Virtualization

CS642: Computer Security

Professor Ristenpart

http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Administrative

- Homework 4 will be posted today or tomorrow
- Last week of class project presentations
 - 10-15 minute presentations
 - Turn in slides (PDF or, preferably, PPTX)
 - Must be comprehensive: extra slides not covered in talk should be added to flesh out details
 - Or: optional supporting writeup (PDF)
 - I'll email about a Doodle to sign up for presentation day/time

Virtualization and cloud security

VMs

Cloud computing paradigms

VM image security issues

VM Introspection

Introspection

Virtualization

No virtualization

Full virtualization

Paravirtualization

Type-1: Hypervisor runs directly on hardware

Virtualization

No virtualization

Full virtualization

Paravirtualization

Type-1: Hypervisor runs directly on hardware

Type-2: Hypervisor runs on host OS

IBM VM/370

- Released in 1972
 - Used with System/370, System/390, zSeries mainframes
 - Full virtualization
- Supported CP/CMS operating system
 - Initial application was to support legacy OS
- z/VM is newer version, most recent version 2010
 - Better use of 64-bit mainframes

Xen

- 2003: academic paper
 - "Xen and the Art of Virtualization"
- Paravirtualization
 - Hypercalls vs system calls
 - Modified guest OS
- Why?

VMWare

Example VM Use Cases

- Legacy support (e.g., VM/370)
- Development
- Server consolidation
- Cloud computing Infrastructure-as-a-Service
- Sandboxing / containment

Study of malware

- Researchers use VMs to study malware
- Example of VM sandboxing
 - Hypervisor must contain malicious code
- Introspection
- How would you evade analysis as a malware writer?
 - split personalities

VMM Transparency

- Adversary can detect if:
 - Paravirtualization
 - Logical discrepancies
 - Expected CPU behavior vs virtualized
 - Red pill (Store Interrupt Descriptor Table instr)
 - Timing discrepancies
 - Slower use of some resources

Garfinkel et al.

"Compatibility
is not transparency:
VMM Detection
Myths and Reality"

Detection of VMWare

MOV EAX,564D5868 <-- "VMXh"
MOV EBX,0
MOV ECX,0A
MOV EDX,5658 <-- "VX"
IN EAX,DX <-- Check for VMWare
CMP EBX,564D5868

IN instruction used by VMWare to facilitate host-to-guest communication

VMWare:
 places VMXh in EBX
Physical:
 processor exception

From

http://handlers.sans.org/tliston/ThwartingVMDetection Liston Skoudis.pdf

Server consolidation

- Consolidation
 - Use VMs to optimize use of hardware
 - Pack as many VMs onto each server as possible
 - Turn off other servers

P1 P2 P1 P2

OS1 OS2

Hypervisor

Hardware

- Threat model?
 - Isolation
 - Containment
 - Assume guests are/can be compromised

Violating isolation

- Covert channels between VMs
 - Illicit communications
 - Hard drives
 - Exploits against VMM

http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

Violating isolation

- Covert channels between VMs
 - Illicit communications
 - Hard drives
 - Exploits against VMM
- Degradation-of-Service attacks
 - Guests might maliciously contend for resources
 - Xen scheduler vulnerability

Violating containment

- Escape-from-VM
 - Vulnerability in VMM or host OS (e.g., Dom0)
 - Seemingly rare, but exist

VMware vulnerability allows users to escape virtual environment

By <u>Joab Jackson</u>
 Feb 28, 2008

A new vulnerability found in some VMware products allows users to escape their virtual environments and muck about in the host operating system, penetration testing software firm Core Security Technologies <u>announced</u> earlier this week.

This vulnerability (CVE Name: CVE-2008-0923) could poise significant risks to enterprise users who are deploying VMware software as a secured environment.

Violating containment

- Escape-from-VM
 - Vulnerability in VMM or host OS (e.g., Dom0)
 - Seemingly rare, but exist
- Side channels
 - Spy on other guest via shared resources

Cross-VM side channels using CPU cache contention

- 1) Read in a large array (fill CPU cache with attacker data)
- 2) Busy loop (allow victim to run)
- 3) Measure time to read large array (the load measurement)

What else is shared?

Memory bus, Hard disk, i-Cache, CPU registers, NIC, Hypervisor itself, ...

Lessons

- Don't count on:
 - VMM transparency
 - Strong isolation (side channels exist)
- Don't rely on:
 - Containment
- Securing guest OS and host OS still very important

Virtual Machine Management

Snapshots

- Volume snapshot / checkpoint
 - persistent storage of VM
 - must boot from storage when resuming snapshot
- Full snapshot
 - persistent storage and ephemeral storage (memory, register states, caches, etc.)
 - start/resume in between (essentially) arbitrary instructions
- VM image is a file that stores a snapshot

Virtual machines and secure browsing

"Protect Against Adware and Spyware: Users protect their PCs against adware, spyware and other malware while browsing the Internet with Firefox in a virtual machine."

[http://www.vmware.com/company/news/releases/player.html]

Clean snapshot of VM with browser running

Resetting to snapshot removes malware

VM Management issues

- Reset vulnerabilities
 - We saw crypto/RNG related vulnerabilities a few weeks ago (reuse of randomness)
 - Guest OS and application quiescing
- Lack of diversity
- Identity management / credentials

Amazon Machine Images (AMIs)

- Users set up volume snapshots / checkpoints that can then be run on the Elastic Compute Cloud (EC2)
- Can be marked as public and anyone can use your AMI

Balduzzi et al. "A Security Analysis of Amazon's Elastic Compute Cloud Service – Long Version –", 2011

See also Bugiel et al., "AmazonIA: When Elasticity Snaps Back", 2011

OI VUIIIEI ADIIILES

Also: Malware found on a couple AMIs

Balduzzi et al. analysis

Backdoors

- AMIs include SSH public keys within authorized_keys
- Password-based backdoors

	East	West	EU	Asia	Total
$\overline{\text{AMIs}}$ (%)	34.8	8.4	9.8	6.3	21.8
With Passwd	67	10	22	2	101
With SSH keys	794	53	86	32	965
With Both	71	6	9	4	90
Superuser Priv.	783	57	105	26	971
User Priv.	149	12	12	12	185

Table 2: Left credentials per AMI

Balduzzi et al. analysis

- Credentials for other systems
 - AWS secret keys (to control EC2 services of an account): 67 found
 - Passwords / secret keys for other systems: 56 found

Finding	Total	Image	Remote
Amazon RDS	4	0	4
dDNS	1	0	1
SQL	7	6	1
MySql	58	45	13
$ m Web m ar{A}pp$	3	2	1
VNC	1	1	0
Total	74	54	20

Table 3: Credentials in history files

Balduzzi et al. analysis

- Deleted files
 - One AMI creation method does block-level copying

Type	#
Home files (/home, /root)	33,011
Images (min. 800×600)	1,085
Microsoft Office documents	336
Amazon AWS certificates and access keys	293
SSH private keys	232
PGP/GPG private keys	151
PDF documents	141
Password file (/etc/shadow)	106

Table 5: Recovered data from deleted files

Response

"They told me it's not their concern, they just provide computing power," Balduzzi says. "It's like if you upload naked pictures to Facebook. It's not a good practice, but it's not Facebook's problem."

http://www.forbes.com/sites/andygreenberg/2011/11/08/ researchers-find-amazon-cloud-servers-teeming-with-backdoors-and-other-peoples-data/

- Amazon notified customers with vulnerable AMIs
- Made private AMIs of non-responsive customers
- New tutorials for bundling systems
- Working on undelete issues...

Lessons

- New software management practices needed with VM snapshots
- Discussion:
 - New tool support?
 - How much worse is this than non-cloud server deployments?
- We have about ~1600 AMIs downloaded ourselves. Research project ideas?