traceback — router probabilistically sends ICMP packet
with info to destination

IP traceback

Management | Network Router | Distributed | Post-mortem | Preventative/
overhead overhead | overhead | capability capability reactive

Ingress filtering Moderate Low Moderate N/A N/A Preventative

Link testing

Input debugging High Low High Good Poor Reactive
Controlled flooding Low High Low Poor Poor Reactive
Logging High Low High Excellent Excellent Reactive
ICMP Traceback Low Low Low Good Excellent Reactive
Marking Low Low Low Good Excellent Reactive

From Savage et al., “Practical Network Support for IP Traceback”

Limitations?

Internet protocol stack

Application HTTP, FTP, SMTP, SSH, etc.
Transport TCP, UDP

Network IP, ICMP, IGMP

Link 802x (802.11, Ethernet)
Application Application
Transport Transport
Network > Network |&—— Network
Link | Link 1 Link

ICMP

(Internet Control Message Protocol)

IP datagram
P | ICMP containing
hdr | hdr ICMP message UDP datagram
8-bit 8-bit 16-bit
type code checksum

4-byte

more of header (depends on type)

message ...

ICMP

(Internet Control Message Protocol)

IP datagram
IP | ICMP containing
hdr | hdr ICMP message UDP datagram
8-bit 8-bit 16-bit
type (0 or 8) code=0 checksum
16-bit 16-bit
identifier sequence number

optional data

Echo request (used by ping)

UDP (user datagram protocol)

P UDP IP datggram
hdr | hdr data containing
UDP datagram
16-bit 16-bit
source port number destination port number
16-bit 16-bit
UDP length UDP checksum

length = header len + data len

TCP (transport control protocol)

* Connection-oriented

— state initialized during handshake and maintained
* Reliability is a goal

— generates segments

— timeouts segments that aren’t ack’d

— checksums headers,

— reorders received segments if necessary

— flow control

TCP (transport control protocol)

P TCPp it ”’datggran1
hdr | hdr containing
UDP datagram
16-bit 16-bit
source port number destination port number
32-bit
sequence number
32-bit
acknowledgement number
4-bit 6-bits 6-bits 16-bit
hdr len reserved flags window size
16-bit 16-bit
TCP checksum urgent pointer

options (optional)

data (optional)

TCP (transport control protocol)

P TCP o IP datggram
hdr hdr atd containing
UDP datagram
TCP flags:
URG urgent pointer valid
ACK acknowledgement number
valid
PSH pass data to app ASAP
RST reset connection
SYN synchronize sequence #'s
FIN finished sending data

TCP handshake

Client C
SYN seqC, 0O

Server S

>

SYN/ACK seqS, seqC+1

ACKseqC+1,seqS+1

SYN = syn flag set
ACK = ack flag set
X,y =X is sequence #, y is acknowledge #

TCP teardown

Client C Server S
FIN seqC, seqS N
ACK seqC+1
<
FIN seqS + 1, seqC +1
<
ACK seqS +2 N

SYN = syn flag set
ACK = ack flag set
X,y =X is sequence #, y is acknowledge #

TCP SYN floods

8.7.3.4

Send lots of TCP SYN packets to 1.2.3.4

* 1.2.3.4 maintains state for each SYN packet for some amount
window of time

e [f5.6.7.8 sets SRC IP to be 8.7.3.4, what does 8.7.3.4 receive?

TCP handshake

Client C Server S
SYN seqC, 0O

SYN/ACK seqS, secC+1

ACKseqC+1,seqS+1

Initial sequence numbers must
vary over time so that different
connections don’t get confused

How are secC and seqS
selected?

Predictable sequence
numbers

4.4BSD used predictable initial sequence numbers (ISNs)
* At system initialization, set ISN to 1
* Increment ISN by 64,000 every half-second

What can a clever attacker do?

Predictable sequence
numbers

Connection b/w 1.2.3.4 and 8.7.3.4 8.7.3.4

Forge a FIN packet from Forge some application-layer
8.73.4t01.2.3.4 packet from 8.7.3.4t01.2.3.4
src: 8.7.3.4 src: 8.7.3.4
dst: 1.2.3.4 dst: 1.2.3.4
seq#(8.7.3.4) seq#(8.7.3.4)
FIN ’ “rsh rm —rf /”

Predictable sequence
numbers

Fix idea 1: 8.7.3.4
* Random ISN at system startup
* Increment by 64,000 each half second

Better fix:
 Random ISN for every connection

Still issues:
* Any FIN accepted with seg# in receive window: 217 attempts

TCP/IP security: other issues

Congestion control abuse
— can allow cheaper DoS

No crypto
— We'll talk about IPsec and TLS later

BGP routing

— we’ll talk about later

DNS (mapping from IP to domain names)
— We'll talk about later

More about DoS

DoS is still a big problem

How big?

Backscatter

8.7.3.4

Can we measure the level of DoS attacks on Internet?
* If we can measure spurious packets at 8.7.3.4, we might
infer something about DoS at 1.2.3.4

Types of responses to floods

Packet sent Response from victim

TCP SYN (to open port) TCP SYN/ACK
TCP SYN (to closed port) | TCP RST (ACK)

TCP ACK TCP RST (ACK)
TCP DATA TCP RST (ACK)
TCP RST no response

TCP NULL TCP RST (ACK)
ICMP ECHO Request ICMP Echo Reply
ICMP TS Request ICMP TS Reply

UDP pkt (to open port) protocol dependent
UDP pkt (to closed port) ICMP Port Unreach

Table 1: A sample of victim responses to typical attacks.

From Moore et al., “Inferring Internet Denial-of-Service Activity”

Internet telescopes

.4.0.0/16

Setup some computers to watch traffic sent to darknets
* Darknet = unused routable space

o '

O 232

2001: 400 SYN attacks per week 2008: 4425 SYN attacks per 24 hours

Preventing DoS: Prolexic approach

Lots of SYNs

Lots of SYN/ACKs

1.2.3.4
Filtering box Few ACKs

Just need a beefy box to help with filtering.
Companies pay Prolexic to do it for them

Distributed DoS

* Botnets change the game
— What have we seen today that changes?

* Estonia
— First “cyber” war
— sustained DDoS for over 10 hours
— Estonian solution: stop foreign connections

